Top Banner
AUSTRALIAN ENERGY RESOURCE ASSESSMENT 285 Chapter 11 Ocean Energy 11.1 Summary KEY MESSAGES Ocean energy – wave, tide and ocean thermal energy sources – is an underdeveloped but potentially substantial renewable energy source. Australia has world-class wave energy resources along its western and southern coastline, especially in Tasmania. Australia’s best tidal energy resources are located along the northern margin, especially the north- west coast of Western Australia. Worldwide, ocean energy accounts for a negligible proportion of total electricity generation. The share of ocean energy in world electricity generation is projected to increase by 2030, albeit only modestly. Current ocean energy use is mainly based on tidal power stations. Wave energy technologies are at early stages of commercialisation and ocean thermal technologies are still at development stage. Adoption of ocean energy in Australia depends on technologies for tidal or wave energy proving commercially viable. The cost of access to the transmission grid may also be an impediment for many sites. 11.1.1 World ocean energy resources and market There are substantial ocean (tidal, wave and ocean thermal) energy resources that have potential for zero or low emission electricity generation. Ocean energy industries are at an early stage of development, and they are currently the smallest contributors to world electricity generation. Commercial applications of ocean energy have been limited to tidal barrage power plants in two OECD countries, France (240 MW) and Canada (20 MW), but major new tidal barrage plants are under construction in the Republic of Korea. Government policies and falling investment costs are projected to be the main factors underpinning future growth in world ocean energy use. World electricity generation from ocean energy is projected by the IEA in the reference case to increase at an average annual rate of 14.6 per cent between 2007 and 2030. 11.1.2 Australia’s ocean energy resources The northern half of the Australian continental shelf has limited wave energy resources, but has sufficient tidal energy resources for local electricity production in many areas, particularly the Northwest Shelf, Darwin, Torres Strait and the southern Great Barrier Reef (figure 11.1). The southern half of the Australian continental shelf has world-class wave energy resources along most of the western and southern coastlines, particularly the west and southern coasts of Tasmania (figure 11.2). In contrast, tidal energy resources are limited in this region. Areas in the Pacific Ocean are prospective for ocean thermal energy. 11.1.3 Key factors in utilising Australia’s ocean energy resources Production costs for ocean energy systems are currently high, but are expected to fall as technologies mature. The production costs of ocean energy technologies are estimated by the IEA to range from US$60 per kW to US$300 per kW (in 2005 dollars), with tidal barrage systems at the lower end of this range and tidal current and wave systems at the higher end. Given the largely pre-commercial status of the current ocean energy systems, the outlook is highly dependent on research, development and demonstration (RD&D) activities and the outcomes of these activities, both in assessing energy potential and developing low-cost energy conversion technologies. Government policies that encourage RD&D will be an important driver of the future development of ocean energy technologies in Australia.
24

Chapter 11 Ocean Energy - Geoscience Australia · 2020. 6. 18. · Current ocean energy use is mainly based on tidal power stations. Wave energy technologies are at early stages of

Oct 02, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Chapter 11 Ocean Energy - Geoscience Australia · 2020. 6. 18. · Current ocean energy use is mainly based on tidal power stations. Wave energy technologies are at early stages of

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

285

Chapter 11Ocean Energy

11.1Summary

K E y m E s s a g E s

• Oceanenergy–wave,tideandoceanthermalenergysources–isanunderdevelopedbutpotentiallysubstantialrenewableenergysource.

• Australiahasworld-classwaveenergyresourcesalongitswesternandsoutherncoastline,especiallyinTasmania.

• Australia’sbesttidalenergyresourcesarelocatedalongthenorthernmargin,especiallythenorth-westcoastofWesternAustralia.

• Worldwide,oceanenergyaccountsforanegligibleproportionoftotalelectricitygeneration.Theshareofoceanenergyinworldelectricitygenerationisprojectedtoincreaseby2030,albeitonlymodestly.

• Currentoceanenergyuseismainlybasedontidalpowerstations.Waveenergytechnologiesareatearlystagesofcommercialisationandoceanthermaltechnologiesarestillatdevelopmentstage.

• AdoptionofoceanenergyinAustraliadependsontechnologiesfortidalorwaveenergyprovingcommerciallyviable.Thecostofaccesstothetransmissiongridmayalsobeanimpedimentformanysites.

11.1.1 World ocean energy resources and market • Therearesubstantialocean(tidal,waveandocean

thermal)energyresourcesthathavepotentialforzeroorlowemissionelectricitygeneration.

• Oceanenergyindustriesareatanearlystageofdevelopment,andtheyarecurrentlythesmallestcontributorstoworldelectricitygeneration.CommercialapplicationsofoceanenergyhavebeenlimitedtotidalbarragepowerplantsintwoOECDcountries,France(240MW)andCanada(20MW),butmajornewtidalbarrageplantsareunderconstructionintheRepublicofKorea.

• Governmentpoliciesandfallinginvestmentcostsareprojectedtobethemainfactorsunderpinningfuturegrowthinworldoceanenergyuse.WorldelectricitygenerationfromoceanenergyisprojectedbytheIEAinthereferencecasetoincreaseatanaverageannualrateof14.6percentbetween2007and2030.

11.1.2Australia’soceanenergyresources• ThenorthernhalfoftheAustraliancontinental

shelfhaslimitedwaveenergyresources,buthassufficienttidalenergyresourcesforlocalelectricityproductioninmanyareas,particularlytheNorthwestShelf,Darwin,TorresStraitandthesouthernGreatBarrierReef(figure11.1).

• ThesouthernhalfoftheAustraliancontinentalshelfhasworld-classwaveenergyresourcesalongmostofthewesternandsoutherncoastlines,particularlythewestandsoutherncoastsofTasmania(figure11.2).Incontrast, tidalenergyresourcesarelimitedinthisregion.

• AreasinthePacificOceanareprospectiveforoceanthermalenergy.

11.1.3KeyfactorsinutilisingAustralia’socean energy resources• Productioncostsforoceanenergysystems

arecurrentlyhigh,butareexpectedtofallastechnologiesmature.TheproductioncostsofoceanenergytechnologiesareestimatedbytheIEAtorangefromUS$60perkWtoUS$300perkW(in2005dollars),withtidalbarragesystems atthelowerendofthisrangeandtidalcurrent andwavesystemsatthehigherend.

• Giventhelargelypre-commercialstatusofthecurrentoceanenergysystems,theoutlookishighlydependentonresearch,developmentanddemonstration(RD&D)activitiesandtheoutcomesoftheseactivities,bothinassessingenergypotentialanddevelopinglow-costenergyconversiontechnologies.

• GovernmentpoliciesthatencourageRD&DwillbeanimportantdriverofthefuturedevelopmentofoceanenergytechnologiesinAustralia.

Page 2: Chapter 11 Ocean Energy - Geoscience Australia · 2020. 6. 18. · Current ocean energy use is mainly based on tidal power stations. Wave energy technologies are at early stages of

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

286

• ManyofAustralia’sbesttidalandwaveenergyresourcesareinareasdistantfromtheelectricitygrid.Theproximityoftheresourcetomajorpopulationcentresandtheelectricitygridappearstobesomewhatbetterforwaveenergythantidaloroceanthermalenergy.

• SomeofAustralia’sbesttidalenergyresourcesarealsolocatedinenvironmentallysensitiveareasandtherearesignificantenvironmentalimpactsassociatedwithtidalenergysystems.

• Newtidaltechnologiesbasedontheuseoftidalcurrentshaveenvironmentaladvantagesovertidalbarragesystems,but,likewaveandoceanthermalenergysystems,arestillatanearlystageofdevelopment.

11.1.4Australia’soceanenergymarket• Oceanenergytechnologiesarestillatanearly

stageofdevelopmentandhaveonlybeenusedatapilotscaleinAustralia.Fourtidalorwaveenergyplants,withacombinedcapacityoflessthan1MW,havebeendevelopedinrecentyears.

• Therearealsoplanstodevelopseveralcommercialscaletidalandwaveenergy

projectsinAustralia.Ifsuccessful,these

projectscouldleadtocommercialscaleplants

generatingelectricityforthegrid,foroff-gridlocal

domesticandindustrialuse,ortopowerwater

desalinationplants.

11.2Backgroundinformationandworldmarket

11.2.1DefinitionsTherearetwobroadtypesofoceanenergy:

mechanicalenergyfromthetidesandwaves,and

thermalenergyfromthesun’sheat.Inthisreport,

oceanenergyisclassifiedastidalenergy,wave

energyandoceanthermalenergy.Potentialenergy

resourcesassociatedwithmajoroceancurrents,

suchastheEastAustraliaCurrentortheLeeuwin

Current,arenotconsideredhere.

Tidal energy Tidesresultfromthegravitationalattractionofthe

Earth-Moon-SunsystemactingontheEarth’soceans.

Tidesarelongperiodwavesthatresultinthecyclical

DARWIN

BRISBANE

PERTH

SYDNEYADELAIDE

MELBOURNE

HOBART

AERA 11.1

0 750 km

120°

10°

20°

30°

130° 140° 150°

Tidal energy (GJ/m2)2

40°

0

Figure 11.1 Totalannualtidekineticenergy(ingigajoulespersquaremetre,GJ/m2)ontheAustraliancontinentalshelf(lessthan300mwaterdepth)

Note: Thelowrangeofthecolourscaleisaccentuatedtoshowdetail.Thecolourscalesaturatesat2GJ/m2butthemaximumvaluepresent is195GJ/m2

source: GeoscienceAustralia

Page 3: Chapter 11 Ocean Energy - Geoscience Australia · 2020. 6. 18. · Current ocean energy use is mainly based on tidal power stations. Wave energy technologies are at early stages of

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

287

CHAPTER 11: OCEAN ENERGY

riseandfalloftheocean’ssurfacetogetherwithhorizontalcurrents.Therotatingtidewavesresultindifferentsealevelsfromoneplaceonthecontinentalshelftothenextatanyonetime,andthiscausesthewatercolumntoflowhorizontallybackandforth(tidalcurrents)overtheshelfwiththetidaloscillationsinsealevel.

Tidal energyisenergygeneratedfromtidalmovements.Tidescontainbothpotentialenergy,relatedtotheverticalfluctuationsinsealevel,andkineticenergy,relatedtothehorizontalmotionof thewatercolumn.Itcanbeharnessedusingtwomaintechnologies:

• Tidal barrages (or lagoons) are based on the rise and fall of the tides–thesegenerallyconsistofabarragethatenclosesalargetidalbasin.Waterentersthebasinthroughsluicegatesin thebarrageandisreleasedthroughlow-headturbinestogenerateelectricity.

• Tidal stream generators are based on tidal or marine currents–thesearefree-standingstructuresbuiltinchannels,straitsoronthe shelfandaredesignedtoharnessthekineticenergyofthetide.Theyareessentiallyturbines

thatgenerateelectricityfromhorizontallyflowingtidalcurrents(analogoustowindturbines).

Wave energy Waves (swell)areformedbythetransferofenergyfromatmosphericmotion(wind)totheoceansurface.Waveheightisdeterminedbywindspeed,thelengthoftimethewindhasbeenblowing,thefetch(distanceoverwhichthewindhasbeenblowing),andthedepthandtopographyoftheseafloor.Largestormsgeneratelocalstormwavesandmoredistantregularwaves(swell)thatcantravellongdistancesbeforereachingshore.

Wave energyisgeneratedbyconvertingtheenergyofoceanwaves(swells)intootherformsofenergy(currentlyonlyelectricity).Itcanbeharnessedusingavarietyofdifferenttechnologies,severalofwhicharecurrentlybeingtrialledtofindthemostefficientwaytogenerateelectricityfromwaveenergy.

Ocean thermal energy Oceanscovermorethan70percentoftheEarth’ssurface.Thesun’sheatresultsinatemperaturedifferencebetweenthesurfacewateroftheoceananddeepoceanwater,andthistemperaturedifferencecreatesoceanthermalenergy.

DARWIN

BRISBANE

PERTH

SYDNEYADELAIDE

MELBOURNE

HOBART

AERA 11.2

0 750 km

10°

20°

30°

130° 140°

40°

150°120°

Wave energy (TJ/m)1.5

0

Figure 11.2 Totalannualwaveenergy(inTerrajoulespermetre,TJ/m)ontheAustraliancontinentalshelf(lessthan300mwaterdepth)

source: GeoscienceAustralia

Page 4: Chapter 11 Ocean Energy - Geoscience Australia · 2020. 6. 18. · Current ocean energy use is mainly based on tidal power stations. Wave energy technologies are at early stages of

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

288

Ocean thermal energy conversion (OTEC)isameansofconvertingintousefulenergythetemperaturedifferencebetweensurfacewaterandwateratdepth.OTECplantsmaybeusedforarangeofapplications,includingelectricitygeneration.Theymaybeland-based,floatingorgrazing.

Moredetailedinformationontidal,waveandoceanthermalenergytechnologiesisprovidedinBox11.2insection11.4.

11.2.2OceanenergysupplychainFigure11.3providesaschematicrepresentationofthepotentialtidal,waveandoceanthermalenergyindustryinAustralia.Oceanenergyresourceshavethepotentialtogenerateelectricityusingvarioustypesofturbinesandotherenergyconverters.Theelectricitygeneratedcouldbeusedeitherlocally,orfedintotheelectricitygrid.Aswellaselectricitygeneration,someoceanenergyresourcescanbeusedforotherpurposessuchaspumpingseawaterthroughdesalinationplantstogeneratepotablewater.

Thesupplyoftidal,waveandoceanthermalenergyrequiresfirstlyidentifyingthesiteswiththebestenergyresourcesmatchedtotheenergyconvertertechnologybeingconsidered,sothattheirpotentialforgeneratingelectricitycanbedetermined.Whetherornotapotentialprojectthenproceedstodevelopmentwillrequiredetailedeconomicassessment,includingfactorssuchasthecapitalandoperatingcosts,accesstofinance,thecostofgridconnection,ifrelevant,includingtransmissiondistancesandassociatedlosses,environmentalandcommunityissuesandthepricereceivedfortheenergy generated.

11.2.3WorldoceanenergymarketThereisonlyasmallmarketatpresentfortidal,waveandoceanthermalenergy.In2009,commercialapplicationswerelimitedtoelectricitygenerationbasedontidalenergyresourcesinFranceandCanadabutsignificantinvestmentinnewtidalenergyprojectswastakingplaceintheRepublicofKorea.FeasibilityassessmentsandRD&Dinvestmentsinoceanenergytechnologiesaretakingplaceinseveralcountries.

Resources

Tidal energy Thetidalenergyresourceisvastandsustainable.However,theeconomicallyexploitableresourceiscurrentlysmallbecauseoftheconsiderablecostsassociatedwithenergyextractionandtheenvironmentalimpactsofsometidalenergytechnologies,notablybarragesandlagoons(tidalpools).Therearefewestimatesoftheworldtidalenergyresourcepotential.

Wave energy Theglobalwavepowerresourceindeepwater(100mormore)hasbeenestimatedat1–10TW andtheeconomicallyexploitableresourcecould beashighas2000TWhperyear(WEC2007). Theaverageannualwavepoweracrosstheworld isshowninfigure11.4.Someofthecoastlines withthegreatestwaveenergypotentialarethewesternandsoutherncoastsofSouthAmerica,SouthAfricaandAustralia.Thesecoastsexperiencethewavesgeneratedbythewesterlywindbeltbetweenlatitudes40°and50°south,whichare

Processing, Transport,Resources Exploration End Use Market

Storage

Industry

Commercial

Residential

ElectricityGeneration

AERA 11.3

Development andProduction

Developmentdecision

Project

Domesticmarket

(proposed)Resource definitionand site location forspecific technology

Figure 11.3 Australia’soceanenergysupplychainsource: ABAREandGeoscienceAustralia

Page 5: Chapter 11 Ocean Energy - Geoscience Australia · 2020. 6. 18. · Current ocean energy use is mainly based on tidal power stations. Wave energy technologies are at early stages of

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

289

CHAPTER 11: OCEAN ENERGY

blowingoveraneffectivelyinfinitefetch.Thisproducessomeofthelargestandmostpersistentwaveenergylevelsglobally.

Ocean thermal energy Atpresent,itisnotpossibletoquantifyoceanthermalenergyresourcepotential(WEC2007).Figure11.5showsthetemperaturedifferencebetweenthesurfacewateroftheoceansintropicalandsubtropicaareas,andwateratadepthofaround1000metreswhichissourcedfromthepolarregions(WEC2007).

l

OTECmaybeusedincircumstanceswheretherearetemperaturedifferencesofatleast20°C.

Primary energy consumptionOceanenergyiscurrentlyonlyusedtogenerateelectricityandhenceprimaryenergyconsumptionofoceanenergyisthesameasfuelinputstoelectricitygeneration.Worldoceanenergyusedecreasedatanaverageannualrateof1.4percentbetween2000and2008,andaccountedforonlyaverysmallproportionoftotalprimaryenergyconsumption

2724

2950

89 7040 2849 9268 102 41

22 49 651231 48 18100 38 33 38 3013 26 12 4219 5 5030 1217 15 19 8

12 10 17 2013 18

11 13 11 3412 149 1015 1716 21 1245 402320 15 26 2934 1024

33 23 38 43 3740 25 3866 50 78 7550 82 63 7233 818474 4372

4297 97

AERA 11.4

0 5000 km

120°W 60°W 0° 60°E 120°E

60°N

30°N

30°S

Figure 11.4 Averageannualwavepowerlevels(inkW/m)source: WorldEnergyCouncil2007

2422

20

1618

120°E60°E0°60°W120°W 30°N

30°S

AERA 11.5

0 5000 kmTemperature difference (°C)

16

18

20

22

24

120°E60°E0° 30°N

120°W 60°W

30°S

Figure 11.5 Theareasavailableforoceanthermalenergyconversion(OTEC)andthetemperaturedifference(measuredin°C)

source: WorldEnergyCouncil2007

Page 6: Chapter 11 Ocean Energy - Geoscience Australia · 2020. 6. 18. · Current ocean energy use is mainly based on tidal power stations. Wave energy technologies are at early stages of

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

290

(table11.1).Tidalenergyhasbeenutilisedon acommercialscaletodateonlyinOECDcountries.

Electricity generationIn2008,544GWh(0.5TWh)ofelectricitywasgeneratedfromocean(tidal)energy,representingonly0.003percentofworldelectricitygeneration(figure11.6).OceanenergyhasbeengeneratedfromtidalenergyplantsinFranceandCanada;

• France,themainoceanenergyproducingcountry,

produced1.8PJ(512GWh)commerciallyin2007

and2008.A240MWtidalbarragepowerplanthas

beenoperatingatLaRanceinFrancesince1966

andiscurrentlythelargesttidalpowerstationin

theworld.Itwillbeovertakenwhenthe260GW

tidalenergypowerplantatLakeSihwa,nearSeoul,

RepublicofKoreaiscommissionedin2010.

• Canadaproduced0.1PJ(35GWh)in2007and

2008.Canadahasa20MWtidalbarragepower

plantinAnnapolisRoyal,NovaScotia,whichhas

beenoperatingsince1984.

Globally,thereissignificantRD&Dactivitythatwill

contributetothefuturecommercialisationofother

oceanenergytechnologies.Informationonglobal

RD&Dactivityisprovidedinsection11.4.

World ocean energy market outlookTheIEAprojectssomegrowthinoceanenergyproductionovertheoutlookperiodto2030,although

Table 11.1 Keyoceanenergystatistics

a

unit australia 2007–08

OECD 2008

World 2008

Primary energy consumption PJ - 2.0 2.0

Shareoftotalb % - 0.0009 0.0004

Averageannualgrowth,2000–2008 % - -1.3 -1.4

Electricity generation

Electricityoutput TWh - 0.5 0.5

Shareoftotalb % - 0.005 0.003

Electricitycapacity GW 0.0008 0.261 0.261

a EnergyproductionandprimaryenergyconsumptionareidenticalbTotalworldprimaryenergyconsumptionandelectricitygenerationdata arefor2007 source:IEA2009a

0

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.002

0.004

0.006

0.008

0.010

0.012

%

1971 197719751973 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007

France Canada

hTW

Year

Share of total electricity generation (%)AERA 11.6

Figure 11.6 Worldwaveandtidalelectricitygenerationandshareoftotalelectricitygenerationsource: IEA2009a

Page 7: Chapter 11 Ocean Energy - Geoscience Australia · 2020. 6. 18. · Current ocean energy use is mainly based on tidal power stations. Wave energy technologies are at early stages of

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

291

CHAPTER 11: OCEAN ENERGY

itisprojectedtoremainthesmallestsupplierofelectricity.In2030,oceanenergyisprojectedtoaccountfor0.1percentofOECDelectricitygenerationand0.04percentoftotalworldelectricitygeneration(table11.2).

MostofthegrowthisprojectedtooccurintheEuropeanUnion,whichisprojectedtoaccountforalmost70percentoftotaloceanenergyusein2030.Afurther3TWhisprojectedtobegeneratedinsmallquantitiesintheUnitedStates,CanadaandthePacific.TidalprojectscurrentlyunderdevelopmentintheRepublicofKoreaareplannedtobeproducing550GWhin2010withpotentialtoincreasesignificantlybeyondthattowardtheKoreangovernment’sgoalofproducing5TWhusingtidalpowerby2020(IEA2009b).

Table 11.2 IEAreferencecaseprojectionsforworldoceanenergyelectricitygeneration

unit 2007 2030

OECD TWh 1 12

Shareoftotal % 0.009 0.091

Averageannualgrowth % - 14.3

Non-OECD TWh 0.0 1

Shareoftotal % 0.000 0.005

Averageannualgrowth % - -

World TWh 1 13

Shareoftotal % 0.005 0.038

Averageannualgrowth % - 14.6

source: IEA2009b

11.3Australia’soceanenergyresources and market

11.3.1OceanenergyresourcesThefollowingdiscussionfocusesonAustralia’stidalenergyandwaveenergyresources.TherehasbeenlimitedprogressinassessingAustralia’soceanthermalenergyresources,notleastbecauseofthegreaterprospectivityofotherrenewableenergyresources(WEC2007).

Tidal energyAssessmentofAustralia’stidalenergyresourcesisrestrictedtothetidekineticenergypresentonAustralia’scontinentalshelf.Tidalcurrentsofftheshelfareminimal.Moreover,significanttransmissionlosseswouldbeexpectedfortidalenergyconverterslocatedfarfromshore.Thecontinentalshelfforthisassessmentisdefinedaswaterdepthslessthan300m.Detailsofthedataandmethodsusedin thisassessmentanditslimitationsaredescribed inBox11.1.

IndicativevaluesforthemeanspringtiderangearoundAustraliaareshowninfigure11.7.Avarietyoftideenergyconvertersarepresentlyavailabletogenerate

electricity.Barrage-typesystemsrequirespecificcoastalgeomorphicsettings–typicallybaysorestuaries–astheyaredesignedtoharvestthepotentialenergyofthetide,whichdependsonboththetiderangeandthesurfaceareaofthebasin(i.e.thetidalprism).Becauseoftheirsite-specificrequirementsandthecomplexresponseofthetideinveryshallowwater,itisnotpracticaltoundertakeadetailednationalscaleassessmentofthetidalpotentialenergy.Nevertheless,figure11.1identifiesinbroadtermstheregionsthatmaysupporttideenergyconvertersofthebarragetype,andthereforehighlightswheremoresite-specificstudiescouldbedirected.

Barrage-typetideenergysystemsgenerallyrequiremacro-tideranges(greaterthan4m),whicharerestrictedtothebroadnorthernshelfofAustralia;fromPortHedlandnorthwardstoDarwinandthesouthernendoftheGreatBarrierReef.Othertypesoftidalenergyconverters(tidalturbines)harnessthekineticcomponentoftideenergy.Theyaresuitableforinstallationonthecontinentalshelf,andwhiletheydonotnecessarilyrequirehighly-specificcoastalconfigurationstheycanbedeployedinlocationswherelocalcoastalconfigurationsresultinincreasedtidalflows.

ThetotaltidalkineticenergyontheentireAustraliancontinentalshelfatanyonetime,onaverage,isabout2.4PJ.ThetotalamountoftidekineticenergyontheshelfadjacenttoeachstateislistedinTable11.3.Sincethetidalmovementofshelfwatersoccupiestheentirewatercolumn,thetideenergyadjacenttoeachstateatanyonetimereflectsboththevolumeofshelfwatersandthecurrentspeedofthosewaters.Table11.3providessomeinterestingcomparisons,butitisskewedbytheNorthWest

Table 11.3 Totaltidalkineticenergy(onaverageatanyonetimeonthecontinentalshelfadjacenttoeachjurisdiction

state/Territory Total energy (TJ)

NorthernTerritory 311.63

Queensland 454.19

NewSouthWales 1.21

VictoriaandTasmania 151.41

SouthAustralia 27.15

WesternAustralia 1496.33

National Total 2441.92

Note: Thesedatawereobtainedbytakingthetime-averageofthe1-yeartimeseriesoftidekineticenergydensityavailableateachgridpoint,multiplyingbythewaterdepthandmultiplyingbytheareaofa0.1degreeby0.1degreequadrantateachgridpoint,andsummingtheresultsforallgridpointsacrosstheshelf source:GeoscienceAustralia

Page 8: Chapter 11 Ocean Energy - Geoscience Australia · 2020. 6. 18. · Current ocean energy use is mainly based on tidal power stations. Wave energy technologies are at early stages of

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

292

Shelfregion,wherethereisalargeenergydensityduetothetiderangeandalargevolumeofwatermobilisedbythetide.Therearenumerousotherlocationsonshallowerornarrowerregionsofshelfwherethetotaltidekineticenergyisconsiderablyless,butstillmorethanenoughforthepurposeofelectricitygeneration(e.g.Darwin,TorresStraitandBassStrait).

Thespatialdistributionoftime-averagedtidalkineticenergydensityontheAustraliancontinentalshelfisshowninfigure11.8.Consistentwiththetiderangesshowninfigure11.7,theregionsofshelfthathavethelargestkineticenergydensitiesaretheNorthWestShelfandthesouthernshelfoftheGreatBarrierReef,withlargeareashavingdensitiesofmorethan100Joulespercubicmetre(J/m3).Darwin,BassStraitandTorresStraithavelocalisedareaswithsimilarenergydensities,despitemoremodesttideranges(figure11.8).Thisisduetotheconvergenceandaccelerationoftidalstreamsontheshelfbetweentheislandsandmainland.

Therateofdeliveryoftidalkineticenergy,orenergyflux,isalsoreferredtoastidal (kinetic) power.Thespatialdistributionoftime-averagedtidal(kinetic)

powerontheAustraliancontinentalshelfisshowninfigure11.9.Tidal(kinetic)powerisalsogreatestonthenorthernhalfoftheAustraliancontinentalshelf,withmanyareashavingmorethan100Wattspersquaremetre(W/m2).ThesouthernhalfoftheAustralianshelf(withtheexceptionofBassStrait)hasrelativelylittletidalkineticenergyorpower(figures11.8and11.9).Thetidalkineticenergydeliveredinagiventimeperiod,forexample,inoneyear(totalannualtidalkineticenergy),canbeobtainedbyintegratingthetidal(kinetic)powertimeseriesoveroneyear.

Thespatialdistributionoftotalannualtidekineticenergyisshowninfigure11.10.ThisannualresourceisexpressedinGJ/m2oftidalflow.Inprinciple,thetotalannualtidalkineticenergyadjacenttoeachstatecouldbeestimatedbyintegratingwithrespecttothecross-sectionalarea,butinpracticetheresultdependsonwherethecross-sectionisdrawn.

Theestimatedmaximumtime-averagetidal(kinetic)poweroccurringontheshelfadjacenttoeachstate islistedintable11.4.Themeanaswellasthe 10th,50th,and90thpercentilepoweratthatlocationislistedtogetherwiththetotaltidalkinetic

3.22.9 2.85.5 2.5

DARWIN6.6 1.61.6

1.79.2 1.5

1.8

8.22.4

3.6 4.9

8.21.8

3.3

1.1 BRISBANE

1.70.5

1.2PERTH 1.20.5 1.0

SYDNEY 1.20.7 2.0 ADELAIDE

0.4 1.31.7MELBOURNE 1.1

0.6 0.6 2.01.1

2.6 3.2

HOBART0.8

AERA 11.7

0 750 km

120°

10°

20°

30°

130° 140° 150°

40°

Figure 11.7 Tideranges(inmetres)forthemainstandardportsaroundAustraliasource: AustralianNationalTideTables;AustralianHydrographicService

Page 9: Chapter 11 Ocean Energy - Geoscience Australia · 2020. 6. 18. · Current ocean energy use is mainly based on tidal power stations. Wave energy technologies are at early stages of

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

293

CHAPTER 11: OCEAN ENERGY

energydeliveredannually.Inallcasesthemaximumtidalpoweroccursinwaterdepthslessthanorequalto50m,whichinalllikelihoodisthedepthrangeinwhichthepresentgenerationoftidalenergyconverterscouldbeinstalled.

ThebestresourcedjurisdictionsareWesternAustralia,QueenslandandtheNorthernTerritory.WesternAustraliahaslocationsoffitscoastwheretheaveragetidal(kinetic)powerinwaterdepthslessthanorequalto50mexceed6.1kWpersquaremetre(KW/m2),deliveringatotaltidalkineticenergyofover195GJ/m2 annually.

Wave energyPreviousstudiesofAustralia’swaveclimatehavefocusedmainlyontheenergeticsouth-western,southernandsouth-easternmarginsofthecontinent,buttherehasbeennopreviouspubliclyavailablecomprehensivenationalassessmentofAustralia’swaveenergyresources.ThewaveenergyresourceassessmentpresentedhereisbasedonwavedatahindcastbytheBureauofMeteorologyat6-hourlyintervalsoveranelevenyearperiodfrom24090locationsevenlydistributedoverAustralia’sentire

continentalshelf(Hasselmannetal.1988).TheassessmentmethodologyisdescribedinmoredetailinBox11.1.

Severaltypesofwaveenergyconvertersarepresentlyavailabletogenerateelectricity.Thechoiceofconvertertechnologyplaceslimitsonthelocationsfromwhichwaveenergycanbeharvested.Forexample,thePelamisdeviceiscapableofgeneratingelectricityinwaterdepthsof60to80metres,whereasCETOissuitedtoshallowerwaterdepths(15to50metres).Giventheseconsiderations,andthetransmissionlossesexpectedifawaveenergyconverteristoofarfromshore,thisresourceassessmentisrestrictedtothewaveenergypresentonAustralia’scontinentalshelf.Theshelfisdefinedhereaswaterdepthslessthan300metres.Thespatialdistributionoftime-averagedwaveenergydensityontheAustraliancontinentalshelfisshowninfigure11.11.ThenorthernAustralianshelf(i.e.abovelatitude23degreessouth)ischaracterised byrelativelylowwaveenergydensitiesofgenerallylessthan2.5kJ/m2.ThesouthernAustralianshelf,ontheotherhand,ischaracterisedbyenergy

DARWIN

BRISBANE

PERTH

SYDNEYADELAIDE

MELBOURNE

HOBART

AERA 11.8

0 750 km

120°

10°

20°

30°

130° 140° 150°

Tidal energy density (J/m3)100

40°

0

Figure 11.8 SpatialdistributionoftimeaveragedtidalkineticenergydensityontheAustraliancontinentalshelf (notdepthintegrated).TheenergydensityateachlocationrepresentstheaverageoveranyoneyearinJ/m3. Notethatthecolourscalesaturatesat100J/m3toshowdetail;themaximumvaluepresentis2696J/m3

source: GeoscienceAustralia

Page 10: Chapter 11 Ocean Energy - Geoscience Australia · 2020. 6. 18. · Current ocean energy use is mainly based on tidal power stations. Wave energy technologies are at early stages of

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

294

BOx 11.1 DETAILSOFASSESSMENTMETHODS,DATAANDANALySIS:TIDALANDWAVEENERGy

Tidal energyTherearenopreviousnationalassessmentsofAustralia’stidalenergyresourcepubliclyavailable(althoughCSIRO’sMarineandAtmosphericResearchunithasworkinprogress).ThisassessmentofAustralia’stideenergyresourceisbasedonthemeanspringtidalrangescalculatedusingtheAustralianNationalTideTablesproducedbytheAustralianHydrographicService(2006)togetherwiththedepth-averagedtidalcurrentspeedpredictedusingahydrodynamicmodel.TidalcurrentsareonecomponentofGeoscienceAustralia’sGEOMACSModel(GeologicalandOceanographicModelofAustralia’sContinentalShelf).AfulldescriptionofthetidecomponentofthemodelispresentedinPorter-Smithetal.(2004).

Tidalwaterlevelsatagivensitearehighlypredictable,providedmorethanayearofmeasurementsisavailable.Thetidalrangespresentedinfigure11.7areallfromstandardportswithlong-termtidegaugesinstalled,andarethereforeconsideredsufficientlyreliableforuseintheresourceassessment.Thepredictionoftidalwaterlevelsatsiteswherenotidegaugemeasurementsexistislessstraightforward.Theaccuracythendependsonthenatureofthehydrodynamicmodelusedandthecomplexityoftheshelfandcoastalbathymetry.Predictionsoftidalcurrentsareevenmoresensitivetothesenaturalcomplexities.Thehydrodynamicmodelusedinthisassessmenttopredicttidalcurrentspeeds,andultimatelytidalkineticenergyandpower,providesreasonable,butatbestapproximateandasyetunsubstantiated,estimatesofcurrentspeedontheshelf.However,itproducessomewhatlessadequateresultsinareassuchaselongatedcoastalbaysandinnarrowseawaysbetweenislandsandbetweenislandsandthemainland.ThepredictionsfortidalkineticenergyandpowerinKingSound,WesternAustralia,forexample,aresmall,yetthisiswherethelargesttidesinAustraliaoccur(figure11.11).

Overall,thetidalenergyresourceassessmentpresentedhereisacceptableasafirst-estimateatthenationalscale.Itindicatestherelativeimportanceofregions,butitcannotbeconsideredaccurateataregionalorlocalscaleanditcannotbereliedupontoanydegreeotherthanontheopenshelf.Thereisaneedtodevelopanew,nationalscalehydrodynamicmodel,basedonthelatestavailablenationalbathymetricgridandverifiedbysatellitealtimetry,oceanographicmoorings,andtidalstreamdata.Regionalscalehydrodynamicmodelssuitableforelongatecoastalbaysandconvolutedcoastlinesneedtobedevelopedfordetailedsiteassessment.

Wave energyThedatausedtoundertakethewaveenergyresourceassessmentarewaveconditionshindcastusingtheWAMModel–athirdgenerationoceanwavepredictionmodel(Hasselmannetal.1988)–implementedbytheAustralianBureauof

Meteorology.ThehindcastwavedatafromtheWAMmodelwereconvertedtowaveenergyandpower(energyflux)usinglinearwavetheoryforarbitrarydepth.DetailsofthemethodsusedarediscussedinfullinHughesandHeap(2010).TheAustralianWAMmodelgridhasaresolutionof0.1degreeandtheresolutionforsignificantwaveheightinthehindcastwavedatais0.1metre.Theaccuracyvarieswithconditions,butisnominally0.25metreforwaveheightsintherangeusedforelectricitygeneration.Theresolutionofthewaveperiodis0.1secondandtheaccuracyisnominally1second.Thisequatestoapercentagerangeofuncertaintyinthecalculatedwaveenergydensityandpowerof100percentormoreforsmallwaveheights(lessthan1metre),butdecreasingrapidlyto17percentorlessforlargerwaveheights(greaterthan6m).Inessence,thepercentageuncertaintyisleastforthesouthernhalfofAustralia’scontinentalshelfwheretheresourceisofmostpromise.

TheresultsofthisassessmentappearbroadlyconsistentwiththoseofastudyofAustralia’swaveenergyresourcebyRPSMetOceanfortheCarnegieCorporation(nowCarnegieWaveEnergyLimited),anextractofwhichwaspublishedintheCorporation’s2008AnnualReport.TheMetOceanwaveenergyresourceassessmentconcludedthat,onthesouthernhalfofAustralia’sshelf,thereisanestimatedresourceof525000MWindeepwaterand171000MWinshallowwater(adepthoflessthan25metres)(CarnegieCorporation2008).TheMetOceanrankingsofeachjurisdiction’sresourcearealsoconsistentwiththerelativemagnitudesofvaluesintables11.5to11.6,butcannotbedirectlycomparedbecausetheirdataarepresentedindifferentunitsofmeasurement.

Overall,thewaveenergyresourceassessmentpresentedhereisconsideredtobesufficientlyreliableasanationalscaleassessment.Itisbestsuitedtowaterdepthsgreaterthan25m.Inwaterdepthslessthan25mtheWAMmodeldoesnotsufficientlyaccountforshallowwaterprocesses(e.g.frictioneffectsandrefraction)thatdissipateorredistributethewaveenergy.Giventhatmanyofthecurrenttechnologiesaredesignedfordeploymentinwaterdepthsof25morless,andsomeontheshoreline,amorerefinedassessmentiswarranted.Thiswouldinvolve:

1. usingthespatiallylimitedwaveriderbuoydatatoverify/calibratetheWAMModeldata,providingamoreaccuratedatasetwithcompletecoverage oftheshelf.

2. Integratinggeographicinformationlayerssuchasbathymetry,seabedtype(gravel,sand,mud,reef),andcoastalgeomorphologyintoaGIStogetherwiththewaveclimatologytoidentifytheaccessibleresource.Thisintegratedapproach willhaveastronginfluenceondeterminingwhetherasiteissuitableforawavefarm,irrespectiveofthewaveclimate.

Page 11: Chapter 11 Ocean Energy - Geoscience Australia · 2020. 6. 18. · Current ocean energy use is mainly based on tidal power stations. Wave energy technologies are at early stages of

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

295

CHAPTER 11: OCEAN ENERGY

densitiesofmorethan2.5kJ/m2,withlargeareasoftheshelfexperiencingtwicethisvalue(e.g.westernandsouthernTasmania).MuchofthesouthernAustraliancoastlineexperiencessignificantwaveheights(inexcessof1m)virtuallyallofthetime.

ThetotalwaveenergyontheentireAustraliancontinentalshelfatanyonetime,onaverage, isabout3.47PJ.Thetotalamountofwaveenergy ontheshelfadjacenttoeachstateislistedin

table11.5.Thewaveenergyadjacenttoeachjurisdictionatanyonetimereflectsboththearea ofshelfwatersandtheenergydensityinthosewaters.Forexample,VictoriaandTasmaniahave, onaverage,aboutthesametotalwaveenergyas theNorthernTerritory;however,itisconcentrated inasmallershelfarea.

TheshelfwatersoffVictoriaandTasmaniaaresuitablesitesforharvestingwaveenergy,whereastheshelf

DARWIN

BRISBANE

PERTH

SYDNEYADELAIDE

MELBOURNE

HOBART

AERA 11.9

0 750 km

120°

10°

20°

30°

130° 140° 150°

Tidal power (W/m2)100

40°

0

Figure 11.9 Spatialdistributionoftime-averagedtide(kinetic)power(W/m2)ontheAustraliancontinentalshelf (notdepthintegrated).The(kinetic)powerateachlocationrepresentsatime-averageoveranyoneyear.Notethat thecolourscalesaturatesat100W/m2toshowdetail;themaximumvaluepresentis6179W/m2

source: GeoscienceAustralia

Table 11.4 Meanandpercentilesoftide(kinetic)power(W/m2)andtotaltidekineticenergydeliveredannually(GJ/m2)onthecontinentalshelfadjacenttoeachstate

Jurisdictionmean

Power (W/m2)

10th percentile 50th percentile 90th percentileEnergy (gJ/m2)

NorthernTerritory 2069.50 18.07 1029.68 5979.38 65.45

Queensland 4153.19 33.97 2316.85 10679.20 131.35

NewSouthWales 0.36 0.024 0.19 0.96 0.0011

VictoriaandTasmania 488.93 6.03 378.06 1193.56 15.46

SouthAustralia 317.16 0.43 78.86 1014.65 10.03

WesternAustralia 6179.39 249.42 7529.65 10679.20 195.43

source: GeoscienceAustralia

Page 12: Chapter 11 Ocean Energy - Geoscience Australia · 2020. 6. 18. · Current ocean energy use is mainly based on tidal power stations. Wave energy technologies are at early stages of

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

296

watersofftheNorthernTerritoryarenotsuitable, atleastwithexistingtechnology.Considerationmustalsobegiven,however,totherateatwhichusefulenergycanbedelivered.Inthecaseoftidalandwaveenergyresources,thelackofcontroloverthetiming,rateorlevelofdeliverycanimpactsignificantlyontheirpotentialasanelectricitysource.

Table 11.5 Totalwaveenergy(onaverageatanyonetime)onthecontinentalshelfadjacenttoeachstate

Jurisdiction Total energy (TJ)

NorthernTerritory 458.20

Queensland 805.04

NewSouthWales 69.53

VictoriaandTasmania 485.49

SouthAustralia 631.62

WesternAustralia 1018.10

National Total 3467.98

Note: Thesedatawereobtainedbytakingthetime-averageofthe11-yeartimeseriesofwaveenergydensityavailableateachgridpoint,multiplyingbytheareaofa0.1by0.1degreequadrantateachgridpoint,andsummingtheresultsforallgridpointsacrosstheshelf source:GeoscienceAustralia

Therateofdeliveryofwaveenergy,orenergyflux,

isalsoreferredtoaswavepower.Thespatial

distributionoftime-averagedwavepoweronthe

Australiancontinentalshelfisshowninfigure11.12.

Wavepowerisalsogreatestonthesouthernhalf

oftheAustralianshelf,with25–35kW/mbeing

commonontheoutershelf.Despitethefactthat

thereisaconsiderableamountofenergyonthe

northernhalfoftheAustralianshelfatanyonetime

duetothelargeshelfarea(table11.6),theenergy

densityandpowerorratethattheenergyisdelivered

issmall(figures11.11and11.12).Forexample,

wavepowerofftheNorthernTerritoryshelfistypically

lessthan10kW/mandunsuitableforharvesting

withcurrenttechnologies.

Thespatialdistributionoftotalannualwaveenergy

(thetotalwaveenergydeliveredinayear)isshown

infigure11.13.Thisannualresource(expressedin

joulespermetre),isthetheoreticaltotalannualwave

energyavailablealongalineorthogonaltothewave

direction.Inpractice,theresultdependsonwhere

DARWIN

BRISBANE

PERTH

SYDNEYADELAIDE

MELBOURNE

HOBART

AERA 11.10

0 750 km

120°

10°

20°

30°

130° 140° 150°

40°

Tidal energy (GJ/m2)2

Work in progress

Transmission linesExisting and proposed tidal project

0

Figure 11.10 SpatialdistributionoftotalannualtidekineticenergyontheAustraliancontinentalshelf(lessthan 300mwaterdepth),withexistingandproposedprojects

Note: Thekineticenergyateachlocationrepresentsthetotaldeliveredinayear.Dataobtainedfromalinearised,shallowtidemodel. Thecolourscalesaturatesat2GJ/m2toshowdetail;themaximumvaluepresentis195GJ/m2

source: GeoscienceAustralia

Page 13: Chapter 11 Ocean Energy - Geoscience Australia · 2020. 6. 18. · Current ocean energy use is mainly based on tidal power stations. Wave energy technologies are at early stages of

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

297

CHAPTER 11: OCEAN ENERGY

thelineisdrawn.Generally,thefurtheroffshorethelineisdrawnthegreaterthetotalenergyresourceavailable,becausewavesloseenergyandpowerastheyapproachthecoast.

Theenergyandpoweravailableforwaterdepthslessthanorequalto50m(atwhichcurrentgenerationenergyconverterspredominate)arelistedintable11.6.Boththepowerandthetotalannualenergyavailableinthelessthanorequalto50mdepthrangearegenerallyslightlysmallerthanthetotalenergyandpoweravailableindeeperwater.The

differencesbetweenthetwoaremorepronouncedinNewSouthWales,VictoriaandTasmania.

Onthebasisoftheassessmentsummarisedintable11.6,thestateswiththebestwaveenergyresourceareWesternAustralia,SouthAustralia,VictoriaandTasmania.Tasmaniaisparticularlywellendowedwithwaveenergyresources.Therearelocationsoffitscoastwheretheaveragewavepowerinwaterdepthslessthanorequalto50mreachalmost35kW/m,deliveringatotalwaveenergyof1100GJ/mannually.

DARWIN

BRISBANE

PERTH

SYDNEYADELAIDE

MELBOURNE

HOBART

AERA 11.11

0 750 km

10°

20°

30°

130° 140°

40°

150°120°

Wave energy density (kJ/m2)7

0

Figure 11.11 Spatialdistributionoftime-averagedwaveenergydensityontheAustraliancontinentalshelf,inkJ/m2. Theenergydensityateachlocationrepresentstheaverageoftheavailable11-yeartimeseriesfromMarch1997toFebruary2008

source: GeoscienceAustralia

Table 11.6 Meanandpercentilesofwavepower(kW/m)andtotalenergy(GJ/m)deliveredannuallyinwaterdepthsequaltoorlessthen50m

Jurisdiction Power Energy

mean 10th percentile 50th percentile 90th percentile mean

NorthernTerritory 5.32 0.33 2.68 13.09 167.90

Queensland 14.72 3.52 9.03 29.82 442.80

NewSouthWales 13.61 2.77 7.31 27.19 391.04

VictoriaandTasmania 34.87 4.88 18.22 70.66 1100.80

SouthAustralia 25.51 4.28 15.35 54.96 885.13

WesternAustralia 26.38 4.65 15.05 56.86 901.44

source: GeoscienceAustralia

Page 14: Chapter 11 Ocean Energy - Geoscience Australia · 2020. 6. 18. · Current ocean energy use is mainly based on tidal power stations. Wave energy technologies are at early stages of

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

298

11.3.2OceanenergymarketInAustralia,fourelectricitygenerationunitsbasedoneithertidalorwaveenergyhavebeendevelopedinrecentyears(table11.7).Allfourunitsarepilotordemonstrationplantswithcapacitiesoflessthan0.5MW.Thesefourprojectshavecollectivelyaddedlessthan1MWofgeneratingcapacity,buttheyrepresentanimportantstageinthetechnologyinnovationprocessforoceanenergyinAustralia.

CarnegieWaveEnergyLimited(formerlyCarnegie

Corporation)holdstheintellectualpropertyand

globaldevelopmentrightsfortheCylindricalEnergy

TransformationOscillator(CETO)waveenergy

converter(seeBox11.2foratechnologydescription).

CarnegiecompletedtheCETO2pilottest(proofof

concept)atFremantleandinlate2009announced

plansforademonstrationproject(box11.3).

Oceanlinxhashada500kWprototypeoscillating

watercolumnwavepowerunit(box11.2)atPort

Kembla,NewSouthWalessince2006.Thisunit

iscurrentlybeingreplacedbyathirdgeneration

demonstrationscaledevicedesignedtosuitthe

environmentatPortKemblaandisduetobecommissionedinearly2010.Oceanlinxisalsodevelopingalargescaledemonstrationproject(upto2.5MWperwaveenergyconverter)atPortland,Victoria(www.oceanlinx.com).

Themostrecentoceanenergyprojectbasedontidalenergybeganoperationsin2008.The150kWtidalplantwasinstalledbyAtlantisResourcesCorporationatPhillipIsland(southofMelbourne)(www.atlantisresourcescorporation.com).

11.4Outlookto2030forAustralia’soceanenergyresources and marketOceanenergyresourceshavesignificantpotentialforfutureutilisationbutareatanearlystageofdevelopmentandhaveyettobedemonstratedtobeacommerciallyviableoptionforelectricitygenerationinAustralia.However,giventhelevelofglobalRD&Dactivity,itispossiblethattechnologicalandeconomicadvanceswillincreasethecommercialattractivenessofoceanenergy.

DARWIN

BRISBANE

PERTH

SYDNEYADELAIDE

MELBOURNE

HOBART

AERA 11.12

0 750 km

10°

20°

30°

130° 140°

40°

150°120°

Mean wave power (kW/m)50

0

Figure 11.12 Spatialdistributionoftime-averagedwavepowerontheAustraliancontinentalshelf(kW/m). Thewavepowerateachlocationrepresentsatime-averageoftheavailable11-yeartimeseriesfromMarch 1997toFebruary2008

source: GeoscienceAustralia

Page 15: Chapter 11 Ocean Energy - Geoscience Australia · 2020. 6. 18. · Current ocean energy use is mainly based on tidal power stations. Wave energy technologies are at early stages of

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

299

CHAPTER 11: OCEAN ENERGY

11.4.1KeyfactorsinfluencingthefuturedevelopmentofAustralia’soceanresourcesAustraliahasasignificantpotentialoceanenergyresource,especiallyalongitswestern,northernandsoutherncoastlinesifbothwavesandtidesareconsidered.GovernmentpoliciessuchastheexpandedRenewableEnergyTarget(RET)andtheproposedemissionsreductiontargetcouldcontributetoamorefavourableenvironmentforoceanenergyresourcedevelopment.Therehasalsobeendirectgovernmentfundingforoceanenergy:VictorianWavePartnersobtaineda$66milliongrantfromtheAustralianGovernmenttowardsthecostofa19MWcommercial-scalewavepowerdemonstration

projectatPortland.ThegrantwasfundedfromtheRenewableEnergyDemonstrationProgram.

Despiteitspotential,therearesignificantconstraintsonthefuturedevelopmentofoceanenergyinAustralia.Twolimitationsinparticularneedtobeaddressed:technologiesforthecommercialconversionandutilisationofoceanenergyarestillimmature;andcapitalcosts,includinggridconnection,arehighrelativetootherenergysources.Anumberoftechnologieshavepassedproof-of-conceptstagebutmanyareyettodeliverelectricitytoagrid.Someofthemhavereachedthecommercialscaledemonstrationstageandmaybeincommercialoperationbymid-thisdecade,buttheywillstillbein

DARWIN

BRISBANE

PERTH

SYDNEYADELAIDE

MELBOURNE

HOBART

AERA 11.13

0 750 km

10°

20°

30°

130° 140°

40°

Transmission linesExisting and proposedwave energy projects

150°120°

Wave energy (TJ/m)1.5

0

Figure 11.13 Totalannualwaveenergy(TJ/m)ontheAustraliancontinentalshelf(waterdepthslessthan300mandwaveenergyprojects.Thetotalannualwaveenergyateachlocationrepresentsanaverageofthe11years fromMarch1997toFebruary2008

source: GeoscienceAustralia

)

Table 11.7 OceanenergypilotanddemonstrationplantsinAustralia

Project Company state start up Capacity

Portland(waveenergy) OceanPowerTechnologiesandPowercorAust

VIC 2002 0.02MW

Fremantle(waveenergy) CarnegieWavePowerLtd WA 2005 0.1MW

PortKembla(waveenergy) Oceanlinx NSW 2006 0.5MW

SanRemo(tidalenergy) AtlantisResourceCorporation VIC 2008 0.15MW

source: GeoscienceAustralia

Page 16: Chapter 11 Ocean Energy - Geoscience Australia · 2020. 6. 18. · Current ocean energy use is mainly based on tidal power stations. Wave energy technologies are at early stages of

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

300

competitionwithother–insomecasesmorematureandlowercost–renewableenergytechnologies.

Ocean energy provides a low emissions source of energy with potential for base load electricity generation Oceanenergyisarelativelypredictable,andthereforeapotentiallyattractivesourceofelectricity,generatedwithlowgreenhousegasemissions.Thereliabilityofsomeformsofoceanenergysuchasoceanthermalmaymakeitpotentiallysuitableforbaseloadelectricitygeneration.Otherformsofoceanenergy,suchastidalenergy,whilenotconsistentinprovidingenergy,canbeaccuratelypredicted,andtherefore,shouldfacilitategridintegration:

• Tidal energyisverypredictable,butcannotbeusedtogenerateelectricityatconsistentlevelsconstantly.Twiceinevery12.42hours(24hoursinsomelocations)thetidalcurrentspeedandhencetheelectricitygenerationcapabilityfallstozero.Iftidalenergyisrequiredtoproduceasustainedbaseloadforthelocalgrid,someformofenergystorageorback-upwillbeneeded.

• Wavesarerarelyofconsistentlengthorstrength.Waveenergylevelsmayvaryconsiderablyfromwavetowave,fromdaytoday,andfromseasontoseason,becauseofvariationsinlocalanddistantwindconditions.Thisinherentvariabilityneedstobeconvertedtoasmoothelectricaloutputtobeareliablesourceofelectricitysupply.Moreover,therearesitesonthewesternandsoutherncoastlineswhereregularstormsintheSouthernOceangenerateconsistentswellswithperiodsofwaveenergyfailurebothoflowfrequencyandshortduration.Higherlevelforecasting,gridmanagementorpossiblyenergystoragesystemsareneededtosmoothoutsuchpeaksandtroughsinsupply.

• Ocean thermal energyispotentiallysuitableforbaseloadelectricitygeneration,astheoceantemperaturesonwhichitreliesshowonlyslightvariationbetweenseasons(WEC2007).

RD&D activity is critical for the future development of ocean energy resourcesDespitethelargepotentialoceanenergyresource,thelowlevelofmarketuptakecanbelargelyattributedtothecurrentlyimmatureextractiontechnologyandthelargenumberofdifferenttechnologiesbeingtrialled.Tidalcurrentsystems areconvergingonafewdifferentconverterdesigns;forotherformsofoceanenergy,therehassofarbeennosuchconvergence:

• Tidal energy technologies–tidalenergyextractiontechnologyisessentiallyanalogoustothatofwindenergy.Bothrequireapassingcurrenttodrivearotatingturbine.Tidal

energyturbinesaresubjecttolessturbulentenvironmentsthanwaveenergy.

• Wave energy technologies–Manydifferentwaveenergyconvertersareattheprototypestageandareundergoingtrialsinanumberofcountries.Thisispartlyexplainedbytheneedtodeveloptechnologiesforarangeofdifferentwaveenergyenvironmentsandclimaticconditions,includingtheabilitytosurvivesignificantstorms,andbythelackofindividualtechnologiesthathavebeenshowntobecommerciallyviable.

• Ocean thermal energy technologies –oceanthermalenergyconversiontechnologiesarerelativelynewandstillneedtobeproveninpilotscaleanddemonstrationscaleplants.Land-based,floatingandgrazingplantsarealloptions.OTECisbestsuitedtotropicalwaterswithwarmsurfacewaters.

Currently,25countriesareparticipatinginthedevelopmentofoceanpower,withtheUnitedKingdomleadingthedevelopmenteffort,followedbytheUnitedStates,Canada,Norway,AustraliaandDenmark.InPortugalthreePelamiswaveenergyconverterswithacombinedcapacityof2.25MWhavebeentrialled,butarecurrentlynotinuse.

Althoughthereispotentialenergyfromother oceansources,currentoceanpowerdevelopmenteffortshavefocussedontidalandwaveenergy (IEA2009c).

Tidal energyAtleastninecountriesoutsideAustraliahaveademonstratedinterestintidalenergyforcommercialelectricitygeneration(table11.8).AllofthesecountriesprovidesupportforR&Dinuniversitiesand/orgovernment-fundedresearchinstitutes;theR&Dcommitmentextendstothecommercialsectorineightofthecountries.Therearefull-scaleplantscurrentlyoperatinginthreecountries.Inaddition,in2009a1MWtidalplantwascommissionedintheRepublicofKoreaandthe260MWtidalplantutilisinganexistingseawallattheentrancetoLakeSihwaisunderconstruction.Theprojectwillcreateenvironmentalflowsforthelake.AmajortidaldevelopmentprojecthasalsobeenadvancedfortheSevernRiverintheUnitedKingdom,basedonaseriesofthreeproposedbarragesandtwolagoons.

Wave energyAsignificantnumber(atleast20)ofcountries,includingAustralia,havedemonstratedaninterestinwaveenergyforcommercialelectricitygeneration(table11.9).AllbutSpainareinvolvedinR&Dinuniversitiesand/orgovernment-fundedresearchinstitutes;theR&Dcommitmentextendstothecommercialsectorin14ofthecountries.

Page 17: Chapter 11 Ocean Energy - Geoscience Australia · 2020. 6. 18. · Current ocean energy use is mainly based on tidal power stations. Wave energy technologies are at early stages of

CHAPTER 11: OCEAN ENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

301

Currentlyoperatingfull-scaleprojects,albeitatthedemonstrationstage,existin10countriesoutsideAustralia.Thesizeofthesecurrentprojectsrangefromsmallplantsofhundredsofkilowattsinsize,tothelargestbeingthe2.25MWAguçadouraWaveParknearPóvoadeVarziminPortugal.Thisproject,anditsproposedexpansionto21MW,havebeensuspendedpendingresolutionoftechnicalissuesandobtainingnewfinancing.A4MWwavefarmisplannedforSiadarontheIsleofLewisinScotland.

Amoresubstantialproject,theSouth-westRegionDevelopmentAuthority’sWaveHubinCornwall,iswelladvancedinorganisationofa20MWwaveenergyarray,involvinganumberoftechnologysupplierseachinstalling4–5MWsystems.OPT,whichasamemberofVictorianEnergyPartners,isdevelopingademonstrationprojectatPortlandwiththeAustralianGovernment’sassistance,isthefirsttechnologysupplierengagedtoinstallgeneratorsattheCornwallWaveHub.

Ocean thermal energyAnimportantfocusinRD&Dactivity,particularlyinEurope,isthecombinationofOTECtechnologieswithotherdeepwaterapplications,suchaspotablewaterproduction,thatresultinbenefitsinadditiontoelectricitygeneration(WEC2007).ThreemajorstudiesinEurope(EuropeanCommission,MaritimeIndustriesForumandUKForesight)haveresultedinrecommendationsforbothOTECandotherdeepwaterenergyapplicationsthatemphasisedfundingandconstructionofaplantinthe5–10MWrange.

Ademonstrationplantwithacapacityof1–1.2MWplannedforconstructioninHawaiiisawaitinggovernmentapprovalfollowingcompletionofanenvironmentalimpactassessment.Plansfor10and25MWoceanthermalenergyprojectsarebeingconsidered(WEC2008).

R&DonOTECandotheroceanenergytechnologieshasbeenundertakensince1974byanumberoforganisationsinJapan.SagaUniversityconductedthefirstOTECelectricitygenerationexperimentsinlate1979andmorerecentlyhasbeencollaboratingwiththeNationalInstituteofOceanTechnologyofIndiaona1MWplantofftheIndiancoast(WEC2008).

Ocean energy technologies are expected to be relatively high cost options until technologies matureGiventhelargelypre-commercialstatusofthecurrentoceanenergyindustries,theoutlookishighlydependentontheamountofresourcesdevotedtoRD&D,andthepotentialforcostreductionovertime.ThisincludesRD&Dactivitybothinsurveyingtechniquestoassessenergypotentialandenergyconversiontechnologies.

Table 11.8 CountryinvolvementintidalenergyR&Dand/orwithfullscaleplant

Country govt and academic

R&D

Commercial R&D

Currently Operating Projects

Canada ✓ ✓ ✓

China ✓ ✓ ✓

France ✓ ✓ ✓

India ✓

Republic ofKorea

✓ ✓ Underconstruction

Norway ✓ ✓

RussianFederation

✓ ✓

UnitedKingdom

✓ ✓

UnitedStatesofAmerica

✓ ✓

Note: Tablemaynotincludeallprojects,especiallysmallerR&Dprojects,butincludesthemaincountriesinvolved source:IEA2009c

Table 11.9 Countryinvolvement(otherthanAustralia)inwaveenergyR&Dand/orwithfull-scaleprojects

Country govt and academic

R&D

Commercial R&D

Currently Operating Projects

Canada ✓ ✓

China ✓ ✓ ✓

Denmark ✓ ✓ ✓

Finland ✓ ✓

France ✓

Germany ✓

Greece ✓ ✓

India ✓ ✓

Ireland ✓ ✓ ✓

Japan ✓ ✓ ✓

Mexico ✓

Netherlands ✓ ✓

NewZealand ✓ ✓ ✓

Norway ✓ ✓ ✓

Portugal ✓ ✓ ✓

Spain ✓

SriLanka ✓

Sweden ✓

UnitedKingdom

✓ ✓ ✓

UnitedStatesofAmerica

✓ ✓ ✓

source: IEA2009c

Page 18: Chapter 11 Ocean Energy - Geoscience Australia · 2020. 6. 18. · Current ocean energy use is mainly based on tidal power stations. Wave energy technologies are at early stages of

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

302

Investmentcostsarecurrentlylowerfortidalbarrage

systemsthanfortidalcurrentorwavesystems.

Investmentcostsfortidalbarragesystemsare

estimatedtohavebeenUS$2–4millionperMW

in2005,whileinvestmentcostsfortidalcurrent

andwavesystemsareestimatedtohavebeen

US$7–10millionperMWandUS$6–15millionper

MW,respectively(IEA2008).Shorelineinstallations

andtidalbarragesystemstypicallyhavealower

productioncostthandeepwaterdevices,butmost

deepwatertechnologiesarestillattheR&Dstage.

However,waveenergytechnologiestendtohave

highercostsbecauseofunscheduledmaintenance

causedbystormdamage.

Oceanenergytechnologiesareexpectedtoremain

relativelyhighcostoptionsfordevelopmentinthe

mediumterm.

Investmentandproductioncostsforoceanenergy

systemsareprojectedtofallovertime.Theyare

projectedtofallmoresignificantlyforwaveenergy

systemsthanfortidalbarragesystemsaswave

technologiesarecurrentlylessmature.Tidalbarrage

systemscurrentlyhavethelowestproductioncost

ofalloceanenergytechnologies.Tidalbarrage

productioncostswereestimatedtohaveranged

fromUS$60toUS$100perkWin2005,whilethe

productioncostoftidalcurrentsystemsisestimated

tohavebeenUS$150–200andtheproductioncost

ofwaveenergysystemstohavebeenUS$200–300

(IEA2008).Astherelativelynewerwaveandtidal

currenttechnologiesmature,thedifferencebetween

theproductioncostsofthesetechnologiesandtidal

barragesystemsisprojectedtofall.By2030,the

productioncostsofoceanenergytechnologiesare

projectedtorangefromUS$45toUS$100perkW

(in2005dollars)(figure11.14).

0

50

300

250

200

150

100

Tidal barrage Tidal current Wave

2005

US$

/kW

AERA 11.14

2005 2030 2050Year

Figure 11.14 Oceanenergyproductioncostssource: IEA2008

australia’s population is mainly located in coastal areas, but grid access may be a significant issue for more remote future ocean energy projects

Tidal energyThebesttidalenergyresourcestendtobelocatedoffthemoreremotecoastlinesalongthenorthernmarginofAustralia.Withthepresenttechnologyconstraints,themostsuitablesitesforharvestingwithgoodaccesstotheelectricitygridfavouronlyafewregionalcentres,althoughtherearelargeresourceswithinreasonableproximitytothemajorcentresofDarwinandMackay.Thedomesticdemandforelectricityisrelativelysmallintheverywell-resourcedareasoftheKimberleyandPilbara,buttide-generatedelectricitycouldpotentiallycontributetotheenergyrequirementsoftheminingsector.

Theenvironmentalimpactofabarrage-typepowerstationmaynotbeacceptableintheseenvironmentallysensitiveregions.However,thereisthepotentialforconvertersthatharvestkineticenergyfromtidalcurrentswithmuchlowerenvironmentalimpact.The1.2MWtideturbinebeinginstalledatKoolanIsland(WesternAustralia)willmeetupto20percentofthepowerneedsoftheminingoperationstherewhenoperationalin2010(box11.3).Ingeneral,however,theindustrialloadsofremoteminingoperationsarecommonlyservicedbygas-firedgenerators.Newrenewableenergyoptionssuchastidalorwave,intheabsenceofcapitalgrantsorothersubsidiessuchasfeed-intariffs,willneedtocompetewiththeprevailing,long-run,marginalcostofgasgeneration.

Wave energyThebestwaveenergyresourcestendtobelocatedoffthemoreremotecoastlinesalongthesouthernmarginofAustralia.Withthecurrenttechnologyconstraints,themostsuitablesitesforharvestingwithaccesstotheelectricitygridfavouronlyafewregionalcentres.Thismaychangeintimeifthecurrentsmall-scaleprojectsof0.5MWto1MWevolveintosignificantprojectsof100MWormore,andthepossibilityofconnectingoverlongerdistancestothegrid–orexpandingthegrid–totakeadvantageofthisresourceisdemonstratedtobeeconomic.

Ocean energy is a zero or low emissions renewable resource, but other environmental impacts also need to be assessedElectricitygenerationfromwaveortidalenergyproducesnogreenhousegasemissions;however,emissionsassociatedwiththeproductionofthewaveortideenergydeviceandotherenvironmentalissuesmustalsobetakenintoaccount.

Page 19: Chapter 11 Ocean Energy - Geoscience Australia · 2020. 6. 18. · Current ocean energy use is mainly based on tidal power stations. Wave energy technologies are at early stages of

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

303

CHAPTER 11: OCEAN ENERGY

Tidalbarragesdisruptthesurroundingenvironmentmorethanothertidalorwaveenergysystems.Tidalbarragesreducetherangeoftidesthatoccurinsidethebarrage.Thismayhavenegativeimpactsonwaterqualityandbiodiversityinthesurroundingareaandcauselossofhabitatwhereintertidalzonesarereducedinarea(IEA2008).Offshoretidalorwaveenergyprojectstypicallyhavealowerimpactontheenvironment.However,offshoresystemsmayposeanavigationhazard,andthereforemustbelocatedinareasthatarenotheavilynavigated.Theremayalsobepotentialconflictswithotherlocalusesofthemarineareaandapossibleimpactonmigratingmarinemammals.Theextentofthepotentialimpactswilldependonthetypeofwaveenergyconvertertechnology;underseatechnologiestendtohave lessimpacts.

Waveandtidalenergysystemslocatedneartheshorelinemaybeobjectedtobynearbycommunitiesonthegroundsofnoiseandpossiblyvisualpollution.Thismayresultinpublicoppositiontoprojects,particularlyiftheyarelocatedinpopulatedareas.

11.4.2OutlookforoceanenergyresourcesWaveandtidalenergyarenon-depletableresources;increaseduseoftheresourcesdoesnotaffectresourceavailability.However,estimatesofresourceavailabilitymaychangeovertimeasnewmeasurementmethodsbecomeavailable.Inaddition,thequantityoftheresourcethatcanbeutilisedwillchangeovertimeasnewtechnologydevelopmentsallowincreasedexploitationofoceanresources.

ThetidalenergyresourceassessmentpresentedinSection11.3.1suggeststhatthereisfuturedevelopmentpotential,largelyonthenorthernhalfofAustralia’scontinentalshelfandparticularly

inKingSoundandtheBonaparteGulf(WesternAustralia),Darwin(NorthernTerritory),theTorresStraitandsouthernpartsoftheGreatBarrierReef(Queensland).Thequalityoftheresourceisspatiallyvariable,butalsohighlypredictableoncefieldmeasurementsofoneyear’sdurationhavebeenobtainedforasite.Thesuitabilityofsiteswillalsobeinfluencedbywaterdepthandseabedtype,whichaffecttheengineeringoftideenergyconvertersandplacementofcablesacrosstheseabed.

ThewaveenergyresourceassessmentdiscussedinSection11.3.1suggeststhatthereisfuturedevelopmentpotentialacrossthesouthernhalfofAustralia’scontinentalshelffromExmoutharoundtoBrisbane.Thequalityoftheresourceisvariable,withthefailurerateofthewavestodeliversufficientenergyandthefrequencyoffailuresgenerallyincreasinginthemorenortherlywaters.Theremayalsobestronglocalvariabilityinboththeresourceanditsaccessibility;thelatterbeingdeterminedbyrequirementsforparticularwaterdepthsandseabedtypesforinstallationofthewaveenergyconvertersandnetworksofpipeorcableacrosstheseabed.

11.4.3OutlookforoceanenergymarketThemajoroceanenergydevelopmentsoccurringinAustraliaarefocussedonprovinguptechnologiesfortidalorwaveenergy.Severalcompanieshaveplansforpilotanddemonstrationplants(box11.3).Importantlyforthefutureoftheoceanenergyindustry,companiesarenowinvestingincommercialscalepowerprojects.Thisisanessentialstepindemonstratingthetechnicalandeconomicviabilityofthesetechnologies.EarlydemonstrationofthecommercialviabilityoftheseorcomparabletechnologiescouldwellacceleratethedevelopmentofwaveandtideenergyinAustralia.

BOx 11.2 CURRENTOCEANENERGyTECHNOLOGIES

Tidal energy technologiesTherotatingtidewavesresultindifferentsealevelsfromoneplaceontheshelftothenextatanyonetime,andthiscausesthewatercolumntoflowhorizontallybackandforth(tidalcurrents)overtheshelfwiththetidaloscillationsinsealevel.Twodifferenttechnologieshavebeendevelopedtoharnessthesetidalmovements.

Thedesignofunderwaterturbineshasadvancedconsiderablyinrecentyears,butthereisstillconsiderableresearchanddevelopmentseekingtomaximiseefficiencyandrobustnesswhileminimisingoverallsize(figure11.15).

Barragesharnesssomeofthepotentialenergyofthetide.Inessence,abarragewithsluicegatesallowswatertoenterthebasinontherisingtide,andat

hightidethesluicegatesareclosed,thustrappinga

largebodyofwater(figure11.15).Asthewaterlevel

ontheoceansideofthebarragefallswiththeebbing

tide,theelevatedwaterfrombehindthebarrageis

releasedthroughthesluicegates,whereturbines

arelocated,togenerateelectricity.Theprincipleis

similartohydro-electricschemesondammedrivers.

Morecomplicatedsystemsofbasinsandbarrages

canbedesignedtogenerateelectricityonboththe

ebbingandfloodingtide.Thepotentialenergythatis

availabletobeharnessedisrelatedtothevertical

tiderangeandthehorizontalareaofthebasin

(thetidalprism).

Tidalstreamgeneratorsfocusonthekinetic

energycomponentofthetide.Aturbineisplaced

withinatidalcurrentandthekineticenergy

Page 20: Chapter 11 Ocean Energy - Geoscience Australia · 2020. 6. 18. · Current ocean energy use is mainly based on tidal power stations. Wave energy technologies are at early stages of

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

304

associatedwiththehorizontalmotionofthe waterdrivestheturbinetogenerateelectricity. Thereareturbinesdevelopedforrelativelyshallowwaterinstallationthatrotateinaverticalplane, andothersthatrotateinahorizontalplane.

Thefirst(andstillthelargest)tidalpowerstationwasbuiltontheRanceRiverestuaryinFrance,between1961and1966.Ithasbeenoperatingcontinuouslysincethen.Itisabarrage-typesystemconsistingofan800-metrelongdamenclosingabasinwithasurfaceareaof22.5km2.Thespringtiderangeisupto13m.Theplanthasapowergeneratingcapacityof240MWanditdelivers2.3PJofenergyannuallytothegrid(WorldEnergyCouncil2007).Asmallerbarrage-typestationatAnnapolis,ontheBayofFundy,Canadawascompletedin1984.Thetiderangeinthislocationcanexceed12m(Pugh2004).Thisplanthasapowercapacityof20MWanddelivers108TJannually.TheRepublicofKoreaiscurrentlybuildingthelargestbarrage-typepowerstation(260MW)atSihwaLakewithcompletionduethisyear.Chinahassevensmallbarrage-typepowerstationswithatotalcapacityof11MW,andplansformore.Indiaalsohasplansforabarrage-typepowerstation(WorldEnergyCouncil2007).

Powerstationsseekingtoharnessthekineticenergyoftidalcurrentsarepresentlymuchsmaller,andstillinthedevelopmentalphase.NorwayhasthefirstgridconnectedunderwaterturbinelocatedatKvalsundet,whichhasa300kWpowercapacity(WorldEnergyCouncil2007).TherearesimilarpilotprojectsintheRussianFederation,theUnitedKingdomandtheUnitedStates.

Wave energy technologiesTooperateefficientlyawaveenergyconvertermustbetunedforthemodalwaveenergyconditions,butalsodesignedandengineeredtowithstandextremeenergyconditions.Thisposesasignificantchallenge,

becauseitisthelowerenergylevelsthatproducethenormaloutput,butthecapitalcostisdrivenbythedesignstandardnecessarytowithstandextremewaves(WEC2007).Thereisalargenumberofdesignsforwaveenergyconverters.Forthemostpart,theycanbebroadlygroupedintooneoffourtypes(table11.10).

Oscillating water columns(OWCs)consistofasemi-enclosedairchamberthatispartiallysubmerged(figure11.16).Thepassageofwavespastthechambercausesthewaterlevelinsidethechambertoriseandfall,andtheoscillatingairpressuredrivesairthroughaturbinetogenerateelectricity.OWCshavebeendevelopedforinstallationontheshoreline,inshallowwaterrestingontheseabed,andindeepwatermountedonasurfacebuoy.

Hinged (and similar) devicesaresubmergedunitsthatconsistofapaddleorbuoythatoscillateswiththepassageofwaves(figure11.16).BoththeOysterandCETOusethismotiontopumphighpressurewaterashore.Theintentionisforthiswatertobepushedthroughturbineslocatedonshoreforelectricitygeneration.Thewatercanalsoundergoreverseosmosistoproducepotablewater.Theseexampleshavepassedproofofconcept,deliveringhighpressureseawaterashore.However,theseareyettodeliverelectricitytothegrid.

Overtopping devicesaredesignedtocauseoceanwavestopushwateruptoareservoirsituatedabovesealevel,fromwhichthewaterdrainsbacktosealevelthroughseveralturbines(figure11.16).Thesedeviceshavebeendesignedforbothshorelineandoffshoreinstallation.

Oftheremainingtypes,the Pelamis wave energy converterconsistsoftwoormorecylindricalsectionslinkedtogether(figure11.16).Thepassageofwavescausesthesectionstoundulate,andthemovementatthehingedjointsisresistedbyhydrauliccylinders

Table 11.10 Examplesofdifferenttypesofwaveenergyconverters

Device Example Location of Location of Proof of Electricity installation generator concept to grid

LIMPET Shoreline Onshore ✓ ✓Oscillatingwatercolumns

EnergetechOWC Seabed,shallowwater Offshore ✓ ✓

OPTPowerBuoy Seabed,shallowwater Offshore ✓

Hinged(andsimilar) Oyster Seabed,shallowwater Onshore ✓ ✓

devices CETO Seabed,shallowwater Onshore ✓

WaveDragon Surface,tetheredto Offshore ✓ ✓

OvertoppingdevicesSeawaveslotcone

seabed

Shorelineoroffshore Onshoreor ✓

offshore

Pelamis Surface,tetheredto Offshore ✓ ✓

Other seabed

Archimedesswing Immediate Offshore ✓

Page 21: Chapter 11 Ocean Energy - Geoscience Australia · 2020. 6. 18. · Current ocean energy use is mainly based on tidal power stations. Wave energy technologies are at early stages of

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

305

CHAPTER 11: OCEAN ENERGY

thatpumphighpressurefluidthroughhydraulicmotorsandelectricalgenerators.Thearchimedes Waveswingconsistsofasub-surfacevertical cylindertetheredtotheseabed(figure11.16). Anair-filleduppercylindermovesagainstalowerfixedcylinderwiththepassageofeachwave.Theverticaloscillatorymotionisconvertedtoelectricitywithalineargenerator.

Ocean thermal energy conversion (OTEC) technologiesTherearethreetypesofelectricityconversionsystemsforoceanthermalenergy:closedcyclesystems,opencyclesystemsandhybridsystems.

• Closed-cycle systemsusetheocean’swarm

surfacewatertovaporiseaworkingfluidwitha

lowboilingpoint,suchasammonia.Thisvapour

expandsandturnsaturbinewhichactivatesa

generatortoproduceelectricity.

• Open-cycle systemsboiltheseawaterby

operatingatlowpressures,producingsteam

thatpassesthroughaturbinetogenerate

electricity.

• Hybrid systemscombinebothclosed-cycleand

open-cyclesystems.

Ocean

Estuary

Estuary

Ocean

Tide going in

Turbine andgenerator

Tide going out

AERA 11.15b

a b

c d

e f

Figure 11.15 Examplesofdifferenttypesoftidalenergyconverters.(a)LaRanceRiverestuarytidalbarrage (b) Schematicshowingthewaterlevelseithersideofabarrageduringpowergeneration(c)SeaGenerationLtd’sSeaGenturbinewithbladeselevatedforservicing(d)BioPowerSystem’sbioStreamturbine(e) and (f)AtlantisResourcesCorporation’sNereusandSolonturbines,respectively

source: WikimediaCommons;www.seageneration.co.uk;www.biopowersystems.com;AtlantisResourcesCorporation

Page 22: Chapter 11 Ocean Energy - Geoscience Australia · 2020. 6. 18. · Current ocean energy use is mainly based on tidal power stations. Wave energy technologies are at early stages of

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

306 Overtopping

Reservoir

Turbine outlet

Reservoir

AERA 11.16f

OFF-THE-SHELF TECHNOLOGY

LOW PRESSURE SEAWATER RETURN PELTON TURBINE

WITH ELECTRICAL GENERATOR

20-50 METRES HIGH PRESSURE WATER DEPTH SEAWATER

POWER TO THE USER

CETO TECHNOLOGY

ZERO EMISSION DESALINATED WATER

ZERO EMISSION ELECTRICITY INTO GRID

a b

c d

e f

g

h

COPYRIGHT © / NOT TO SCALE

Figure 11.16 Examplesofdifferenttypesofwaveenergyconverters.(a)SchematicofOceanlinxMK3PC(oscillatingwatercolumn)plannedforinstallationatPortKembla(b)OceanPowerTechnologies’PowerBuoy®,AtlanticCity, NewJersey(c)CETOwaveenergyconverter(d)SchematicofCETOwavefarm(e)WaveDragonovertoppingdevice(f)SchematicshowingtheoperationofWaveDragon(g)Pelamiswaveenergyconverter(h)SchematicofArchimedeswaveswing

source: www.oceanlinx.com;www.oceanpowertechnologies.com;www.carnegiecorp.com.au;www.wavedragon.co.uk;www.pelamiswave.com;OregonStateUniversity

Page 23: Chapter 11 Ocean Energy - Geoscience Australia · 2020. 6. 18. · Current ocean energy use is mainly based on tidal power stations. Wave energy technologies are at early stages of

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

307

CHAPTER 11: OCEAN ENERGY

OTECplantsmaybeland-based,floatingorgrazing

(WEC2007):

• Land-based plantshavetheadvantageofnotransmissioncabletoshoreandnomooring

costs,butrequireacoldwaterpipetocrossthe

surfzoneandfollowtheseabedtotherequired

depth.Thisresultsinlowerefficiencybecausea

longerpipehasgreaterfrictionlossesandthere

isgreaterwarmingofthecoldwaterbeforeit

reachestheheatexchanger.

• Floating plantsrequireatransmissioncabletoshoreandmooringsindeepwater,buthavethe

advantagethatthecoldwaterpipeisshorter.

TechnologydevelopmentsinhighvoltageDC

transmissionandmooringintheoffshoreoiland

gasindustrymaybeutilisedinfloatingplants.

• grazing plantsareabletodriftinoceanareasthatareprospectiveforoceanthermalenergywhere

theoutput,liquidhydrogen,wouldbeoffloadedinto

shuttletankersfortransporttomarket.

BOx 11.3 PROPOSEDOCEANENERGyDEVELOPMENTPROJECTSINAUSTRALIA

Australiacurrentlyhasnocommercialscaleoceanenergyprojectsatanadvancedstageofdevelopment.

Therearefourcommercialscaleprojectsthatareatalessadvancedstageofdevelopment,threeofwhicharebasedonutilisingtidalenergy(table11.11).TheseprojectsaresignificantlylargerthanthosepreviouslycommissionedinAustralia,withacombinedcapacityof805MW.Twoprojectsaccountforaround93percentofthisadditionalcapacity–theClarenceStraitTidalEnergyproject(450MW)intheNorthernTerritoryandtheBanksStraightTidalEnergyproject(302MW)inTasmania.BothprojectshavebeenproposedbyTenaxEnergyandareexpectedtoenterproductionin2011and2013respectively.

Thereareatpresentnobarrage-typetidalpowerstationsinAustralia.SeveralproposalshavebeenputforwardforastationatDerby,WesternAustralia,includinga2001proposalfora5MWplanttodeliver68.4TJperyear(HydroTasmania2001).Ithasbeensetasidebecauseoftheenvironmentalimpactsofaconstructionof thisscaleonsensitivewetlandsandhighgridconnectioncosts.

AtlantisResourcesCorporationcurrentlyoperatesa150kW(soontobeupgradedto400kW)NereusturbineatatestsiteatSanRemo,Victoria,thatisconnectedtotheelectricitygrid.Thecompanyisinstallinga1.2MWtidalplantnearCockatooandKoolanIslandsinKingSound,northofDerbyinWesternAustraliathatisexpectedtobeoperationalinearly2010.Theprojectinvolvestheinstallationofa16.5metreNereusturbinethatwillprovideupto20percentofthepowerneedsofMtGibsonIron(www.atlantisresourcescorporation.com).

BioPowerSystemshasaproposalforasmallpilotplant(250kW)atFlindersIsland,Tasmania,

tocommencethisyear.Theprojectinvolvestheinstallationofa20metrebioSTREAMturbine.

Thereareseveralcommercialscalewaveenergydemonstrationprojectseitherproposedorunderway,inWesternAustralia,SouthAustralia,VictoriaandTasmania.CarnegieWaveEnergyLimitedannouncedthatithadcompletedafeasibilityassessmentthatidentifiedGardenIslandasthepreferredsiteforthedevelopmentofa5MWdemonstrationwaveenergyprojectbasedonCETO3waveconverter.ThecompanyhasfiveotherprojectsitesinAustraliaatthelicensingagreementstagespreadacrossWesternAustralia,SouthAustraliaandVictoria(Albany,PortMacDonnell,Portland,WarnamboolandPhillipIsland)andisundertakingafeasibilitystudytoassesstheviabilityofusingwaveenergytosupplypowertotheremotenavalbaseatExmouthinWA(www.carnegiecorp.com.au).

VictorianWavePartners,apartnershipbetweenOceanPowerTechnologiesAustralasia(OPTA) andLeightonContractorsPtyLtd,havebeenawardedagrantundertheAustralianGovernment’sRenewableEnergyDemonstrationProgram(REDP)todevelopa19MWwavepowerdemonstrationprojectnearPortlandinVictoria,Australia.TheprojectwilluseOceanPowerTechnologiesInc’sPowerBuoy®waveenergyconverter(box11.2; www.oceanpowertechnologies.com).

BioPowerSystemshasa250kWpilotprojectplannedforKingIsland,Tasmania,incollaborationwithHydroTasmaniausingitsBioWAVEseabed-mountedhingedwaveenergyconverterThepilotisscheduledtobeoperationalin2010,withtheintentionofconnectingittotheisland’selectricitygrid.

OceanlinxisplanningdemonstrationprojecttrialsofitswaveenergyconvertertechnologyinPortland,Victoria.Theprojectwillinvolvetheinstallation

Page 24: Chapter 11 Ocean Energy - Geoscience Australia · 2020. 6. 18. · Current ocean energy use is mainly based on tidal power stations. Wave energy technologies are at early stages of

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

308

ofmultipleunitsintegratedintoasinglewavefarm(www.oceanlinx.com).TheVictorianGovernmentisaninvestmentpartnerinthisproject,throughitsCentreforEnergyandGreenhouseTechnologies.Subject

tothesuccessfulcompletionofthedemonstrationphase,thecompanyisconsideringinstallationofawaveenergyconversionarraywithatotalcapacity of30MW.

Table 11.11 CommercialscaletidalenergyprojectsatalessadvancedstageofdevelopmentinAustralia

Project Company Location status start up Capacity Capital Expenditure

Victorian VictorianWave Portland,Vic Govtgrant na 19MW naWavePower PartnersPtyLtd awardedDemonstrationProject

ClarenceStrait TenaxEnergyPty ClarenceStrait, Govtapproval 2011 450MW naTidalEnergy Ltd NT underwayProject

PortPhillipHeads TenaxEnergyPty PortPhillip Govtapproval 2012 34MW naTidalEnergy Ltd Heads,Vic underwayProject

BanksStraitTidal TenaxEnergyPty BanksStrait,TAS Govtapproval 2013 302MW naEnergyFacility Ltd underway

source: ABARE2009

11.5ReferencesABARE(AustralianBureauofAgriculturalandResourceEconomics),2009,ElectricityGenerationMajorDevelopmentProjects–October2009Listing,Canberra,November2009

AustralianHydrographicService,2006,AustralianNationalTideTables,RoyalAustralianNavy,Canberra

CarnegieCorporation,2008,Carnegie2007AnnualReport,CarnegieCorporationLtd

HasselmannKandtheWAMDIGroup,1988,TheWAMModel–Athirdgenerationoceanwavepredictionmodel.JournalofPhysicalOceanography,18,1775–1810

HydroTasmania,2001,StudyofTidalEnergyTechnologiesforDerby.HydroElectricCorporation,ReportNo.WA-107384-CR-01

HughesMGandHeapAD,2010,National-scalewaveenergyresourceassessmentforAustralia.RenewableEnergy(inpress)

IEA(InternationalEnergyAgency),2008,EnergyTechnologyPerspectives2008–Scenarios&Strategiesto2050,Paris

IEA,2009a,WorldEnergyBalances(2009edition),Paris

IEA,2009b,WorldEnergyOutlook2009,Paris

IEA,2009c,OceanEnergy:Globaltechnologydevelopment

status,Paris

Porter-SmithR,HarrisPT,AndersenOB,ColemanR,

GreensladeDandJenkinsCJ,2004,Classificationofthe

Australiancontinentalshelfbasedonpredictedsediment

thresholdexceedencefromtidalcurrentsandswellwaves.

MarineGeology,211,1–20

PughD,2004,ChangingSeaLevels:EffectsofTides,

WeatherandClimate,CambridgeUniversityPress

WEC(WorldEnergyCouncil),2007,SurveyofEnergy

Resources2007,London,<http://www.worldenergy.org/

documents/ser2007_final_online_version_1.pdf>

WEC(WorldEnergyCouncil),2008,SurveyofEnergy

Resources,InterimUpdate2009,<http://www.worldenergy.

org/publications/survey_of_energy_resources_interim_

update_2009/default.asp>