Top Banner
Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.
64

Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.

Dec 23, 2015

Download

Documents

Rachel Holmes
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.

Chapter 15

Anatomy & Physiology

Fifth Edition

Seeley/Stephens/Tate

(c) The McGraw-Hill Companies, Inc.

Page 2: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.

The Senses• Information gathered by the sensory receptors go up the afferent

neurons and are processed at the cerebral cortex.

• Sensory receptors work in response to the stimulation from the environment as well as the change observed within the body, where regulation by negative feed back is needed.

• Each specific sensory receptor is designed to pick up corresponding stimuli, such as heat, pressure, light, sound, et… and transmit to the primary sensory cortex of its own.

• However, if the stimulus is applied to the receptor other than the form of its primary function, the receptor may still respond and give a signal to the sensory cortex. You will see a flash of light when your eye is hit.

Page 3: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.

• Furthermore, if the input is given to a simple nerve ending, the neuron may pick up any stimuli without discrimination.

• The sensory receptors are known to adapt to the level of input. Adopting to hot bath, noise, taste, smell, etc…

• On the contrary, the sensitivity of sensory receptors may be increased by the command from the higher order. For example, if you are commanded to listen carefully you do indeed listen carefully.

Page 4: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.

• Classification – the senses may be divided into 3 major types, which use 5 different types of receptors. (Table 15.1)

• Three types of senses are:– Somatic sense – response of the body to the

environment, such as touch, pressure, temperature, proprioception and pain.

– Visceral sense – sensation within the body, such as pain pressure.

– Special sense – sensation felt by specialized organs, such as smell, taste, sight, sound and balance.

Page 5: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.

• In order to detect these stimuli, at least 5 receptors have been identified.– Mechanoreceptors– Chemoreceptors– Photoreceptors– Thermoreceptors– Nociceptors

• As has been mentioned, these receptors may respond to other stimuli than originally identified.

Page 6: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.

Sensation

• A stimulus may excite a receptor and generate an action potential.

• But to be recognized as stimulation, the action potential must travel through afferent neurons to the cerebral cortex to be sensed as a stimulus.

• The action potential may travel to the parts of the brain such as the cerebellum and remain as unconscious information.

• Adaptation or accommodation to stimuli may be processed by CNS.

• Another modification to stimuli may be found in proprioceptors. There are two types of proprioceptors: tonic and phasic.

Page 7: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.

– Tonic receptors generate action potentials as long as stimuli are applied and accommodate (adapt) slowly, locate position of your body parts.

– Phasic receptors accommodate rapidly and sense only when there is a change – moving body parts.

Page 8: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.

• Types of Afferent nerve Endings – somatic and visceral sensation may arise from at least 8 types of sensory nerve endings (Table 15.2 and Fig. 15.1)

– Free nerve endings – distributed throughout all parts of the body and responsible for a number of sensations , such pain, temperature, itch and movement.

– Thermoreceptors – are essentially free nerve endings scattered immediately beneath the skin, skeletal muscles, the liver, and the hypothalamus.

– There are several times more cold receptors than hot receptors and their structures are indistinguishable.

– The pathways of pain receptors and those of the thermoreceptors are about the same, ii.e. the reticular formation, the thalamus, the primary sensory cortex.

– Thermoreceptors are sensitive to the temperature change and can quickly adapt.

Page 9: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.

• Pain receptors – pain receptors are found in the skin, joint capsules, periosteal of bone, the walls of blood vessels.

• Found a little in deep tissues or visceral organs.

• Pains are transmitted with types of axons: fast pain with myelinated axons and slow pain with non-mylinated axons.

• Fast pain ca be localized and respond quick somatic reflexes or specific sensory cortexes.

• Slow pain, such as caused by burning, identifies only general area of pain.

• Pain from visceral organs are often confused with the surface pain coming from the same spinal nerves referred pain.

• Thus, the cause of upper chest or left arm pain may be from the heart.

• The awareness of pain may be reduced by inhibition of pain center in the thalamus, reticular formation, lower brain stem and spinal cord.

Page 10: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.

• Merkel’s (or tactile) disks – flattened axonal ending associated with epithelial cells.

• At the basal layers of the epidermis.• Touch, pressure, and vibration.• Fine touch and pressure receptors: for exact location, shape, size,

texture and movement.

• Hair follicle receptor – at the root of hair follicles and respond to the motion of hair.

• Pacini’s or Laminated Corpuscles – single dendrite is found at the center of this laminated receptor.

• Located in the dermis or hypodermis. (finger, breasts, external genitalia.)

• Senses cutaneous pressure and vibration. • The corpuscles associated with the joints help relay proprioceptive

information.

Page 11: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.

• Meissner’s or Tactile Corpuscles – in the dermal papillae.

• Two point discrimination touch.

• Different distribution densities leading to the different level of position resolution.

• Ruffini’s End Organs – in the dermis of the skin of fingers.

• Respond to pressure and stretch.

• Golgi Tendon Organ – proprioceptive nerve ending at the tendon.

• Respond to stretch of the tendon.

• The afferent signal from the Golgi organ inhibits the motor neuron of the associated muscle and makes it to relax. Thus, prevents damage to the muscle by excessive contraction.

Page 12: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.

• Muscle Spindles – relatively short 3-10 muscles fibers which are striated only on the ends of the fibers, ii.e only the ends can contract.

• Sensory afferent neurons wrap around the non-striated central region. Efferent gamma motor neurons attach the striated ends.

• When the muscle is stretched, stimulates the muscle spindle.

• The afferent neuron synapses with the alpha motor neuron.

• Muscle contracts – stretch reflex.

Page 13: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.
Page 14: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.
Page 15: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.

Olfaction• The structure of olfactory recess and bulb are shown in Fig. 15.3.

• Olfactory receptors are found in the olfactory epithelium of olfactory organ together with the basal (these are stem cells) and supporting cells.

• Exception to the rule that neuronal cells do not replicate, the basal cells regenerate olfactory cells every two months.

• The olfactory cell’s dendrites ends are embedded in the mucus layer excreted from olfactory glands and the axons extend into olfactory bulbs, where the cranial nerve N I are found.

• The olfactory receptors are highly modified neurons and humans have about 10-20 millions per 5cm², while a dog can have the receptor surface more than 72 times of this.

• The average person can distinguish about 4,000 different odors. Though it is not known how.

Page 16: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.

• Seven primary classes of odors have been proposed:– Comphoraceous– Musky – Floral– Peppermint– Ethereal– Pungent– Putrid

• The olfactory receptor cells are highly sensitive and respond to the dissolved chemicals in the mucus and change its permeability of the membrane leading to a formation of an action potential.

• The information is often transmitted as the frequency of action potentials.

• The axons from the olfactory bulbs directly reach the olfactory cortex, but effector neurons reach hypothalamus and the limbic system raising emotional behavioral responses. Smell good and smell bad. (adaptation, effect of perfume)

Page 17: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.
Page 18: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.
Page 19: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.
Page 20: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.

Taste

• Gustatory (taste) receptors are located within the taste buds, which are in turn protectively placed in the specialized papillae to avoid mechanical stress. There are four types of papillae: circumvallate, fungiform, foliate, and filiform which have no taste buds.

• At the ending of gustatory cell, microvilli are found.

• The microvilli, responding to the chemical that causes depolarization to initiate the action potential

• There are four primary taste: sweet, salt, sour, and bitter.

• Surprisingly, the chemical structures of artificial sweeteners are not the same as sucrose.

• Peppery and burning sensation are with the general sensory receptors.

Page 21: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.

• The afferent nerves synapses in the medulla, again in the thalamus, and to the primary sensory cortex. Good taste and bad taste.

• Perception of taste is extensively related to other senses.• Integration with the olfactory receptor is especially

evident. For example, bad smell could ruin your appetite.

Page 22: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.
Page 23: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.
Page 24: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.
Page 25: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.

Visual Physiology

• How subjects are recognized? Scattering, absorption and reflection.

• Projection to retina.• Visual recognition starts with recognition of light with

photoreceptors, rods and cones.• In all the available instruments, human eyes are the

most capable of working under a very wide intensity of light, ii.e. from the dim light under the moon to the bright daylight in the beach. Minimum light intensity to be recognized is about 40 photons.

• Our eyes are also sensitive to visible wave length of the light ranging from red, orange, yellow, green, blue, indigo and violet.

Page 26: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.

• Light (Fig. 15.16)– Visible light and UV/IR– color

• Light refraction and reflection– Lens: focused imaged – Reflection by the surface of an object

• Inner structure of an eye (fig.15.13)

• The Retina• Rods and Cones – their names, rods and cones, come

from the appearance of their outer segments (15.18/19)

Page 27: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.
Page 28: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.
Page 29: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.
Page 30: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.

• Rods are very sensitive to the light. But do not distinguish colors. They are found more at the outer edge in the retina. In the outer segment of the rods there are light absorbing pigment called rhodopsin.

• Cones are less sensitive to light, but they distinguish color. Because there are at least three types of cones with specific colors of iodopsins: red, green and blue cones, which will be decribed later.

• Cones are concentrated near the opposite end of the lens, fovea, at a higher density to provide high resolution.

• Failure for any these cones to develop ends in color blindness. The most common color blindness is missing of the red cones, thus the subject cannot distinguish red light from green light ( red-green color blindness).

• Color blindness is caused by recessive sex linked genes.

Page 31: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.

• Photoreceptor Function – in the outer portion of each photoreceptor, many layers of membranous discs are packed within the membrane sack.

• Photoreceptor pigments are located in these disks.

• When the photoreceptor is at rest, gated sodium channels are open in the outer segment causing depolarization at the synaptic end of the cell.

• Thus, in the dark, the neurotransmitters are continuously released from the synaptic region of the photoreceptor leading to a high frequency of spiked signals

• Activated rhodopsin closes the Na+ gated channel and the cell becomes hyperpolarized to stop sending the spiked signals.

• When the receptor is stimulated with light, the Na+ channels are closed and the rate of release of synaptic vesicles decreases, thus the cell becomes hyperpolarized.

Page 32: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.

• Visual Pigments

• a visual pigment, rhodopsin, consists of enzymes opsin and retinal from Vitamin A.

• Retinal, with a slight modification, is the same for both rods and cones.

• Three slightly different opsins bind with retinal to form three iodopsins found in cones. Red, green and blue.

• Recognition of Light• There are two forms of retinal: cis – (bent) and trans – (stretched)

forms.

• In the dark, the retinal takes the cis – form and the rhodopsin is inactivated.

• This keeps open the gated Na+ channels of the outer segment of the cell and keeps the cell depolarized.

Page 33: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.

• The cell continues to send spiked signals.

• When the cell is illuminated, the retinal becomes isomerized to the trans-retinal and activated rhodopsin.

• activated rhodopsin closes the Na+ channels and the cell becomes hyperpolarized to stop sending the spiked signals.

• These biochemical processes create an optical image on the retinal surface and the image will be transmitted through the optic nerves to the cerebral cortex.

• Shortly after the photo excitation, the trans-retinal will dissociate from the rhodopsin (bleaching). The opsin will be recycled and the trans-retinal will be put back to cis-retinal using the other enzymes and ATP.

• Dark adaptation

• Fading image in the retina.

Page 34: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.
Page 35: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.
Page 36: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.
Page 37: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.
Page 38: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.
Page 39: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.

• Visual Pathway – recall the anatomy of retina

• There is a significant complexity of neuronal pathways at the level of the retina.

• Eventually, the ganglionic cells extend their axons together as optic nerves, cross over 50% of them at the optic chiasm, and reach lateral geniculate nuclei at the thalamus before finally arriving at large area of visual cortex. (Fig. 15.22)

• Visual information is spread over the wide areas of the cerebral cortex via lateral geniculate laterals from the optic tracts.

• Visual inputs to the pineal gland establish a daily pattern of activity, thus circadian rhythm.

Page 40: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.
Page 41: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.
Page 42: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.
Page 43: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.
Page 44: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.

• Equilibrium and hearing (review)• Anatomy of the Ear – in the lab

• Auditory Function• Sound is generated by vibrating matter such as drums,

tables etc…• It travels through matter such as air, water,wood, metals

etc…, but does not travel through a vacuum.• It has pitch and volume.• Humans can hear within a certain range of pitch (20 –

20,000 cps) of louder than 0db, but less than 125 db with pain.

• While other animals have different hearing ranges. Example: a dog whistle can be heard by dogs, but not by humans.

Page 45: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.

• Sound traveled through the air is:

• Collected by external ear and reaches tympanic membrane (15.23)

• The vibration of tympanic membrane is transmitted to auditory ossicles (three tiny bones) in the middle ear consisting of malleus, incus and staples, while tensor tympani and stapedius muscles provide “sound attenuation reflex” to protect the structure. (15.30)

• The vibrating foot of staples transmits the sound to oval window. When overall window is pushed, the perilymph will be pushed through the scala vestibuli and scala tympani, while basilar membrane is pushed down. These events will end up pushing out the round window.

Page 46: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.

• The vibration frequency of the perilymph will be enhanced at a specific resonating region along the basilar membrane: the higher frequencies are closer to the oval window and the lower frequencies are at the further end of the cochlea.

• The position oriented movement of basilar membrane moves hair cells causing them to rub against the tectorial membrane. (15.26)

• Hair cells attached to the basilar membrane are exposed to endolymph. There is about a 80 mV difference between endolymph and perilymph across the vestitublar membrane ( endocochlear potential). The difference in potential may be the cause of the forming action potential on the hair cells.

• A large number of cochlear nerves are attached to the entire length of the cochlea hair cells to detect sounds of different frequencies.

• Neuronal Pathways for Hearing are shown in Fig. 15.32. Both hearing and balance senses are transmitted by the vestibulochlear (VIII) nerve to cochlear nucleus and eventually reach the auditory cortex

Page 47: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.
Page 48: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.
Page 49: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.
Page 50: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.
Page 51: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.
Page 52: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.
Page 53: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.
Page 54: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.
Page 55: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.
Page 56: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.
Page 57: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.

• Balance• The organs of balance consist of two major parts:

• Static labyrinth consisting of the utricle and saccule. Defines the position of the head relative to gravity.

• In the utricle and saccule, there are two oval shaped maculae with receptor cells.

• These receptor cells support gelatinous matter on which is composed of high density mineral crystals of otolith.

• Any motion against otolith is felt with the receptors as motion against the gravity or linear acceleration.

Page 58: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.

• Kinetic labyrinth consisting of three semicircular canals. Defines the movements of the head. (15.35). The three semicircular ducts; anterior, posterior and lateral create three dimension perception towards movement of the body

• The root of each duct, ampulla, a cupula with receptor where receptor hair cells are found.

• The motion of gelatinous liquid in the semicircular ducts is felt by theses receptors cells to provide rotational sensation

Page 59: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.
Page 60: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.
Page 61: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.
Page 62: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.
Page 63: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.
Page 64: Chapter 15 Anatomy & Physiology Fifth Edition Seeley/Stephens/Tate (c) The McGraw-Hill Companies, Inc.

The End.