Top Banner

of 13

CFD03 Flux Functions

Jun 03, 2018

Download

Documents

ilyesingenieur
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/12/2019 CFD03 Flux Functions

    1/13

    26.03.2004

    Sl ide 1 Hchstleistungsrechenzentrum Stut tgar t

    C.-D. Munz1, S. Roller2, M. Dumbser1

    University of Stuttgart1Institute for Aerodynamics and Gas Dynamics (IAG)

    www.iag.uni-stuttgart.de2High-Performance Computing-Center Stuttgart (HLRS)

    www.hlrs.de

    Introduction to Computational Fluid Dynamics

    3

    Flux Functions

    2

    Contents

    1. Equations

    2. Finite Volume Schemes

    3. Linear Advection Equation

    4. Systems of Advection Equations

    5. Scalar Conservation Law

    6. One-dimensional Euler Equations

    7. Godunov-Type Schemes

    8. Flux-Vector Splitting Schemes

    9. Second Order Accuracy MUSCL Schemes

    10. Boundary Conditions

    11. Finite-Volume Schemes in Multi-Dimensions

    12. ENO-/ WENO Schemes

    13. Discontinuous Galerkin Finite Element Methods

  • 8/12/2019 CFD03 Flux Functions

    2/13

    3

    7. Godunov Type Schemes

    Preliminaries

    Simplest flux calculation

    ( ) ( ) ( )( )112

    1,

    21 +++

    +== iiiii ufufuugg

    only stable by adding artifical viscosity

    xxxxxx uxux42

    ,

    Jameson scheme for transonic flow

    Runge-Kutta time step schemesophisticated choice of dissipation

    4

    Piecewise constant solution

    Solve the local Riemann problems exactly

    Average the exact solution

    Godunovs Idea

    x

    u

    xi-1/2 xi+1/2 xi+3/2

    n

    iu

    n

    2iu

    +n

    1iu

    n

    1iu

    +

  • 8/12/2019 CFD03 Flux Functions

    3/13

    5

    Formulation as Finite-Volume-Method

    numerical flux at

    ( )n 2/1in

    2/1i

    n

    i

    1n

    i ggx

    tuu +

    +

    =

    n

    2/1ig + 2/1ix +

    tn

    tn+1

    xi-1/2 xi+1/2 xi+3/2

    xi-1 xi xi+1x

    t

    6

    Numerical flux of the Godunov-method

    Properties

    exact conservation

    nonlinear wave propagation incorporated

    adaptivity

    ))u,u;0(u(fg1iiRP

    n

    2/1i ++ =

  • 8/12/2019 CFD03 Flux Functions

    4/13

    7

    Approximate Riemann Solution

    Definition: w=w(x/t;ul,ur) is defined to be an approximate

    Riemann solution, if the following is valid:

    1. al smallest, arlargest signal velocity

    2. Consistency with the integral conservation

    3. Consistency with the integral entropy condition

    ( ) ( ) ( ) ( )( )lrrl2x

    2xrl ufuftuu

    2

    xdxu,u;txw +

    =

    ( )( ) ( ) ( ) ( )( )lrrl

    2x

    2x rluFuFtUU

    2

    xdxu,u;txwU +

    small enought

    8

    Approximate Riemann Solution

    Definition: w=w(x/t;ul,ur) is defined to be an approximate

    Riemann solution, if the following is valid:

    1. al smallest, arlargest signal velocity

    2. Consistency with the integral conservation

    3. Consistency with the integral entropy condition

    ( ) ( ) ( ) ( )( )lrrl2x

    2xrl ufuftuu

    2

    xdxu,u;txw +

    =

    ( )( ) ( ) ( ) ( )( )lrrl2x

    2xrl uFuFtUU

    2

    xdxu,u;txwU +

    small enought

    ur

    u2

    u1

    ul

    x2x

    2x

    {t

    t

  • 8/12/2019 CFD03 Flux Functions

    5/13

    9

    Godunov-Type Methods

    Definition: A method is calledGodunov-Type Scheme, if it

    satisies

    where w is an approximative Riemann solution.

    Theorem: A Godunov-type scheme may be written in the

    conservation form with the numerical flux:

    ( ) ( )dxu,u;txwx

    1dxu,u;txw

    x

    1u

    0

    2x

    n

    1i

    n

    i

    2x

    0

    n

    i

    n

    1i

    1n

    i +

    +

    +

    =

    ( ) ( ) i0

    2x

    n

    1i

    n

    ii21i ut2

    xdxu,u;txw

    x

    1ufg

    +

    = ++

    10

    The Roe Scheme

    Roe-Linearization, P. Roe (1981):

    1. Alr(u,u) = A(u)

    2. Alrdiagonalizable

    3. Mean value property:

    ( )

    >

    =otherwise

    afora 1,33,11,3~ a

    16

    The Method of Harten, Lax and Van Leer

    x

    tl

    at

    x= ra

    t

    x=

    2

    x

    2

    x

    lru

    Simplest Godunov-type scheme

    t

  • 8/12/2019 CFD03 Flux Functions

    9/13

    17

    HLL Approximate Riemann Solution

    stateteintermediaa

    velocityvelargest waandsmallesta,a

    at

    xfora

    atxafora

    at

    xfora

    u;u;txw

    lr

    rl

    rr

    rllr

    ll

    rl

    >

    ff

    20

    Riemann solver

    Godunov-scheme Roe-scheme HLL-scheme(Harten, Lax, van Leer)

    Exact solution of Exact solution of A priori estimates of

    Riemann problem, lin. Riemann problem, the fastest wave speeds,

    fixed point problem theory of characteristics

    t

    x

    rarefaction

    contact

    discontinuity

    shock wave

    ur

    u2u

    1

    ul

    u2

    t

    xur

    u1

    ul

    t

    x

    x = alt

    ur

    u1r

    ul

    x = arttax 1=

    tax 2=

    tax 3=

  • 8/12/2019 CFD03 Flux Functions

    11/13

    21

    8. Flux-Vector Splitting Methods

    Splitting of the flux

    with

    non-negative EW

    non-positive EW

    Numerical flux

    ( ) ( ) ( )ufufuf + +=

    left right

    ( ) ( )du

    ufduA

    ++ =

    ( ) ( )du

    ufduA

    =

    11, ++

    + += iiii ufufuug

    22

    Flux-Vector Splitting of Steger, WarmingEuler Theorem:

    Flux of Euler equations is homogenious of degree 1:

    Idea: Diagonalization of the Jacobian matrix A(u), splitting of the

    diagonal matrices into a positive and a negative one

    ufuf = allfor

    uuAuf = ( )du

    ufduA

  • 8/12/2019 CFD03 Flux Functions

    12/13

    23

    Diagonalization

    Splitting of

    Splitting of flux:

    RRA = 1 ( )cvvcvdiagwith += ,,:

    ,+ +=

    uuAuf

    ( )++++ = 321 ,,: aaadiagwith

    ( ) = 321 ,,: aaadiagwith

    11, ++

    + += iiii ufufuug

    24

    ( )( )

    ( )

    ( ) ( )( )1-2

    caa

    2

    cvaa

    2

    vvff

    vff

    2

    caavff

    aaa122

    f

    2

    141

    14

    2

    2

    2

    11,11,4

    21,11,3

    1411,11,2

    4121,1

    ++++

    +

    ++

    Steger-Warming flux into x-direction

  • 8/12/2019 CFD03 Flux Functions

    13/13

    25

    MnumberMach

    ( )

    ( )

    ( ) 2cv1-Cmit

    vF2

    1

    12

    CFF

    vFF

    CFF

    c

    vM,1M

    4

    cF

    11

    21,3211,21,4

    21,11,3

    11,11,2

    12

    1,1

    +=

    +

    =

    =

    =

    =+=

    ++

    ++

    ++

    + ( )

    ( )

    ( ) 2cv1-Cmit

    vF2

    1

    12

    CFF

    vFF

    CFF

    c

    vM,M1

    4

    cF

    11

    21,3211,21,4

    21,11,3

    11,11,2

    12

    1,1

    =

    +

    =

    =

    =

    ==

    1M

    righttheFlux to

    11 FF =+

    lefttheFlux to

    0F-1 =

    1M1-