Top Banner
1 Supporting information: Efficient C−C Coupling of Bio-based Furanics and Carbonyl Compounds to Liquid Hydrocarbon Precursors over Lignosulfonate Derived Acidic Carbocatalysts Lakhya Jyoti Konwar†*, Ajaikumar Samikannu†, Päivi Mäki-Arvela‡, Jyri-Pekka Mikkola†‡ †Technical Chemistry, Department of Chemistry, Chemical-Biological Centre, Umeå University, SE-901 87 Umeå, Sweden ‡Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Turku, FI-20500, Finland *Corresponding author email: - [email protected], [email protected] Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018
15

Carbocatalysts Supporting information: Liquid Hydrocarbon ... · Liquid Hydrocarbon Precursors over Lignosulfonate Derived Acidic Carbocatalysts Lakhya Jyoti Konwar†*, Ajaikumar

Aug 06, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Carbocatalysts Supporting information: Liquid Hydrocarbon ... · Liquid Hydrocarbon Precursors over Lignosulfonate Derived Acidic Carbocatalysts Lakhya Jyoti Konwar†*, Ajaikumar

1

Supporting information:

Efficient C−C Coupling of Bio-based Furanics and Carbonyl Compounds to Liquid Hydrocarbon Precursors over Lignosulfonate Derived Acidic Carbocatalysts

Lakhya Jyoti Konwar†*, Ajaikumar Samikannu†, Päivi Mäki-Arvela‡, Jyri-Pekka Mikkola†‡

†Technical Chemistry, Department of Chemistry, Chemical-Biological Centre, Umeå University,

SE-901 87 Umeå, Sweden

‡Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry

Centre, Åbo Akademi University, Turku, FI-20500, Finland

*Corresponding author email: - [email protected], [email protected]

Electronic Supplementary Material (ESI) for Catalysis Science & Technology.This journal is © The Royal Society of Chemistry 2018

Page 2: Carbocatalysts Supporting information: Liquid Hydrocarbon ... · Liquid Hydrocarbon Precursors over Lignosulfonate Derived Acidic Carbocatalysts Lakhya Jyoti Konwar†*, Ajaikumar

2

Estimation of kinetic dimeter

The kinetic diameter (σ) of product molecule are estimated from the properties of the fluid at the

critical point (c), according to the equations suggested by Bird et al. [1]:

(1)𝜎= 0.841 × 3 𝑉𝑐

or

(2)𝜎= 2.44 × 3

𝑇𝑐𝑃𝑐

where Vc is the critical volume in cm3 mol-1, Tc is the critical temperature in Kelvins and Pc is the

critical pressure in atmospheres. Whenever available critical point data were obtained from the

literature (CRC Handbook or NIST) otherwise the values were computed using Chem 3D ultra.

Page 3: Carbocatalysts Supporting information: Liquid Hydrocarbon ... · Liquid Hydrocarbon Precursors over Lignosulfonate Derived Acidic Carbocatalysts Lakhya Jyoti Konwar†*, Ajaikumar

3

Table S1. Kinetic diameter of reactants and products

Molecule Kinetic diameter, σ (nm) Ref.

acetone 0.46 2

butanal 0.31 3

furfural 0.55 4

2-methylfuran 0.53 5

cyclohexanone 0.571, 0.6032 This work

levulinic acid 0.591, 0.6222 This work

α-angelica lactone 0.5531, 0.6162 This work

O O

5,5'-(propane-2,2-diyl)bis(2-methylfuran)

0.7181, 0.7542 This work

O O

5,5'-(butane-1,1-diyl)bis(2-methylfuran)

0.7411, 0.7842 This work

O O

O

5,5'-(furan-2-ylmethylene)bis(2-methylfuran)

0.7371, 0.7602 This work

O O

5,5'-(cyclohexane-1,1-diyl)bis(2-methylfuran)

0.7581, 0.7892 This work

O O

O

5,5-bis(5-methylfuran-2-yl)pentan-2-one

0.7621, 0.8032 This work

O O

O

tris(5-methylfuran-2-yl)methane

0.7571, 0.7902 This work

Page 4: Carbocatalysts Supporting information: Liquid Hydrocarbon ... · Liquid Hydrocarbon Precursors over Lignosulfonate Derived Acidic Carbocatalysts Lakhya Jyoti Konwar†*, Ajaikumar

4

Table S2. Composition of spent catalyst

XPS, at % §EDS, at %Catalyst

C O S C O S

60LS40PS350H+ (fresh) 84.1 13.2 2.03 83.5 15.3 1.3

60LS40PS350H+ (spent*) 82 15.6 2.04 - - -

60LS40PS350H+ (spent#) 82 15.7 1.97 80.8 18.1 1.1

*3rd cycle of furfural HAA, #5th cycle of butanal HAA, § Over a sample area of 50 µm × 50 µm, includes background signal from carbon tape

Page 5: Carbocatalysts Supporting information: Liquid Hydrocarbon ... · Liquid Hydrocarbon Precursors over Lignosulfonate Derived Acidic Carbocatalysts Lakhya Jyoti Konwar†*, Ajaikumar

5

0 50 100 1500.00

0.02

0.04

0.06

0.08dV

/dlo

g(D)

(cm

³/g)

Pore width (nm)

60LS40PS350H+

60LS40PS350H+ (spent) 80LS20PS350H+

90LS10PS350H+

(a)

0 50 100 1500.0

0.1

0.2

0.3

(b)

dV/d

log(

D)(c

m³/g

)

Pore width (nm)

60LS40PS450H+

80LS20PS450H+

Figure S1. Differential (BJH desorption) pore width distribution curves of carbocatalysts obtained at (a) 350 oC and (b) 450 oC

Page 6: Carbocatalysts Supporting information: Liquid Hydrocarbon ... · Liquid Hydrocarbon Precursors over Lignosulfonate Derived Acidic Carbocatalysts Lakhya Jyoti Konwar†*, Ajaikumar

6

Figure S2. Pore width distribution curves of the selected carbocatalysts (a) 80LS20PS450H+ and (b) 80LS20PS350H+ obtained from

Mercury Intrusion Porosimetry. It should be noted that pores larger than 2 µm represents contribution from pores between particles (inter

particle space) as very fine powders (particle size less than 100 µm) were used for the measurements. Therefore, the average pore widths

were not estimated from the Hg-intrusion data.

(a) (b)

Page 7: Carbocatalysts Supporting information: Liquid Hydrocarbon ... · Liquid Hydrocarbon Precursors over Lignosulfonate Derived Acidic Carbocatalysts Lakhya Jyoti Konwar†*, Ajaikumar

7

0 5 10 15 20 25 30 350

20

40

60

80

100fu

rfura

l con

versi

on (%

)

time (h)

blank H-ZSM-5 Amberlite®IR120 Amberlyst®70 LS-RES p-toluenesulfonic acid acetic acid phenol 60LS40PS350H+ 80LS20PS350H+ 60LS40PS450H+ 80LS20PS350H+

Figure S3. Furfural conversion as a function of time over different catalysts (conditions: 37 mg

catalyst, 10.5 mmol 2-methylfuran, 5.25 mmol furfural, 300 rpm stirring rate)

Page 8: Carbocatalysts Supporting information: Liquid Hydrocarbon ... · Liquid Hydrocarbon Precursors over Lignosulfonate Derived Acidic Carbocatalysts Lakhya Jyoti Konwar†*, Ajaikumar

8

0 3 15 18 21 240

20

40

60

80

100

butanal furfural acetone cyclohexanone

2-m

ethyl

fura

n co

nver

sion

(%)

time (h)Figure S4. 2-methylfuran conversion as a function on time for different carbonyl compounds

(conditions: 37 mg 60LS40PS350H+, 10.5 mmol 2-methylfuran, 5.25 mmol carbonyl compound,

300 rpm stirring rate)

Page 9: Carbocatalysts Supporting information: Liquid Hydrocarbon ... · Liquid Hydrocarbon Precursors over Lignosulfonate Derived Acidic Carbocatalysts Lakhya Jyoti Konwar†*, Ajaikumar

9

HAA_ACETONE.001.esp

9 8 7 6 5 4 3 2 1 0Chemical Shift (ppm)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Nor

mal

ized

Inte

nsity

O O1 1

22

3 3 3 3

12

3

Figure S5. 1H-NMR spectra of 5,5'-(propane-2,2-diyl)bis(2-methylfuran)

Page 10: Carbocatalysts Supporting information: Liquid Hydrocarbon ... · Liquid Hydrocarbon Precursors over Lignosulfonate Derived Acidic Carbocatalysts Lakhya Jyoti Konwar†*, Ajaikumar

10

HAA BUTANAL INCDCL3.001.ESP

9 8 7 6 5 4 3 2 1 0Chemical Shift (ppm)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0N

orm

aliz

ed In

tens

ity

O O 11

2

34

5

6 6 6 6

1

2

34

5

6

Figure S6. 1H-NMR spectra of 5,5'-(butane-1,1-diyl)bis(2-methylfuran)

Page 11: Carbocatalysts Supporting information: Liquid Hydrocarbon ... · Liquid Hydrocarbon Precursors over Lignosulfonate Derived Acidic Carbocatalysts Lakhya Jyoti Konwar†*, Ajaikumar

11

HAA FURFURAL.001.ESP

Chemical Shift (ppm)10 9 8 7 6 5 4 3 2 1 0

Nor

mal

ized

Inte

nsity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

O O

O

4

44

1 1 1 1

11

2

2

3

3

2

Figure S7. 1H-NMR spectra of 5,5'-(furan-2-ylmethylene)bis(2-methylfuran)

Page 12: Carbocatalysts Supporting information: Liquid Hydrocarbon ... · Liquid Hydrocarbon Precursors over Lignosulfonate Derived Acidic Carbocatalysts Lakhya Jyoti Konwar†*, Ajaikumar

12

HAA CYCLOHEXANONE.ESP

9 8 7 6 5 4 3 2 1 0Chemical Shift (ppm)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0N

orm

aliz

ed In

tens

ity

O O 11

222

33

4

1

23

4 4 44

Figure S8. 1H-NMR spectra of 5,5'-(cyclohexane-1,1-diyl)bis(2-methylfuran)

Page 13: Carbocatalysts Supporting information: Liquid Hydrocarbon ... · Liquid Hydrocarbon Precursors over Lignosulfonate Derived Acidic Carbocatalysts Lakhya Jyoti Konwar†*, Ajaikumar

13

HAA_LEVULINICA.001.esp

Chemical Shift (ppm)9 8 7 6 5 4 3 2 1 0

Nor

mal

ized

Inte

nsity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

O

O

O1

1

1

1

2

3

3

4

56

1

2

3

6

5

4

Figure S9. 1H-NMR spectra of 5,5-bis(5-methylfuran-2-yl)pentan-2-one, levulinic acid HAA

Page 14: Carbocatalysts Supporting information: Liquid Hydrocarbon ... · Liquid Hydrocarbon Precursors over Lignosulfonate Derived Acidic Carbocatalysts Lakhya Jyoti Konwar†*, Ajaikumar

14

HAA_ANGELICALACTONE.001.esp

Chemical Shift (ppm)9 8 7 6 5 4 3 2 1 0

Nor

mal

ized

Inte

nsity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

O

O

O11

1

1

1

2

2

3

3

45

6

3

4

5

6

Figure S10. 1H-NMR spectra of 5,5-bis(5-methylfuran-2-yl)pentan-2-one, angelica lactone HAA

Page 15: Carbocatalysts Supporting information: Liquid Hydrocarbon ... · Liquid Hydrocarbon Precursors over Lignosulfonate Derived Acidic Carbocatalysts Lakhya Jyoti Konwar†*, Ajaikumar

15

I II III IV V VI VII0

20

40

60

80

100bu

tnal

conv

ersio

n, H

AA y

ield

(%)

Reuse

conversion yield

Figure S11. long term stability investigated upon butanal HAA (conditions: 37 mg, 10.5 mmol 2-

methylfuran, 5.25 mmol carbonyl compound, 300 rpm stirring rate, 4h reaction)

References

1. R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, John Wiley & Sons, New

York, 1960. p. 26.

2. L. Gales, A. Mendes, C. Costa, Carbon 2000, 38, 1083–1088.

3. T. C. Keller, S. Isabettini, D. Verboekend, E. G. Rodriguesa, J. Pérez-Ramírez, Chem.

Sci., 2014,5, 677-684.

4. K. Wang, J. Zhang, B. H. Shanksc, R. C. Brown, Green Chem., 2015,17, 557-564.

5. J. Jae, G. A. Tompsett, A. J. Foster, K D. Hammond, S. M. Auerbach, R. F. Lobo, G. W.

Huber, J. Catl., 2011, 279, 257–268.