Top Banner
Chapter 12 Aldehydes Ketones and Carboxylic Acids 1 Mark Questions 1. Give one use of Formalin. Ans. Formalin is used as a disinfectant, preservative for biological specimens and in leather industry. 2. What is the chemical name of Tollen’s reagent and Fehling’s solution. Ans. Tollen’s reagent = Ammoniacal Silver Nitrate Fehlings solution = Sodium Potassium Tartarate. 3. Write the structure of alkenes that on ozonolysis will give ketone only. Ans. 4. What is the function of in rosenmund reaction? Ans. acts as a catalytic poison which prevents further reduction of aldehyde to alcohol. 5. Name the isomers with molecular formula . Which one will have high boiling point? Ans. The two isomers are and . Acetone boils at higher temperature due to presence of two electron donating alkyl groups. 6. Write a chemical test to distinguish between aldehyde and ketone. Ans. Aldehydes and ketones can be distinguished by Tollen’s test. Aldehydes give a silver mirror on reacting with Tollen’s reagent whereas ketones will not react.
64

Chapter 12 Aldehydes Ketones and Carboxylic Acids

Apr 22, 2023

Download

Documents

Khang Minh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Chapter 12 Aldehydes Ketones and Carboxylic Acids

Chapter12

AldehydesKetonesandCarboxylicAcids

1MarkQuestions

1.GiveoneuseofFormalin.

Ans.Formalinisusedasadisinfectant,preservativeforbiologicalspecimensandinleather

industry.

2.WhatisthechemicalnameofTollen’sreagentandFehling’ssolution.

Ans.Tollen’sreagent=AmmoniacalSilverNitrate

Fehlingssolution=SodiumPotassiumTartarate.

3.Writethestructureofalkenesthatonozonolysiswillgiveketoneonly.

Ans.

4.Whatisthefunctionof inrosenmundreaction?

Ans. actsasacatalyticpoisonwhichpreventsfurtherreductionofaldehydeto

alcohol.

5.Nametheisomerswithmolecularformula .Whichonewillhavehighboiling

point?

Ans.Thetwoisomersare and .Acetoneboilsathigher

temperatureduetopresenceoftwoelectrondonatingalkylgroups.

6.Writeachemicaltesttodistinguishbetweenaldehydeandketone.

Ans.AldehydesandketonescanbedistinguishedbyTollen’stest.Aldehydesgiveasilver

mirroronreactingwithTollen’sreagentwhereasketoneswillnotreact.

Page 2: Chapter 12 Aldehydes Ketones and Carboxylic Acids

7.Whathappenswhenacetaldehydeiskeptwithatraceofsulphuricacid?Writethe

structureofproduct.

Ans.Atrimerofacetaldehyde,calledparaldchydeisformed.

8.WhatistheHofmannbromamidereaction?Illustratewithoneexample.

Ans.Hoffmanbromamidereactionisareactioninwhichamidesareconvertedtoaminesof

onecarbonlessthanthestartingamide.Itisaveryimportantstep–downreaction.

9.GiveIUPACnamesoffollowing

(i)

(ii)

Page 3: Chapter 12 Aldehydes Ketones and Carboxylic Acids

(iii)

(iv)

(v)

(vi)

(vii)

Page 4: Chapter 12 Aldehydes Ketones and Carboxylic Acids

(viii)

(ix)HOOC–CH=CH–COOH

(x)

Ans.(i).5-Chloro-3-ethylpentan-2-one.

(ii).2–(2-bromophenyl)ethanal

(iii).2-Phenylpropanal

(iv).5-Chloro-3-methylpentan-2-one

(v).4-Hydroxypentan-2-one

(vi).3-Methylbutan-2-one

(vii).2-Ethyl-2-methylbutanoicacid

Page 5: Chapter 12 Aldehydes Ketones and Carboxylic Acids

(viii).2-(3-Bromophenyl)ethanal

(ix).But-2-en-1,4–dioicacid

(x).4-Methoxybenzaldehyde

10.Drawthestructureofthefollowing–

(i)4-Methoxybenzaldehyde

(ii)5-Bromo-3-Chloro-2-iodobenzoicacid

(iii)3,3–Dimethyl-1-Chlorobutane

(iv)2,3-Dihydroxy-4-methylpentanal

(v)3-Hydroxy-2-methyl-propanal

(vi)2,4–Dimethyl-3-pentanone

(vii)1,2–Ethaneodiocacid

(viii)3-Pentene-2-one

(ix)1,3–Propane–dioicacid

Ans.(i).

Page 6: Chapter 12 Aldehydes Ketones and Carboxylic Acids

(ii).

(iii).

(iv).

(v).

Page 7: Chapter 12 Aldehydes Ketones and Carboxylic Acids

(vi).

(vii).

(viii).

(ix).

Page 8: Chapter 12 Aldehydes Ketones and Carboxylic Acids

2MarkQuestions

1.Ethanoicacidhasmolarmassof120invapourstate.

Ans.Carboxylicacidondissociationformcarboxylateionwhichisstabilizedbytwo

equivalentresonancestructureinwhichnegativechargeisatthemoreelectronegative

oxygenatom,whereastheconjugatebaseofphenol,phenoxideion,hasnon–equivalent

resonancestructuresinwhichnegativechargeisatthelesselectronegativecarbonatom.

Thereforeresonanceisnotasimportantasitisincarboxylateion.Moreoverthenegative

chargeisdelocalizedovertwomoreelectronegativeoxygenatomsincarboxylateion

whereasitislesseffectivelydelocalizedoveroneoxygenatomandonecarbonatomin

phenoxideion.Thereforethecarboxylateionismorestabilizedthanphenoxideionand

carboxylicacidsarestrongeracidsthanphenol.

2.CarboxylicacidsdonotgivecharacteristicreactionsofCarboxylicacidisstronger

acidthanphenol.

Ans.EthanolcanformintermolecularHydrogenbondingwithwatermolecules,ethyl

chloridecannot.Thereforeethanolissolubleinwaterandethylchlorideisnot.

3.Ethanolismoresolubleinwaterthanethylchloride

Ans.AldehydesaremorereactivethanKetonesduetostericandelectronicreasons.In

Ketonesduetopresenceoftworelativelylargealkylgroups,theapproachofnucleophileis

morehinderedthaninaldehydeshavingonlyonesuchsubstitute.Moreoverthe+Ieffectof

alkylgroupsreducestheelectophilicityofcarbonylgroupmoreinKetonethaninaldehydes.

4.AldehydesaremorereactivethanKetonestowardsnucleophilicadditions.

Ans.Carboxylicacidshavemoreextensiveassociationofmoleculesthroughintermolecular

hydrogenbondingthanalcohols.Moreovertheirboilingpointsarehigherthanalcoholsof

samecarbonatoms.

5.Carboxylicacidshashigherboilingpointsthanalcoholsofsameno.ofcarbonatoms.

Ans.Ethanoicacidexistsasdimerinvapourstateinwhichtwomoleculesremaintogether

byhydrogenbonding.Thisincreasestheeffectivemolecularmassto120.

Page 9: Chapter 12 Aldehydes Ketones and Carboxylic Acids

6.carbonylgroup.

Ans.Incarboxylicacidsduetopresenceofresonance,theC=Ogroupisnotapurecarbonyl

group&thereforetheydonotshowcharacteristicreactionsofcarbonylgroup.

7.Formaldehydedoesnotundergoaldolcondensation.

Ans.Formaldehydedoesnothaveany -hydrogenandthereforeitcannotshowaldol

condensation.

8.Floroaceticacidisastrongeracidthanaceticacid.

Ans.Influoroaceticacid,Fluorinebeingelectronwithdrawinggroupstabilizestheconjugate

basethroughdelocalizationofthenegativecharge

Thereforefluoroaceticacidisastrongeracidthanaceticacid.

Page 10: Chapter 12 Aldehydes Ketones and Carboxylic Acids

3MarkQuestions

1.Toluenetobenzaldehyde

Ans.

2.AcetaldehydetoAcetamide

Ans.

3.Methanoltoaceticacid

Ans.

4.MethanoltoEthanol

Ans.

Page 11: Chapter 12 Aldehydes Ketones and Carboxylic Acids

5.AceticacidtoPropionicacid

Ans.

6.Ethylalcoholtoacetone

Ans.

7.Acetonetotertbutylalcohol

Ans.

8.Toluenetom-nitrobenzoicacid

Ans.

9.PhenoltoacetophenoneAns.

Page 12: Chapter 12 Aldehydes Ketones and Carboxylic Acids

10.AcetaldehydetoAcetone

Ans.

11.GivetheIUPACnamesofthefollowingcompounds:

(i)

(ii)

(iii)

(iv)

Ans.(i)3-Phenylpropanoicacid

(ii)3-Methylbut-2-enoicacid

(iii)2-Methylcyclopentanecarboxylicacid

(iv)2,4,6-Trinitrobenzoicacid

Page 13: Chapter 12 Aldehydes Ketones and Carboxylic Acids

5MarkQuestions

1.Acompound‘A’withformula givesapositive2,4–DNPtestbutanegative

Tollen’stestItcanbeoxidizingtocarboxylicacid‘B’ofmolecularformula ,

whentreatedwithalk. undervigorousconditions.Thesaltof‘B’givesa

hydrocarbon‘C’onKolbes’electrolyticdecarboxylation.IdentifyA,B.C&write

chemicalequations.

Ans.

AsthecompoundAgivesapositive2,4-DNPtestbutnegativeTollen’stest,itisaketone.

Sinceonoxidation,itgivesanacidB,ofmolecularformula ,itis

andBis .AsCisobtainedbyKolbes

decarboxylationofB,Cis .

ThereforeA=Pentan-3one,

B=Propanoicacid

AndC=Butane

Thesequenceofreactionsis

Page 14: Chapter 12 Aldehydes Ketones and Carboxylic Acids

2.AcompoundAwithmolecularformula onoxidationformscompoundBwith

molecularformula .ThecompoundBgivesiodoformtestbutdoesnotreduce

ammoniacalsilvernitrate.ThecompoundBonreductionwithZn–Hg/HClgives

compoundCwithmolecularformula .IdentifyA,B.C&givethechemical

reactionsinvolved.

Ans.

SinceBgivesanegativeTollen’stestbutpositiveIodoformtest,itismethylketone,i.e,

.AlsoitisformedbyoxidationofA.

ThereforeAissecondaryalcoholi.e, onreductionBgives

pentanewithZn–Hg/HCl.

Page 15: Chapter 12 Aldehydes Ketones and Carboxylic Acids

ThereforeCis

Therefore

A=

B=

C=

Reactions:-

Ans.

Page 16: Chapter 12 Aldehydes Ketones and Carboxylic Acids

4.

Ans.

5.

Themolecularformulaof(B)andcharacteristicodourof(A)suggeststhat(A)isanaromatic

aldehyde, and(B)isalcohol, .As(C)isasodiumsaltofanacid&

giveshydrocarbon(D)onheatingwithsodalime,(C)issodiumbenzoateand(D)isbenzene.

Therefore:-

Page 17: Chapter 12 Aldehydes Ketones and Carboxylic Acids

Ans.(A)=

(B)=

(C)=

6.

Ans.(A)=

(B)=

(C)=

7.

Ans.(A)=

(B)=

Page 18: Chapter 12 Aldehydes Ketones and Carboxylic Acids

(C)=

8.

Ans.X=

Y=

Z=

9.

Ans.A=

B=

C=

10.Twomolesofcompound(A)ontreatmentwithastrongbasegivestwocompounds

(B)and(C).Thecompound(B)ondehydrogenationwithCugives(A)whileacidification

of(C)givescarboxylicacid(D)havingmolecularformula .Identify(A)to(D).

Ans.

Page 19: Chapter 12 Aldehydes Ketones and Carboxylic Acids

Since(D)isacarboxylicacidwithonecarbononly,itisHCOOH.Asitisobtainedfrom(C)

acidification,(C)COONaand(A)isHCHOwhichontreatmentwithstrongbase(NaOH)gives

&HCOONa(cannizaro’sreaction).

Thereactionsare:-

11.Writethestructuresofthefollowingcompounds.

(i)α-Methoxypropionaldehyde

(ii)3-Hydroxybutanal

(iii)2-Hydroxycyclopentanecarbaldehyde

(iv)4-Oxopentanal

(v)Di-sec-butylketone

(vi)4-Fluoroacetophenone

Page 20: Chapter 12 Aldehydes Ketones and Carboxylic Acids

Ans.(i)

(ii)

(iii)

(iv)

(v)

(vi)

12.Writethestructuresofproductsofthefollowingreactions;

(i)

Page 21: Chapter 12 Aldehydes Ketones and Carboxylic Acids

(ii)

(iii)

(iv)

Ans.

Page 22: Chapter 12 Aldehydes Ketones and Carboxylic Acids

(iv)

13.Arrangethefollowingcompoundsinincreasingorderoftheirboilingpoints.

, , ,

Ans.Themolecularmassesofthegivencompoundsareintherange44to46.

undergoesextensiveintermolecularH-bonding,resultingintheassociationofmolecules.

Therefore,ithasthehighestboilingpoint.ismorepolarthan andso

hasstrongerintermoleculardipole-dipoleattractionthan andso

hasonlyweakvanderWaalsforce.Thus,thearrangementofthegiven

compoundsintheincreasingorderoftheirboilingpointsisgivenby:

< < <

Page 23: Chapter 12 Aldehydes Ketones and Carboxylic Acids

14.Arrangethefollowingcompoundsinincreasingorderoftheirreactivityin

nucleophilicadditionreactions.

(i)Ethanal,Propanal,Propanone,Butanone.

(ii)Benzaldehyde,p-Tolualdehyde,p-Nitrobenzaldehyde,Acetophenone.

Hint:Considerstericeffectandelectroniceffect.

Ans.(i)

The+Ieffectofthealkylgroupincreasesintheorder:

Ethanal<Propanal<Propanone<Butanone

Theelectrondensityatthecarbonylcarbonincreaseswiththeincreaseinthe+Ieffect.Asa

result,thechancesofattackbyanucleophiledecrease.Hence,theincreasingorderofthe

reactivitiesofthegivencarbonylcompoundsinnucleophilicadditionreactionsis:

Butanone<Propanone<Propanal<Ethanal

(ii)

The+Ieffectismoreinketonethaninaldehyde.Hence,acetophenoneistheleastreactivein

nucleophilicadditionreactions.Amongaldehydes,the+Ieffectisthehighestinp-

tolualdehydebecauseofthepresenceoftheelectron-donating– groupandthelowestin

Page 24: Chapter 12 Aldehydes Ketones and Carboxylic Acids

p-nitrobezaldehydebecauseofthepresenceoftheelectron-withdrawing- group.Hence,

theincreasingorderofthereactivitiesofthegivencompoundsis:

Acetophenone<p-tolualdehyde<Benzaldehyde

<p-Nitrobenzaldehyde

15.Predicttheproductsofthefollowingreactions:

(i)

(ii)

(iii)

(iv)

Ans.(i)

(ii)

Page 25: Chapter 12 Aldehydes Ketones and Carboxylic Acids

(iii)

(iv)

16.Showhoweachofthefollowingcompoundscanbeconvertedtobenzoicacid.

(i)Ethylbenzene(ii)Acetophenone

(iii)Bromobenzene(iv)Phenylethene(Styrene)

Ans.(i)

(ii)

Page 26: Chapter 12 Aldehydes Ketones and Carboxylic Acids

(iii)

(iv)

17.Whichacidofeachpairshownherewouldyouexpecttobestronger?

(i) or

Page 27: Chapter 12 Aldehydes Ketones and Carboxylic Acids

(ii) or

(iii) or

(iv)

Ans.(i)

The+Ieffectof- groupincreasestheelectrondensityontheO-Hbond.Therefore,

releaseofprotonbecomesdifficult.Ontheotherhand,the-IeffectofFdecreasesthe

electrondensityontheO-Hbond.Therefore,protoncanbereleasedeasily.Hence,

isastrongeracidthan .

(ii)

Fhasstronger-IeffectthanCl.Therefore, canreleaseprotonmoreeasilythan

.Hence, isstrongeracidthan .

(iii)

Page 28: Chapter 12 Aldehydes Ketones and Carboxylic Acids

Inductiveeffectdecreaseswithincreaseindistance.Hence,the+IeffectofFin

ismorethanitisin .Hence,

isstrongeracidthan .

(iv)

Duetothe-IeffectofF,itiseasiertoreleaseprotoninthecaseofcompound(A).However,in

thecaseofcompound(B),releaseofprotonisdifficultduetothe+Ieffectof group.

Hence,(A)isastrongeracidthan(B).

18.Whatismeantbythefollowingterms?Giveanexampleofthereactionineachcase.

(i)Cyanohydrin(ii)Acetal(iii)Semicarbazone

(iv)Aldol(v)Hemiacetal(vi)Oxime

(vii)Ketal

(viii)Imine(ix)2,4-DNP-derivative(x)Schiff'sbase

Ans.(i)Cyanohydrin:Cyanohydrinsareorganiccompoundshavingtheformula

,where canbealkylorarylgroups.

Page 29: Chapter 12 Aldehydes Ketones and Carboxylic Acids

Aldehydesandketonesreactwithhydrogencyanide(HCN)inthepresenceofexcesssodium

cyanide(NaCN)asacatalysttofieldcyanohydrin.Thesereactionsareknownascyanohydrin

reactions.

Cyanohydrinsareusefulsyntheticintermediates.

(ii)Acetal:Acetalsaregem-dialkoxyalkanesinwhichtwoalkoxygroupsarepresentonthe

terminalcarbonatom.Onebondisconnectedtoanalkylgroupwhiletheotherisconnected

toahydrogenatom.

WhenaldehydesaretreatedwithtwoeQuivalentsofamonohydricalcoholinthepresence

ofdryHClgas,hemiacetalsareproducedthatfurtherreactwithonemoremoleculeof

alcoholtoyieldacetal.

(iii)Semicarbarbazone:Semicarbazonesarederivativesofaldehydesandketonesproduced

bythecondensationreactionbetweenaketoneoraldehydeandsemicarbazide.

Page 30: Chapter 12 Aldehydes Ketones and Carboxylic Acids

Semicarbazonesareusefulforidentificationandcharacterizationofaldehydesandketones.

(iv)Aldol:A -hydroxyaldehydeorketoneisknownasanaldol.Itisproducedbythe

condensationreactionoftwomoleculesofthesameoronemoleculeeachoftwodifferent

aldehydesorketonesinthepresenceofabase.

(v)Hemiacetal:Hemiacetalsareα-alkoxyalcohols

GeneralstructureofahemiacetalAldehydereactswithonemoleculeofamonohydric

alcoholinthepresenceofdryHClgas.

(vi)Oxime:Oximesareaclassoforganiccompoundshavingthegeneralformula

Page 31: Chapter 12 Aldehydes Ketones and Carboxylic Acids

,whereRisanorganicsidechainandiseitherhydrogenoranorganicside

chain.If isH,thenitisknownasaldoximeand ifisanorganicsidechain,itis

knownasketoxime.

Ontreatmentwithhydroxylamineinaweaklyacidicmedium,aldehydesorketonesform

oximes.

(vii)Ketal:Ketalsaregem-dialkoxyalkanesinwhichtwoalkoxygroupsarepresentonthe

samecarbonatomwithinthechain.Theothertwobondsofthecarbonatomareconnected

totwoalkylgroups.

KetonesreactwithethyleneglycolinthepresenceofdryHClgastogiveacyclicproduct

knownasethyleneglycolketals.

(viii)Imine:Iminesarechemicalcompoundscontainingacarbonnitrogendoublebond.

Page 32: Chapter 12 Aldehydes Ketones and Carboxylic Acids

Iminesareproducedwhenaldehydesandketonesreactwithammoniaanditsderivatives.

(ix)2,4-DNP-derivative:2,4-dinitrophenylhydragonesare2,4-DNP-derivatives,which

areproducedwhenaldehydesorketonesreactwith2,4-dinitrophenylhydrazineina

weaklyacidicmedium.

Toidentifyandcharacterizealdehydesandketones,2,4-DNPderivativesareused.

(x)Schiff'sbase:Schiff'sbase(orazomethine)isachemicalcompoundcontainingacarbon-

nitrogendoublebondwiththenitrogenatomconnectedtoanaryloralkylgroup-butnot

hydrogen.Theyhavethegeneralformula .Hence,itisanimine.

Itisnamedafterascientist,HugoSchiff.

Page 33: Chapter 12 Aldehydes Ketones and Carboxylic Acids

Aldehydesandketonesontreatmentwithprimaryaliphaticoraromaticaminesinthe

presenceoftraceofanacidyieldsaSchiff'sbase.

19.NamethefollowingcompoundsaccordingtoIUPACsystemofnomenclature:

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

Ans.(i)4-methylpentanal

(ii)6-Chloro-4-ethylhexan-3-one

(iii)But-2-en-1-al

(iv)Pentane-2,4-dione

Page 34: Chapter 12 Aldehydes Ketones and Carboxylic Acids

(v)3,3,5-Trimethylhexan-2-one

(vi)3,3-Dimethylbutanoicacid

(vii)Benzene-1,4-dicarbaldehyde

20.Drawthestructuresofthefollowingcompounds.

(i)3-Methylbutanal

(ii)p-Nitropropiophenone

(iii)p-Methylbenzaldehyde

(iv)4-Methylpent-3-en-2-one

(v)4-Chloropentan-2-one

(vi)3-Bromo-4-phenylpentanoicacid

(vii)p,p'-Dihydroxybenzophenone

(viii)Hex-2-en-4-ynoicacid

Ans.(i)

(ii)

(iii)

Page 35: Chapter 12 Aldehydes Ketones and Carboxylic Acids

(iv)

(v)

(vi)

(vii)

(viii)

21.WritetheIUPACnamesofthefollowingketonesandaldehydes.Whereverpossible,

givealsocommonnames.

(i)

(ii)

(iii)

Page 36: Chapter 12 Aldehydes Ketones and Carboxylic Acids

(iv)Ph-CH=CH-CHO

(v)

(vi)PhCOPh

Ans.(i)

IUPACname:Heptan-2-one

Commonname:Methyln-propylketone

(ii)

IUPACname:4-Bromo-2-methylhaxanal

Commonname:(Y-Bromo-α-methyl-caproaldehyde)

(iii)

IUPACname:Heptanal

(iv)Ph-CH=CH-CHO

IUPACname:3-phenylprop-2-enal

Commonname: -Pheynolacrolein

(v)

IUPACname:Cyclopentanecarbaldehyde

(vi)PhCOPh

IUPACname:Diphenylmethanone

Commonname:Benzophenone

Page 37: Chapter 12 Aldehydes Ketones and Carboxylic Acids

22.Drawstructuresofthefollowingderivatives.

(i)The2,4-dinitrophenylhydrazoneofbenzaldehyde

(ii)Cyclopropanoneoxime

(iii)Acetaldehydedimethylacetal

(iv)Thesemicarbazoneofcyclobutanone

(v)Theethyleneketalofhexan-3-one

(vi)Themethylhemiacetalofformaldehyde

Ans.(i)

(ii)

(iii)

(iv)

(v)

Page 38: Chapter 12 Aldehydes Ketones and Carboxylic Acids

(vi)

23.Predicttheproductsformedwhencyclohexanecarbaldehydereactswithfollowing

reagents.

(i)PhMgBrandthen

(ii)Tollens'reagent

(iii)Semicarbazideandweakacid

(iv)Excessethanolandacid

(v)Zincamalgamanddilutehydrochloricacid

Ans.(i)

(ii)

Page 39: Chapter 12 Aldehydes Ketones and Carboxylic Acids

(iii)

(iv)

(v)

24.Whichofthefollowingcompoundswouldundergoaldolcondensation,whichthe

Cannizzaroreactionandwhichneither?Writethestructuresoftheexpectedproducts

ofaldolcondensationandCannizzaroreaction.

(i)Methanal

(ii)2-Methylpentanal

(iii)Benzaldehyde

(iv)Benzophenone

(v)Cyclohexanone

(vi)1-Phenylpropanone

(vii)Phenylacetaldehyde

Page 40: Chapter 12 Aldehydes Ketones and Carboxylic Acids

(viii)Butan-1-ol

(ix)2,2-Dimethylbutanal

Ans.Aldehydesandketoneshavingatleastoneα-hydrogenundergoaldolcondensation.The

compounds(ii)2-methylpentanal,(v)cyclohexanone,(vi)1-phenylpropanone,and(vii)

phenylacetaldehydecontainoneormoreα-hydrogenatoms.Therefore,theseundergoaldol

condensation.

Aldehydeshavingnoα-hydrogenatomsundergoCannizzaroreactions.Thecompounds(i)

Methanal,(iii)Benzaldehyde,and(ix)2,2-dimethylbutanaldonothaveanyα-hydrogen.

Therefore,theseundergocannizzaroreactions.

Compound(iv)Benzophenoneisaketonehavingnoα-hydrogenatomandcompound(viii)

Butan-1-olisanalcohol.Hence,thesecompoundsdonotundergoeitheraldolcondensation

orcannizzaroreactions.

Aldolcondensation

(ii)

(v)

(vi)

Page 41: Chapter 12 Aldehydes Ketones and Carboxylic Acids

(vii)

Cannizzaroreaction

(i)

(iii)

(ix)

Page 42: Chapter 12 Aldehydes Ketones and Carboxylic Acids

25.Howwillyouconvertethanalintothefollowingcompounds?

(i)Butane-1,3-diol(ii)But-2-enal(iii)But-2-enoicacid

Ans.(i)Ontreatmentwithdilutealkali,ethanalproduces3-hydroxybutanalgivesbutane-1,

3-diolonreduction.

(ii)Ontreatmentwithdilutealkali,ethanalgives3-hydroxybutanalwhichonheating

producesbut-2-enal.

(iii)WhentreatedwithTollen'sreagent,But-2-enalproducedintheabovereactionproduces

but-2-enoicacid.

26.Writestructuralformulasandnamesoffourpossiblealdolcondensationproducts

frompropanalandbutanal.Ineachcase,indicatewhichaldehydeactsasnucleophile

andwhichaselectrophile.

Ans.(i)Takingtwomoleculesofpropanal,onewhichactsasanucleophileandtheotheras

anelectrophile.

Page 43: Chapter 12 Aldehydes Ketones and Carboxylic Acids

(ii)Takingtwomoleculesofbutanal,onewhichactsasanucleophileandtheotherasan

electrophile.

(iii)Takingonemoleculeeachofpropanalandbutanalinwhichpropanalactsasa

nucleophileandbutanalactsasanelectrophile.

(iv)Takingonemoleculeeachofpropanalandbutanalinwhichpropanalactsasan

electrophileandbutanalactsasanucleophile.

27.Anorganiccompoundwiththemolecularformula forms2,4-DNP

derivative,reducesTollens'reagentandundergoesCannizzaroreaction.Onvigorous

oxidation,itgives1,2-benzenedicarboxylicacid.Identifythecompound.

Ans.Itisgiventhatthecompound(withmolecularformula )forms2,4-DNP

derivativeandreducesTollen'sreagent.Therefore,thegivencompoundmustbean

aldehyde.

Again,thecompoundundergoescannizzaroreactionandonoxidationgives1,2-

benzenedicarboxylicacid.Therefore,the-CHOgroupisdirectlyattachedtoabenzenering

andthisbenzaldehydeisortho-substituted.Hence,thecompoundis2-ethylbenzaldehyde.

Page 44: Chapter 12 Aldehydes Ketones and Carboxylic Acids

Thegivenreactionscanbeexplainedbythefollowingequations.

28.Anorganiccompound(A)(molecularformula )washydrolysedwithdilute

sulphuricacidtogiveacarboxylicacid(B)andanalcohol(C).Oxidationof(C)with

chromicacidproduced(B).(C)ondehydrationgivesbut-1-ene.WriteeQuationsforthe

reactionsinvolved.

Ans.AnorganiccompoundAwithmolecularformula givesacarboxylicacid(B)

andanalcohol(C)onhydrolysiswithdilutesulphuricacid.Thus,compoundAmustbean

ester.Further,alcoholCgivesacidBonoxidationwithchromicacid.Thus,BandCmust

containeQualnumberofcarbonatoms.

SincecompoundAcontainsatotalof8carbonatoms,eachofBandCcontain4carbon

atoms.

Again,ondehydration,alcoholCgivesbut-1-ene.Therefore,Cisofstraightchainandhence,

itisbutan-1-ol.

Page 45: Chapter 12 Aldehydes Ketones and Carboxylic Acids

Onoxidation,Butan-1-olgivesbutanoicacid.Hence,acidBisbutanoicacid.

Hence,theesterwithmolecularformula isbutylbutanoate.

AllthegivenreactionscanbeexplainedbythefollowingeQuations.

29.Arrangethefollowingcompoundsinincreasingorderoftheirpropertyasindicated:

(i)Acetaldehyde,Acetone,Di-tert-butylketone,Methyltert-butylketone(reactivity

towardsHCN)

(ii) , , (acid

strength)

(iii)Benzoicacid,4-Nitrobenzoicacid,3,4-Dinitrobenzoicacid,4-Methoxybenzoicacid

(acidstrength)

Ans.(i)WhenHCNreactswithacompound,theattackingspeciesisanucleophile,CN-.

Therefore,asthenegativechargeonthecompoundincreases,itsreactivitywithHCN

decreases.Inthegivencompounds,the+Ieffectincreasesasshownbelow.Itcanbe

observedthatsterichindrancealsoincreasesinthesame

Page 46: Chapter 12 Aldehydes Ketones and Carboxylic Acids

Hence,thegivencompoundscanbearrangedaccordingtotheirincreasingreactivities

towardHCNas:

Di-tert-butylketone<Methyltert-butylketone<Acetone<Acetaldehyde

(ii)Afterlosingaproton,carboxylicacidsgainanegativechargeasshown:

Now,anygroupthatwillhelpstabilisethenegativechargewillincreasethestabilityofthe

carboxylionandasaresult,willincreasethestrengthoftheacid.Thus,groupshaving+I

effectwilldecreasethestrengthoftheacidsandgroupshaving-Ieffectwillincreasethe

strengthoftheacids.Inthegivencompounds, grouphas+IeffectandBr-grouphas

-Ieffect.Thus,acidscontainingBr-arestronger.

Now,the+Ieffectofisopropylgroupismorethanthatofn-propylgroup.Hence,

isaweakeracidthan .

Also,the-Ieffectgrowsweakerasdistanceincreases.Hence,

isaweakeracidthan .

Hence,thestrengthsofthegivenacidsincreaseas:

Page 47: Chapter 12 Aldehydes Ketones and Carboxylic Acids

< < <

(iii)Aswehaveseeninthepreviouscase,electron-donatinggroupsdecreasethestrengthsof

acids,whileelectron-withdrawinggroupsincreasethestrengthsofacids.Asmethoxygroup

isanelectron-donatinggroup,4-methoxybenzoicacidisaweakeracidthanbenzoicacid.

Nitrogroupisanelectron-withdrawinggroupandwillincreasethestrengthsofacids.As3,4-

dinitrobenzoicacidcontainstwonitrogroups,itisaslightlystrongeracidthan4-

nitrobenzoicacid.Hence,thestrengthsofthegivenacidsincreaseas:

4-Methoxybenzoicacid<Benzoicacid<4-Nitrobenzoicacid

<3,4-Dinitrobenzoicacid

30.Givesimplechemicalteststodistinguishbetweenthefollowingpairsofcompounds.

(i)PropanalandPropanone

(ii)AcetophenoneandBenzophenone

(iii)PhenolandBenzoicacid

(iv)BenzoicacidandEthylbenzoate

(v)Pentan-2-oneandPentan-3-one

(vi)BenzaldehydeandAcetophenone

(vii)EthanalandPropanal

Ans.(i)Propanalandpropanonecanbedistinguishedbythefollowingtests.

(a)Tollen'stest

Propanalisanaldehyde.Thus,itreducesTollen'sreagent.But,propanonebeingaketone

doesnotreduceTollen'sreagent.

Page 48: Chapter 12 Aldehydes Ketones and Carboxylic Acids

(b)Fehling'stest

AldehydesrespondtoFehling'stest,butketonesdonot.

PropanalbeinganaldehydereducesFehling'ssolutiontoared-brownprecipitateof ,

butpropanonebeingaketonedoesnot.

(c)Iodoformtest:

Aldehydesandketoneshavingatleastonemethylgrouplinkedtothecarbonylcarbonatom

respondtoiodoformtest.Theyareoxidizedbysodiumhypoiodite(NaOI)togiveiodoforms.

Propanonebeingamethylketonerespondstothistest,butpropanaldoesnot.

(ii)AcetophenoneandBenzophenonecanbedistinguishedusingtheiodoformtest.

Iodoformtest:

Methylketonesareoxidizedbysodiumhypoioditetogiveyellowppt.ofiodoform.

Acetophenonebeingamethylketonerespondstothistest,butbenzophenonedoesnot.

(iii)Phenolandbenzoicacidcanbedistinguishedbyferricchloridetest.

Page 49: Chapter 12 Aldehydes Ketones and Carboxylic Acids

Ferricchloridetest:

Phenolreactswithneutral toformaniron-phenolcomplexgivingvioletcolouration.

Butbenzoicacidreactswithneutral togiveabuffcolouredppt.offerricbenzoate.

(iv)BenzoicacidandEthylbenzoatecanbedistinguishedbysodiumbicarbonatetest.

Sodiumbicarbonatetest:

Acidsreactwith toproducebriskeffervescenceduetotheevolutionof gas.

Benzoicacidbeinganacidrespondstothistest,butethylbenzoatedoesnot.

(v)Pentan-2-oneandpentan-3-onecanbedistinguishedbyiodoformtest.

Iodoformtest:

Pentan-2-oneisamethylketone.Thus,itrespondstothistest.Butpentan-3-onenotbeinga

methylketonedoesnotrespondtothistest.

Page 50: Chapter 12 Aldehydes Ketones and Carboxylic Acids

(vi)Benzaldehydeandacetophenonecanbedistinguishedbythefollowingtests.

(a)Tollen'sTest

AldehydesrespondtoTollen'stest.BenzaldehydebeinganaldehydereducesTollen'sreagent

togiveared-brownprecipitateof ,butacetophenonebeingaketonedoesnot.

(b)Iodoformtest

Acetophenonebeingamethylketoneundergoesoxidationbysodiumhypoiodite(NaOI)to

giveayellowppt.ofiodoform.Butbenzaldehydedoesnotrespondtothistest.

(vii)Ethanalandpropanalcanbedistinguishedbyiodoformtest.

Iodoformtest

Aldehydesandketoneshavingatleastonemethylgrouplinkedtothecarbonylcarbonatom

respondstotheiodoformtest.Ethanalhavingonemethylgrouplinkedtothecarbonyl

carbonatomrespondstothistest.Butpropanaldoesnothaveamethylgrouplinkedtothe

carbonylcarbonatomandthus,itdoesnotrespondtothisstate.

Page 51: Chapter 12 Aldehydes Ketones and Carboxylic Acids

31.Howwillyoupreparethefollowingcompoundsfrombenzene?Youmayuseany

inorganicreagentandanyorganicreagenthavingnotmorethanonecarbonatom

(i)Methylbenzoate

(ii)m-Nitrobenzoicacid

(iii)p-Nitrobenzoicacid

(iv)Phenylaceticacid

(v)p-Nitrobenzaldehyde.

Ans.(i)

(ii)

Page 52: Chapter 12 Aldehydes Ketones and Carboxylic Acids

(iii)

(iv)

(v)

Page 53: Chapter 12 Aldehydes Ketones and Carboxylic Acids

32.Howwillyoubringaboutthefollowingconversionsinnotmorethantwosteps?

(i)PropanonetoPropene

(ii)BenzoicacidtoBenzaldehyde

(iii)Ethanolto3-Hydroxybutanal

(iv)Benzenetom-Nitroacetophenone

(v)BenzaldehydetoBenzophenone

(vi)Bromobenzeneto1-Phenylethanol

(vii)Benzaldehydeto3-Phenylpropan-1-ol

(viii)Benazaldehydetoα-Hydroxyphenylaceticacid

(ix)Benzoicacidtom-Nitrobenzylalcohol

Ans.

Page 54: Chapter 12 Aldehydes Ketones and Carboxylic Acids
Page 55: Chapter 12 Aldehydes Ketones and Carboxylic Acids

33.Describethefollowing:

(i)Acetylation

(ii)Cannizzaroreaction

(iii)Crossaldolcondensation

(iv)Decarboxylation

Ans.(i)Acetylation:Theintroductionofanacetylfunctionalgroupintoanorganic

compoundisknownasacetylation.Itisusuallycarriedoutinthepresenceofabasesuchas

pyridine,dirnethylaniline,etc.Thisprocessinvolvesthesubstitutionofanacetylgroupfor

Page 56: Chapter 12 Aldehydes Ketones and Carboxylic Acids

anactivehydrogenatom.Acetylchlorideandaceticanhydridearecommonlyusedas

acetylatingagents.

Forexample,acetylationofethanolproducesethylacetate.

(ii)Cannizzaroreaction:Theselfoxidation-reduction(disproportionation)reactionof

aldehydeshavingnoα-hydrogensontreatmentwithconcentratedalkalisisknownasthe

Cannizzaroreaction.Inthisreaction,twomoleculesofaldehydesparticipatewhereoneis

reducedtoalcoholandtheotherisoxidizedtocarboxylicacid.

Forexample,whenethanolistreatedwithconcentratedpotassiumhydroxide,ethanoland

potassiumethanoateareproduced.

(iii)Cross-aldolcondensation:Whenaldolcondensationiscarriedoutbetweentwo

differentaldehydes,ortwodifferentketones,oranaldehydeandaketone,thenthereaction

iscalledacross-aldolcondensation.Ifboththereactantscontainα-hydrogens,four

compoundsareobtainedasproducts.

Forexample,ethanalandpropanalreacttogivefourproducts.

Page 57: Chapter 12 Aldehydes Ketones and Carboxylic Acids

(iv)Decarboxylation:Decarboxylationreferstothereactioninwhichcarboxylicacidslose

carbondioxidetoformhydrocarbonswhentheirsodiumsaltsareheatedwithsoda-lime.

DecarboxylationalsotakesplacewhenaQueoussolutionsofalkalimetalsaltsofcarboxylic

acidsareelectrolyzed.ThiselectrolyticprocessisknownasKolbe'selectrolysis.

34.Completeeachsynthesisbygivingmissingstartingmaterial,reagentorproducts

(i)

(ii)

Page 58: Chapter 12 Aldehydes Ketones and Carboxylic Acids

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

Page 59: Chapter 12 Aldehydes Ketones and Carboxylic Acids

(ix)

(x)

(xi)

Ans.(i)

(ii)

(iii)

(iv)

Page 60: Chapter 12 Aldehydes Ketones and Carboxylic Acids

(v)

(vi)

(vii)

(viii)

(ix)

(x)

Page 61: Chapter 12 Aldehydes Ketones and Carboxylic Acids

(xi)

35.Giveplausibleexplanationforeachofthefollowing:

(i)Cyclohexanoneformscyanohydriningoodyieldbut2,2,6trimethylcyclohexanone

doesnot.

(ii)Therearetwo- groupsinsemicarbazide.However,onlyoneisinvolvedinthe

formationofsemicarbazones.

(iii)Duringthepreparationofestersfromacarboxylicacidandanalcoholinthe

presenceofanacidcatalyst,thewaterortheestershouldberemovedassoonasitis

formed.

Ans.(i)CyclohexanonesformcyanohydrinsaccordingtothefollowingeQuation.

Inthiscase,thenucleophileCN-caneasilyattackwithoutanysterichindrance.However,in

thecaseof2,2,6trimethylcydohexanone,methylgroupsatα-positionsoffersteric

hindrancesandasaresult,CN-cannotattackeffectively.

Page 62: Chapter 12 Aldehydes Ketones and Carboxylic Acids

Forthisreason,itdoesnotformacyanohydrin.

(ii)Semicarbazideundergoesresonanceinvolvingonlyoneofthetwo- groups,which

isattacheddirectlytothecarbonyl-carbonatom.

Therefore,theelectrondensityon- groupinvolvedintheresonancealsodecreases.As

aresult,itcannotactasanucleophile.Sincetheother- groupisnotinvolvedin

resonance;itcanactasanucleophileandcanattackcarbonyl-carbonatomsofaldehydes

andketonestoproducesemicarbazones.

(iii)Esteralongwithwaterisformedreversiblyfromacarboxylicacidandanalcoholin

presenceofanacid.

Ifeitherwateroresterisnotremovedassoonasitisformed,thenitreactstogivebackthe

reactantsasthereactionisreversible.Therefore,toshifttheeQuilibriumintheforward

directioni.e.,toproducemoreester,eitherofthetwoshouldberemoved.

37.Anorganiccompoundcontains69.77%carbon,11.63%hydrogenandrestoxygen.

Themolecularmassofthecompoundis86.ItdoesnotreduceTollens'reagentbut

formsanadditioncompoundwithsodiumhydrogensulphiteandgivepositiveiodoform

test.Onvigorousoxidationitgivesethanoicandpropanoicacid.Writethepossible

structureofthecompound.

Page 63: Chapter 12 Aldehydes Ketones and Carboxylic Acids

Ans.%ofcarbon=69.77%

%ofhydrogen=11.63%

%ofoxygen={100-(69.77+11.63)}%

=18.6%

Thus,theratioofthenumberofcarbon,hydrogen,andoxygenatomsintheorganic

compoundcanbegivenas:

=5.81:11.63:1.16

=5:10:1

Therefore,theempiricalformulaofthecompoundis .Now,theempiricalformula

massofthecompoundcanbegivenas:

=86

Molecularmassofthecompound=86

Therefore,themolecularformulaofthecompoundisgiven .

SincethegivencompounddoesnotreduceTollen'sreagent,itisnotanaldehyde.Again,the

compoundformssodiumhydrogensulphateadditionproductsandgivesapositiveiodoform

test.Sincethecompoundisnotanaldehyde,itmustbeamethylketone.

Thegivencompoundalsogivesamixtureofethanoicacidandpropanoicacid.

Hence,thegivencompoundisPentan-2-one.

ThegivenreactionscanbeexplainedbythefollowingeQuations:

Page 64: Chapter 12 Aldehydes Ketones and Carboxylic Acids

38.Althoughphenoxideionhasmorenumberofresonatingstructuresthan

carboxylateion,carboxylicacidisastrongeracidthanphenol.Why?

Ans.Resonancestructuresofphenoxideionare:

ItcanbeobservedfromtheresonancestructuresofphenoxideionthatinII,IIIandIV,less

electronegativecarbonatomscarryanegativecharge.Therefore,thesethreestructures

contributenegligiblytowardstheresonancestabilityofthephenoxideion.Hence,these

structurescanbeeliminated.OnlystructuresIandVcarryanegativechargeonthemore

electronegativeoxygenatom.

Inthecaseofcarboxylateion,resonatingstructures containachargecarried

byamoreelectronegativeoxygenatom.

Resonancestructuresofcarboxylateionare:

Further,inresonatingstructures ,thenegativechargeisdelocalizedovertwo

oxygenatoms.ButinresonatingstructuresIandVofthephexoxideion,thenegativecharge

islocalizedonthesameoxygenatom.Therefore,theresonatingstructuresofcarboxylateion

contributemoretowardsitsstabilitythanthoseofphenoxideion.Asaresult,carboxylate

ionismoreresonance-stabilizedthanphenoxideion.Hence,carboxylicacidisastronger

acidthanphenol.