Top Banner
P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38 866 SECTION 17.1 CHAPTER 17 SECTION 17.1 1. 3 i=1 3 j=1 2 i1 3 j+1 = 3 i=1 2 i1 3 j=1 3 j+1 = (1 + 2 + 4)(9 + 27 + 81) = 819 2. 2+2 2 +3+3 2 +4+4 2 +5+5 2 = 68 3. 4 i=1 3 j=1 (i 2 +3i)(j 2) = 4 i=1 (i 2 +3i) 3 j=1 (j 2) = (4 + 10 + 18 + 28)(1+0+1)=0 4. 2 2 + 2 3 + 2 4 + 2 5 + 2 6 + 2 7 + 4 2 + 4 3 + 4 4 + 4 5 + 4 6 + 4 7 + 6 2 + 6 3 + 6 4 + 6 5 + 6 6 + 6 7 = 19 4 35 . 5. m i=1 Δx i x 1 x 2 + ··· x m =(x 1 x 0 )+(x 2 x 1 )+ ··· +(x m x m1 ) = x m x 0 = a 2 a 1 6. (y 1 y 0 )+(y 2 y 1 )+ ··· +(y n y n1 )= y n y 0 = b 2 b 1 7. m i=1 n j=1 Δx i Δy j = m i=1 Δx i n j=1 Δy j =(a 2 a 1 )(b 2 b 1 ) 8. n j=1 q k=1 Δy j Δz k = n j=1 Δy j q k=1 Δz k =(b 2 b 1 )(c 2 c 1 ) 9. m i=1 (x i + x i1 x i = m i=1 (x i + x i1 )(x i x i1 )= m i=1 (x i 2 x 2 i1 ) = x m 2 x 0 2 = a 2 2 a 1 2 10. n j=1 1 2 (y j 2 + y j y j1 + y j1 2 y j = 1 2 n j=1 (y j 3 y j1 3 )= 1 2 (b 2 3 b 1 3 ) 11. m i=1 n j=1 (x i + x i1 x i Δy j = m i=1 (x i + x i1 x i n j=1 Δy j (Exercise 9) = ( a 2 2 a 1 2 ) (b 2 b 1 ) 12. m i=1 n j=1 (y i + y j1 x i Δy j = m i=1 Δx i n j=1 (y j 2 y j1 2 ) =(a 2 a 1 )(b 2 2 b 1 2 )
52

Calculus one and several variables 10E Salas solutions manual ch17

Oct 27, 2014

Download

Documents

Calculus one and several variables 10E Salas solutions manual
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

866 SECTION 17.1

CHAPTER 17

SECTION 17.1

1.3∑

i=1

3∑j=1

2i−13j+1 =

(3∑

i=1

2i−1

)⎛⎝ 3∑j=1

3j+1

⎞⎠ = (1 + 2 + 4)(9 + 27 + 81) = 819

2. 2 + 22 + 3 + 32 + 4 + 42 + 5 + 52 = 68

3.4∑

i=1

3∑j=1

(i2 + 3i)(j − 2) =

[4∑

i=1

(i2 + 3i)

]⎡⎣ 3∑j=1

(j − 2)

⎤⎦ = (4 + 10 + 18 + 28)(−1 + 0 + 1) = 0

4.22

+23

+24

+25

+26

+27

+42

+43

+44

+45

+46

+47

+62

+63

+64

+65

+66

+67

= 19435

.

5.m∑i=1

Δxi = Δx1 + Δx2 + · · · + Δxm = (x1 − x0) + (x2 − x1) + · · · + (xm − xm−1)

= xm − x0 = a2 − a1

6. (y1 − y0) + (y2 − y1) + · · · + (yn − yn−1) = yn − y0 = b2 − b1

7.m∑i=1

n∑j=1

Δxi Δyj =

(m∑i=1

Δxi

)⎛⎝ n∑j=1

Δyj

⎞⎠ = (a2 − a1) (b2 − b1)

8.n∑

j=1

q∑k=1

Δyj Δzk =

⎛⎝ n∑

j=1

Δyj

⎞⎠( q∑

k=1

Δzk

)= (b2 − b1) (c2 − c1)

9.m∑i=1

(xi + xi−1)Δxi =m∑i=1

(xi + xi−1)(xi − xi−1) =m∑i=1

(xi2 − x2

i−1)

= xm2 − x0

2 = a22 − a1

2

10.n∑

j=1

12(yj2 + yjyj−1 + yj−1

2)Δyj =12

n∑j=1

(yj3 − yj−13) =

12(b23 − b1

3)

11.m∑i=1

n∑j=1

(xi + xi−1)ΔxiΔyj =

(m∑i=1

(xi + xi−1)Δxi

)( n∑j=1

Δyj

)

(Exercise 9)∧

=(a2

2 − a12)(b2 − b1)

12.m∑i=1

n∑j=1

(yi + yj−1)ΔxiΔyj =

(m∑i=1

Δxi

)⎡⎣ n∑j=1

(yj2 − yj−12)

⎤⎦ = (a2 − a1)(b22 − b1

2)

Page 2: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

SECTION 17.2 867

13.m∑i=1

n∑j=1

(2Δxi − 3Δyj) = 2

(m∑i=1

Δxi

)( n∑j=1

1)− 3

(m∑i=1

1

)( n∑j=1

Δyj

)

= 2n(a2 − a1) − 3m(b2 − b1)

14.m∑i=1

n∑j=1

(3Δxi − 2Δyj) = 3m∑i=1

n∑j=1

Δxi − 2m∑i=1

n∑j=1

Δyj = 3n(a2 − a1) − 2m(b2 − b1).

15.m∑i=1

n∑j=1

q∑k=1

Δxi Δyj Δzk =

(m∑i=1

Δxi

)⎛⎝ n∑j=1

Δyj

⎞⎠( q∑

k=1

Δzk

)

= (a2 − a1)(b2 − b1)(c2 − c1)

16.m∑i=1

n∑j=1

q∑k=1

(xi + xi−1)ΔxiΔyjΔzk =

[m∑i=1

(xi2 − xi−1

2)

]⎛⎝ n∑j=1

Δyj

⎞⎠( q∑

k=1

Δzk

)

= (a22 − a1

2)(b2 − b1)(c2 − c1)

17.n∑

i=1

n∑j=1

n∑k=1

δijkaijk = a111 + a222 + · · · + annn =n∑

p=1

appp

18. Start withm∑i=1

n∑j=1

aij . Take all the aij (there are only a finite number of them) and order them

in any order you chose. Call the first one b1, the second b2, and so on. Thenm∑i=1

n∑j=1

aij =r∑

p=1

bp where r = m× n.

SECTION 17.2

1. Lf (P ) = 2 14 , Uf (P ) = 5 3

4 2. Lf (P ) = 3, Uf (P ) = 5

3. (a) Lf (P ) =m∑i=1

n∑j=1

(xi−1 + 2yj−1) Δxi Δ yj , Uf (P ) =m∑i=1

n∑j=1

(xi + 2yj) Δxi Δyj

(b) Lf (P ) ≤m∑i=1

n∑j=1

[xi−1 + xi

2+ 2(yj−1 + yj

2

)]Δxi Δyj ≤ Uf (P ).

The middle expression can be writtenm∑i=1

n∑j=1

12(xi

2 − x2i−1

)Δyj +

m∑i=1

n∑j=1

(yj

2 − y2j−1

)Δxi.

The first double sum reduces tom∑i=1

n∑j=1

12(xi

2 − x2i−1

)Δyj =

12

(m∑i=1

(xi

2 − x2i−1

))( n∑j=1

Δyj

)=

12

(4 − 0) (1 − 0) = 2.

In like manner the second double sum also reduces to 2. Thus, I = 4; the volume of the prism

bounded above by the plane z = x + 2y and below by R.

Page 3: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

868 SECTION 17.2

4. Lf (P ) = −7/16, Uf (P ) = 7/16 5. Lf (P ) = −7/24, Uf (P ) = 7/24

6. (a) Lf (p) =m∑i=1

n∑j=1

(xi−1 − yj)ΔxiΔyj , Uf (P ) =m∑i=1

n∑j=1

(xi − yj−1)ΔxiΔyj

(b) Lf (P ) ≤m∑i=1

n∑j=1

(xi + xi−1

2− yj + yj−1

2

)ΔxiΔyj ≤ Uf (P )

The middle expression can be writtenm∑i=1

n∑j=1

12(xi

2 − xi−12)Δyj −

m∑i=1

n∑j=1

12(yj2 − yj−1

2)Δxi.

The first sum reduces to

12

(m∑i=1

(xi2 − xi−1

2)

)⎛⎝ n∑j=1

Δyj

⎞⎠ =

12(1 − 0)(1 − 0) =

12.

In like manner the second sum also reduces to 12 . Thus I = 1

2 − 12 = 0.

7. (a) Lf (P ) =m∑i=1

n∑j=1

(4xi−1 yj−1) Δxi Δyj , Uf (P ) =m∑i=1

n∑j=1

(4xi yj) Δxi Δyj

(b) Lf (P ) ≤m∑i=1

n∑j=1

(xi + xi−1) (yj + yj−1) Δx1 Δyj ≤ Uf (P ).

The middle expression can be writtenm∑i=1

n∑j=1

(xi

2 − x2i−1

) (yj

2 − y2j−1

)=

(m∑i=1

xi2 − x2

i−1

)( n∑j=1

yj2 − y2

j−1

)

by (17.1.5)∧

=(b2 − 02

) (d2 − 02

)= b2d2.

It follows that I = b2d2.

8. (a) Lf (P ) =m∑i=1

n∑j=1

3(xi−12 + yj−1

2)ΔxiΔyj , Uf (P ) =m∑i=1

n∑j=1

3(xi2 + yj

2)ΔxiΔyj

(b) Lf (P ) ≤m∑i=1

n∑j=1

[(xi

2 + xixi−1 + xi−12) + (yj2 + yjyj−1 + yj−1

2)]ΔxiΔyj ≤ Uf (P )

Since in general (A2 + AB + B2)(A−B) = A3 −B3, the middle expression can be written

m∑i=1

n∑j=1

(xi3 − xi−1

3)Δyj +m∑i=1

n∑j=1

(yj3 − yj−13)Δxi,

which reduces to(m∑i=1

xi3 − xi−1

3

)⎛⎝ n∑j=1

Δyj

⎞⎠+

(m∑i=1

Δxi

)⎛⎝ n∑j=1

yj3 − yj−1

3

⎞⎠ .

This can be evaluated as b3d + bd3 = bd(b2 + d2). It follows that I = bd(b2 + d2).

Page 4: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

SECTION 17.2 869

9. (a) Lf (P ) =m∑i=1

n∑j=1

3(x2i−1 − yj

2)

Δxi Δyj , Uf (P ) =m∑i=1

n∑j=1

3(xi

2 − y2j−1

)Δxi Δyj

(b) Lf (P ) ≤m∑i=1

n∑j=1

[ (xi

2 + xixi−1 + x2i−1

)−(yj

2 + yjyj−1 + y2j−1

) ]Δxi Δyj ≤ Uf (P ).

Since in general(A2 + AB + B2

)(A−B) = A3 −B3, the middle expression can be written

m∑i=1

n∑j=1

(xi

3 − x3i−1

)Δyj −

m∑i=1

n∑j=1

(yj

3 − y3j−1

)Δxi,

which reduces to(m∑i=1

xi3 − x3

i−1

)⎛⎝ n∑j=1

Δyj

⎞⎠−

(m∑i=1

Δxi

)⎛⎝ n∑j=1

yj3 − y3

j−1

⎞⎠ .

This can be evaluated as b3d− bd3 = bd(b2 − d2

). It follows that I = bd (b2 − d2).

10. On each subrectangle, the minimum and the maximum of f are equal, so f is constant on each

subrectangle and therefore (since f is continuous) on the entire rectangle R. Then∫∫R

f(x, y) dxdy = f(a, c)(b− a)(d− c).

11.∫∫Ω

dxdy =∫ b

a

φ(x) dx

12. Suppose that there is a point (x0, y0) on the boundary of Ω at which f is not zero. As (x, y)

tends to (x0, y0) through that part of R which is outside Ω, f(x, y), being zero, tends to zero.

Since f(x0, y0) is not zero, f(x, y) does not tend to f(x0, y0). Thus the extended function f can not

be continuous at (x0, y0).

13. Suppose f(x0, y0) �= 0. Assume f(x0, y0) > 0. Since f is continuous, there exists a disc Ωε with radius

ε centered at (x0, y0) such that f(x, y) > 0 on Ωε. Let R be a rectangle contained in Ωε. Then∫∫R

f(x, y) dxdy > 0, which contradicts the hypothesis.

14.∫∫R

(x + 2y) dx dy = 4; area(R) = (2)(1) = 2, so average value =42

= 2

15. By Exercise 7, Section 17.2,∫∫R

4xy dxdy = 2232 = 36. Thus

favg =1

area (R)

∫∫R

4xy dxdy =16

(36) = 6

16.∫∫R

(x2 + y2) dxdy =bd(b2 + d2)

3; area(R) = bd, so average value =

b2 + d2

3

Page 5: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

870 SECTION 17.3

17. By Theorem 16.2.10, there exists a point (x1, y1) ∈ Dr such that∫∫Dr

f(x, y) dxdy = f(x1, y1)∫∫R

dxdy = f(x1, y1)πr2 =⇒ f(x1, y1) =1

πr2

∫∫Dr

f(x, y) dxdy

As r → 0, (x1, y1) → (x0, y0) and f(x1, y1) → f(x0, y0) since f is continuous.

The result follows.

18. 0 ≤ sin(x + y) ≤ 1 for all (x, y) ∈ R. Thus, 0 ≤∫∫R

sin(x + y) dxdy ≤∫∫R

dxdy = 1

19. z =√

4 − x2 − y2 on Ω : x2 + y2 ≤ 4, x ≥ 0, y ≥ 0;∫∫Ω

√4 − x2 − y2 dxdy is the volume V of one

quarter of a hemisphere; V = 43π.

20. 8 − 4√x2 + y2 on Ω is a cone with height h = 8 and radius r = 2; V =

32π3

21. z = 6 − 2x− 3y ⇒ x

3+

y

2+

z

6= 1; the solid is the tetrahedron bounded by the coordinate planes

and the plane:x

3+

y

2+

z

6= 1; V = 1

6 (3)(2)(6) = 6

22. (a) Lf (P ) ∼= 35.4603; Uf (P ) ∼= 36.5403 (c)∫∫R

(3y2 − 2x

)dxdy = 36

SECTION 17.3

1.∫ 1

0

∫ 3

0

x2 dy dx =∫ 1

0

3x2 dx = 1

2.∫ 3

0

∫ 1

0

ex+y dx dy =∫ 3

0

(e1+y − ey) dy =[e1+y − ey

]30

= e4 − e3 − e + 1

3.∫ 1

0

∫ 3

0

xy2 dy dx =∫ 1

0

x

[13y3

]30

dx =∫ 1

0

9x dx =92

4.∫ 1

0

∫ x

0

x3y dy dx =∫ 1

0

x3x2

2dx =

112

5.∫ 1

0

∫ x

0

xy3 dy dx =∫ 1

0

x

[14y4

]x0

dx =∫ 1

0

14x5 dx =

124

6.∫ 1

0

∫ x

0

x2y2 dy dx =∫ 1

0

x2x3

3dx =

118

7.∫ π/2

0

∫ π/2

0

sin (x + y) dy dx =∫ π/2

0

[− cos (x + y)]π/20 dx =∫ π/2

0

[cosx− cos

(x +

π

2

)]dx = 2

Page 6: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

SECTION 17.3 871

8.∫ π/2

0

∫ π/2

0

cos(x + y) dx dy =∫ π/2

0

[sin(π

2+ y)− sin y

]dy =

[cos y − cos

(π2

+ y)]π/2

0= 0

9.∫ π/2

0

∫ π/2

0

(1 + xy) dy dx =∫ π/2

0

[y +

12xy2

]π/20

dx =∫ π/2

0

(12π +

18π2x

)dx =

14π2 +

164

π4

10.∫ 1

−1

∫ √1−y2

−√

1−y2(x + 3y3) dx dy =

∫ 1

−1

6y3√

1 − y2 dy = 0 (integrand is odd)

11.∫ 1

0

∫ y

y2

√xy dx dy =

∫ 1

0

√y

[23x3/2

]yy2

dy =∫ 1

0

23

(y2 − y7/2

)dy =

227

12.∫ 1

0

∫ y2

0

yex dx dy =∫ 1

0

y(ey2 − 1) dy =

[ey

2

2− y2

2

]10

=12(e− 2)

13.∫ 2

−2

∫ 4− 12y

2

12y

2

(4 − y2

)dx dy =

∫ 2

−2

(4 − y2

) [(4 − 1

2y2

)−(

12y2

)]dy

= 2∫ 2

0

(16 − 8y2 + y4

)dy =

51215

14. I =∫ 1

0

∫ x2

x3(x4 + y2) dy dx =

∫ 1

0

[x4y +

y3

3

]x2

x3

dx =∫ 1

0

(4x6

3− x7 − x9

3

)dx

=[4x7

21− x8

8− x10

30

]10

=9

280

15. 0 by symmetry (integrand odd in y, Ω symmetric about x-axis)

16.∫ 1

0

∫ 2y

0

e−y2/2 dx dy =∫ 1

0

2ye−y2/2 dy =[−2e−y2/2

]10

= 2(

1 − 1√e

)

17.∫ 2

0

∫ x/2

0

ex2dy dx =

∫ 2

0

12xex

2dx =

[14ex

2]20

=14(e4 − 1

)

18.∫ 0

−1

∫ x4

x3(x + y) dy dx +

∫ 1

0

∫ x3

x4(x + y) dydx =

∫ 0

−1

[xy +

y2

2

]x4

x3

dx +∫ 1

0

[xy +

y2

2

]x3

x4

dx

=∫ 0

−1

(x5 +

x8

2− x4 − x6

2

)dx +

∫ 1

0

(x4 +

x6

2− x5 − x8

2

)dx

=[x6

6+

x9

18− x5

5− x7

14

]0−1

+[x5

5+

x7

14− x6

6− x9

18

]10

= −13

Page 7: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

872 SECTION 17.3

19.

∫ 1

0

∫ y1/4

y1/2f(x, y) dx dy

20.

∫ 1

0

∫ 1

√x

f(x, y) dydx

21.

∫ 0

−1

∫ 1

−x

f(x, y) dy dx +∫ 1

0

∫ 1

x

f(x, y) dy dx

22.

∫ 1/2

3√

1/2

∫ y1/3

1/2

f(x, y) dxdy +∫ 1

1/2

∫ y1/3

y

f(x, y) dxdy

23.

∫ 2

1

∫ y

1

f(x, y) dx dy +∫ 4

2

∫ y

y/2

f(x, y) dx dy

+∫ 8

4

∫ 4

y/2

f(x, y) dx dy

24.

∫ −1

−3

∫ 3

−y

f(x, y) dx dy +∫ 1

−1

∫ 3

1

f(x, y) dx dy

+∫ 9

1

∫ 3

√y

f(x, y) dx dy

25.∫ 4

−2

∫ 12x+2

1/4x2dy dx =

∫ 4

−2

[12x + 2 − 1

4x2

]dx = 9

26.∫ 3

0

∫ 4y−y2

y

dx dy =∫ 3

0

(3y − y2) dy =92

27.∫ 1/4

0

∫ y

2y3/2dx dy =

∫ 1/4

0

[y − 2y3/2

]dy =

1160

Page 8: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

SECTION 17.3 873

28.∫ 3

2

∫ 5−x

6/x

dy dx =∫ 3

2

(5 − x− 6/x) dx =52

+ 6 ln23

29. ∫ 1

0

∫ y2

0

sin(y3 + 1

2

)dx dy =

∫ 1

0

y2 sin(y3 + 1

2

)dy

=[−2

3cos(y3 + 1

2

)]10

=23

(cos

12− cos 1

)

30.∫ 1

−1

∫ 0

x2−1

x2 dy dx =∫ 1

−1

x2(1 − x2) dx

=415

31. ∫ ln 2

0

∫ 2

exe−x dy dx =

∫ ln 2

0

e−x (2 − ex) dx

=[−2e−x − x

]ln 2

0= 1 − ln 2

32. ∫ 1

0

∫ √y

0

x3√x4 + y2

dx dy =∫ 1

0

12(√

2 − 1)y dy

=14(√

2 − 1)

33.∫ 2

1

∫ 2/y

y−1

dx dy =∫ 2

1

[2y− (y − 1)

]dy = ln 4 − 1

2

34.∫ 1

0

∫ 1−x

0

(x + y) dy dx =∫ 1

0

[x(1 − x) +

(1 − x)2

2

]dx =

13

Page 9: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

874 SECTION 17.3

35.∫ 2

0

∫ 3− 32x

0

(4 − 2x− 4

3y

)dy dx =

∫ 3

0

∫ 2− 23y

0

(4 − 2x− 4

3y

)dx dy = 4

36.∫ 1

0

∫ 1

0

(2x + 3y) dy dx =∫ 1

0

(2x +32) dx =

52

37.∫ 2

0

∫ 1− 12x

0

x3y dy dx =∫ 2

0

∫ 2−2y

0

x3y dx dy =215

38.∫ 1

−1

∫ √1−x2

−√

1−x2(x2 + y2) dy dx = 2

∫ 1

−1

[x2√

1 − x2 +13(1 − x2)3/2

]dx =

π

2

39.∫ 2

0

∫ √2x−x2

−√

2x−x2(2x + 1) dy dx =

∫ 1

−1

∫ 1+√

1−y2

1−√

1−y2(2x + 1) dx dy

=∫ 1

−1

[x2 + x

]1+√1−y2

1−√

1−y2

dy

= 6∫ 1

−1

√1 − y2 dy = 6

(π2

)= 3π

40.∫ 1

−1

∫ 1+√

1−x2

1−√

1−x2(4 − y2 − 1

4x2) dy dx =

∫ 1

−1

[6√

1 − x2 − 12x2√

1 − x2 − 23(1 − x2)3/2

]dx =

4316

π.

41.∫ 1

0

∫ 1−x

0

(x2 + y2) dy dx =∫ 1

0

(2x2 − 4

3x3 − x +

13

)dx =

16

42.∫ 1

−1

∫ √1−x2

−√

1−x2(1 − x) dy dx =

∫ 1

−1

(2√

1 − x2 − 2x√

1 − x2) dx = π

43.∫ 1

0

∫ x

x2(x2 + 3y2) dy dx =

∫ 1

0

(2x3 − x4 − x6

)dx =

1170

44.∫ 2

1

∫ 5−y

2y−1

(1 + xy) dx dy =∫ 2

1

(6 + 9y − 3y2 − 32y3) dy =

558

45.∫ a

0

∫ √a2−x2

0

√a2 − x2 dy dx =

∫ a

0

(a2 − x2) dx =23a3

46.∫ a

0

∫ b(1−x/a)

0

c(1 − x

a− y

b

)dy dx =

∫ a

0

bc

2

(1 − x

a

)2dx =

abc

6

47.∫ 1

0

∫ 1

y

ey/xdx dy =∫ 1

0

∫ x

0

ey/xdy dx =∫ 1

0

[xey/x

]x0dx =

∫ 1

0

x(e− 1) dx =12

(e− 1)

48.∫ 1

0

∫ cos−1 y

0

esinx dx dy =∫ π/2

0

∫ cosx

0

esinx dy dx =∫ π/2

0

cosxesinx dx = e− 1

Page 10: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

SECTION 17.3 875

49.∫ 1

0

∫ 1

x

x2ey4dy dx =

∫ 1

0

∫ y

0

x2ey4dx dy =

∫ 1

0

[13x3ey

4]y0

dy =13

∫ 1

0

y3ey4dy =

112

(e− 1)

50.∫ 1

0

∫ y

0

ey2dx dy =

∫ 1

0

yey2dy =

12(e− 1)

51. favg =18

∫ 1

−1

∫ 4

0

x2y dy dx =18

∫ 1

−1

8x2 dx =∫ 1

−1

x2 dx =23

52. area of Ω = 14π (quarter circle of radius 1)

Average value =4π

∫ 1

0

∫ √1−x2

0

xy dy dx =2π

∫ 1

0

x(1 − x2) dx =12π

53. favg =1

(ln 2)2

∫ 2 ln 2

ln 2

∫ 2 ln 2

ln 2

1xy

dy dx =1

(ln 2)2

∫ 2 ln 2

ln 2

1x

ln 2 dx = 1

54. area of Ω = 1 (parallelogram)

Average value =∫ 1

0

∫ x+1

x−1

ex+y dy dx =∫ 1

0

(e2x+1 − e2x−1

)dx =

12(e3 − 2e + e−1).

55.∫∫R

f(x)g(y) dxdy =∫ d

c

∫ b

a

f(x)g(y) dx dy =∫ d

c

(∫ b

a

f(x)g(y) dx)

dy

=∫ d

c

g(y)(∫ b

a

f(x) dx)

dy =(∫ b

a

f(x) dx) (∫ d

c

g(y) dy)

56. Symmetry about the origin [ we want Ω to contain (−x,−y) whenever it contains (x, y)].

57. Note that Ω = { (x, y) : 0 ≤ x ≤ y, 0 ≤ y ≤ 1}.Set Ω′ = { (x, y) : 0 ≤ y ≤ x, 0 ≤ x ≤ 1}.∫∫

Ω

f(x)f(y) dxdy =∫ 1

0

∫ y

0

f(x)f(y) dx dy

=∫ 1

0

∫ x

0

f(y)f(x) dy dx

x and y are dummy variables

=∫ 1

0

∫ x

0

f(x)f(y) dy dx =∫∫Ω′

f(x)f(y) dxdy.

Note that Ω and Ω′ don’t overlap and their union is the unit square

R = { (x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.

Page 11: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

876 SECTION 17.3

If∫ 1

0

f(x) dx = 0, then

0 =(∫ 1

0

f(x) dx) (∫ 1

0

f(y) dy)

=∫∫R

f(x)f(y) dxdy

by Exercise 55

=∫∫Ω

f(x)f(y) dxdy +∫∫Ω′

f(x)f(y) dxdy

= 2∫∫Ω

f(x)f(y) dxdy

and therefore∫∫Ω

f(x)f(y) dxdy = 0.

58.∫ x

0

∫ b

a

∂f

∂x(t, y) dy dt =

∫ b

a

∫ x

0

∂f

∂x(t, y) dt dy

=∫ b

a

[f(x, y) − f(0, y)] dy

=∫ b

a

f(x, y) dy −∫ b

a

f(0, y) dy.

Thus ∫ b

a

f(x, y) dy =∫ x

0

∫ b

a

∂f

∂x(t, y) dy dt +

∫ b

a

f(0, y) dy

and

d

dx

[∫ b

a

f(x, y) dy]

=d

dx

[∫ x

0

∫ b

a

∂f

∂x(t, y) dy dt

]+

d

dx

[∫ b

a

f(0, y) dy]

=d

dx

[∫ x

0

H(t) dt]

+ 0 = H(x) =∫ b

a

∂f

∂x(x, y) dy.

59. Let M be the maximum value of | f(x, y) | on Ω.∫ φ2(x+h)

φ1(x+h)

=∫ φ1(x)

φ1(x+h)

+∫ φ2(x)

φ1(x)

+∫ φ2(x+h)

φ2(x)

|F (x + h) − F (x) | =∣∣∣∣∫ φ2(x+h)

φ1(x+h)

f(x, y) dy −∫ φ2(x)

φ1(x)

f(x, y) dy∣∣∣∣

=∣∣∣∣∫ φ1(x)

φ1(x+h)

f(x, y) dy +∫ φ2(x+h)

φ2(x)

f(x, y) dy∣∣∣∣

≤∣∣∣∣∫ φ1(x)

φ1(x+h)

f(x, y) dy∣∣∣∣ +∣∣∣∣∫ φ2(x+h)

φ2(x)

f(x, y) dy∣∣∣∣

≤∣∣φ1(x) − φ1 (x + h)

∣∣M + |φ2 (x + h) − φ2(x)∣∣M.

The expression on the right tends to 0 as h tends to 0 since φ1 and φ2 are continuous.

Page 12: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

SECTION 17.4 877

60. (a)∫ 3

−1

∫ 5

2

xe−xy dy dx ∼= −25.9893 (b)∫ 7

3

∫ 4

1

xy

x2 + y2dy dx ∼= 4.5720

61. (a)∫ 2

1

∫ 1+√x−1

x2−2x+2

1 dy dx = 13 (b)

∫ 2

1

∫ 1+√y−1

y2−2y+2

1 dx dy = 13

62. (a)∫ 1

0

∫ 3−y

2y

√2x + y dx dy ∼= 2.8133 (b)

∫ 2

0

∫ x/2

0

√2x + y dy dx+

∫ 3

2

∫ 3−x

0

√2x + y dy dx

∼= 2.8133

SECTION 17.4

1.∫ π/2

0

∫ sin θ

0

r cos θ dr dθ =∫ π/2

0

12

sin2 θ cos θ dθ =[16

sin3 θ

]π/20

=16

2.∫ π/4

0

∫ cos 2θ

0

r dr dθ =∫ π/4

0

cos2 2θ2

dθ =π

16

3.∫ π/2

0

∫ 3 sin θ

0

r2 dr dθ =∫ π/2

0

9 sin3 θ dθ = 9∫ π/2

0

(1 − cos2 θ) sin θ dθ = 9[− cos θ +

13

cos3 θ]π/20

= 6

4.∫ 2π/3

−π/3

∫ 2 cos θ

0

r sin θ dr dθ =∫ 2π/3

−π/3

2 cos2 θ sin θ dθ =16

5. (a) Γ : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1∫∫Γ

(cos r2

)r drdθ =

∫ 2π

0

∫ 1

0

(cos r2

)r dr dθ = 2π

∫ 1

0

r cos r2 dr = π sin 1

(b) Γ : 0 ≤ θ ≤ 2π, 1 ≤ r ≤ 2∫∫Γ

(cos r2

)r drdθ =

∫ 2π

0

∫ 2

1

(cos r2

)r dr dθ = 2π

∫ 2

1

r cos r2 dr = π(sin 4 − sin 1)

6. (a) Γ : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1.∫∫Γ

(sin r)r dr dθ =∫ 2π

0

∫ 1

0

(sin r)r dr dθ = 2π∫ 1

0

r sin r dr = 2π(sin 1 − cos 1)

(b) Γ : 0 ≤ θ ≤ 2π, 1 ≤ r ≤ 2.∫∫Γ

(sin r)r dr dθ =∫ 2π

0

∫ 2

1

(sin r)r dr dθ = 2π∫ 2

1

r sin r dr = 2π[cos 1 − 2 cos 2 + sin 2 − sin 1]

7. (a) Γ : 0 ≤ θ ≤ π/2, 0 ≤ r ≤ 1∫∫Γ

(r cos θ + r sin θ)r drdθ =∫ π/2

0

∫ 1

0

r2(cos θ + sin θ) dr dθ

=( ∫ π/2

0

(cos θ + sin θ) dθ)(∫ 1

0

r2 dr

)= 2(

13

)=

23

Page 13: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

878 SECTION 17.4

(b) Γ : 0 ≤ θ ≤ π/2, 1 ≤ r ≤ 2∫∫Γ

(r cos θ + r sin θ)r drdθ =∫ π/2

0

∫ 2

1

r2(cos θ + sin θ) dr dθ

=(∫ π/2

0

(cos θ + sin θ) dθ)(∫ 2

1

r2 dr

)= 2(

73

)=

143

8. Γ : 0 ≤ θ ≤ π3 , 0 ≤ r ≤ 1

cos θ∫∫Γ

√x2 + y2 dx dy =

∫ π/3

0

∫ 1/ cos θ

0

r · r dr dθ =∫ π/3

0

3 cos3 θ=

13

∫ π/3

0

sec3 θ dθ

=13

[12

sec θ tan θ +12

ln | sec θ + tan θ|]π/30

=13

√3 +

16

ln(2 +√

3)

9.∫ π/2

−π/2

∫ 1

0

r2 dr dθ =13π 10.

∫ π/2

0

∫ 2

0

r2 dr dθ =π

2

∫ 2

0

r2 dr =43π

11.∫ 1

1/2

∫ √1−x2

0

dy dx =∫ π/3

0

∫ 1

12 sec θ

r dr dθ =∫ π/3

0

(12− 1

8sec2 θ

)dθ =

16π −

√3

8

12.∫ π/3

0

∫ 1/2 sec θ

0

r4 cos θ sin θ dr dθ +∫ π/2

π/3

∫ 1

0

r4 cos θ sin θ dr dθ

=∫ π/3

0

sin θ

5(32) cos4 θdθ +

∫ π/2

π/3

15

cos θ sin θ dθ =7

480+

140

=19480

13.∫ 1

0

∫ √1−x2

0

sin√x2 + y2 dy dx =

∫ π/2

0

∫ 1

0

sin(r) r dr dθ =∫ π/2

0

(sin 1 − cos 1) dθ =π

2(sin 1 − cos 1)

14.∫ 2π

0

∫ 1

0

e−r2r dr dθ = 2π

∫ 1

0

re−r2dr = π(1 − 1

e)

15.∫ 2

0

∫ √2x−x2

0

x dy dx =∫ π/2

0

∫ 2 cos θ

0

r cos θ r dr dθ =83

∫ π/2

0

cos4 θ dθ =83· 34· 12· π

2=

π

2

(See Exercise 62, Section 8.3)∧

16. The region is the inside of the circle (x− 1/2)2 + y2 = 1/4, which has polar equation r = cos θ.

So the integral becomes ∫ π/2

−π/2

∫ cos θ

0

r3 dr dθ =∫ π/2

−π/2

14

cos4 θ dθ =3π32

17. A =∫ π/3

0

∫ 3 sin 3θ

0

r dr dθ =92

∫ π/3

0

sin2 3θ dθ =94

∫ π/3

0

(1 − 6 cos θ) dθ =3π4

Page 14: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

SECTION 17.4 879

18. A =∫ 2π

0

∫ 2(1−cos θ)

0

r dr dθ =∫ 2π

0

2(1 − cos θ)2 dθ = 6π

19. First we find the points of intersection:

r = 4 cos θ = 2 =⇒ cos θ =12

=⇒ θ = ±π

3.

A =∫ π/3

−π/3

∫ 4 cos θ

2

r dr dθ =∫ π/3

−π/3

(8 cos2 θ − 2) dθ =∫ π/3

−π/3

(2 + 4 cos 2θ) dθ =4π3

+ 2√

3

20. A =∫ 2π

0

∫ 1+2cos θ

0

r dr dθ =∫ 2π

0

12(1 + 2 cos θ)2 dθ = 3π

21. A = 4∫ π/4

0

∫ 2√

cos 2θ

0

r dr dθ = 8∫ π/4

0

cos 2θ dθ = 4

22. A =∫ π/3

−π/3

∫ 3 cos θ

1+cos θ

r dr dθ =∫ π/3

−π/3

12[9 cos2 θ − (1 + cos θ)2

]dθ =

[3θ2

+ sin 2θ − sin θ

]π/3−π/3

= π

23.∫ 2π

0

∫ b

0

(r2 sin θ + br

)dr dθ =

∫ 2π

0

[13r3 sin θ +

b

2r2

]b0

= b3∫ 2π

0

(13

sin θ +12

)dθ = b3π

24. V =∫ 2π

0

∫ 1

0

(1 − r2)r dr dθ = 2π∫ 1

0

(r − r3) dr =π

2

25. 8∫ π/2

0

∫ 2

0

r

2

√12 − 3r2 dr dθ = 8

∫ π/2

0

[− 1

18(12 − 3r2

)3/2]20

= 8∫ π/2

0

43

√3 dθ =

163

√3π

26. V =∫ 2π

0

∫ √5

0

6√

5 − r2 r dr dθ = 2π∫ √

5

0

r6√

5 − r2 dr =307

(5)1/6π

27.∫ 2π

0

∫ 1

0

r√

4 − r2 dr dθ =∫ 2π

0

[−1

3(4 − r2

)3/2]10

=∫ 2π

0

(83−√

3)dθ =

23(8 − 3

√3 )π

28. V =∫ π/2

−π/2

∫ cos θ

0

(1 − r2)r dr dθ =∫ π/2

−π/2

(cos2 θ

2− cos4 θ

4

)dθ =

5π32

Page 15: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

880 SECTION 17.5

29.∫ π/2

−π/2

∫ 2 cos θ

0

2r2 cos θ dr dθ =∫ π/2

−π/2

[23r3 cos θ

]2 cos θ

0

=∫ π/2

−π/2

163

cos4 θ dθ =323

∫ π/2

0

cos4 θ dθ =323

(316

π

)= 2π

Ex. 46, Sect. 8.3∧

30.∫ π/2

−π/2

∫ 2a cos θ

0

r2 dr dθ =∫ π/2

−π/2

8a3

3cos3 θdθ =

329a3

31.b

a

∫ π

0

∫ a sin θ

0

r√a2 − r2 dr dθ =

b

a

∫ π

0

[−1

3(a2 − r2

)3/2]a sin θ

0

=13a2b

∫ π

0

(1 − cos3 θ

)dθ =

13πa2b

32. (a) V = 2∫ 2π

0

∫ r

0

√R2 − s2 s ds dθ = 4π

∫ r

0

S√R2 − S2 dS =

4π3

[R3 − (R2 − r2)3/2

].

(b)43πR3 − V =

43π(R2 − r2)3/2

33. A = 2∫ π/4

0

∫ 2 cos 2θ

0

r dr dθ = 2∫ π/4

0

12 (2 cos 2θ)2 dθ = 2

∫ π/4

0

(1 + cos 4θ) dθ =π

2

34.∫∫

Ω

ex2+y2

dxdy =∫ 2π

0

∫ 4

2

rer2dr dθ = π

(e16 − e4

)

SECTION 17.5

1. M =∫ 1

−1

∫ 1

0

x2 dy dx =23

xM M =∫ 1

−1

∫ 1

0

x3 dy dx = 0 =⇒ xM = 0

yM M =∫ 1

−1

∫ 1

0

x2y dy dx =∫ 1

−1

12x2 dx =

13

=⇒ yM =1/32/3

=12

2. M =∫ 1

0

∫ √x

0

(x + y) dy dx =∫ 1

0

(x3/2 +

x

2

)dx =

1320

xMM =∫ 1

0

∫ √x

0

x(x + y) dy dx =∫ 1

0

(x5/2 +

x2

2

)dx =

1942

=⇒ xM =190273

yMM =∫ 1

0

∫ √x

0

y(x + y) dy dx =∫ 1

0

(x2

2+

x3/2

3

)dx =

310

=⇒ yM =613

Page 16: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

SECTION 17.5 881

3. M =∫ 1

0

∫ 1

x2xy dy dx =

12

∫ 1

0

(x− x5) dx =16

xM M =∫ 1

0

∫ 1

x2x2y dy dx =

12

∫ 1

0

(x2 − x6) dx =221

=⇒ xM =2/211/6

=47

yM M =∫ 1

0

∫ 1

x2xy2 dy dx =

13

∫ 1

0

(x− x7) dx =18

=⇒ yM =1/81/6

=34

4. M =∫ π

0

∫ sinx

0

y dy dx =∫ π

0

sin2 x

2dx =

π

4

xMM =∫ π

0

∫ sinx

0

xy dy dx =∫ π

0

xsin2 x

2dx =

π2

8=⇒ xM =

π

2

yMM =∫ π

0

∫ sinx

0

y2 dy dx =∫ π

0

sin3 x

3dx =

49

=⇒ yM =169π

5. M =∫ 8

0

∫ x1/3

0

y2 dy dx =13

∫ 8

0

x dx =323

xM M =∫ 8

0

∫ x1/3

0

xy2 dy dx =13

∫ 8

0

x2 dx =5129

=⇒ xM =512/932/3

=163

yM M =∫ 8

0

∫ x1/3

0

y3 dy dx =14

∫ 8

0

x4/3 dx =967

=⇒ yM =96/732/3

=97

6. M =∫ a

0

∫ √a2−x2

0

xy dy dx =∫ a

0

x

2(a2 − x2) dx =

a4

8

xMM =∫ a

0

∫ √a2−x2

0

x2y dy dx =∫ a

0

x2

2(a2 − x2) dx =

a5

15=⇒ xM =

815

a

yMM =∫ a

0

∫ √a2−x2

0

xy2 dy dx =∫ a

0

x

3(a2 − x2)3/2 dx =

a5

15=⇒ yM =

815

a

7. M =∫ 1

0

∫ 3x

2x

xy dy dx =52

∫ 1

0

x3 dx =58

xM M =∫ 1

0

∫ 3x

2x

x2y dy dx =52

∫ 1

0

x4 dx =12

=⇒ xM =1/25/8

=45

yM M =∫ 1

0

∫ 3x

2x

xy2 dy dx =193

∫ 1

0

x4 dx =1915

=⇒ yM =19/155/8

=15275

8. M =∫ 2

0

∫ 3− 32x

0

(x + y) dy dx =∫ 2

0

[x(3 − 3

2x) +

12(3 − 3

2x)2]dx = 5

xMM =∫ 2

0

∫ 3− 32x

0

x(x + y) dy dx =∫ 2

0

[x2(3 − 3

2x) +

x

2(3 − 3

2x)2]dx =

72

=⇒ xM =710

yMM =∫ 2

0

∫ 3− 32x

0

y(x + y) dy dx =∫ 2

0

[x

2(3 − 3

2x)2 +

(3 − 32x)3

3

]dx = 6 =⇒ yM =

65

Page 17: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

882 SECTION 17.5

9. M =∫ 2π

0

∫ 1+cos θ

0

r2 dr dθ =13

∫ 2π

0

(1 + 3 cos θ + 3 cos2 θ + cos3 θ) dθ =5π3

xM M =∫ 2π

0

∫ 1+cos θ

0

r3 cos θ dr dθ =14

∫ 2π

0

(1 + cos θ)4 cos θ dθ

=14

∫ 2π

0

[cos θ + 4 cos2 θ + 6 cos3 θ + 4 cos4 θ + cos5 θ

]dθ

=7π4

Therefore, xM =7π/45π/3

=2120

.

yM M =∫ 2π

0

∫ 1+cos θ

0

r3 sin θ dr dθ =14

∫ 2π

0

(1 + cos θ)4 sin θ dθ =14

[15(1 + cos θ)5

]2π0

= 0

Therefore, yM = 0.

10. M =∫∫Ω

y dx dy =∫ 5π/6

π/6

∫ 2 sin θ

1

r sin θ r dr dθ =∫ 5π/6

π/6

(83

sin4 θ − 13

sin θ

)dθ =

3√

3 + 8π12

xM = 0 by symmetry

yM M =∫ 5π/6

π/6

∫ 2 sin θ

1

r2 sin2 θ r dr dθ =∫ 5π/6

π/6

(4 sin6 θ − 1

4sin2 θ

)dθ =

11√

3 + 12π16

Therefore, yM =33√

3 + 36π12√

3 + 32π

11. Ω : −L/2 ≤ x ≤ L/2, −W/2 ≤ y ≤ W/2

Ix =∫∫Ω

M

LWy2 dxdy =

4MLW

∫ W/2

0

∫ L/2

0

y2dx dy =112

MW 2

symmetry∧

Iy =∫∫Ω

M

LWx2 dxdy =

112

ML2, Iz =∫∫Ω

M

LW

(x2 + y2

)dxdy =

112

M(L2 + W 2

)

Kx =√Ix/M =

W√

36

, Ky =√Iy/M =

L√

36

Kz =√Iz/M =

√3√L2 + W 2

6

12. λ(x, y) = k

(x +

L

2

)M =

∫ W/2

−W/2

∫ L/2

−L/2

k

(x +

L

2

)dx dy =

kWL2

2

Ix =∫ W/2

−W/2

∫ L/2

−L/2

k

(x +

L

2

)y2 dx dy =

(∫ W/2

−W/2

y2 dy

)(∫ L/2

−L/2

k

(x +

L

2

)dx

)

=(W 3

12

)(M

W

)=

112

MW 2

Page 18: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

SECTION 17.5 883

Iy =∫ W/2

−W/2

∫ L/2

−L/2

k

(x +

L

2

)x2 dx dy =

kL4W

24=

112

ML2

Iz =∫ W/2

−W/2

∫ L/2

−L/2

k

(x +

L

2

)(x2 + y2) dx dy = Ix + Iy =

112

M(L2 + W 2).

13. M =∫∫Ω

k

(x +

L

2

)dxdy =

∫∫Ω

12kLdxdy =

12kL( area of Ω) =

12kL2W

symmetry∧

xMM =∫∫Ω

x

[k

(x +

L

2

)]dxdy =

∫∫Ω

(kx2 +

12Lx

)dxdy

=∫∫Ω

kx2 dxdy = 4k∫ W/2

0

∫ L/2

0

x2 dx dy =112

kWL3

symmetry∧

symmetry∧

= 16

(12kL

2W)L = 1

6 ML; xM = 16 L

yMM =∫∫Ω

y

[k

(x +

L

2

)]dxdy = 0; yM = 0

by symmetry∧

14. Iz =∫∫Ω

λ(x, y)[x2 + y2] dx dy =∫∫Ω

λ(x, y)x2 dx dy +∫∫Ω

λ(x, y)y2 dx dy = Ix + Iy.

Since Iz = Ix + Iy, we have MKz2 = MKx

2 + MKy2 therefore Kz

2 = Kx2 + Ky

2.

15. Ix =∫∫Ω

4MπR2

y2 dxdy =4MπR2

∫ π/2

0

∫ R

0

r3 sin2 θ dr dθ

=4MπR2

(∫ π/2

0

sin2 θ dθ

)(∫ R

0

r3 dr

)=

4MπR2

(π4

)(14R4

)=

14MR2

Iy = 14MR2, Iz = 1

2MR2

Kx = Ky = 12R, Kz = R/

√2

16. Iz = IM + d2M. Rotation doesn’t change d, doesn’t change M , and doesn’t change IM .

Page 19: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

884 SECTION 17.5

17. IM , the moment of inertia about the vertical line through the center of mass, is∫∫Ω

M

πR2

(x2 + y2

)dxdy

where Ω is the disc of radius R centered at the origin. Therefore

IM =M

πR2

∫ 2π

0

∫ R

0

r3 dr dθ =12MR2.

We need I0 = 12 MR2 + d2M where d is the distance from the center of the disc to the origin. Solving

this equation for d, we have d =√I0 − 1

2 MR2

/√M.

18. Ix =∫ b

a

∫ f(x)

0

λy2 dy dx =λ

3

∫ b

a

[f(x)]3 dx

Iy =∫ b

a

∫ f(x)

0

λx2 dy dx = λ

∫ b

a

x2f(x) dx.

19. Ω : 0 ≤ x ≤ a, 0 ≤ y ≤ b

Ix =∫∫Ω

4Mπab

y2 dxdy =4Mπab

∫ a

0

∫ ba

√a2−x2

0

y2 dy dx =14Mb2

Iy =∫∫Ω

4Mπab

x2 dxdy =4Mπab

∫ a

0

∫ ba

√a2−x2

0

x2 dy dx =14Ma2

Iz = 14M(a2 + b2

)

20. Ix =∫ 1

0

∫ √x

0

(x + y)y2 dy dx =∫ 1

0

(x5/2

3+

x2

4

)dx =

528

Iy =∫ 1

0

∫ √x

0

(x + y)x2 dy dx =∫ 1

0

(x7/2 +

x3

2

)dx =

2572

; Iz = Ix + Iy.

21. Ix =∫ 1

0

∫ 1

x2xy3 dy dx =

14

∫ 1

0

(x− x9) dx =110

Iy =∫ 1

0

∫ 1

x2x3y dy dx =

12

∫ 1

0

(x3 − x7) dx =116

Iz =∫ 1

0

∫ 1

x2xy(x2 + y2) dy dx = Ix + Iy =

1380

22. Ix =∫ 8

0

∫ 3√x

0

y2 · y2 dy dx =∫ 8

0

x5/3

5dx =

965

Iy =∫ 8

0

∫ 3√x

0

y2 · x2 dy dx =∫ 8

0

x3

3dx =

10243

; Iz = Ix + Iy

Page 20: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

SECTION 17.5 885

23. Ix =∫ 2π

0

∫ 1+cos θ

0

r4 sin2 θ dr dθ =15

∫ 2π

0

(1 + cos θ)5 sin2 θ dθ =33π40

Iy =∫ 2π

0

∫ 1+cos θ

0

r4 cos2 θ dr dθ =15

∫ 2π

0

(1 + cos θ)5 cos2 θ dθ =93π40

Iz =∫ 2π

0

∫ 1+cos θ

0

r4 dr dθ = Ix + Iy =63π20

24. xM =x1M1 + x2M2

M1 + M2, yM =

y1M1 + y2M2

M1 + M2

25. Ω : r21 ≤ x2 + y2 ≤ r2

2, A = π(r22 − r2

1

)(a) Place the diameter on the x-axis.

Ix =∫∫Ω

M

Ay2 dxdy =

M

A

∫ 2π

0

∫ r2

r1

(r2 sin2 θ

)r dr dθ =

14M(r22 + r2

1

)(b) 1

4M(r22 + r2

1

)+ Mr2

1 = 14M(r22 + 5r2

1

)(parallel axis theorem)

(c) 14M(r22 + r2

1

)+ Mr2

2 = 14M(5r2

2 + r21

)26. Set r1 = r2 = r in the proceeding problem. Then the required moments of inertia are

(a) 12Mr2 (b) 3

2Mr2.

27. Ω : r21 ≤ x2 + y2 ≤ r2

2, A = π(r22 − r2

1

)I =∫∫Ω

M

A

(x2 + y2

)dxdy =

M

A

∫ 2π

0

∫ r2

r1

r3 dr dθ =12M(r2

2 + r21)

28. Let l be the x-axis and let the plane of the plate be the xy-plane. Then

I − IM =∫∫Ω

λ(x, y)y2 dx dy −∫∫Ω

λ(x, y)(y − yM )2 dx dy

=∫∫Ω

λ(x, y)[2yMy − y2M ] dx dy

= 2yM∫∫Ω

yλ(x, y) dx dy − y2M

∫∫Ω

λ(x, y) dx dy

= 2y2MM − y2

MM = y2MM = d2M.

29. M =∫∫Ω

k(R−√x2 + y2

)dxdy = k

∫ π

0

∫ R

0

(Rr − r2

)dr dθ =

16kπR3

xM = 0 by symmetry

yMM =∫∫Ω

y[k(R−√x2 + y2

)]dxdy = k

∫ π

0

∫ R

0

(Rr2 − r3

)sin θ dr dθ =

16kR4

yM = R/π

Page 21: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

886 SECTION 17.5

30. Ix =∫∫Ω

k(R−√x2 + y2)y2 dx dy = k

∫ π

0

∫ R

0

(R− r) r2 sin2 θ r dr dθ =kπR5

40=

3MR2

20.

Iy = k

∫ π

0

∫ R

0

(R− r)r2 cos2 θr dr dθ =kπR5

40=

3MR2

20

Iz = Ix + Iy =3MR2

10.

31. Place P at the origin.

M =∫∫Ω

k√x2 + y2 dxdy

= k

∫ π

0

∫ 2R sin θ

0

r2 dr dθ =329kR3

xM = 0 by symmetry

yMM =∫∫Ω

y(k√x2 + y2

)dxdy = k

∫ π

0

∫ 2R sin θ

0

r3 sin θ dr dθ =6415

kR4

yM = 6R/5

Answer: the center of mass lies on the diameter through P at a distance 6R/5 from P .

32. Putting the right angle at the origin, we have λ(x, y) = k(x2 + y2).

M =∫ b

0

∫ h−hb x

0

k(x2 + y2) dy dx =112

kbh(b2 + h2)

xMM =∫ b

0

∫ h−hb x

0

kx(x2 + y2) dy dx =kb2h(3b2 + h2)

60=⇒ xM =

b(3b2 + h2)5(b2 + h2)

yMM =∫ b

0

∫ h−hb x

0

ky(x2 + y2) dy dx =kbh2(b2 + 3h2)

60=⇒ yM =

h(b2 + 3h2)5(b2 + h2)

33. Suppose Ω, a basic region of area A, is broken up into n basic regions Ω1, · · · , Ωn with areas

A1, · · · , An. Then

xA =∫∫Ω

x dxdy =n∑

i=1

⎛⎝∫∫

Ωi

x dxdy

⎞⎠ =

n∑i=1

xi Ai = x1 A1 + · · · + xn An.

The second formula can be derived in a similar manner.

34. (a) M =∫ 2

0

∫ 1

x/2

(x + y) dy dx =43

xM M =∫ 2

0

∫ 1

x/2

x(x + y) dy dx =76; xM =

78

yM M =∫ 2

0

∫ 1

x/2

y(x + y) dy dx = 1; yM =34

(b) Ix =∫ 2

0

∫ 1

x/2

y2(x + y) dy dx =45

Iy =∫ 2

0

∫ 1

x/2

x2(x + y) dy dx =43

Page 22: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

SECTION 17.6 887

SECTION 17.6

1. They are equal; they both give the volume of T .

2. (a) Lf (P ) =m∑i=1

n∑j=1

q∑k=1

xi−1yj−1zk−1ΔxiΔyjΔzk, Uf (P ) =m∑i=1

n∑j=1

q∑k=1

xiyjzkΔxiΔyjΔzk

(b) xi−1yj−1zk−1 ≤(xi + xi−1

2

)(yj + yj−1

2

)(zk + zk−1

2

)≤ xiyjzk

xi−1yj−1zk−1ΔxiΔyjΔzk ≤ 18(xi

2 − xi−12) (

yj2 − yj−1

2) (

zk2 − zk−1

2)≤ xiyjzkΔxiΔyjΔzk

Lf (P ) ≤ 18

m∑i=1

n∑j=1

q∑k=1

(xi

2 − xi−12) (

yj2 − yj−1

2) (

zk2 − zk−1

2)≤ Uf (P ).

The middle term can be written

18

(m∑i=1

xi2 − xi−1

2

)⎛⎝ n∑j=1

yj2 − yj−1

2

⎞⎠( q∑

k=1

zk2 − zk−1

2

)=

18(1)(1)(1) =

18.

Therefore I =18.

3.∫∫∫Π

αdx dy dz = α

∫∫∫Π

dx dy dz = α (volume of Π) = α(a2 − a1)(b2 − b1)(c2 − c1)

4. Since the volume is 1, the average value is∫∫∫Ω

xyz dx dy dz =18.

5. Let P1 = {x0, · · · , xm}, P2 = {y0, · · · , yn}, P3 = {z0, · · · , zq} be partitions of [ 0, a ], [ 0, b ], [ 0, c ]

respectively and let P = P1 × P2 × P3. Note that

xi−1yj−1 ≤(xi + xi−1

2

)(yj + yj−1

2

)≤ xiyj

and therefore

xi−1yj−1 Δxi Δyj Δzk ≤ 14

(xi

2 − x2i−1

) (yj

2 − y2j−1

)Δzk ≤ xiyj Δxi ΔyjΔzk.

It follows that

Lf (P ) ≤ 14

m∑i=1

n∑j=1

q∑k=1

(xi

2 − x2i−1

) (yj

2 − y2j−1

)Δzk ≤ Uf (P ).

The middle term can be written

14

(m∑i=1

xi2 − x2

i−1

)⎛⎝ n∑j=1

yj2 − y2

j−1

⎞⎠( q∑

k=1

Δzk

)=

14a2b2c.

6. Ix = Ixy + Ixz, Iy = Ixy + Iyz, Iz = Ixz + Iyz

Page 23: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

888 SECTION 17.6

7. x1 = a, y1 = b, z1 = c; x0 = A, y0 = B, z0 = C

x1V1 + xV = x0V0 =⇒ a2bc + (ABC − abc)x = A2BC

=⇒ x =A2BC − a2bc

ABC − abc

similarly

y =AB2C − ab2c

ABC − abc, z =

ABC2 − abc2

ABC − abc

8. Encase T in a box Π. A partition P of Π breaks up II into little boxes Πijk. Since f is

nonnegative on Π, all the mijk are nonnegative. Therefore

0 ≤ Lf (P ) ≤∫∫∫T

f(x, y, z) dx dy dz.

9. M =∫∫∫Π

Kz dxdydz

Let P1 = {x0, · · · , xm}, P2 = {y0, · · · , yn}, P3 = {z0, · · · , zq} be partitions of [ 0, a ] and let

P = P1 × P2 × P3. Note that

zk−1 ≤ 12 (zk + zk−1) ≤ zk

and therefore

Kzk−1 Δxi Δyj Δzk ≤ 12K Δxi Δyj

(zk

2 − z2k−1

)≤ Kzk Δxi ΔyjΔzk.

It follows that

Lf (P ) ≤ 12K

m∑i=1

n∑j=1

q∑k=1

Δxi Δyj(zk

2 − z2k−1

)≤ Uf (P ).

The middle term can be written

12K

(m∑i=1

Δxi

)⎛⎝ n∑j=1

Δyj

⎞⎠ ( q∑

k=1

zk2 − z2

k−1

)=

12K(a) (a) (a2) =

12Ka4.

M = 12Ka4 where K is the constant of proportionality for the density function.

10. xMM =∫∫∫Π

Kzxdx dy dz =Ka5

4=⇒ xM =

12a

yMM =∫∫∫Π

Kzy dx dy dz =Ka5

4=⇒ yM =

12a

zMM =∫∫∫Π

Kz2 dx dy dz =Ka5

3=⇒ zM =

23a.

Page 24: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

SECTION 17.7 889

11. Iz =∫∫∫Π

Kz(x2 + y2

)dxdydz

=∫∫∫Π

Kx2z dxdydz

︸ ︷︷ ︸I1

+∫∫∫Π

Ky2z dxdydz

︸ ︷︷ ︸I2

.

We will calculate I1 using the partitions we used in doing Exercise 9. Note that

x2i−1zk−1 ≤

(xi

2 + xixi−1 + x2i−1

3

)(zk + zk−1

2

)≤ xi

2zk

and therefore

Kx2i−1zk−1 Δxi Δyj Δzk ≤ 1

6 K(xi

3 − x3i−1

)Δyj(zk

2 − z2k−1

)≤ Kxi

2zk2 Δxi Δyj Δzk.

It follows that

Lf (P ) ≤ 16K

m∑i=1

n∑j=1

q∑k=1

(xi

3 − x3i−1

)Δyj(zk

2 − z2k−1

)≤ Uf (P ).

The middle term can be written

16K

(m∑i=1

xi3 − x3

i−1

)⎛⎝ n∑j=1

Δyj

⎞⎠( q∑

k=1

zk2 − z2

k−1

)=

16Ka3 (a)(a2) =

16Ka6.

Similarly I2 = 16 Ka6 and therefore Iz = 1

3 Ka6 = 23

(12 Ka4

)a2 = 2

3 Ma2.

by Exercise 9∧

12. (a) Lf (P ) ∼= 56.4803 Uf (P ) ∼= 57.5603 (c)∫∫R

(3y2 − 2x

)dxdy = 57

SECTION 17.7

1.∫ a

0

∫ b

0

∫ c

0

dx dy dz =∫ a

0

∫ b

0

c dy dz =∫ a

0

bc dz = abc

2.∫ 1

0

∫ x

0

∫ y

0

y dz dy dx =∫ 1

0

∫ x

0

y2 dy dx =∫ 1

0

x3

3dx =

112

.

3.∫ 1

0

∫ 2y

1

∫ x

0

(x + 2z) dz dx dy =∫ 1

0

∫ 2y

1

[xz + z2

]x0dx dy =

∫ 1

0

∫ 2y

1

2x2 dx dy

=∫ 1

0

[23x3

]2y1

dy =∫ 1

0

(163

y3 − 23

)dy =

23

4.∫ 1

0

∫ 1+x

1−x

∫ xy

0

4z dz dy dx =∫ 1

0

∫ 1+x

1−x

2x2y2 dy dx =∫ 1

0

2x2

3[(1 + x)3 − (1 − x)3

]dx =

119

5.∫ 2

0

∫ 1

−1

∫ 3

0

(z − xy) dz dy dx =∫ 2

0

∫ 1

−1

[12z2 − xyz

]31

dy dx

=∫ 2

0

∫ 1

−1

(4 − 2xy) dy dx =∫ 2

0

[2y − xy2

]1−1

dx =∫ 2

0

8 dy = 16

Page 25: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

890 SECTION 17.7

6.∫ 2

0

∫ 1

−1

∫ 3

1

(z − xy) dy dx dz =∫ 2

0

∫ 1

−1

(2z − 4x) dx dz =∫ 2

0

4z dz = 8

7.∫ π/2

0

∫ 1

0

∫ √1−x2

0

x cos z dy dx dz =∫ π/2

0

∫ 1

0

[xy cos z]√

1−x2

0 dx dz

=∫ π/2

0

∫ 1

0

x√

1 − x2 cos z dx dz =∫ π/2

0

[−1

3(1 − x2)3/2 cos z

]10

dz =13

∫ π/2

0

cos z dz =13

8.∫ 2

−1

∫ y−2

1

∫ e2

e

x + y

zdz dx dy =

∫ 2

−1

∫ y−2

1

(x + y) dx dy =∫ 2

−1

[(y − 2)2 − 1

2+ y(y − 3)

]dy =

32

9.∫ 2

1

∫ y2

y

∫ lnx

0

yez dz dx dy =∫ 2

1

∫ y2

y

[yez]lnx0 dx dy

=∫ 2

1

∫ y2

y

y(x− 1) dx dy =∫ 2

1

[12x2y − xy

]y2

y

dy =∫ 2

1

(12y5 − 3

2y3 + y2

)dy =

4724

10.∫ π/2

0

∫ π/2

0

∫ 1

0

ez cosx sin y dz dy dx =∫ π/2

0

∫ π/2

0

(e− 1) cosx sin y dy dx

=∫ π/2

0

(e− 1) cosx dx = e− 1

11.∫∫∫Π

f(x)g(y)h(z) dxdydz =∫ c2

c1

[∫ b2

b1

(∫ a2

a1

f(x)g(y)h(z) dx)dy

]dz

=∫ c2

c1

[∫ b2

b1

g(y)h(z)(∫ a2

a1

f(x) dx)dy

]dz

=∫ c2

c1

[h(z)

(∫ a2

a1

f(x) dx)(∫ b2

b1

g(y) dy)dz

]

=(∫ a2

a1

f(x) dx) (∫ b2

b1

g(y) dy

)(∫ c2

c1

h(z) dz)

12.(∫ 1

0

x3 dx

)(∫ 2

0

y2 dy

)(∫ 3

0

z dz

)=(

14

)(83

)(92

)= 3

13.(∫ 1

0

x2 dx

)(∫ 2

0

y2 dy

)(∫ 3

0

z2 dz

)=(

13

)(83

)(273

)= 8

14. M =∫∫∫Π

kxyz dx dy dz = k

(∫ a

0

x dx

)(∫ b

0

y dy

)(∫ c

0

z dz

)=

18ka2b2c2

15. xMM =∫∫∫Π

kx2yz dxdydz = k

(∫ a

0

x2 dx

) (∫ b

0

y dy

) (∫ c

0

z dz

)

= k(

13 a

3) (

12 b

2) (

12 c

2)

= 112 ka

3 b2 c2.

By Exercise 14, M = 18 ka

2 b2 c2. Therefore x = 23 a. Similarly, y = 2

3 b and z = 23 c.

Page 26: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

SECTION 17.7 891

16. (a)

I =∫∫∫Π

kxyz[(x− a)2 + (y − b)2

]dx dy dz

= k

(∫ a

0

x(x− a)2 dx)(∫ b

0

y dy

)(∫ c

0

z dz

)+ k

(∫ a

0

x dx

)(∫ b

0

y(y − b)2 dy)(∫ c

0

z dz

)

=148

ka2b2c2(a2 + b2).

Since M = 18ka

2b2c2, I = 16M(a2 + b2).

(b) IM − 118

(a2 + b2) by parallel axis theorem

17.

18. V =∫∫∫T

dx dy dz =∫ 1

0

∫ 1

0

∫ 1−y

0

dz dy dx =12

19. center of mass is the centroid

x = 12 by symmetry

yV =∫∫∫T

y dxdydz =∫ 1

0

∫ 1

0

∫ 1−y

0

y dz dy dx =∫ 1

0

∫ 1

0

(y − y2

)dy dx

=∫ 1

0

[12y2 − 1

3y3

]10

dx =∫ 1

0

16dx =

16

zV =∫∫∫T

z dxdydz =∫ 1

0

∫ 1

0

∫ 1−y

0

z dz dy dx =∫ 1

0

∫ 1

0

12(1 − y)2 dy dx

=12

∫ 1

0

∫ 1

0

(1 − 2y + y2

)dy dx =

12

∫ 1

0

[y − y2 1

3y3

]10

dx =12

∫ 1

0

13dx =

16

V = 12 (by Exercise 18 ); y = 1

3 , z = 13

20. Ix =∫∫∫T

M

V(y2 + z2) dx dy dz =

13M

Iy =∫∫∫T

M

V(x2 + z2) dx dy dz =

12M Iz =

∫∫∫T

M

V(x2 + y2) dx dy dz =

12M

Page 27: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

892 SECTION 17.7

21.∫ r

−r

∫ φ(x)

−φ(x)

∫ ψ(x,y)

−ψ(x,y)

k(r −√x2 + y2 + z2

)dz dy dx with φ(x) =

√r2 − x2,

ψ(x, y) =√r2 − (x2 + y2) , k the constant of proportionality

22.∫ 1

−1

∫ √1−x2

−√

1−x2

∫ 1

√x2+y2

k√x2 + y2 + z2 dz dy dx

23.∫ 1

0

∫ √x−x2

−√x−x2

∫ 1−y2

−2x−3y−10

dz dy dx

24.∫ √

2

−√

2

∫ √1−x2/2

−√

1−x2/2

∫ 4−x2−y2

2+y2dz dy dx

25.∫ 1

−1

∫ 2√

2−2x2

−2√

2−2x2

∫ 4−x2−y2/4

3x2+y2/4

k

(z − 3x2 − 1

4y2

)dz dy dx

26.∫ √

2

−√

2

∫ √2−y2

−√

2−y2

∫ 4−z2

z2+2y2k√x2 + y2 dx dz dy

27.∫∫T

∫ (x2z + y

)dx dy dz =

∫ 2

0

∫ 3

1

∫ 1

0

(x2z + y

)dx dy dz =

∫ 2

0

∫ 3

1

[13x3z + xy

]10

dy dz

=∫ 2

0

∫ 3

1

(13z + y

)dy dz =

∫ 2

0

[13zy +

12y2

]31

dz =∫ 2

0

(23z + 4

)dz =

283

28.∫ 1

0

∫ y

0

∫ x+y

0

2yex dz dx dy =∫ 1

0

∫ y

0

2y(x + y)ex dx dy =∫ 1

0

(4y2ey − 2yey + 2y − 2y2) dy = 4e− 293

29.∫∫T

∫x2y2z2 dx dy dz =

∫ 0

−1

∫ y+1

0

∫ 1

0

x2y2z2 dx dz dy +∫ 1

0

∫ 1−y

0

∫ 1

0

x2y2z2 dx dz dy

=∫ 0

−1

∫ y+1

0

[13x3y2z2

]10

dz dy +∫ 1

0

∫ 1−y

0

[13x3y2z2

]10

dz dy

=13

∫ 0

−1

∫ y+1

0

y2z2 dz dy +13

∫ 1

0

∫ 1−y

0

[y2z2]10dz dy

=13

∫ 0

−1

[13y2z3

]y+1

0

dy +13

∫ 1

0

[13y2z3

]1−y

0

dy

=19

∫ 0

−1

(y5 + 3y4 + 3y3 + y2

)dy +

19

∫ 1

0

(y2 − 3y3 + 3y4 − y5

)dy =

1270

Page 28: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

SECTION 17.7 893

30.∫ 2

0

∫ √4−x2

0

∫ √4−x2−y2

0

xy dz dy dx =∫ 2

0

∫ √4−x2

0

xy√

4 − x2 − y2 dy dx

=∫ π/2

0

∫ 2

0

r2 cos θ sin θ√

4 − r2r dr dθ

=12

∫ 2

0

r3√

4 − r2 dr =14

∫ 4

0

(4√u− u3/2) du =

3215

31.∫∫∫T

y2 dx dy dz =∫ 3

0

∫ 2−2x/3

0

∫ 6−2x−3y

0

y2 dz dy dx =∫ 3

0

∫ 2−2x/3

0

[y2z]6−2x−3y

0dy dx

=∫ 3

0

∫ 2−2x/3

0

(6y2 − 2xy2 − 3y3) dy dx

=∫ 3

0

[2y3 − 2

3xy3 − 3

4y4

]2−2x/3

0

dx

=14

∫ 3

0

(2 − 2

3x

)dx =

125

32.∫ 1

0

∫ 1−x2

0

∫ √1−y

0

y2 dz dy dx =∫ 1

0

∫ 1−x2

0

y2√

1 − y dy dx

=∫ 1

0

[−2

3x3 +

45x5 − 2

7x7 +

16105

]dx =

112

33. V =∫ 2

0

∫ x+2

x2

∫ x

0

dz dy dx =∫ 2

0

∫ x+2

x2x dy dx =

∫ 2

0

(x2 + 2x− x3

)dx =

83

xV =∫ 2

0

∫ x+2

x2

∫ x

0

x dz dy dx =∫ 2

0

∫ x+2

x2x2 dy dx =

∫ 2

0

(x3 + 2x2 − x4

)dx =

4415

yV =∫ 2

0

∫ x+2

x2

∫ x

0

y dz dy dx =∫ 2

0

∫ x+2

x2xy dy dx =

∫ 2

0

12(x3 + 4x2 + 4x− x5

)dx = 6

zV =∫ 2

0

∫ x+2

x2

∫ x

0

z dz dy dx =∫ 2

0

∫ x+2

x2

12x2 dy dx =

∫ 2

0

12(x3 + 2x2 − x4

)dx =

2215

x =1110

, y =94, z =

1120

34. (a) M =∫ 1

0

∫ 1

0

∫ 1

0

kz dx dy dz =12k

(b) M =∫ 1

0

∫ 1

0

∫ 1

0

k(x2 + y2 + z2) dz dy dx = k

35. V =∫ 2

−1

∫ 3

0

∫ 4−x2

2−x

dz dy dx = 272 ; (x, y, z) =

(12 ,

32 ,

125

)

Page 29: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

894 SECTION 17.7

36.∫∫∫T

(x− x) dx dy dz =∫∫∫T

x dx dy dz − x

∫∫∫T

dx dy dz = xV − xV = 0.

Similarly, the other two integrals are zero.

37. V =∫ a

0

∫ φ(x)

0

∫ ψ(x,y)

0

dz dy dx =16abc with φ(x) = b

(1 − x

a

), ψ(x, y) = c

(1 − x

a− y

b

)(x, y, z) =

(14 a,

14 b,

14 c)

38. Iz =∫∫∫T

M

V(x2 + y2) dx dy dz =

130

(M

V

)=

15M

39. Π: 0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ c

(a) Iz =∫ a

0

∫ b

0

∫ c

0

M

abc

(x2 + y2

)dz dy dx =

13M(a2 + b2

)(b) IM = Iz − d2M = 1

3 M(a2 + b2

)− 1

4

(a2 + b2

)M = 1

12M(a2 + b2

)∧

parallel axis theorem (17.5.7)

(c) I = IM + d2M = 112 M

(a2 + b2

)+ 1

4 a2M = 1

3 Ma2 + 112 Mb2

∧parallel axis theorem (17.5.7)

40. V =∫ 2

1

∫ 2

1

∫ 1+x+y

−2

dz dy dx =∫ 2

1

∫ 2

1

(3 + x + y) dy dx = 6

xV =∫ 2

1

∫ 2

1

∫ 1+x+y

−2

x dz dy dx =10912

=⇒ x =10972

= y by symmetry

zV =∫ 2

1

∫ 2

1

∫ 1+x+y

−2

z dz dy dx =7312

=⇒ z =7372

.

41. M =∫ 1

0

∫ 1

0

∫ y

0

k(x2 + y2 + z2

)dz dy dx =

∫ 1

0

∫ 1

0

k

(x2y + y3 +

13y3

)dy dx

=∫ 1

0

k

(12x2 +

13

)dx =

12k

(xM , yM , zM ) =(

712 ,

3445 ,

3790

)

42. T is symmetric (a) about the yz-plane, (b) about the xz-plane, (c) about the xy-plane,

(d) about the origin.

Page 30: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

SECTION 17.7 895

43. (a) 0 by symmetry

(b)∫∫∫T

(a1 x + a2 y + a3z + a4) dxdydz =∫∫∫T

a4 dxdydz = a4 (volume of ball) = 43 πa4

by symmetry∧

44.∫ 2

0

∫ 2

0

∫ 4−y2

2−y

x2y2 dz dy dx =35245

45. V = 8∫ a

0

∫ √a2−x2

0

∫ √a2−x2−y2

0

dz dy dx = 8∫ a

0

∫ √a2−x2

0

√a2 − x2 − y2 dy dx

polar coordinates∧

= 8∫ π/2

0

∫ a

0

√a2 − r2 r dr dθ

= −4∫ π/2

0

[23(a2 − r2)3/2

]a0

=83

∫ π/2

0

dθ =43π a3

46. 8∫ a

0

∫ b√

1−x2/a2

0

∫ c√

1−x2/a2−y2/b2

0

dz dy dx =43πabc.

47. M =∫ 2

−2

∫ √4−x2/2

−√

4−x2/2

∫ 4−y2

x2+3y2k|x| dz dy dx = 4

∫ 2

0

∫ √4−x2/2

0

∫ 4−y2

x2+3y2kx dz dy dx

= 4 k∫ 2

0

∫ √4−x2/2

0

(4x− x3 − 4xy2

)dy dx =

43k

∫ 2

0

x(4 − x2

)3/2dx =

12815

k

48. using polar coordinates V = 2∫ 2π

0

∫ 1

0

(r − r3) dr dθ = π

49. M =∫ 2

−1

∫ 3

0

∫ 4−x2

2−x

k(1 + y) dz dy dx =1354

k; (xM , yM , zM ) =(

12,

95,

125

)

50. (a) V =∫ 2

0

∫ 2−z

0

∫ 9−x2

0

dy dx dz

(b) V =∫ 2

0

∫ 2−x

0

∫ 9−x2

0

dy dz dx

(c) V =∫ 5

0

∫ 2

0

∫ 2−x

0

dz dx dy +∫ 9

5

∫ √9−y

0

∫ 2−x

0

dz dx dy

Page 31: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

896 SECTION 17.8

51. (a) V =∫ 6

0

∫ 3

z/2

∫ 6−x

x

dy dx dz

(b) V =∫ 3

0

∫ 2x

0

∫ 6−x

x

dy dz dx

(c) V =∫ 6

0

∫ 3

z/2

∫ y

z/2

dx dy dz +∫ 6

0

∫ (12−z)/2

3

∫ 6−y

z/2

dx dy dz

52. (a) V =∫∫Ωxy

2√

4 − y dx dy (b) V =∫∫Ωxy

(∫ √4−y

−√4−y

dz

)dx dy

(c) V =∫ 4

−4

∫ 4

|x|

∫ √4−y

−√4−y

dz dy dx (d) V =∫ 4

0

∫ y

−y

∫ √4−y

−√4−y

dz dx dy

53. (a) V =∫∫Ωxy

2y dydz (b) V =∫∫Ωxy

( ∫ y

−y

dx

)dydz

(c) V =∫ 4

0

∫ √4−y

−√4−y

∫ y

−y

dx dz dy (d) V =∫ 2

−2

∫ 4−z2

0

∫ y

−y

dx dy dz

54. (a) V =∫∫Ωxy

(4 − z2 − |x|) dx dz (b) V =∫∫Ωxy

(∫ 4−z2

|x|dy

)dx dz

(c) V =∫ 2

−2

∫ 4−z2

z2−4

∫ 4−z2

|x|dy dx dz

(d) V =∫ 0

−2

∫ √4+x

−√

4+x

∫ 4−z2

|x|dy dz dx +

∫ 2

0

∫ √4−x

−√

4−x

∫ 4−z2

|x|dy dz dx

55. (a)∫ 4

2

∫ 5

3

∫ 2

1

lnxy

zdz dy dx ∼= 6.80703 (b)

∫ 4

0

∫ 2

1

∫ 3

0

x√yz dz dy dx =

16√

33

(4√

2 − 2)

56. Let f(x, z) = 36 − 9x2 − 4z2 and g(x, z) = 1 − 12 x− 1

3 z. Then

V =∫ 2

0

∫ 3−(3/2)x

0

∫ f(x,z)

g(x,z)

1 dy dz dx = 71

SECTION 17.8

1. r2 + z2 = 9 2. r = 2 3. z = 2r

4. r cos θ = 4z 5. 4r2 = z2 6. r2 sin2 θ + z2 = 8

Page 32: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

SECTION 17.8 897

7.∫ π/2

0

∫ 2

0

∫ 4−r2

0

r dz dr dθ

=∫ π/2

0

∫ 2

0

(4r − r2

)dr dθ

=∫ π/2

0

4 dθ = 2π0

1

2

0 1 2

0

2

4

8.∫ π/4

0

∫ 1

0

∫ √1−r2

0

r dz dr dθ =π

12

9.∫ 2π

0

∫ 2

0

∫ r2

0

r dz dr dθ

=∫ 2π

0

∫ 2

0

r3 dr dθ

=∫ 2π

0

4 dθ = 8π-2

0

2

20

0

2

4

-

10.∫ 3

0

∫ 2π

0

∫ 3

r

r dz dθ dr = 9π

11.∫ 1

0

∫ √1−x2

0

∫ √4−(x2+y2)

0

dz dy dx =∫ π/2

0

∫ 1

0

∫ √4−r2

0

r dz dr dθ

=∫ π/2

0

∫ 1

0

r√

4 − r2 dr dθ

=∫ π/2

0

(83−√

3)

dθ =16

(8 − 3

√3)π

12.∫ π

0

∫ 1

0

∫ 1

r

z3r dz dr dθ =∫ π

0

∫ 1

0

14(1 − r4) r dr dθ =

π

12

Page 33: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

898 SECTION 17.8

13.∫ 3

0

∫ √9−y2

0

∫ √9−x2−y2

0

1√x2 + y2

dz dx dy =∫ π/2

0

∫ 3

0

∫ √9−r2

0

1r· r dz dr dθ

=∫ π/2

0

∫ 3

0

√9 − r2 dr dθ

=∫ π/2

0

[r

2

√9 − r2 +

92

sin−1 r

3

]30

=9π4

∫ π/2

0

dθ =98π2

14.∫ π/2

0

∫ 1

0

∫ √1−r2

0

zr dz dr dθ =∫ π/2

0

∫ 1

0

r

2(1 − r2) dr dθ =

π

16

15.∫ 1

0

∫ √1−x2

0

∫ 2

0

sin(x2 + y2) dz dy dx =∫ π/2

0

∫ 1

0

∫ 2

0

sin(r2)r dz dr dθ

=∫ π/2

0

∫ 1

0

2r sin(r2) dr dθ = 12π(1 − cos 1) ∼= 0.7221

16.∫ 2π

0

∫ 1

0

∫ 2−r2

r2r2dz dr dθ = 4π

∫ 1

0

(1 − r2)r2 dr =8π15

17. (0, 1, 2) → (1, 12π, 2) 18. (0, 1,−2) → (1, 1

2π,−2)

19. (0,−1, 2) → (1, 32π, 2) 20. (0, 0, 0) → (0, arbitrary, 0)

21. V =∫ π/2

−π/2

∫ 2a cos θ

0

∫ r

0

r dz dr dθ =∫ π/2

−π/2

∫ 2a cos θ

0

r2 dr dθ

=∫ π/2

−π/2

83a3 cos3 θ dθ =

329

a3

22. V =∫ π/2

−π/2

∫ 2a cos θ

0

∫ r2/a

0

r dz dr dθ =32πa3

23. V =∫ π/2

−π/2

∫ a cos θ

0

∫ a−r

0

r dz dr dθ =∫ π/2

−π/2

∫ a cos θ

0

r(a− r) dr dθ

=∫ π/2

−π/2

a3

(12

cos2 θ − 13

cos3 θ)

dθ =136

a3(9π − 16)

24. V =∫ π/2

−π/2

∫ 2 cos θ

0

∫ 2+ 12 r cos θ

0

r dz dr dθ =52π

Page 34: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

SECTION 17.8 899

25. V =∫ π/2

−π/2

∫ cos θ

0

∫ r cos θ

r2r dz dr dθ =

∫ π/2

−π/2

∫ cos θ

0

(r2 cos θ − r3

)dr dθ

=∫ π/2

−π/2

112

cos4 θ dθ =132

π

26. V =∫ 2π

0

∫ 3

0

∫ √25−r2

r+1

r dz dr dθ =413π

27. V =∫ 2π

0

∫ 1/2

0

∫ √1−r2

r√

3

r dz dr dθ =∫ 2π

0

∫ 1/2

0

(r√

1 − r2 − r2√

3)dr dθ =

13π(2 −

√3)

28. V =∫ 2π

0

∫ a

0

∫ √a2+r2

√2r

r dz dr dθ =2π3a3(

√2 − 1)

29. V =∫ 2π

0

∫ 3

1

∫ √9−r2

0

r dz dr dθ =∫ 2π

0

∫ 3

1

r√

9 − r2 dr dθ = 323 π

√2

30. V =∫ 2π

0

∫ 2

1

∫ 12

√36−r2

0

r dz dr dθ =13π(35

√35 − 128

√2).

31. Set the lower base of the cylinder on the xy-plane so that the axis of the cylinder coincides with the

z-axis. Assume that the density varies directly as the distance from the lower base.

M =∫ 2π

0

∫ R

0

∫ h

0

kzr dz dr dθ =12kπR2h2

32. xM = yM = 0 by symmetry

zMM =∫ 2π

0

∫ R

0

∫ h

0

kz2r dz dr dθ =13kπR2h3

M =12kπR2h2, zM =

23h

The center of mass lies on the axis of the cylinder at a distance 23h from the base of zero mass

density.

33. I = Iz = k

∫ 2π

0

∫ R

0

∫ h

0

zr3 dr dθ dz

= 14 kπR

4h2 = 12

(12 kπR

2h2)R2 = 1

2 MR2

∧from Exercise 31

Page 35: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

900 SECTION 17.9

34. (a) I =M

πR2h

∫ 2π

0

∫ R

0

∫ h

0

r3 dz dr dθ =12MR2

(b) I =M

πR2h

∫ 2π

0

∫ R

0

∫ h

0

(r2 sin2 θ + z2)r dz dr dθ =14MR2 +

13Mh2

(c) I = 14MR2 + 1

3Mh2 −M( 12h)2 = 1

4MR2 + 112Mh2

35. Inverting the cone and placing the vertex at the origin, we have

V =∫ h

0

∫ 2π

0

∫ (R/h)z

0

r dr dθ dz =13πR2h.

36. xM = yM = 0 by symmetry

zMM =∫ h

0

∫ 2π

0

∫ (R/h)z

0

(M

V

)zr dr dθ dz =

(M

V

)πR2h2

4=⇒ zM =

πR2h2

4V=

34h

On the axis of the cone at a distance 34h from the vertex.

37. I =M

V

∫ h

0

∫ 2π

0

∫ (R/h)z

0

r3 dr dθ dz =310

MR2

38. I =M

V

∫ h

0

∫ 2π

0

∫ (R/h)z

0

z2 r dr dθ dz =35Mh2.

39. V =∫ 2π

0

∫ 1

0

∫ 1−r2

0

r dz dr dθ =12π 40. M =

∫ 2π

0

∫ 1

0

∫ 1−r2

0

kzr dz dr dθ =16πk

41. M =∫ 2π

0

∫ 1

0

∫ 1−r2

0

k(r2 + z2

)r dz dr dθ =

14kπ

SECTION 17.9

1.(√

3, 14 π, cos−1

[13

√3])

2.(

12

√6, 1

2

√2,

√2)

3. ( 34 ,

34

√3, 3

2

√3 ) 4. (2

√10, 2

3π, cos−1[ 310

√10])

5. ρ =√

22 + 22 + (2√

6/3)2 =4√

63

6.(

8, −π

4,

5π6

)

φ = cos−1

(2√

6/34√

6/3

)= cos−1(1/2) =

π

3

θ = tan−1(1) =π

4

(ρ, θ, φ) =

(4√

63

4,π

3

)

Page 36: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

SECTION 17.9 901

7. x = ρ sinφ cos θ = 3 sin 0 cos(π/2) = 0

z = ρ cosφ = 3 cos 0 = 3

y = ρ sinφ sin θ = 3 sin 0 sin(π/2) = 0

(x, y, z) = (0, 0, 3)

8. (a) (5, 12π, arccos 4

5 )

(b) (5, 32π, arccos 4

5 )

9. The circular cylinder x2 + y2 = 1; the radius of the cylinder is 1 and the axis is the z-axis.

10. The xy-plane.

11. The lower nappe of the circular cone z2 = x2 + y2.

12. Vertical plane which bisects the first and third quadrants of the xy-plane.

13. Horizontal plane one unit above the xy-plane.

14. sphere x2 + y2 + (z − 12 )2 = 1

4 of radius 12 and center (0, 0, 1

2 )

15. Sphere of radius 2 centered at the origin:∫ 2π

0

∫ π

0

∫ 2

0

ρ2 sinφdρ dφ dθ =83

∫ 2π

0

∫ π

0

sinφdφ dθ =163

∫ 2π

0

dθ =32π3

16. That part of the sphere of radius 1 that lies in the first quadrant between the x, z-plane and the plane

y = x ∫ π/4

0

∫ π/2

0

∫ 1

0

ρ2 sinφdρ dφ dθ =π

12

17. The first quadrant portion of the sphere that lies between the x, y-plane and the plane z = 32

√3.

∫ π/2

π/6

∫ π/2

0

∫ 3

0

ρ2 sinφdρ dθ dφ = 9∫ π/2

π/6

∫ π/2

0

sinφdθ dφ

= 92 π

∫ π/2

π/6

sinφdφ

= 92 π [− cosφ]π/2π/6 = 9

4π√

3

18. A cone of radius 1 and height 1;∫ π/4

0

∫ 2π

0

∫ secφ

0

ρ2 sinφdρ dθ dφ =13π

19.∫ 1

0

∫ √1−x2

0

∫ √2−x2−y2

√x2+y2

dz dy dx =∫ π/4

0

∫ π/2

0

∫ √2

0

ρ2 sinφdρ dθ dφ

= 23

√2∫ π/4

0

∫ π/2

0

sinφdθ dφ

=√

23 π

∫ π/4

0

sinφdφ =√

26

π (2 −√

2)

Page 37: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

902 SECTION 17.9

20.∫ π/4

0

∫ π/2

0

∫ 2

0

ρ4 sinφdρ dθ dφ =16π5

∫ π/4

0

sinφdφ =8π5

(2 −√

2)

21.∫ 3

0

∫ √9−y2

0

∫ √9−x2−y2

0

z√x2 + y2 + x2 dz dx dy

=∫ π/2

0

∫ π/2

0

∫ 3

0

ρ cosφ · ρ · ρ2 sinφdρ dθ dφ

=∫ π/2

0

12

sin 2φdφ

∫ π/2

0

∫ 3

0

ρ4 dρ =[− 1

4cos 2φ

]π/20

(π2

) [15ρ5

]30

=243π20

22.∫ π/2

0

∫ π/2

0

∫ 1

0

1ρ2

ρ2 sinφdρ dθ dφ =π

2

23. V =∫ 2π

0

∫ π

0

∫ R

0

ρ2 sinφdρ dφ dθ =43πR3

24. r = ρ sinφ, θ = θ, z = ρ cosφ

25. V =∫ α

0

∫ π

0

∫ R

0

ρ2 sinφdρ dφ dθ =23αR3

26. M =∫ 2π

0

∫ π

0

∫ R

0

k(R− ρ)ρ2 sinφdρ dφ dθ =13kπR4

27. M =∫ 2π

0

∫ tan−1(r/h)

0

∫ h secφ

0

kρ3 sinφdρ dφ dθ

=∫ 2π

0

∫ tan−1(r/h)

0

kh4

4tanφ sec3 φdφ dθ

=kh4

4

∫ 2π

0

13[sec3 φ

]tan−1(r/h)

0dθ =

kh4

4

∫ 2π

0

13

⎡⎣(√

r2 + h2

h

)3

− 1

⎤⎦ dθ

=16kπh(r2 + h2

)3/2 − h3

28. V =∫ 2π

0

∫ tan−1 r/h

0

∫ h secφ

0

ρ2 sinφdρ dφ dθ =2π3

∫ tan−1(r/h)

0

h3 tanφ sec2 φdφ

3h3 tan2(tan−1

( rh

)=

13πr2h

29. center ball at origin; density =M

V=

3M4πR3

(a) I =3M

4πR3

∫ 2π

0

∫ π

0

∫ R

0

ρ4 sin3 φdρ dφ dθ =25MR2

(b) I = 25 MR2 + R2M = 7

5 MR2 (parallel axis theorem)

Page 38: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

SECTION 17.9 903

30. The center of mass is the centroid; V =23πR3

zV =∫ 2π

0

∫ π/2

0

∫ R

0

(ρ cosφ)ρ2 sinφdρ dφ dθ =14πR4

z =38R; (x, y, z) =

(0, 0,

38R

)

31. center balls at origin; density =M

V=

3M4π(R2

3 −R13)

(a) I =3M

4π(R2

3 −R13) ∫ 2π

0

∫ π

0

∫ R2

R1

ρ4 sin3 φdρ dφ dθ =25M

(R2

5 −R15

R23 −R1

3

)This result can be derived from Exercise 29 without further integration. View the solid as a ball

of mass M2 from which is cut out a core of mass M1.

M2 =M

VV2 =

3M4π(R2

3 −R13) (4

3πR2

3

)=

MR23

R23 −R1

3 ; similarly M1 =MR1

3

R23 −R1

3 .

Then

I = I2 − I1 = 25 M2R2

2 − 25 M1R1

2 =25

(MR2

3

R23 −R1

3

)R2

2 − 25

(MR1

3

R23 −R1

3

)R1

2

=25M

(R2

5 −R15

R23 −R1

3

).

(b) Outer radius R and inner radius R1 gives

moment of inertia =25M

(R5 −R1

5

R3 −R13

). [part (a) ]

As R1 → R,

R5 −R15

R3 −R13 =

R4 + R3R1 + R2R12 + RR1

3 + R14

R2 + RR1 + R12 −→ 5R4

3R2=

53R2.

Thus the moment of inertia of spherical shell of radius R is

25M

(53R2

)=

23MR2.

(c) I = 23MR2 + R2M = 5

3 MR2 (parallel axis theorem)

32. (a) The center of mass is the centroid; using the result of Exercise 30,

x = y = 0

z =z2V2 − z1V1

V=

38R2

43πR2

3 − 38R1

43πR1

3

43π(R2

3 −R13)

=3(R2

2 + R12)(R2 + R1)

8(R22 + R2R1 + R1

2)

(b) Setting R1 = R2 = R in (a), we get x = y = 0, z = 12R

33. V =∫ 2π

0

∫ α

0

∫ a

0

ρ2 sinφdρ dφ dθ =23π (1 − cosα) a3

Page 39: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

904 SECTION 17.9

34.∫ 2π

0

∫ π/4

0

∫ 1

0

eρ3ρ2 sinφdρ dφ dθ =

13π(e− 1)

(2 −

√2)

35. (a) Substituting x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ

into x2 + y2 + (z −R)2 = R2

we have ρ2 sin2 φ + (ρ cosφ−R)2 = R2,

which simplifies to ρ = 2R cosφ.

(b) 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π/4, R secφ ≤ ρ ≤ 2R cosφ

36. (a) M =∫ 2π

0

∫ π/2

0

∫ 2R cosφ

0

kρ3 sinφdρ dφ dθ =85kπR4

(b) M =∫ 2π

0

∫ π/2

0

∫ 2R cosφ

0

kρ3 sin2 φdρ dφ dθ =14kπ2R4

(c) M =∫ 2π

0

∫ π/2

0

∫ 2R cosφ

0

kρ3 cos2 θ sin2 φdρ dφ dθ =18kπ2R4

37. V =∫ 2π

0

∫ π/4

0

∫ 2

0

ρ2 sinφdρ dφ dθ +∫ 2π

0

∫ π/2

π/4

∫ 2√

2 cosφ

0

ρ2 sinφdρ dφ dθ

=13

(16 − 6

√2)π

38. V =∫ 2π

0

∫ π

0

∫ 1−cosφ

0

ρ2 sinφdρ dφ dθ =83π

39. Encase T in a spherical wedge W . W has spherical coordinates in a box Π that contains S. Define

f to be zero outside of T . Then

F (ρ, θ, φ) = f (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ)

is zero outside of S and

∫∫T

∫f(x, y, z) dxdydz =

∫∫W

∫f(x, y, z) dxdydz

=∫∫

Π

∫F (ρ, θ, φ) ρ2 sinφdρdθdφ

=∫∫S

∫F (ρ, θ, φ) ρ2 sinφdρdθdφ.

Page 40: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

SECTION 17.9 905

40. Break up T into little basic solids T1, . . . , TN . Choose a point (x∗i , y

∗i , z

∗i ) from each Ti and view

all the mass as concentrated there. Now Ti attracts m with a force

Fi∼= −Gmλ(x∗

i , y∗i , z

∗i )(Volume of Ti)ri3

ri

where ri is the vector from (x∗i , y

∗i , z

∗i ) to (a, b, c). We therefore have

Fi∼= Gmλ(x∗

i , y∗i , z

∗i )[(x

∗i − a)i + (y∗i − b)j + (z∗i − c)k]

[(x∗i − a)2 + (y∗i − b)2 + (z∗i − c)2]3/2

(Volume of Ti).

The sum of these approximations is a Riemann sum for the triple integral given and tends to thattriple integral as the maximum diameter of the Ti tends to zero.

41. T is the set of all (x, y, z) with spherical coordinates (ρ, θ, φ) in the set

S : 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π/4, R secφ ≤ ρ ≤ 2R cosφ.

T has volume V = 23 πR

3. By symmetry the i, j components of force are zero and

F =

⎧⎨⎩3GmM

2πR3

∫∫T

∫z

(x2 + y2 + z2)3/2dxdydz

⎫⎬⎭k

=

⎧⎨⎩3GmM

2πR3

∫∫S

∫ (ρ cosφρ3

)ρ2 sinφdρdθdφ

⎫⎬⎭k

=

{3GmM

2πR3

∫ 2π

0

∫ π/4

0

∫ 2R cosφ

R secφ

cosφ sinφdρ dφ dθ

}k

=GmM

R2

(√2 − 1

)k.

42. With the coordinate system shown in the figure, T

is the set of all points (x, y, z) with cylindrical coor-dinates (r, θ, z) in the set

S : 0 ≤ r ≤ R, 0 ≤ θ ≤ 2π, α ≤ z ≤ α + h.

The gravitational force is

F =

⎡⎣∫∫

T

∫ (GmM

V

)z

(x2 + y2 + z2)3/2dxdydz

⎤⎦k

=

⎡⎣GmM

πR2h

∫∫S

zr

(r2 + z2)3/2dr dθ dz

⎤⎦k

=[GmM

πR2h

∫ 2π

0

∫ R

0

∫ α+h

α

zr

(r2 + z2)3/2dzdrdθ

]k

=2GmM

R2h

(√R2 + α2 −

√R2 + (α + h)2 + h

)k

Page 41: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

906 SECTION 17.10

SECTION 17.10

1. ad− bc 2. 1 3. 2(v2 − u2

)4. u ln v − u 5. −3u2v2 6. 1 +

1uv

7. abc 8. 2 9. ρ2 sinφ

10. |J(r, θ, z)| =

∣∣∣∣∣∣∣∣cos θ sin θ 0

−r sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣∣∣ = r.

11. J(ρ, θ, φ) =

∣∣∣∣∣∣∣∣sin φ cos θ sin φ sin θ cos θ

−ρ sin φ sin θ ρ sin φ cos θ 0

ρ cos φ cos θ ρ cos φ sin θ −ρ sin φ

∣∣∣∣∣∣∣∣ = −ρ2 sin φ; |J(ρ, θ, φ)| = ρ2 sin φ.

12. (a) dx− by = (ad− bc)u0 (b) cx− ay = (bc− ad)v0

13. Set u = x + y, v = x− y. Then

x =u + v

2, y =

u− v

2and J (u, v) = −1

2.

Ω is the set of all (x, y) with uv-coordinates in

Γ : 0 ≤ u ≤ 1, 0 ≤ v ≤ 2.

Then∫ ∫Ω

(x2 − y2

)dxdy =

∫ ∫Γ

12uv dudv =

12

∫ 1

0

∫ 2

0

uv dv du

=12

(∫ 1

0

u du

)(∫ 2

0

v dv

)=

12

(12

)(2) =

12.

14. Using the changes of variables from Exercise 13,∫∫Ω

4xy dx dy =∫ 1

0

∫ 2

0

4(u2 − v2

4

)12dv du =

12

∫ 1

0

∫ 2

0

(u2 − v2

)dv du = −1

15.12

∫ 1

0

∫ 2

0

u cos (πv) dv du =12

(∫ 1

0

u du

)(∫ 2

0

cos (πv) dv)

=12

(12

)(0) = 0

16. Set u = x− y, v = x + 2y. Then

x =2u + v

3, y =

v − u

3, and J(u, v) =

13

Ω is the set of all (x, y) with uv-coordinates in the set

Γ : 0 ≤ u ≤ π, 0 ≤ v ≤ π/2.

Page 42: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

SECTION 17.10 907

Therefore∫∫Ω

(x + y) dxdy =∫∫Γ

19(u + 2v) du dv =

19

∫ π

0

∫ π/2

0

(u + 2v) dv du =118

π3.

17. Set u = x− y, v = x + 2y. Then

x =2u + v

3, y =

v − u

3, and J(u, v) =

13.

Ω is the set of all (x, y) with uv-coordinates in the set

Γ : 0 ≤ u ≤ π, 0 ≤ v ≤ π/2.

Therefore∫∫Ω

sin (x− y) cos (x + 2y) dxdy =∫∫Γ

13

sinu cos v dudv =13

∫ π

0

∫ π/2

0

sinu cos v dv du

=13

(∫ π

0

sinu du

)(∫ π/2

0

cos v dv)

=13(2)(1) =

23.

18. Using the change of variables from Exercise 16,∫∫Ω

sin 3x dx dy =∫ π

0

∫ π/2

0

sin(2u + v)13du dv = 0.

19. Set u = xy, v = y. Thenx = u/v, y = v and J (u, v) = 1/v.

xy = 1, xy = 4 =⇒ u = 1, u = 4

y = x, y = 4x =⇒ u/v = v, 4u/v = v =⇒ v2 = u, v2 = 4u

Ω is the set of all (x, y) with uv-coordinates in the set

Γ : 1 ≤ u ≤ 4,√u ≤ v ≤ 2

√u.

(a) A =∫∫Γ

1vdudv =

∫ 4

1

∫ 2√u

√u

1vdv du =

∫1

4

ln 2 du = 3 ln 2

(b) xA =∫ 4

1

∫ 2√u

√u

u

v2dv du =

73

; x =7

9 ln 2

yA =∫ 4

1

∫ 2√u

√u

dv du =143

; y =14

9 ln 2

20. J(r, θ) = abr, Γ : 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π

A =∫∫

Γ

abr dr dθ = ab

∫ 2π

0

∫ 1

0

r dr dθ = πab

21. Set u = x + y, v = 3x− 2y. Then

x =2u + v

5, y =

3u− v

5and J (u, v) = −1

5.

Page 43: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

908 SECTION 17.10

With Γ : 0 ≤ u ≤ 1, 0 ≤ v ≤ 2

M =∫ 1

0

∫ 2

0

15λ dv du =

25λ where λ is the density.

Then

Ix =∫ 1

0

∫ 2

0

(3u− v

5

)2 15λ dv du =

8λ375

=475

(25λ

)=

475

M,

Iy =∫ 1

0

∫ 2

0

(2u + v

5

)2 15λ dv du =

28λ375

=1475

(25λ

)=

1475

M,

Iz = Ix + Iy =1875

M.

22. x =u + v

2, y =

v − u

2, J(u, v) =

12

Γ : −2 ≤ u ≤ 2, −4 ≤ v ≤ −u2

A =∫∫Γ

12du dv =

12

∫ 2

−2

∫ −u2

−4

dv du =163

23. Set u = x− 2y, v = 2x + y. Then

x =u + 2v

5, y =

v − 2u5

and J (u, v) =15.

Γ is the region between the parabola v = u2 − 1 and the line v = 2u + 2. A sketch of the curves showsthat

Γ : −1 ≤ u ≤ 3, u2 − 1 ≤ v ≤ 2u + 2.Then

A =15

(area of Γ) =15

∫ 3

−1

[(2u + 2) −

(u2 − 1

) ]du =

3215

.

24. xA =12

∫ 2

−2

∫ −u2

−4

u + v

2dv du = −32

5yA =

12

∫ 2

−2

∫ −u2

−4

v − u

2dv du = −32

5

A =163

=⇒ x = y = −65

25. The choice θ = π/6 reduces the equation to 13u2 + 5v2 = 1. This is an ellipse in the uv-planewith area πab = π/

√65. Since J(u, v) = 1, the area of Ω is also π/

√65.

26.∫∫Sa

e−(x−y)2

1 + (x + y)2dx dy =

12

∫∫Γ

e−u2

1 + v2du dv

where Γ is the square in the uv-plane with vertices (−2a, 0), (0, −2a), (2a, 0), (0, 2a).Γ contains the square −a ≤ u ≤ a, −a ≤ v ≤ a and is contained in the square−2a ≤ u ≤ 2a, −2a ≤ v ≤ 2a. Therefore

12

∫ a

−a

∫ a

−a

e−u2

1 + v2du dv ≤ 1

2

∫∫Γ

e−u2

1 + v2dudv ≤ 1

2

∫ 2a

−2a

∫ 2a

−2a

e−u2

1 + v2du dv.

Page 44: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

SECTION 17.10 909

The two extremes can be written

12

(∫ a

−a

e−u2du

) (∫ a

−a

11 + v2

dv

)and

12

(∫ 2a

−2a

e−u2du

) (∫ 2a

−2a

11 + v2

dv

).

As a → ∞ both expressions tend to 12 (

√π) (π) = 1

2π3/2. It follows that∫ ∞

−∞

∫ ∞

−∞

e−(x−y)2

1 + (x + y)2dx dy =

12π3/2.

27. J = abcρ2 sinφ; V =∫ 2π

0

∫ π

0

∫ 1

0

abcρ2 sinφdρ dφ dθ =43πabc

28. x = y = 0

zV =∫ 2π

0

∫ π/2

0

∫ 1

0

(cρ cosφ)abcρ2 sinφdρ dφ dθ =πabc2

4=⇒ z =

38c .

29. V =23πabc, λ =

M

V=

3M2πabc

Ix =3M

2πabc

∫ 2π

0

∫ π/2

0

∫ 1

0

(b2ρ2 sin2 φ sin2 θ + c2ρ2 cos2 φ

)abcρ2 sinφdρ dφ dθ

= 15 M(b2 + c2

)Iy = 1

5 M(a2 + c2

), Iz = 1

5 M(a2 + b2

)30. I =

∫ 2π

0

∫ 1

0

∫ π

0

ρ2(abcρ2 sinφ) dφ dρ dθ =45πabc

PROJECT 17.10

1. (a) θ = tan−1

[(aybx

)1/α], r =

[(xa

)2/α+(yb

)2/α]α/2(b) ar1(cos θ1)α = ar2(cos θ2)α

br1(sin θ1)α = br2(sin θ2)α

r1 > 0, 0 < θ < 12π

⎫⎪⎪⎬⎪⎪⎭ =⇒ r1 = r2, θ1 = θ2

2. J = abαr cosα−1 θ sinα−1 θ

3. (a)

x

y

a

a

Page 45: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

910 REVIEW EXERCISES

(b) x = ar cos3 θ, y = ar sin3 θ; x23 + y

23 = a

23 =⇒ r = 1 and x = a cos3 θ, y = a sin3 θ

A =∫ 0

π2

y(θ)x′(θ) dθ =∫ 0

π2

a sin3 θ(3a cos2 θ[− sin θ]) dθ

= 3a2

∫ π2

0

sin4 θ cos2 θ dθ = 3a2

∫ π2

0

(sin4 θ − sin6 θ) dθ

= 3a2

[3 · 14 · 2

π

2− 5 · 3 · 1

6 · 4 · 2π

2

](See Exercise 62(b) in 8.3)

=3a2π

32

(c) Entire area enclosed: 4 · 3a2π

32=

3a2π

8

4. (a)

a = 3, b = 2 a = 2, b = 3

(b) From Problem 2, Jacobian J = 8abr cos7 θ sin7 θ

A =∫ π

2

0

∫ 1

0

8abr cos7 θ sin7 θ dθ = 4ab∫ π

2

0

cos7 θ sin7 θ dθ =ab

70

REVIEW EXERCISES

1.∫ 1

0

∫ √y

y

xy2 dx dy =∫ 1

0

[12x2y2]√y

ydy =

∫ 1

0

(12y3 − 1

2y4

)dy =

[18y4 − 1

10y5]10

=140

2.∫ 1

0

∫ y

−y

ex+y dx dy =∫ 1

0

[ex+y]y−y

dy =∫ 1

0

(e2y − 1) dy =[12e2y − y

]10

=e2

2− 3

2

3.∫ 1

0

∫ 3x

x

2yex3dy dx =

∫ 1

0

[y2ex

3]3xx

dx =∫ 1

0

(9x2ex3 − x2ex

3) dx =

[3ex

3 − 13ex

3]10

=83e− 8

3

4.∫ 2

1

∫ lnx

0

xey dy dx =∫ 2

1

[xey]lnx

0dx =

∫ 2

1

x(x− 1) dx =[13x3 − 1

2x2]21

=56

5.∫ π/4

0

∫ 2 sin θ

0

r cos θ dr dθ =∫ π/4

0

[12r2 cos θ

]2 sin θ

0dθ =

∫ π/4

0

2 sin2 θ cos θ dθ =[23

sin3 θ]π/40

=√

26

6.∫ 2

−1

∫ 4

0

∫ 1

0

xyz dx dy dz =∫ 2

−1

∫ 4

0

[12x2yz]10dy dz =

∫ 2

−1

∫ 4

0

12yz dy dz =

∫ 2

−1

4z dz = 6

Page 46: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

REVIEW EXERCISES 911

7.∫ 2

0

∫ 2−3x

0

∫ x+y

0

x dz dy dx =∫ 2

0

∫ 2−3x

0

[xz]x+y

0dy dx =

∫ 2

0

∫ 2−3x

0

(x2 + xy) dy dx

=∫ 2

0

[x2y +

12xy2

]2−3x

0

dx =∫ 2

0

(32x3 − 4x2 + 2x

)dx

=[38x4 − 4

3x3 + x2

]20

= −23

8. ∫ π2

0

∫ π2

z

∫ sin z

0

3x2 sin y dx dy dz =∫ π

2

0

∫ π2

z

[x3 sin y

]sin z

0dy dz =

∫ π2

0

∫ π2

z

sin3 z sin y dy dz

=∫ π

2

0

sin3 z cos z dz =14

sin4 z]π

2

0=

14

9.∫ 0

−π2

∫ 2 sin θ

0

∫ r2

0

r2 cos θ dz dr dθ =∫ 0

−π2

∫ 2 sin θ

0

r4 cos θ dr dθ =∫ 0

−π2

325

sin5 θ cos θ dθ = −1615

10.∫ π

2

−π6

∫ π2

0

∫ 1

0

ρ3 sinϕ cosϕdρ dθ dϕ =∫ π

2

−π6

∫ π2

0

14

sinϕ cosϕdθ dϕ

=∫ π

2

−π6

π

16sin 2ϕdϕ = −

[ π32

cos 2ϕ]π

2

−π6

=3π64

11.∫ 1

0

∫ 1

y

ex2dx dy =

∫ 1

0

∫ x

0

ex2dy dx =

∫ 1

0

ex2y∣∣∣x0dx =

∫ 1

0

xex2dx =

12ex

2∣∣∣10

=e− 1

2

12.∫ 2

0

∫ 1

x2

cos y2 dy dx =∫ 1

0

∫ 2y

0

cos y2 dx dy =∫ 1

0

x cos y2∣∣∣2y0

dy =∫ 1

0

2y cos y2dy = sin y2∣∣∣10

= sin 1

13.∫ 1

0

∫ √1−y2

0

1√1 − y2

dxdy =∫ 1

0

dy = 1

14.∫ 1

0

∫ 1−x

0

y cos(x + y) dy dx =∫ 1

0

∫ 1−y

0

y cos(x + y) dx dy

=∫ 1

0

y sin(x + y)]1−y

0dy =

∫ 1

0

y(sin 1 − sin y) dy

=[12y2 sin 1 + y cos y − sin y

]10

= cos 1 − 12

sin 1

15.∫ 1

0

∫ √1−x2

0

xy dy dx =∫ 1

0

[12xy2]√1−x2

0dx =

∫ 1

0

(12x− 1

2x3

)dx =

18

16.∫ √

3

−√

3

∫ 4−y2

y2/3

(x− y) dx dy =∫ √

3

−√

3

[x2

2− xy)

]4−y2

y2/3dy =

∫ √3

−√

3

(49y4 +

43y3 − 4y2 − 4y + 8

)dy =

48√

35

17.∫ 2

0

∫ 3x−x2

x

(x2 − xy) dy dx =∫ 2

0

[x2y − 1

2xy2]3x−x2

xdx =

∫ 2

0

(2x4 − 2x3 − 1

2x5

)dx = − 8

15

Page 47: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

912 REVIEW EXERCISES

18.∫ 2

0

∫ 2−x

0

x(x− 1)exy dy dx =∫ 2

0

[(x− 1)exy

]2−x

0dx =

∫ 2

0

(x− 1)e2x−x2dx−

∫ 2

0

(x− 1) dx

= −[12e2x−x2

]20−[12x2 − x

]20

= 0

19.∫ 2

0

∫ y

0

∫ √4−y2

0

2xyz dz dx dy =∫ 2

0

∫ 2

x

xyz2∣∣∣√4−y2

0dx dy =

∫ 2

0

∫ 2

0

xy(4 − y2) dx dy

=∫ 2

0

[12y3(4 − y2)

]dy =

83

20.∫∫∫T

z dxdydz = 2∫ 1

0

∫ x

0

∫ 1−x

0

z dz dy dx =∫ 1

0

∫ x

0

(1 − x)2 dy dx =∫ 1

0

(1 − x)2x dx =112

21.∫ 2

0

∫ √4−x2

0

∫ √4−x2−y2

0

xy dz dy dx =∫ 2

0

∫ √4−x2

0

[xyz]√4−x2−y2

0dy dx

=∫ 2

0

[− 1

3x√

4 − x2 − y2]√4−x2

0dx

=∫ 2

0

13x(4 − x2)

32 dx =

3215

22.∫∫∫T

(x2 + 2z) dx dy dz =∫ 2

−2

∫ 4

x2

∫ 4−y

0

(x2 + 2z) dz dy dx

=∫ 2

−2

∫ 4

x2(4x2 − x2y + 16 − 8y + y2) dy dx

=∫ 2

−2

(16x6 − 8x2 +

643

)dx =

210

21

23.∫ 2

0

∫ √4−y2

0

e√

x2+y2dx dy =

∫ π/2

0

∫ 2

0

err dr dθ =π

2

∫ 2

0

rerdr =π

2

[rer − er

]20

2(e2 + 1)

24.∫ 1

−1

∫ √1−x2

0

arctan (y/x) dy dx =∫ π/2

0

∫ 1

0

rθ dr dθ +∫ π

π/2

∫ 1

0

(θ − π)r dr dθ

=∫ π/2

0

θ

2dθ +

∫ π

π/2

12(θ − π) dθ = 0

25. V =∫ 3

0

∫ 2π

0

(9 − r2)r dr dθ = 2π∫ 3

0

(9 − r2)r dr =81π2

26.∫ 1

0

∫ √x

x2(2 − x2 − y2) dy dx = −

∫ 1

0

(2x1/2 − x5/2 − 1

3x3/2 − 2x2 + x4 + 1

3x6)dx =

52105

27. V =∫ 1

0

∫ 1−x

0

(x2 + y2) dy dx =∫ 1

0

[x2 − x3 +

13(1 − x)3

]dx =

[13x3 − 1

4x4 − 1

12(1 − x)4

]10

=16

Page 48: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

REVIEW EXERCISES 913

28. V =∫ 3

0

∫ π/2

0

r2 sin θ dr dθ =∫ π/2

0

9 sin θ dθ = 9

29. M =∫ π/2

−π/2

∫ cosx

0

y dy dx =∫ π/2

−π/2

12

cos2 x dx =π

4

xMM =∫ π/2

−π/2

∫ cosx

0

xy dy dx = 0 by symmetry

yMM =∫ π/2

−π/2

∫ cosx

0

y2 dy dx =∫ π/2

−π/2

13

cos3 x dx =49

The center of mass is: (0, 169π )

30. M =∫ 1

0

∫ y

y22x dx dy =

∫ 1

0

(y2 − y4) dy =215

xMM =∫ 1

0

∫ y

y22x2 dx dy =

∫ 1

0

(23y3 − 2

3y6

)dy =

114

yMM =∫ 1

0

∫ y

y22xy dx dy =

∫ 1

0

(y3 − y5) dy =112

The center of mass is: (15/28, 5/8)

31. M =∫ π/2

0

∫ R

r

u3 du dθ =π

8(R4 − r4); (polar coordinates [u, θ])

By symmetry, x = y.

xMM =∫ π/2

0

∫ R

r

u4 cos θ du dθ =15(R5 − r5); xM =

8(R5 − r5)5π(R4 − r4)

32. M =∫ π

0

∫ 2(1+cos θ)

0

r2 dr dθ =∫ π

0

83(1 + cos θ)3 dθ =

203π

xMM =∫ π

0

∫ 2(1+cos θ)

0

r3 cos θ dr dθ =∫ π

0

4(1 + cos θ)4 cos θ dθ = 14π

yMM =∫ π

0

∫ 2(1+cos θ)

0

r3 sin θ dr dθ =∫ π

0

4(1 + cos θ)4 sin θ dθ = −45(1 + cos θ)5|π0 =

1285

The center of mass is: ( 2110 ,

9625π )

33. Introduce a coordinate system as shown in the figure.

(a) A = 12bh; by symmetry, x = 0

y A =∫ 0

−b/2

∫ 2hb (x+ b

2 )

0

y dy dx +∫ b

2

0

∫ − 2hb (x− b

2 )

0

y dy dx

=bh2

6=⇒ y =

h

3 x

y

−b 2 b 2

h

(b) I =∫ 0

−b/2

∫ 2hb (x+ b

2 )

0

λy2 dy dx +∫ b/2

0

∫ − 2hb (x− b

2 )

0

λy2 dy dx =λbh3

12= 1

6Mh2

Page 49: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

914 REVIEW EXERCISES

(c) I = 2∫ b/2

0

∫ − 2hb (x− b

2 )

0

λx2 dx dy =148

λhb3 = 124Mb2

34. Let λ =k√

x2 + y2

(a) M =∫ π

0

∫ R

r

k dr dθ = kπ(R− r)

By symmetry, xM = 0; yMM =∫ π

0

∫ R

r

kr sin θ dr dθ = k(R2 − r2)

The center of mass is: (0, R+rπ )

(b) Ix =∫ π

0

∫ R

r

kr2 sin2 θ dr dθ =k

3(R3 − r3)

∫ π

0

sin2 θ dθ =kπ

6(R3 − r3)

(c) Iy =∫ π

0

∫ R

r

kr2 cos2 θ dr dθ =k

3(R3 − r3)

∫ π

0

cos2 θ dθ =kπ

6(R3 − r3)

35. V =∫ 2

0

∫ x

0

∫ 2x+2y+1

0

dz dy dx =∫ 2

0

∫ x

0

(2x + 2y + 1) dy dx = 10

36. V =∫ 1

0

∫ x

x2

∫ 4(x2+y2)

−1

dz dy dx =∫ 1

0

∫ x

x2(4x2 + 4y2 + 1) dy dx

=∫ 1

0

(x +

163x3 − x2 − 4x4 − 4

3x6

)dx =

107210

37. The curve of intersection of the two surfaces is the circle: x2 + y2 = 4, x = 3

V =∫ 2

−2

∫ √4−x2

−√

4−x2

∫ 12−x2−2y2

2x2+y2dz dy dx =

∫ 2

−2

∫ √4−x2

−√

4−x23(4 − x2 − y2

)dy dx

= 3∫ 2π

0

∫ 2

0

(4 − r2

)r dr dθ

= 3∫ 2π

0

[2r2 − 1

4 r4]20dθ = 12

∫ 2π

0

= 24π

38. V =∫ 1

0

∫ √1−y2

0

∫ (2−y−z)/2

0

dx dz dy =∫ 1

0

∫ π/2

0

2 − r cos θ − r sin θ

2r dθ dr

=∫ 1

0

12(π − 2r)r dr =

3π − 412

39. V =∫ 2π

0

∫ π/3

0

∫ 2

secφ

ρ2 sinφdρ dφ dθ =∫ 2π

0

∫ π/3

0

[13 ρ

3]2secφ

dφ dθ

=13

∫ 2π

0

∫ π/3

0

(8 − sec3φ

)sinφdφ dθ

=13

∫ 2π

0

[− 8 cosφ− 1

2 sec2 φ]π/30

=13

(52

)(2π) =

5π3

Page 50: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

REVIEW EXERCISES 915

40. V =∫ 4

0

∫ (12−3x)/4

0

∫ 16−x2

0

dz dy dx=∫ 4

0

∫ 12−3x4

0

(16 − x2) dy dx=34

∫ 4

0

(64 − 16x− 4x2 + x3) dx = 80

41. V =∫ 2π

0

∫ π/2

π/4

∫ 1

0

ρ2 sinφdρ dφ dθ =∫ 2π

0

∫ π/2

π/4

13

sinφdφ dθ =√

2π3

42. V =∫ 2π

0

∫ π/4

0

∫ 1

0

ρ2 sinφdρ dφ dθ =2 −

√2

43. (a) V =∫ 1

0

∫ x

0

∫ √1−x2

0

dz dy dx +∫ 1

0

∫ y

0

∫ √1−y2

0

dz dx dy

= 2∫ 1

0

∫ x

0

√1 − x2 dy dx = 2

∫ 1

0

x√

1 − x2dx =23

By symmetry, x = y.

xV =∫ 1

0

∫ x

0

∫ √1−x2

0

x dz dy dx +∫ 1

0

∫ y

0

∫ √1−y2

0

x dz dx dy

For the first integral:

∫ 1

0

∫ x

0

∫ √1−x2

0

x dz dy dx =∫ 1

0

∫ x

0

x√

1 − x2 dy dx

=∫ 1

0

x2√

1 − x2 dx =∫ π/2

0

sin2 u cos2 u du =π

16

x = sinu∧

For the second integral:∫ 1

0

∫ y

0

∫ √1−y2

0

x dz dx dy =∫ 1

0

∫ y

0

x√

1 − y2dx dy =∫ 1

0

12y2√

1 − y2 dy =π

32

Thus, xV =3π32

=⇒ x = y =9π64

Now calculate z:

z V =∫ 1

0

∫ x

0

∫ √1−x2

0

z dz dy dx +∫ 1

0

∫ y

0

∫ √1−y2

0

z dz dx dy;

∫ 1

0

∫ x

0

∫ √1−x2

0

z dz dy dx =∫ 1

0

∫ x

0

12(1 − x2)dy dx =

12

∫ 1

0

(x− x3

)dx =

18

and similarly,∫ 1

0

∫ y

0

∫ √1−y2

0

z dz dy dx =18.

Therefore, zV =14

=⇒ z =38

Page 51: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

916 REVIEW EXERCISES

(b) Iz =∫ 1

0

∫ x

0

∫ √1−x2

0

λ(√

x2 + y2)2

dz dy dx +∫ 1

0

∫ y

0

∫ √1−y2

0

λ(√

x2 + y2)2

dz dx dy;

∫ 1

0

∫ x

0

∫ √1−x2

0

λ(√

x2 + y2)2

dz dy dx =∫ π/4

0

∫ sec θ

0

∫ r sin θ

0

λr3dz dr dθ =320

λ

and∫ 1

0

∫ y

0

∫ √1−y2

0

λ(√x2 + y2)2dz dx dy =

320

λ =⇒ Iz =310

λ

44. (a) V =∫ 2π

0

∫ 1

0

(r − r2)r dr dθ = 2π∫ 1

0

(r2 − r3) dr =π

6By symmetry, x = y = 0

zV =∫ 2π

0

∫ 1

0

∫ r

r2zr dz dr dθ =

π

12and hence z = 1

2

(b) Iz = K

∫ 2π

0

∫ 1

0

∫ r

r2r2 dz dr dθ = 2πK

∫ 1

0

r2(r − r2)dr =πK

10

Here, K is the density of the mass.

45. Denote polar coordinates by [u, θ].

(a) M =∫ 2π

0

∫ r

0

∫ h

0

u3 dz du d θ = 2πh∫ r

0

u3 du =πhr4

2

(b) By symmetry, xM = yM = 0

(c) zMM =∫ 2π

0

∫ r

0

∫ h

0

u3z dz du dθ =πh2r4

4=⇒ zM = h/2

46. λ =√x2 + y2

(a) M =∫ 2π

0

∫ π/2

0

∫ r

0

ρ3 sin2 φdρ dφ dθ =r4π

2

∫ π2

0

sin2 φdφ =r4π2

8

(b) By symmetry, xM = yM = 0

zMM =∫ 2π

0

∫ π/2

0

∫ r

0

ρ4 sin2 φ cosφdρ dφ dθ =2r5π

15=⇒ zM =

16r15π

47. (a) M =∫ 1

0

∫ 2π

0

∫ 1

r

r2 dz dθ dr = 2π∫ 1

0

∫ 1

r

r2 dz dr = 2π∫ 1

0

r2(1 − r) dr =π

6

(b) By symmetry, xM = yM = 0

zMM =∫ 1

0

∫ 2π

0

∫ 1

r

r2z dz dθ dr = π

∫ 1

0

r2(1 − r2) dr =2π15

=⇒ zM =45

(c) Iz =∫ 1

0

∫ 2π

0

∫ 1

r

r4 dz dθ dr =π

15

48. J(u, v) =

∣∣∣∣∣ 2u 2v

−2v 2u

∣∣∣∣∣ = 4u2 + 4v2

Page 52: Calculus one and several variables 10E Salas solutions manual ch17

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-17 JWDD027-Salas-v1 December 7, 2006 16:38

REVIEW EXERCISES 917

49. J(u, v) =

∣∣∣∣∣ eu cos v eu sin v

−eu sin v eu cos v

∣∣∣∣∣ = e2u

50. Ju, v, w) =

∣∣∣∣∣∣∣∣2u 2w vw

2w 2v uw

2v 2u uv

∣∣∣∣∣∣∣∣ = (vw − u2)(4uw − 4v2)

51. Set x =v − u

2, y =

v + u

2=⇒ u = y − x, v = y + x, 1 ≤ v ≤ 2, J = −1

2at x = 0, y = u, y = v =⇒ u = v

at y = 0, −x = u, x = v =⇒ u = −v∫∫Ω

cos(y − x

y + x

)dx dy =

∫ 2

1

∫ v

−v

12

cos(uv

)du dv =

∫ 2

i

v sin 1 dv =32

sin 1

52. By the hint, J =

∣∣∣∣∣∣∣∣∣∣∣

cos θu

sin θ

u2r

−r cos θu2

−r sin θ

u20

−r sin θ

u

r cos θu

0

∣∣∣∣∣∣∣∣∣∣∣= −2r3

u3

∫∫∫T

dx dy dz =∫ 2π

0

∫ 2

1

∫ 2

1

2r3

u3dr du dθ =

45π8