Top Banner
Chap. 14: Oscillations, Periodic Motion, Simple Harmonic Motion 1 Characterized by: Period (T) and Frequency (f) Preparation for: Mechanical wave motion Electromagnetic wave Dynamics: F = m a, t = I a Equation of Motion: General solution:
59

Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Apr 27, 2018

Download

Documents

ledat
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Chap. 14: Oscillations,

Periodic Motion,

Simple Harmonic Motion

1

Characterized by:

Period (T) and Frequency (f)

Preparation for:

Mechanical wave motion

Electromagnetic wave

Dynamics: F = m a, t = I a

Equation of Motion:

General solution:

Page 2: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Looking Back to Chap. 7 • To describe oscillations in terms of amplitude, period, frequency and angular frequency

• To do calculations with simple harmonic motion (SHM); To analyze simple harmonic motion using energy

• To apply the ideas of simple harmonic motion to different physical situations

• To analyze the motion of a simple pendulum, followed by a physical pendulum

• To explore how oscillations die out • To learn how a driving force can cause

resonance

2

Page 3: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

What is S.H.M.?

5

Periodic Motion Horizontal oscillation Vertical oscillation Vibration

Common characteristics Simplified Model Simple Harmonic Motion

Page 4: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

S.H.M.

Useful Math and Physics

Trig. functions:

sin(q + p/2) = cos(q)

sin(q + p ) = -sin(q)

cos(q - p/2) = sin(q)

Derivative and integral

Trig. functions

Approximation:

sinq ~ q

S.H.O.

1) Spring plus block

Horizontal

Vertical

2) Pendulum

Simple pendulum

Physical pendulum

F = m a

t = I a

6

Page 5: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

Circular Motion to SHM

x

R0 q

Starts here

7

Page 6: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

Analyzing Spring+Block System

9

Page 7: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

S.H.M. : Spring+Block system and

Simple Pendulum system

Spring+block System

Simple Pendulum

11

Page 8: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

Physical Pendulum – S.H.M.?

13

Page 9: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

Physical Pendulum – S.H.M.?

Physical Pendulum

Simple Pendulum

m

Axis of rotation

14

Page 10: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

Math about a and a

Oscillations

Physical Pendulum Physical Pendulum –– S.H.M.?S.H.M.?

Physical PendulumPhysical Pendulum

Simple PendulumSimple Pendulum

Oscillations

S.H.M. : Spring+Block system and S.H.M. : Spring+Block system and

Simple Pendulum systemSimple Pendulum system

Spring+block SystemSpring+block System

Simple PendulumSimple Pendulum

15

Page 11: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

S.H.M. – Dynamics (Summary)

xCtd

xd

xC

DtCAC

DtCACCtd

xd

DtCACdt

dx

DtCAtx

Ctd

dxC

td

xd

)cos(

)cos(

)sin(

:then ),cos()( If

or

2

2

2

2

2

2

2

2

-

-

-

-

-

-- q

q

Math about C Physics about C

)cos ()( φω tAtx 18

Page 12: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

Circular Motion to SHM

x

x = R0 cos q

where q = w t

R0

x(t) = R0 cos (w t)

q

Starts here

Kin. Equation of SHM

x(t) = R0 cos ( )

f

19

Page 13: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

Acceleration is proportional to displacement.

S.H.M.

21

XCtd

Xd

2

2

-

Page 14: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

What is f ?

23

t

x(t) = A sin( w t )

= A cos( w t )

= A cos( w t - f/w) )

= A cos( w t - f )

x(t)

f/w

Page 15: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

What is f ?

25

x(t) = A sin( w t ) = A cos[ w t + (- p/2) ]

= A cos[ w t - p/2w) ]

= A cos[ w t - 2p/4w) ]

t (2p/4) w = (2p/w)/4 = T/4

Page 16: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

S.H.M.

3 independent variables:

Angular frequency

Amplitude

Phase angle

x(t) = A cos(w t + f)

q(t) = A cos(w t + f)

Period:

T = 1 / f T = 2p/w

Note: Angular frequency (w)

is NOT the angular velocity.

Example of x(t),

where f = 0

Quick Check:

How do v(t) and a(t) look like?

26

Page 17: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

Graphs

27

Page 18: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

Technical Steps

Oscillations

S.H.M.S.H.M.

3 independent variables:

Angular frequency

Amplitude

Phase angle

x(t) = A cos(w t + f)

q(t) = A cos(w t + f)

Period:

T = 1 / f T = 2p/w

Period:

T = 1 / f T = 2p/w

Note: Angular frequency (w)

is NOT the angular velocity.

Example of x(t),

where f = 0

Quick Check:Quick Check:

How do v(t) and a(t) look like?

29

Page 19: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations 31

Page 20: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations 32

Page 21: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations 33

Page 22: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

An object on the end of a spring is oscillating in simple harmonic motion. If the amplitude of oscillation is doubled, how does this affect the oscillation period T and the object’s maximum speed vmax?

A. T and vmax both double.

B. T remains the same and vmax doubles.

C. T and vmax both remain the same.

D. T doubles and vmax remains the same.

E. T remains the same and vmax increases by a factor of

Q14.1

2.

Page 23: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

This is an x-t graph for an object in simple harmonic motion.

A. t = T/4

B. t = T/2

C. t = 3T/4

D. t = T

Q14.2

At which of the following times does the object have the most negative velocity vx?

Page 24: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

This is an x-t graph for an object in simple harmonic motion.

A. t = T/4

B. t = T/2

C. t = 3T/4

D. t = T

Q14.3

At which of the following times does the object have the most negative acceleration ax?

Page 25: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

This is an ax-t graph for an object in simple harmonic motion.

A. t = 0.10 s

B. t = 0.15 s

C. t = 0.20 s

D. t = 0.25 s

Q14.4

At which of the following times does the object have the most negative displacement x?

Page 26: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

This is an ax-t graph for an object in simple harmonic motion.

A. t = 0.10 s

B. t = 0.15 s

C. t = 0.20 s

D. t = 0.25 s

Q14.5

At which of the following times does the object have the most negative velocity vx?

Page 27: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

A. t = T/8

B. t = T/4

C. t = 3T/8

D. t = T/2

E. more than one of the above

This is an x-t graph for an object connected to a spring and moving in simple harmonic motion.

Q14.6

At which of the following times is the potential energy of the spring the greatest?

Page 28: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

A. t = T/8

B. t = T/4

C. t = 3T/8

D. t = T/2

E. more than one of the above

This is an x-t graph for an object connected to a spring and moving in simple harmonic motion.

Q14.7

At which of the following times is the kinetic energy of the object the greatest?

Page 29: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

To double the total energy of a mass-spring system oscillating in simple harmonic motion, the amplitude must increase by a factor of

A. 4.

B.

C. 2.

D.

E.

Q14.8

2 1.414.

4 2 1.189.

2 2 2.828.

Page 30: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

A simple pendulum consists of a point mass suspended by a massless, unstretchable string.

If the mass is doubled while the length of the string remains the same, the period of the pendulum

A. becomes 4 times greater.

B. becomes twice as great.

C. becomes greater by a factor of .

D. remains unchanged.

E. decreases.

Q14.9

2

Page 31: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

Practice Problems

52

Page 32: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

(Challenging) Practice Problems

53

Page 33: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

Rotational Motion

2(e) A solid disk (mass M = 3.00 kg and radius R = 20.0 cm) is

hung from the wall by means of a metal pin through the hole,

and used as a pendulum. Calculate the moment of inertia of the

disk about the pin (= the axis of the rotation).

Rotational Motion

2(c) A meter stick (mass M = 0.500 kg and length L = 1.00 m) is

hung from the wall by means of a metal pin through the hole,

and used as a pendulum. Express the moment of inertia of the

stick about the pin (= the axis of the rotation) in terms of M, L,

and x.

Rotational Motion

Torque due to Gravity?Torque due to Gravity?

)(sin2

-

q

t

mg xl

F r

r

x

F

lCM

mass m

? F r

t

Looking Back at I and t

54

Page 34: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

Concepts of S.H.M. Dynamics & Kinematics:

Spring+block

F = m a & (x, v, a)

Pendulum

a part of circular motion t = I a & (q, w, a)

Force: Conservative force

Restoring force

Conservation: K + U = constant

+ S.H.M. (w as angular frequency) 55

Page 35: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

Work Sheet 1

Name: _______________ Section: _______ SID: __________

Work on (a), (b), (c), and (d)

56

Page 36: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

Equation of Motion:

d2x/dt2 + w2 x = 0 or d2q/dt2 + w2 q = 0

General solution:

x(t) = A cos(w t + f)

q(t) = A cos(w t + f)

Position (x or q) as a function of time.

Amplitude

Angular Frequency

Oscillations

Periodic Motion

Simple Harmonic Motion

(S.H.M.)

57

Page 37: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

Example 7: Angular Velocity?

58

Page 38: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

How to find T?

Find I

Calculate w

Then, find T

Want to find T

Need to know w

Then, find I

59

Page 39: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

Example 6: Physical Pendulums (1)

Exercise 6.1: Express w

= [Find I]

60

Page 40: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

Example 6: Physical Pendulums (2)

Exercise 6.2: Express a = [Find I and d]

61

Page 41: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

Example 6: Physical Pendulums (3)

Exercise 6.3: Express w

= [Find I and d] Steps: 1. What is asked?

w (rigid body) I and d

2. How to find I and d for a system of two rigid bodies?

I = I1 + I2

3. How to find I1 (or I2)?

Where is the c.m. position? Use parallel-axis theorem

4. How to find d ?

Where is the c.m. position of the system?

I

mgd

I

mgd- wqa

62

Page 42: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

Example 6: Physical Pendulums (3)

63

Page 43: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

Problem 4: (25 points)

Determine the net torque (magnitude and direction) due to gravity on the system about the

pin, shown in the figure below. A beam has mass M and length l; a big solid sphere has

mass M and radius R; a small sphere has mass M/2 and radius R/2. Assume l > R and l > 2x.

Also determine the moment of inertia of the system about the pin. [Hint: use Parallel-axis

theorem.]

l

But, this can also be a Chap.14 problem,

If I ask you to find w. (angular frequency)

in S.H.M. of a physical pendulum.

Chap. 10

64

Page 44: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

Work Sheet 3

Name: _______________ Section: _______ SID: __________

Work on (a)

Repeat (a) without and with a particle (mass m)

65

Page 45: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

Example 8: Physical Pendulums

2.00 cm

66

Page 46: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations 67

Page 47: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

x = 2.00 cm

68

Page 48: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

Periodic Motion

T = 2p L cosq / g T 2 = (4p2/GM) s 3

69

Page 49: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

Example 1: (a) FT = ? (b) T = ?

mg sinq

Be Critcal Thinker

g

LT

qp

cos2

g

lT p2

FT=mgcosq FT=mg/cosq

70

Page 50: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

S.H.M. : T = 2p/w

72

Page 51: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

Example 2(A)

+

+ +

+ + 0

T/4

T/2

3T/4

T

Equilibrium

Positions

A

73

Page 52: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

Example 2(B)

Ea = Eb = Ec = Ed

74

Page 53: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

Example 4: Momentum conservation!

What is the speed of the bullet?

Express the speed in terms of m, M, k, and d.

d

76

Page 54: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

Recap from the Previous Lecture

77

Page 55: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

Example 5

You hold the block

at x = A (= 0.030 m)

by applying 6.0 N.

Then, the block was

released.

The motion of the block undergoes SHM.

Can you show that a = –(k/m) x ?

Also find: (a) k

(b) w

(c) T

(d) vmax (where?, when?)

(e) x, v and a at t = 2 sec

k 0.50 kg

78

Page 56: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

Example 9: Vertical S.H.M.

79

Page 57: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

Physical Pendulum (I)

q

q

Small oscillation

q = small

L|| = L cosq ~ L

L||

80

Page 58: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

Physical Pendulum (II)

+

x

q

q

+

mg

x0

x = 0

Fsp = k x0

Equilibrium (Sti = 0)

mg(L/2) – kx0(L) = 0

81

Page 59: Chap. 14: Oscillations, Periodic Motion, Simple Harmonic ...people.physics.tamu.edu/kamon/teaching/phys218/slide/2013A/lec14... · Chap. 14: Oscillations, Periodic Motion, Simple

Oscillations

Physical Pendulum (III)

+

x

q

q

+

mg

x0

x = 0 Fsp = k x

Equation of motion (Sti = I a)

Sti = mg(L/2) – kx(L) = kx0(L) – kx(L)

∴ – k(x–x0)(L) = Irod(P) d2q/dt2

P

+ x

Lq = x – x0

82