Top Banner
P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53 SECTION 3.1 65 CHAPTER 3 SECTION 3.1 1. f (x) = lim h0 f (x + h) f (x) h = lim h0 [2 3(x + h)] [2 3x] h = lim h0 3h h = lim h0 3= 3 2. f (x) = lim h0 f (x + h) f (x) h = lim h0 k k h = lim h0 0=0 3. f (x) = lim h0 f (x + h) f (x) h = lim h0 [5(x + h) (x + h) 2 ] (5x x 2 ) h = lim h0 5h 2xh h 2 h = lim h0 (5 2x h)=5 2x 4. f (x) = lim h0 f (x + h) f (x) h = lim h0 [2(x + h) 3 + 1] [2x 3 + 1] h = lim h0 2(x 3 +3x 2 h +3xh 2 + h 3 ) 2x 3 h = lim h0 6x 2 h +6xh 2 +2h 3 h = lim h0 (6x 2 +6xh +2h 2 )=6x 2 5. f (x) = lim h0 f (x + h) f (x) h = lim h0 (x + h) 4 x 4 h = lim h0 (x 4 +4x 3 h +6x 2 h 2 +4xh 3 + h 4 ) x 4 h = lim h0 (4x 3 +6x 2 h +4xh 2 + h 3 )=4x 3 6. f (x) = lim h0 f (x + h) f (x) h = lim h0 1 x + h +3 1 x +3 h lim h0 (x + 3) (x + h + 3) h(x + h + 3)(x + 3) = lim h0 h h(x + h + 3)(x + 3) lim h0 1 (x + h + 3)(x + 3) = 1 (x + 3) 2 7. f (x) = lim h0 f (x + h) f (x) h = lim h0 x + h 1 x 1 h = lim h0 (x + h 1) (x 1) h( x + h 1+ x 1) = lim h0 1 x + h 1+ x 1 = 1 2 x 1 8. f (x) = lim h0 f (x + h) f (x) h = lim h0 [(x + h) 3 4(x + h)] [x 3 4x] h = lim h0 3x 2 h +3xh 2 + h 3 4h h = lim h0 (3x 2 +3xh + h 2 4) = 3x 2 4
53

Calculus one and several variables 10E Salas solutions manual ch03

Oct 27, 2014

Download

Documents

Calculus one and several variables 10E Salas solutions manual
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

SECTION 3.1 65

CHAPTER 3

SECTION 3.1

1. f ′(x) = limh→0

f(x + h) − f(x)h

= limh→0

[2 − 3(x + h)] − [2 − 3x]h

= limh→0

−3hh

= limh→0

−3 = −3

2. f ′(x) = limh→0

f(x + h) − f(x)h

= limh→0

k − k

h= lim

h→00 = 0

3. f ′(x) = limh→0

f(x + h) − f(x)h

= limh→0

[5(x + h) − (x + h)2] − (5x− x2)h

= limh→0

5h− 2xh− h2

h= lim

h→0(5 − 2x− h) = 5 − 2x

4. f ′(x) = limh→0

f(x + h) − f(x)h

= limh→0

[2(x + h)3 + 1] − [2x3 + 1]h

= limh→0

2(x3 + 3x2h + 3xh2 + h3) − 2x3

h= lim

h→0

6x2h + 6xh2 + 2h3

h

= limh→0

(6x2 + 6xh + 2h2) = 6x2

5. f ′(x) = limh→0

f(x + h) − f(x)h

= limh→0

(x + h)4 − x4

h

= limh→0

(x4 + 4x3h + 6x2h2 + 4xh3 + h4) − x4

h

= limh→0

(4x3 + 6x2h + 4xh2 + h3) = 4x3

6. f ′(x) = limh→0

f(x + h) − f(x)h

= limh→0

1x + h + 3

− 1x + 3

h

limh→0

(x + 3) − (x + h + 3)h(x + h + 3)(x + 3)

= limh→0

−h

h(x + h + 3)(x + 3)

limh→0

−1(x + h + 3)(x + 3)

=−1

(x + 3)2

7. f ′(x) = limh→0

f(x + h) − f(x)h

= limh→0

√x + h− 1 −

√x− 1

h

= limh→0

(x + h− 1) − (x− 1)h(√x + h− 1 +

√x− 1 )

= limh→0

1√x + h− 1 +

√x− 1

=1

2√x− 1

8. f ′(x) = limh→0

f(x + h) − f(x)h

= limh→0

[(x + h)3 − 4(x + h)] − [x3 − 4x]h

= limh→0

3x2h + 3xh2 + h3 − 4hh

= limh→0

(3x2 + 3xh + h2 − 4) = 3x2 − 4

Page 2: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

66 SECTION 3.1

9. f ′(x) = limh→0

f(x + h) − f(x)h

= limh→0

1(x + h)2

− 1x2

h

= limh→0

x2 − (x2 + 2hx + h2)hx2(x + h)2

= limh→0

−2x− h

x2(x + h)2= − 2

x3

10. f ′(x) = limh→0

f(x + h) − f(x)h

= limh→0

1√x + h

− 1√x

h

limh→0

√x−

√x + h

h√x√x + h

= limh→0

(√x−

√x + h

) (√x +

√x + h

)h√x√x + h

(√x +

√x + h

) = limh→0

x− (x + h)h√x√x + h

(√x +

√x + h

)limh→0

−h

h√x√x + h

(√x +

√x + h

) =−1

2x√x

11. f(x) = x2 − 4x; c = 3:

difference quotient:

f(3 + h) − f(3)h

=(3 + h)2 − 4(3 + h) − (−3)

h

=9 + 6h + h2 − 12 − 4h + 3

h=

2h + h2

h= 2 + h

Therefore, f ′(3) = limh→0

f(3 + h) − f(3)h

= limh→0

(2 + h) = 2

12. f(x) = 7x− x2; c = 2:

difference quotient:

f(2 + h) − f(2)h

=7(2 + h) − (2 + h)2 − (10)

h

=14 + 7h− 4 − 4h− h2 − 10

h=

3h− h2

h= 3 − h

Therefore, f ′(2) = limh→0

f(2 + h) − f(2)h

= limh→0

(3 − h) = 3

13. f(x) = 2x3 + 1; c = 1:

difference quotient:

f(−1 + h) − f(−1)h

=2(−1 + h)3 + 1 − (−1)

h

=2

[−1 + 3h− 3h2 + h3

]+ 2

h=

6h− 6h2 + 2h3

h= 6 − 6h + 22

Therefore, f ′(−1) = limh→0

f(−1 + h) − f(−1)h

= limh→0

(6 − 6h + 2h2) = 6

14. f(x) = 5 − x4; c = −1:

difference quotient:

f(1 + h) − f(1)h

=5 − (1 + h)4 − (4)

h

Page 3: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

SECTION 3.1 67

=5 − 1 − 4h− 6h2 − 4h3 − h4 − 4

h

=−4h− 6h2 − 4h3 − h4

h= −4 − 6h− 4h2 − h3

Therefore, f ′(3) = limh→0

f(1 + h) − f(1)h

= limh→0

(−4 − 6h− 4h2 − h3

)= −4

15. f(x) =8

x + 4; c = −2:

difference quotient:

f(−2 + h) − f(−2)h

=

8(−2 + h) + 4

− 4

h=

8h + 2

− 4

h

=8 − 4h− 8h(h + 2)

=−4

h + 2

Therefore, f ′(−2) = limh→0

f(−2 + h) − f(−2)h

= limh→0

−4h + 2

= −2

16. f(x) =√

6 − x; c = 2:

difference quotient:

f(2 + h) − f(2)h

=

√6 − (2 + h) − (2)

h

=√

4 − h− 2h

=√

4 − h− 2h

·√

4 − h + 2√4 − h + 2

=−1√

4 − h + 2

Therefore, f ′(2) = limh→0

f(2 + h) − f(2)h

= limh→0

−1√4 − h + 2

= − 14

17. f(4) = 4. Slope of tangent at (4, 4) is f ′(4) = −3. Tangent y − 4 = −3(x− 4).

18. f(4) = 2. Slope of tangent at (4, 2) is f ′(4) =1

2√

4=

14. Tangent y − 2 =

14(x− 4).

19. f(−2) =14. Slope of tangent at (−2,

14) is

14. Tangent: y − 1

4=

14(x + 2).

20. f(2) = −3. Slope of tangent at (2,−3) is f ′(2) = −3(2)2 = −12. Tangent: y + 3 = −12(x− 2) ;

21. (a) f is not continuous at c = −1 and c = 1; f has a removable discontinuity at c = −1 and a jump

discontinuity at c = 1.

(b) f is continuous but not differentiable at c = 0 and c = 3.

22. (a) f is not continuous at c = 2; f has a jump discontinuity at 2

(b) f is continuous but not differentiable at c = −2 and c = 3.

Page 4: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

68 SECTION 3.1

23. at x = −1 24. at x = 52 25. at x = 0

26. at x = −2, 2 27. at x = 1 28. at x = 2

29. f ′(1) = 4

limh→0−

f(1 + h) − f(1)h

= limh→0−

4(1 + h) − 4h

= 4

limh→0+

f(1 + h) − f(1)h

= limh→0+

2(1 + h)2 + 2 − 4h

= 4

30. f ′(1) = 6

limh→0−

f(1 + h) − f(1)h

= limh→0−

3(1 + h)2 − 3h

= 6

limh→0+

f(1 + h) − f(1)h

= limh→0+

[2(1 + h)3 + 1] − 3h

= 6

31. f ′(−1) does not exist

limh→0−

f(−1 + h) − f(−1)h

= limh→0−

h− 0h

= 1

limh→0+

f(−1 + h) − f(−1)h

= limh→0+

h2 − 0h

= 0

32. f ′(3) does not exist because f is not continuous at x = 3.

33. 34. 35.

Page 5: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

SECTION 3.1 69

36. 37. 38.

39. Since f(1) = 1 and limx→1+

f(x) = 2, f is not continuous at 1. Therefore, by (3.1.3), f is not differentiable

at 1.

40. (a) f ′(x) =

{2(x + 1), x < 0

2(x− 1), x > 0.

(b) limh→0−

f(0 + h) − f(0)h

= limh→0−

(h + 1)2 − 1h

= limh→0−

(h + 2) = 2,

limh→0+

f(0 + h) − f(0)h

= limh→0+

(h− 1)2 − 1h

= limh→0+

(h− 2) = −2.

41. Continuity at x = 1 : limx→1−

f(x) = 1 = limx→1+

f(x) = A + B. Thus A + B = 1.

Differentiability at x = 1:

limh→0−

f(1 + h) − f(1)h

= limh→0−

(1 + h)3 − 1h

= 3 = limh→0+

f(1 + h) − f(1)h

= A

Therefore, A = 3, =⇒ B = −2.

42. Continuity at x = 2 =⇒ 4B + 2A = 2; differentiability at x = 2 =⇒ 4B + A = 4;

A = −2, B = 32

43. f(x) = c, c any constant. 44. f(x) =

{1, x �= 0

0, x = 0.

45. f(x) = |x + 1|; or f(x) =

{0, x �= −1

1, x = −1.

46. f(x) = |x2 − 1|

47. f(x) = 2x + 5 48. f(x) = − |x|

49. (a) limx→2+

f(x) = limx→2−

f(x) = f(2) = 2 Thus, f is continuous at x = 2.

(b) limh→0−

f(2 + h) − f(2)h

= limh→0−

(2 + h)2 − (2 + h) − 2h

= 3

limh→0+

f(2 + h) − f(2)h

= limh→0+

2(2 + h) − 2 − 2h

= 2 f is not differentiable at 2.

Page 6: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

70 SECTION 3.1

50.

f ′(x) = limh→0

(x + h)√x + h− x

√x

h

= limh→0

x(√

x + h−√x)

+ h√x + h

h

= limh→0

xh

h(√

x + h +√x) + lim

h→0

√x + h

= 12

√x +

√x = 3

2

√x

51. (a) f is not continuous at 0 since limx→0−

f(x) = 1 and limx→0+

f(x) = 0. Therefore f is not differentiable

at 0.

(b)

1x

1

y

52. (a) limh→0

f(h) − 0h

=

⎧⎪⎪⎨⎪⎪⎩

limh→0

h

h= 1, h rational

limh→0

0h

= 0, h irrational.

Therefore, limh→0

f(0 + h) − f(0)h

does not exist.

(b) limh→0

g(h) − 0h

=

⎧⎪⎪⎨⎪⎪⎩

limh→0

h2

h= 0, h rational

limh→0

0h

= 0, h irrational

Therefore, g is differentiable at 0 and g′(0) = 0.

53. (a) If the tangent line is horizontal, then the normal line is vertical: x = c.

(b) If the tangent line has slope f ′(c) �= 0, then the normal line has slope − 1f ′(c)

:

y − f(c) = − 1f ′(c)

(x− c).

(c) If the tangent line is vertical, then the normal line is horizontal: y = f(c).

54. The center of the circle.

55. The normal line has slope −4 : y − 2 = −4(x− 4).

Page 7: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

SECTION 3.1 71

56.

x

y

2 4

2

4

57. f(x) = x2, f ′(x) = 2x

The tangent line at (3, 9) has equation y − 9 = 6(x− 3) and x-intercept x =32.

The normal line at (3, 9) has equation y − 9 = − 16 (x− 3) and x-intercept x = 57.

s = 57 − 32

=1112

.

58. (a) The slope of the normal at P is y/x.

(b) The slope of the tangent at P is −x/y.

(c) √1 − (x + h)2 −

√1 − x2

h=

√1 − (x + h)2 −

√1 − x2

h·√

1 − (x + h)2 +√

1 − x2√1 − (x + h)2 +

√1 − x2

=1 − (x + h)2 − (1 − x2)

h[√

1 − (x + h)2 +√

1 − x2]

=−2xh− h2

h[√

1 − (x + h)2 +√

1 − x2] =

−2x− h[√1 − (x + h)2 +

√1 − x2

]

limh→0

f(x + h) − f(x)h

= limh→0

−2x− h√1 − (x + h)2 +

√1 − x2

= − 2x2√

1 − x2= −x

y

where y =√

1 − x2.

59. (a) Since | sin(1/x)| ≤ 1 it follows that

−x ≤ f(x) ≤ x and − x2 ≤ g(x) ≤ x2

Thus limx→0

f(x) = f(0) = 0 and limx→0

g(x) = g(0) = 0, which implies that f and g

are continuous at 0.

(b) limh→0

h sin(1/h) − 0h

= limh→0

sin(1/h) does not exist.

(c) limh→0

h2 sin(1/h) − 0h

= limh→0

h sin(1/h) = 0. Thus g is differentiable at 0 and g′(0) = 0.

Page 8: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

72 SECTION 3.1

60. f ′(2) = limh→0

f(2 + h) − f(2)h

= limh→0

[(2 + h)3 + 1] − (23 + 1)h

= limh→0

12h + 6h2 + h3

h= 12

f ′(2) = limx→2

f(x) − f(2)x− 2

= limx→2

(x3 + 1) − 9x− 2

= limx→2

(x− 2)(x2 + 2x + 4)x− 2

= limx→2

(x2 + 2x + 4) = 12

61. f ′(1) = limh→0

f(1 + h) − f(1)h

= limh→0

[(1 + h)2 − 3(1 + h)] − (−2)]h

= limh→0

−h + h2

h= −1

f ′(1) = limx→1

f(x) − f(1)x− 1

= limx→1

(x2 − 3x) − (−2)x− 1

= limx→1

(x− 2)(x− 1)x− 1

= limx→1

(x− 2) = −1

62. f ′(3) = limh→0

f(3 + h) − f(3)h

= limh→0

√1 + (3 + h) − 2

h= lim

h→0

√4 + h− 2

h= lim

h→0

h

h√

4 + h + 2=

14

f ′(3) = limx→3

f(x) − f(3)x− 3

= limx→1

√1 + x− 2x− 3

= limx→3

x− 3(x− 3)(

√1 + x + 2)

= limx→3

1√1 + x + 2

=14

63. f ′(−1) = limh→0

f(−1 + h) − f(−1)h

= limh→0

(−1 + h)1/3 + 1h

= limh→0

(−1 + h)1/3 + 1h

· (−1 + h)2/3 − (−1 + h)1/3 + 1(−1 + h)2/3 − (−1 + h)1/3 + 1

= limh→0

h

h [−1 + h)2/3 − (−1 + h)1/3 + 1]=

13

f ′(−1) = limx→−1

f(x) − f(−1)x− (−1)

= limx→−1

x1/3 + 1x + 1

= limx→−1

x1/3 + 1x + 1

· x2/3 − x1/3 + 1

x2/3 − x1/3 + 1

= limx→−1

x + 1(x + 1)(x2/3 − x1/3 + 1)

=13

64. f ′(0) = limh→0

f(0 + h) − f(0)h

= limh→0

1h + 2

− 12

h= lim

h→0

−h

2h(h + 2)= lim

h→0

−12(h + 2)

= − 14

f ′(0) = limx→0

f(x) − f(0)x

= limx→0

1x + 2

− 12

x= lim

x→0

−x

2x(x + 2)= lim

x→0

−12(x + 2)

= − 14

65. (a) D =(2 + h)5/2 − 25/2

h− 1 ≤ h ≤ 1

(b) f ′(2) ∼= 7.071

66. (a) D =(2 + h)2/3 − 22/3

h− 1 ≤ h ≤ 1

Page 9: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

SECTION 3.1 73

(b) f ′(2) ∼= 0.529

67. (a) f ′(x) =5

2√

5x− 4; f ′(3) =

52√

11(b) f ′(x) = −2x + 16x3 − 6x5; f ′(−2) = 68

(c) f ′(x) = − 3(3 − 2x)2 + 3x)2

− 22 + 3x

; f ′(−1) = 13

68. (a) f ′(1) does not exist (b) f ′(−2) = 0 (c) f ′(3) does not exist

69. (c) f ′(x) = 10x− 21x2 (d) f ′(x) = 0 at x = 0, 1021

70. (c) f ′(x) = 3x2 + 2x− 4 (d) f ′(x) = 0 at x ∼= −1.5352, 0.8685

71. (a) f ′( 32 ) = − 11

4 ; tangent line: y − 218 = − 11

4

(x− 3

2

), normal line: y − 21

8 = 411

(x− 3

2

)(c) (1.453, 1.547)

72. (a) Set f(x) = x3. Then

f(x + h) − f(x)h

=(x + h)3 − x3

h

=x3 + 3x2h + 3xh2 + h3 − x3

h

=3x2h + 3xh2 + h3

h= 3x2 + 3xh + h2

limh→0

f(x + h) − f(x)h

= limh→0

(3x2 + 3xh + h2) = 3x2.

(b) Let S be the set of integers for which the statement is true. We have shown that 1, 2, 3 ∈ S.

Assume that k ∈ S. This tells us that if f(x) = xk, then f ′(x) = limh→0

(x + h)k − xk

h= kxk−1.

Set f(x) = xk+1. Then, by the hint,

f ′(x) = limh→0

(x + h)k+1 − xk+1

h= lim

h→0

x(x + h)k − x · xk + h(x + h)k

h

= limh→0

x

[(x + h)k − xk

h

]+ lim

h→0(x + h)k

= x · kxk−1 + xk = (k + 1)xk.

Therefore, k + 1 ∈ S. Thus S contains the set of positive integers.

Page 10: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

74 SECTION 3.2

SECTION 3.2

1. F ′(x) = −1 2. F ′(x) = 2 3. F ′(x) = 55x4 − 18x2

4. F ′(x) =−6x3

5. F ′(x) = 2ax + b 6. F ′(x) = x3 − x2 + x− 1

7. F ′(x) = 2x−3 8. F ′(x) =x3(2x) − (x2 + 2)3x2

x6= − x2 + 6

x4

9. G′(x) = (x2 − 1)(1) + (x− 3)(2x) = 3x2 − 6x− 1 10. F ′(x) = 1 +1x2

11. G′(x) =(1 − x)(3x2) − x3(−1)

(1 − x)2=

3x2 − 2x3

(1 − x)2

12. F ′(x) =(cx− d)a− (ax− b)c

(cx− d)2=

bc− ad

(cx− d)2

13. G′(x) =(2x + 3)(2x) − (x2 − 1)(2)

(2x + 3)2=

2(x2 + 3x + 1)(2x + 3)2

14. G′(x) =(x + 1)(28x3) − (7x4 + 11)(1)

(x + 1)2=

21x4 + 28x3 − 11(x + 1)2

15. G′(x) = (x3 − 2x)(2) + (2x + 5)(3x2 − 2) = 8x3 + 15x2 − 8x− 10

16. G′(x) =(x2 − 1)(3x2 + 3) − (x3 + 3x)2x

(x2 − 1)2=

x4 − 6x2 − 3(x2 − 1)2

17. G′(x) =(x− 2)(1/x2) − (6 − 1/x)(1)

(x− 2)2=

−2(3x2 − x + 1)x2(x− 2)2

18. G′(x) =x2(4x3) − (1 + x4)2x

x4=

2(x4 − 1)x3

19. G′(x) = (9x8 − 8x9)(

1 − 1x2

)+

(x +

1x

)(72x7 − 72x8) = −80x9 + 81x8 − 64x7 + 63x6

20. G′(x) =(−1x2

) (1 +

1x2

)+

(1 +

1x

) (−2x3

)= − 1

x2− 2

x3− 3

x4

21. f ′(x) = −(x− 2)−2; f ′(0) = − 14 , f ′(1) = −1

22. f ′(x) = 3x3 + 2x; f ′(0) = 0, f ′(1) = 5

23. f ′(x) =(1 + x2)(−2x) − (1 − x2)(2x)

(1 + x2)2=

−4x(1 + x2)2

; f ′(0) = 0, f ′(1) = −1

24. f ′(x) =(x2 + 2x + 1)(4x + 1) − (2x2 + x + 1)(2x + 2)

(x2 + 2x + 1)2=

(x + 1)(4x + 1) − 2(2x2 + x + 1)(x + 1)3

;

f ′(0) = −1, f ′(1) = 14

Page 11: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

SECTION 3.2 75

25. f ′(x) =(cx + d)a− (ax + b)c

(cx + d)2=

ad− bc

(cx + d)2, f ′(0) =

ad− bc

d2, f ′(1) =

ad− bc

(c + d)2

26. f ′(x) =(cx2 + bx + a)(2ax + b) − (ax2 + bx + c)(2cx + b)

(cx2 + bx + a)2; f ′(0) =

b(a− c)a2

, f ′(1) =2(a− c)a + b + c

27. f ′(x) = xh′(x) + h(x); f ′(0) = 0h′(0) + h(0) = 0(2) + 3 = 3

28. f ′(x) = 6xh(x) + 3x2h′(x) − 5; f ′(0) = −5

29. f ′(x) = h′(x) +h′(x)

[h(x)]2, f ′(0) = h′(0) +

h′(0)[h(0)]2

= 2 +232

=209

30. f ′(x) = h′(x) +h(x) − xh′(x)

h2(x); f ′(0) = h′(0) +

h(0)h2(0)

= 2 +13

=73

31. f ′(x) =(x + 2)(1) − x(1)

(x + 2)2=

2(x + 2)2

,

slope of tangent at (−4, 2) : f ′(−4) = 12 ; equation for tangent: y − 2 = 1

2 (x + 4)

32. f ′(x) = (x3 − 2x + 1)(4) + (4x− 5)(3x2 − 2) = 16x3 − 15x2 − 16x + 14

slope of tangent at (2, 15) : f ′(2) = 50; equation for tangent: y − 15 = 50(x− 2)

33. f ′(x) = (x2 − 3)(5 − 3x2) + (5x− x3)(2x);

slope of tangent at (1,−8) : f ′(1) = (−2)(2) + (4)(2) = 4; equation for tangent: y + 8 = 4(x− 1)

34. f ′(x) = 2x +10x2

;

slope of tangent at (−2, 9) : f ′(−2) = − 32 ; equation for tangent: y − 9 = − 3

2 (x + 2)

35. f ′(x) = (x− 2)(2x− 1) + (x2 − x− 11)(1) = 3(x− 3)(x + 1);

f ′(x) = 0 at x = −1, 3; (−1, 27), (3,−5)

36. f ′(x) = 2x +16x2

=2(x3 + 8)

x2; f ′(x) = 0 at x = −2; (−2, 12)

37. f ′(x) =(x2 + 1)(5) − 5x(2x)

(x2 + 1)2=

5(1 − x2)(x2 + 1)2

, f ′(x) = 0 at x = ±1; (−1,−5/2), (1, 5/2)

38. f ′(x) = (x + 2)(2x− 2) + (x2 − 2x− 8)(1) = 3x2 − 12 = 3(x2 − 4);

f ′(x) = 0 at x = ±2; (−2, 0), (2,−32)

39. f(x) = x4 − 8x2 + 3; f ′(x) = 4x3 − 16x = 4x(x2 − 4) = 4x(x− 2)(x + 2)

(a) f ′(x) = 0 at x = 0, ±2

(b) f ′(x) > 0 on (−2, 0) ∪ (2,∞)

(c) f ′(x) < 0 on (−∞,−2) ∪ (0, 2)

Page 12: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

76 SECTION 3.2

40. f(x) = 3x4 − 4x3 − 2; f ′(x) = 12x3 − 12x2 = 12x2(x− 1)

(a) f ′(x) = 0 at x = 0, 1.

(b) f ′(x) > 0 on (1,∞).

(c) f ′(x) < 0 on (−∞, 0) ∪ (0, 1)

41. f(x) = x +4x2

; f ′(x) = 1 − 8x3

=x3 − 8x3

=(x− 2)(x2 + 2x + 4)

x3

(a) f ′(x) = 0 at x = 2.

(b) f ′(x) > 0 on (−∞, 0) ∪ (2,∞)

(c) f ′(x) < 0 on (0, 2)

42. f(x) =x2 − 2x + 4

x2 + 4; f ′(x) =

(x2 + 4)(2x− 2) − (x2 − 2x + 4)(2x)(x2 + 4)2

=2(x2 − 4)(x2 + 4)2

(a) f ′(x) = 0 at x = 2,−2.

(b) f ′(x) > 0 on (−∞,−2) ∪ (2,∞)

(c) f ′(x) < 0 on (−2, 2)

43. slope of line 4; slope of tangent f ′(x) = −2x; −2x = 4 at x = −2; (−2,−10)

44. slope of line 3/5; slope of tangent f ′(x) = 3x2 − 3;

perpendicular when 3x2 − 3 = − 53 ; x = ± 2

3 ;(− 2

3 ,4627

),

(23 ,− 46

27

)45. f(x) = x3 + x2 + x + C 46. f(x) = x4 − x2 + 4x + C

47. f(x) =2x3

3− 3x2

2+

1x

+ C 48. f(x) =x5

5+

x4

2+√x + C

49. We want f to be continuous at x = 2. That is, we want

limx→2−

f(x) = f(2) = limx→2+

f(x).

This gives

(1) 8A + 2B + 2 = 4B −A.

We also want

limx→2−

f ′(x) = limx→2+

f ′(x).

This gives

(2) 12A + B = 4B.

Equations (1) and (2) together imply that A = −2 and B = −8.

50. First we need, limx→−1−

f(x) = limx→−1+

f(x), =⇒ A + B = −B −A + 4 or A + B = 2.

Next we need, limx→−1−

f ′(x) = limx→−1+

f ′(x) =⇒ −2A = 5B + A or 3A + 5B = 0.

Solving these equations gives A = 5, B = −3.

Page 13: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

SECTION 3.2 77

51. slope of tangent at (5, 5) is f ′(5) = −4

tangent y − 5 = −4(x− 5) intersects

x-axis at ( 254 , 0)

normal y − 5 = 14 (x− 5) intersects

x-axis at (−15, 0)

area of triangle is12 (5)(15 + 25

4 ) = 4258

52. slope of tangent at (2, 5) is f ′(2) = −4

tangent y − 5 = −4(x− 2) intersects

x-axis at ( 134 , 0)

normal y − 5 = 14 (x− 2) intersects

x-axis at (−18, 0)

area of triangle is12 (5)(18 + 13

4 ) = 4258

53. If the point (1, 3) lies on the graph, we have f(1) = 3 and thus

(∗) A + B + C = 3.

If the line 4x + y = 8 (slope −4) is tangent to the graph at (2, 0), then

f(2) = 0 and f ′(2) = −4. Thus,

(∗∗) 4A + 2B + C = 0 and 4A + B = −4.

Solving the equations in (∗) and (∗∗), we find that A = −1, B = 0, C = 4.

54. First, f(1) = 0 and f ′(1) = 3 =⇒ A + B + C + D = 0 and 3A + 2B + C = 3

Next, f(2) = 9 and f ′(2) = 18 =⇒ 8A + 4B + 2C + D = 9 and 12A + 4B + C = 18

Solving these equations gives A = 3, B = −6, C = 6, D = −3.

55. Let f(x) = ax2 + bx + c. Then f ′(x) = 2ax + b and f ′(x) = 0 at x = −b/2a.

56. The derivative of p is the quadratic p′(x) = 3ax2 + 2bx + c. Its discriminant is

D = (2b)2 − 4(3a)(c) = 4b2 − 12ac

(a) p has two horizontal tangents iff p′ has two real roots iff D > 0.

(b) p has exactly one horizontal tangent iff p has only one real root iff D = 0.

(c) p has no horizontal tangent iff p has no real roots iff D < 0.

Page 14: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

78 SECTION 3.2

57. Let f(x) = x3 − x. The secant line through (−1, f(−1)) = (−1, 0) and (2, f(2)) = (2, 6) has slope

m =6 − 0

2 − (−1)= 2. Now, f ′(x) = 3x2 − 1 and 3c2 − 1 = 2 implies c = −1, 1.

58. msec =f(3) − f(1)

3 − 1=

34 − 1

2

2= 1

8

f ′(x) =(x + 1)(1) − x(1)

(x + 1)2=

1(x + 1)2

; f ′(c) = 18 =⇒ c = −1 ± 2

√2

59. Let f(x) = 1/x, x > 0. Then f ′(x) = −1/x2. An equation for the tangent line to the graph of f at

the point (a, f(a)), a > 0, is y = (−1/a2)x + 2/a. The y-intercept is 2/a and the x-intercept is 2a.

The area of the triangle formed by this line and the coordinate axes is: A = 12 (2/a)(2a) = 2 square

units.

60. Let (x, y) be the point on the graph that the tangent line passes through. f ′(x) = 3x2, so x3 − 8 =

3x2(x− 2). Thus x = 2 or x = −1. The lines are y − 8 = 12(x− 2) and y + 1 = 3(x + 1).

61. Let (x, y) be the point on the graph that the tangent line passes through. f ′(x) = 3x2 − 1, so x3 −x− 2 = (3x2 − 1)(x + 2). Thus x = 0 or x = −3. The lines are y = −x and y + 24 = 26(x + 3).

62. (a) f(c) = c3; f ′(x) = 3x2 and f ′(c) = 3c2. Tangent line: y − c3 = 3c2(x− c) or y = 3c2x− 2c3.

(b) We solve the equation 3c2x− 2c3 = x3 :

x3 − 3c2x + 2c3 = 0 =⇒ (x− c)(x2 + cx− 2c2) = 0 =⇒ (x− c)2(x + 2c) = 0

Thus, the tangent line at x = c, c �= 0 intersects the graph at x = −2c.

63. Since f and f + g are differentiable, g = (f + g) − f is differentiable. The functions f(x) = |x| and

g(x) = −|x| are not differentiable at x = 0 yet their sum f(x) + g(x) ≡ 0 is differentiable for all x.

64. No. If f and fg are differentiable, then g =fg

fwill be differentiable where f(x) �= 0.

65. Since (f

g

)(x) =

f(x)g(x)

= f(x) · 1g(x)

,

it follows from the product and reciprocal rules that(f

g

)′(x) =

(f · 1

g

)′(x) = f(x)

(− g′(x)

[g(x)]2

)+ f ′(x) · 1

g(x)=

g(x)f ′(x) − f(x)g′(x)[g(x)]2

.

66. (fgh)′(x) = [(fg)(x) · h(x)]′ = (fg)(x)h′(x) + h(x)[(fg)(x)]′

= f(x)g(x)h′(x) + h(x)[f(x)g′(x) + g(x)f ′(x)]

= f ′(x)g(x)h(x) + f(x)g′(x)h(x) + f(x)g(x)h′(x)

67. F ′(x) = 2x(

1 +1x

)(2x3 − x + 1) + (x2 + 1)

(−1x2

)(2x3 − x + 1) + (x2 + 1)

(1 +

1x

)(6x2 − 1)

Page 15: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

SECTION 3.2 79

68. G′(x) =1

2√x

(1

1 + 2x

)(x2 + x− 1) +

√x

( −2(1 + 2x)2

)(x2 + x− 1) +

√x

(1

1 + 2x

)(2x + 1)

69. g(x) = [f(x)]2 = f(x) · f(x)

g′(x) = f(x)f ′(x) + f(x)f ′(x) = 2f(x)f ′(x)

70. g′(x) = 2(x3 − 2x2 + x + 2)(3x2 − 4x + 1)

71. (a) f ′(x) = 0 at x = 0, −2 (b) f ′(x) > 0 on (−∞,−2) ∪ (0,∞)

(c) f ′(x) < 0 on (−2,−1) ∪ (−1, 0)

72. (a) f ′(x) = 0 at x = 0, 1, 52 (b) f ′(x) > 0 on (−∞, 0) ∪

(1, 5

2

)∪ (5/2,∞)

(c) f ′(x) < 0 on (0, 1)

73. (a) f ′(x) �= 0 for all x �= 0 (b) f ′(x) > 0 on (0,∞)

(c) f ′(x) < 0 on (−∞, 0)

74. (a) f ′(x) = 0 at x = − 3√

4 ∼= −1.587 (b) f ′(x) > 0 on(− 3√

4, 0)

(c) f ′(x) < 0 on(−∞,− 3

√4)∪ (0,∞)

75. (a)sin(0 + 0.001) − sin 0

0.001∼= 0.99999

sin(0 − 0.001) − sin 0−0.001

∼= 0.99999

sin[(π/6) + 0.001] − sin(π/6)0.001

∼= 0.86578sin[(π/6) − 0.001] − sin(π/6)

−0.001∼= 0.86628

sin[(π/4) + 0.001] − sin(π/4)0.001

∼= 0.70675sin[(π/4) − 0.001] − sin(π/4)

−0.001∼= 0.70746

sin[(π/3) + 0.001] − sin(π/3)0.001

∼= 0.49957sin[(π/3) − 0.001] − sin(π/3)

−0.001∼= 0.50043

sin[(π/2) + 0.001] − sin(π/2)0.001

∼= −0.0005sin[(π/2) − 0.001] − sin(π/2)

−0.001∼= 0.0005

(b) cos 0 = 1, cos(π/6) ∼= 0.866025, cos(π/4) ∼= 0.707107, cos(π/3) = 0.5, cos(π/2) = 0

(c) If f(x) = sinx then f ′(x) = cosx.

76. (a)

x = −2, 0, 54

(b)

x1 = −2.732, x2 = −0.618,

x3 = 0.732, x4 = 1.618

Page 16: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

80 SECTION 3.3

SECTION 3.3

1.dy

dx= 12x3 − 2x 2.

dy

dx= 2x− 8x−5

3.dy

dx= 1 +

1x2

4.dy

dx=

(1 − x)2 − 2x(−1)(1 − x)2

=2

(1 − x)2

5.dy

dx=

(1 + x2)(1) − x(2x)(1 + x2)2

=1 − x2

(1 + x2)26. y = x3 − x2 − 2x;

dy

dx= 3x2 − 2x− 2

7.dy

dx=

(1 − x)2x− x2(−1)(1 − x)2

=x(2 − x)(1 − x)2

8. y =2x− x2

3 + 3x;

dy

dx=

(3 + 3x)(2 − 2x) − (2x− x2)(3)(3 + 3x)2

=2 − 2x− x2

3(1 + x)2

9.dy

dx=

(x3 − 1)3x2 − (x3 + 1)3x2

(x3 − 1)2=

−6x2

(x3 − 1)2

10.dy

dx=

(1 + x)2x− x2(1)(1 + x)2

=x2 + 2x(1 + x)2

11.d

dx(2x− 5) = 2 12.

d

dx(5x + 2) = 5

13.d

dx[(3x2 − x−1)(2x + 5)] = (3x2 − x−1)2 + (2x + 5)(6x + x−2) = 18x2 + 30x + 5x−2

14.d

dx

[(2x2 + 3x−1)(2x− 3x−2)

]= (2x2 + 3x−1)(2 + 6x−3) + (2x− 3x−2)(4x− 3x−2) = 12x2 + 27x−4

15.d

dt

(t4

2t3 − 1

)=

(2t3 − 1)4t3 − t4(6t2)(2t3 − 1)2

=2t3(t3 − 2)(2t3 − 1)2

16.d

dt

(2t3 + 1

t4

)=

d

dt

(2t

+1t4

)= − 2

t2− 4

t5= − 2(t3 + 2)

t5

17.d

du

(2u

1 − 2u

)=

(1 − 2u)2 − 2u(−2)(1 − 2u)2

=2

(1 − 2u)2

18.d

du

(u2

u3 + 1

)=

(u3 + 1)(2u) − u2(3u2)(u3 + 1)2

=u(2 − u3)(u3 + 1)2

19.d

du

(u

u− 1− u

u + 1

)=

(u− 1)(1) − u

(u− 1)2− (u + 1)(1) − u

(u + 1)2

= − 1(u− 1)2

− 1(u + 1)2

= − 2(1 + u2)(u2 − 1)2

20.d

du

[u2(1 − u2)(1 − u3)

]=

d

du[u2 − u4 − u5 + u7] = 2u− 4u3 − 5u4 + 7u6

Page 17: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

SECTION 3.3 81

21.d

dx

(x3 + x2 + x + 1x3 − x2 + x− 1

)=

(x3 − x2 + x− 1)(3x2 + 2x + 1) − (x3 + x2 + x + 1)(3x2 − 2x + 1)(x3 − x2 + x− 1)2

=−2(x4 + 2x2 + 1)(x2 + 1)2(x− 1)2

=−2

(x− 1)2

22.d

dx

(x3 + x2 + x− 1x3 − x2 + x + 1

)=

(x3 − x2 + x + 1)(3x2 + 2x + 1) − (x3 + x2 + x− 1)(3x2 − 2x + 1)(x3 − x2 + x + 1)2

=−2x4 + 8x2 + 2

(x3 − x2 + x + 12)

23.dy

dx= (x + 1)

d

dx[(x + 2)(x + 3)] + (x + 2)(x + 3)

d

dx(x + 1) = (x + 1)(2x + 5) + (x + 2)(x + 3)

At x = 2,dy

dx= (3)(9) + (4)(5) = 47.

24.dy

dx= (x + 1)(x2 + 2)(3x2) + (x + 1)(x3 + 3)(2x) + (x2 + 2)(x3 + 3)(1)

At x = 2,dy

dx= 3(6)(12) + 3(11)(4) + (6)(11) = 414.

25.dy

dx=

(x + 2)d

dx[(x− 1)(x− 2)] − (x− 1)(x− 2)(1)

(x + 2)2

=(x + 2)(2x− 3) − (x− 1)(x− 2)

(x + 2)2

At x = 2,dy

dx=

4(1) − 1(0)16

=14.

26. y =x4 − x2 − 2

x2 + 2;

dy

dx=

(x2 + 2)(4x3 − 2x) − (x4 − x2 − 2)(2x)(x2 + 2)2

At x = 2,dy

dx=

6(28) − (10)436

=329

27. f ′(x) = 21x2 − 30x4, f ′′(x) = 42x− 120x3 28. f ′(x) = 10x4 − 24x3 + 2, f ′′(x) = 40x3 − 72x2

29. f ′(x) = 1 + 3x−2, f ′′(x) = −6x−3 30. f ′(x) = 2x + 2x−3, f ′′(x) = 2 − 6x−4

31. f(x) = 2x2 − 2x−2 − 3, f ′(x) = 4x + 4x−3, f ′′(x) = 4 − 12x−4

32. f(x) = 4x− 9x−1, f ′(x) = 4 + 9x−2, f ′′(x) = − 18x−3

33.dy

dx= x2 + x + 1

d2y

dx2= 2x + 1

d3y

dx3= 2

34.dy

dx= 10 + 50x

d2y

dx2= 50

d3y

dx3= 0

35.dy

dx= 8x− 20

d2y

dx2= 8

d3y

dx3= 0

Page 18: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

82 SECTION 3.3

36.dy

dx= 1

2 x2 − 1

2 x + 1

d2y

dx2= x− 1

2

d3y

dx3= 1

37.dy

dx= 3x2 + 3x−4

d2y

dx2= 6x− 12x−5

d3y

dx3= 6 + 60x−6

38.dy

dx= 3x2 − 2x−2

d2y

dx2= 6x + 4x−3

d3y

dx3= 6 − 12x−4

39.d

dx

[xd

dx(x− x2)

]=

d

dx[x(1 − 2x)] =

d

dx[x− 2x2] = 1 − 4x

40. d2

dx2

[(x2 − 3x)

d

dx(x + x−1)

]=

d2

dx2

[(x2 − 3x)(1 − x−2)

]

=d2

dx2[x2 − 3x− 1 + 3x−1]

=d

dx(2x− 3 − 3x−2) = 2 + 6x−3

41.d4

dx4[3x− x4] =

d3

dx3[3 − 4x3] =

d2

dx2[−12x2] =

d

dx[−24x] = −24

42.d5

dx5[ax4 + bx3 + cx2 + dx + e] =

d4

dx4[4ax3 + 3bx2 + 2cx + d]

=d3

dx3[12ax2 + 6bx + 2c]

=d2

dx2[24ax + 6b] =

d

dx[24a] = 0

43.d2

dx2

[(1 + 2x)

d2

dx2(5 − x3)

]=

d2

dx2[(1 + 2x)(−6x)] =

d2

dx2

[−6x− 12x2

]= −24

44.d3

dx3

[1x

d2

dx2[x4 − 5x2]

]=

d3

dx3

[1x

(12x2 − 10)]

=d3

dx3[12x− 10x−1] =

d2

dx2[12 + 10x−2]

=d

dx[−20x−3] = 60x−4

45. y = x4 − x3

3+ 2x2 + C 46. y =

x2

2+

1x2

+ 3x + C

47. y = x5 − 1x4

+ C 48. y =2x6

3+

53x3

− 2x + C

49. Let p(x) = ax2 + bx + c. Then p′(x) = 2ax + b and p′′(x) = 2a. Now

p′′(1) = 2a = 4 =⇒ a = 2; p′(1) = 2(2)(1) + b = −2 =⇒ b = −6;

p(1) = 2(1)2 − 6(1) + c = 3 =⇒ c = 7

Thus p(x) = 2x2 − 6x + 7.

Page 19: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

SECTION 3.3 83

50. p(x) = ax3 + bx2 + cx + d p′′′(−1) = 6 =⇒ a = 1

p′(x) = 3ax2 + 2bx + c p′′(−1) = −2 =⇒ b = 2

p′′(x) = 6ax + 2b p′(−1) = 3 =⇒ c = 4

p′′′(x) = 6a p(−1) = 0 =⇒ d = 3

Therefore, p(x) = x3 + 2x2 + 4x + 3.

51. (a) If k = n, f (n)(x) = n! (b) If k > n, f (k)(x) = 0.

(c) If k < n, f (k)(x) = n(n− 1)(n− 2) · · · (n− k + 1)xn−k.

52. (a)dn

dxn= n! an (b)

dk

dxk= 0 if k > n.

53. Let f(x) =

{x2 x ≥ 0

0 x ≤ 0

(a) f ′+(0) = lim

h→0+

f(0 + h) − f(0)h

= limh→0+

h2 − 0h

= 0,

f ′−(0) = lim

h→0−

f(0 + h) − f(0)h

= limh→0−

0h

= 0

Therefore, f is differentiable at 0 and f ′(0) = 0.

(b) f ′(x) =

{2x x ≥ 0

0 x ≤ 0(d)

(c) f ′′+(0) = lim

h→0+

f ′(0 + h) − f ′(0)h

= limh→0+

2h− 0h

= 2,

f ′′−(0) = lim

h→0−

f ′(0 + h) − f ′(0)h

= limh→0−

0h

= 0

Since f ′′+(0) �= f ′′

−(0), f ′′(0) does not exist.

54. Let g(x) =

{x3 x ≥ 0

0 x < 0

(a) g′+(0) = limh→0+

g(0 + h) − g(0)h

= limh→0+

h3 − 0h

= 0,

g′−(0) = limh→0−

g(0 + h) − g(0)h

= limh→0−

0h

= 0

Therefore, g is differentiable at 0 and g′(0) = 0.

g′(x) =

{3x2 x ≥ 0

0 x < 0

g′′+(0) = limh→0+

g′(0 + h) − g, (0)h

= limh→0+

3h2 − 0h

= 0,

g′′−(0) = limh→0−

g′(0 + h) − g′(0)h

= limh→0−

0h

= 0

Therefore, g′ is differentiable at 0 and g′′(0) = 0.

Page 20: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

84 SECTION 3.3

(b) g′(x) =

{3x2 x ≥ 0

0 x < 0

(d)g′′(x) =

{6x x ≥ 0

0 x < 0

(c) g′′′+(0) = limh→0+

g′′(0 + h) − g′′(0)h

= limh→0+

6h− 0h

= 6

g′′′− (0) = limh→0−

g′′(0 + h) − g′′(0)h

= limh→0−

0h

= 0

Since g′′′+(0) �= g′′′− (0), g′′′(0) does not exist.

55. It suffices to give a single counterexample. For instance, if

f(x) = g(x) = x, then (fg)(x) = x2 so that (fg)′′(x) = 2 but

f(x)g′′(x) + f ′′(x)g(x) = x · 0 + 0 · x = 0.

56.d

dx[f(x)g′(x) − f ′(x)g(x)] = [f(x)g′′(x) + f ′(x)g′(x)] − [f ′(x)g′(x) + f ′′(x)g(x)]

= f(x)g′′(x) − f ′′(x)g(x)

57. f ′′(x) = 6x; (a) x = 0 (b) x > 0 (c) x < 0

58. f ′′(x) = 12x2; (a) x = 0 (b) all x �= 0 (c) none

59. f ′′(x) = 12x2 + 12x− 24; (a) x = −2, 1 (b) x < −2, x > 1 (c) −2 < x < 1

60. f ′′(x) = 12x2 + 18x− 12; (a) x = −2, 12 (b) x < −2, x > 1

2 (c) −2 < x < 12

61. The result is true for n = 1:d1y

dx1=

dy

dx= −x−2 = (−1)11!x−1−1.

If the result is true for n = k:dky

dxk= (−1)kk!x−k−1

then the result is true for n = k + 1:

dk+1y

dxk+1=

d

dx

[dky

dxk

]=

d

dx

[(−1)kk!x−(k+1)

]= (−1)(k+1)(k + 1)!x−(k+1)−1.

62. y′ = −2x−3, y′′ = 6x−4, y′′′ = −24x−5; y(n) = (−1)n(n + 1)!x−(n+2)

Let S be the set of positive integers for which the result holds. Then 1 ∈ S. Assume that the positive

integer k ∈ S. Now,

y(k+1) =d

dxy(k) =

d

dx

[(−1)k(k + 1)!x−(k+2)

]= −(−1)k(k + 2)(k + 1)!x−(k+2)−1 = (−1)k+1(k + 2)!x−(k+3)

Thus, k + 1 ∈ S, and S is the set of positive integers.

Page 21: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

SECTION 3.3 85

63.d

dx(uvw) = uv

dw

dx+ uw

dv

dx+ vw

du

dx

64. (a)dn

dxn[xn] = n! (b)

dn+1

dxn+1[xn] = 0

65. By the reciprocal rule,d

dx

[1

1 − x

]=

−(−1)(1 − x)2

=1

(1 − x)2.

d2

dx2

[1

1 − x

]=

d

dx

[1

(1 − x)2

]

=d

dx

[1

1 − x· 11 − x

]=

11 − x

· 1(1 − x)2

+1

1 − x· 1(1 − x)2

=2

(1 − x)3

d3

dx3

[1

1 − x

]=

d

dx

[2

(1 − x)3

]

= 2d

dx

[1

1 − x· 1(1 − x)2

]= 2

11 − x

· 2(1 − x)3

+ 21

(1 − x)2· 1(1 − x)2

=6

(1 − x)4=

3!(1 − x)4

and so on.

In general,dn

dxn

[1

1 − x

]=

n!(1 − x)n+1

. You can use induction to prove this result.

66.dn

dxn

[1 − x

1 + x

]=

(−1)n 2 · n!(1 + x)n+1

67. (b) The lines tangent to the graph of f are parallel to the line x− 2y + 12 = 0 at the points(−1√2,

12√

2

)and

(1√2,−12√

2

).

Page 22: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

86 SECTION 3.3

68. (b) The normals to the graph of f are perpendicular to l at the points where

x = −12, x =

1 −√

54

, x =1 +

√5

4

69. (a) f(x) = x3 + x2 − 4x + 1; f ′(x) = 3x2 + 2x− 4.

(b) (c) The graph is “falling” when f ′(x) < 0;

the graph is “rising” when f ′(x) > 0.

70. (a) f(x) = x4 − x3 − 5x2 − x− 2; f ′(x) = 4x3 − 3x2 − 10x− 1.

(b)

x

y

ff’

-20

-10

10

20

-2 -1 1 2 3

(c) The graph is “falling” when f ′(x) < 0;

the graph is “rising” when f ′(x) > 0.

71. (a) f(x) = 12 x

3 − 3x2 + 3x + 3; f ′(x) = 32 x

2 − 6x + 3

(b) (c) The line tangent to the graph is horizontal; the

graph turns from rising to falling, or from

falling to rising.

(d) x1∼= 0.586, x2

∼= 3.414

Page 23: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

SECTION 3.4 87

72. (a) f(x) = 12 x

3 − 3x2 + 4x + 1; f ′(x) = 32 x

2 − 6x + 4. (b)

(c) The line tangent to the graph is horizontal; the

graph turns from rising to falling, or from

falling to rising.

(d) x1∼= 0.845, x2

∼= 3.155

SECTION 3.4

1. A = πr2,dA

dr= 2πr. When r = 2,

dA

dr= 4π. 2. V = s3,

dV

ds= 3s2. When s = 4,

dV

ds= 48.

3. A =12z2,

dA

dz= z. When z = 4,

dA

dz= 4. 4.

dy

dx= −x−2. When x = −1,

dy

dx= −1.

5. y =1

x(1 + x),dy

dx=

−(2x + 1)x2(1 + x)2

. At x = 2,dy

dx= − 5

36.

6.dy

dx= 3x2 − 24x + 45 = 3(x− 3)(x− 5);

dy

dx= 0 at x = 3, 5.

7. V =43πr3,

dV

dr= 4πr2 = the surface area of the ball.

8. S = 4πr2;dS

dr= 8πr and

dS

dr= 8πr0 at r = r0.

dS

dr= 1 =⇒ r0 =

18π

.

9. y = 2x2 + x− 1,dy

dx= 4x + 1;

dy

dx= 4 at x = 3

4 . Therefore x0 = 34 .

10. (a) A = π

(d

2

)2

4d2; A′ =

π

2d (b) A = π

(C

)2

=C2

4π;

dA

dC=

C

11. (a) w = s√

2, V = s3 =(

w√2

)3

=√

24

w3,dV

dw=

3√

24

w2.

(b) z2 = s2 + w2 = 3s2, z = s√

3. V = s3 =(

z√3

)3

=√

39

z3,dV

dz=

√3

3z2.

12. A = bh = (constant) =⇒ h =A

b;

dh

db= − A

b2= − bh

b2= − h

b

13. (a)dA

dθ=

12r2 (b)

dA

dr= rθ

(c) θ =2Ar2

sodθ

dr=

−4Ar3

=−4r3

(12r2θ

)=

−2θr

14. (a)dA

dh= 2πr (b)

dA

dr= 2π(2r + h)

(c) h =A

2πr− r;

dh

dr= − A

2πr2− 1 =

−2πr(r + h) − 2πr2

2πr2= − 2r + h

r

Page 24: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

88 SECTION 3.5

15. y = ax2 + bx + c, z = bx2 + ax + c.dy

dx= 2ax + b,

dz

dx= 2bx + a.

dy

dx=

dz

dxiff 2ax + b = 2bx + a. With a �= b, this occurs only at x =

12.

16. Set k(x) = f(x)g(x)h(x). Then k′(x) = f(x)g(x)h′(x) + f(x)g′(x)h(x) + f ′(x)g(x)h(x) and

k′(1) = (0)(2)(0) + (0)(−1)(−2) + (1)(2)(−2) = −4

SECTION 3.5

1. y = x4 + 2x2 + 1, y′ = 4x3 + 4x = 4x(x2 + 1)

y = (x2 + 1)2, y′ = 2(x2 + 1)(2x) = 4x(x2 + 1)

2. y = x6 − 2x3 + 1, y′ = 6x5 − 6x2 = 6x2(x3 − 1)

y = (x3 − 1)2, y′ = 2(x3 − 1)(3x2) = 6x2(x3 − 1)

3. y = 8x3 + 12x2 + 6x + 1, y′ = 24x2 + 24x + 6 = 6(2x + 1)2

y = (2x + 1)3, y′ = 3(2x + 1)2(2) = 6(2x + 1)2

4. y = x6 + 3x4 + 3x2 + 1, f ′(x) = 6x5 + 12x3 + 6x = 6x(x2 + 1)2

y = (x2 + 1)3, y′ = 3(x2 + 1)2(2x) = 6x(x2 + 1)2

5. y = x2 + 2 + x−2, y′ = 2x− 2x−3 = 2x(1 − x−4)

y = (x + x−1)2, y′ = 2(x + x−1)(1 − x−2) = 2x(1 + x−2)(1 − x−2) = 2x(1 − x−4)

6. y = 9x4 − 12x3 + 4x2, y′ = 36x3 − 36x2 + 8x = 4x(3x− 2)(3x− 1)

y = (3x2 − 2x)2, y′ = 2(3x2 − 2x)(6x− 2) = 4x(3x− 2)(3x− 1)

7. f ′(x) = −1(1 − 2x)−2 d

dx(1 − 2x) = 2(1 − 2x)−2

8. f ′(x) = 5(1 + 2x)4d

dx(1 + 2x) = 10(1 + 2x)4

9. f ′(x) = 20(x5 − x10)19d

dx(x5 − x10) = 20(x5 − x10)19(5x4 − 10x9)

10. f ′(x) = 3(x2 + x−2)2d

dx(x2 + x−2) = 6(x2 + x−2)2(x− x−3)

11. f ′(x) = 4(x− 1

x

)3d

dx

(x− 1

x

)= 4

(x− 1

x

)3 (1 +

1x2

)

12. f(t) = (1 + t)−4; f ′(t) = −4(1 + t)−5 d

dt(1 + t) = −4(1 + t)−5

13. f ′(x) = 4(x− x3 + x5)3d

dx(x− x3 + x5) = 4(x− x3 + x5)3(1 − 3x2 + 5x4)

14. f ′(t)= 3(t− t2)2d

dt(t− t2) = 3(t− t2)2(1 − 2t)

Page 25: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

SECTION 3.5 89

15. f ′(t)= 4(t−1 + t−2)3d

dt(t−1 + t−2) = 4(t−1 + t−2)3(−t−2 − 2t−3)

16. f ′(x) = 3(

4x + 35x− 2

)2d

dx

(4x + 35x− 2

)= 3

(4x + 35x− 2

)2 [(5x− 2)4 − (4x + 3)5

(5x− 2)2

]= − 69(4x + 3)2

(5x− 2)4

17. f ′(x) = 4(

3xx2 + 1

)3d

dx

(3x

x2 + 1

)= 4

(3x

x2 + 1

)3 [(x2 + 1)3 − 3x(2x)

(x2 + 1)2

]=

324x3(1 − x2)(x2 + 1)5

18. f ′(x) = 3[(2x + 1)2 + (x + 1)2

]2 d

dx

[(2x + 1)2 + (x + 1)2

]= 3

[(2x + 1)2 + (x + 1)2

]2 [2(2x + 1)(2) + 2(x + 1)(1)]

= 6[(2x + 1)2 + (x + 1)2

]2 (5x + 3)

19. f ′(x) = −(x3

3+

x2

2+

x

1

)−2d

dx

(x3

3+

x2

2+

x

1

)= −

(x3

3+

x2

2+ x

)−2

(x2 + x + 1)

20. f ′(x) = 2[(6x + x5)−1 + x]d

dx[(6x + x5)−1 + x] = 2[(6x + x5)−1 + x][1 − (6x + x5)−2(6 + 5x4)]

21.dy

dx=

dy

du

du

dx=

−2u(1 + u2)2

· (2)

At x = 0, we have u = 1 and thusdy

dx=

−44

= −1.

22.dy

dx=

dy

du

du

dx= (1 − u−2) · 4(3x + 1)3(3)

At x = 0, we have u = 1 and thusdy

dx= 0.

23.dy

dx=

dy

du

du

dx=

(1 − 4u)2 − 2u(−4)(1 − 4u)2

· 4(5x2 + 1)3(10x) =2

(1 − 4u)2· 40x(5x2 + 1)3

At x = 0, we have u = 1 and thusdy

dx=

29(0) = 0.

24.dy

dx=

dy

du

du

dx= (3u2 − 1) ·

( −2(1 + x)2

)

At x = 0, we have u = 1 and thusdy

dx= 2(−2) = −4.

25.dy

dt=

dy

du

du

dx

dx

dt=

(1 + u2)(−7) − (1 − 7u)(2u)(1 + u2)2

(2x)(2)

=7u2 − 2u− 7

(1 + u2)2(4x) =

4x(7x4 + 12x2 − 2)(x4 + 2x2 + 2)2

=4(2t− 5)[7(2t− 5)4 + 12(2t− 5)2 − 2]

[(2t− 5)4 + 2(2t− 5)2 + 2]2

26.dy

dt=

dy

du

du

dx

dx

dt= 2u

((1 + x2)(−7) − (1 − 7x)(2x)

(1 + x2)2

)(5)

= 10u · 7x2 − 2x− 7(1 + x2)2

=10[1 − 7(5t + 2)][7(5t + 2)2 − 2(5t + 2) − 7]

[1 + (5t + 2)2]2

Page 26: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

90 SECTION 3.5

27.dy

dx=

dy

ds

ds

dt

dt

dx= 2(s + 3) · 1

2√t− 3

· (2x)

At x = 2, we have t = 4 so that s = 1 and thusdy

dx= 2(4)

12 · 1(4) = 16.

28.dy

dx=

dy

ds

ds

dt

dt

dx=

2(1 − s)2

(1 +

1t2

)1

2√x

At x = 2, we have t =√

2 and s =√

2/2. Thusdy

dx=

2(1 −

√2/2)2

(1 +

12

)1

2√

2=

33√

2 − 4.

29. (f ◦ g)′(0) = f ′(g(0))g′(0) = f ′(2)g′(0) = (1)(1) = 1

30. (f ◦ g)′(1) = f ′(g(1))g′(1) = f ′(1)g′(1) = (1)(0) = 0

31. (f ◦ g)′(2) = f ′(g(2))g′(2) = f ′(2)g′(2) = (1)(1) = 1

32. (g ◦ f)′(0) = g′(f(0))f ′(0) = g′(1)f ′(0) = (0)(2) = 0

33. (g ◦ f)′(1) = g′(f(1))f ′(1) = g′(0)f ′(1) = (1)(1) = 1

34. (g ◦ f)′(2) = g′(f(2))f ′(2) = g′(1)f ′(2) = (0)(1) = 0

35. (f ◦ h)′(0) = f ′(h(0))h′(0) = f ′(1)h′(0) = (1)(2) = 2

36. (f ◦ h ◦ g)′(1) = f ′(h(g(1))) h′(g(1))g′(1) = f ′(2)h′(1)g′(1) = (1)(1)(0) = 0

37. (g ◦ f ◦ h)′(2) = g′(f(h(2))) f ′(h(2))h′(2) = g′(1)f ′(0)h′(2) = (0)(2)(2) = 0

38. (g ◦ h ◦ f)′(0) = g′(h(f(0))) h′(f(0))f ′(0) = g′(2)h′(1)f ′(0) = (1)(1)(2) = 2

39. f ′(x) = 4(x3 + x)3(3x2 + 1)

f ′′(x) = 3(4)(x3 + x)2(3x2 + 1)2 + 4(x3 + x)3(6x) = 12(x3 + x)2[(3x2 + 1)2 + 2x(x3 + x)]

40. f ′(x) = 10(x2 − 5x + 2)9(2x− 5)

f ′′(x) = 9(10)(x2 − 5x + 2)8(2x− 5)2 + 10(x2 − 5x + 2)9(2)

= (10)(x2 − 5x + 2)8[9(2x− 5)2 + 2(x2 − 5x + 2)

]

41. f ′(x) = 3(

x

1 − x

)2

· 1(1 − x)2

=3x2

(1 − x)4

f ′′(x) =6x(1 − x)4 − 3x2(4)(1 − x)3(−1)

(1 − x)8=

6x(1 + x)(1 − x)5

42. f ′(x) =1

2√x2 + 1

(2x) =x√

x2 + 1

Page 27: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

SECTION 3.5 91

f ′′(x) =

√x2 + 1(1) − x

x√x2 + 1(√

x2 + 1)2 =

1

(x2 + 1)3/2

43. 2xf ′(x2 + 1) 44. f ′(x− 1x + 1

)d

dx

(x− 1x + 1

)=

2(x + 1)2

f ′(x− 1x + 1

)

45. 2f(x)f ′(x) 46.[f(x) + 1]f ′(x) − [f(x) − 1]f ′(x)

[f(x) + 1]2=

2f ′(x)[f(x) + 1]2

47. f ′(x) = −4x(1 + x2)−3; (a) x = 0 (b) x < 0 (c) x > 0

48. f ′(x) = 2(1 − x2)(−2x) = −4x(1 − x2); (a) x = −1, 0, 1 (b) − 1 < x < 0, x > 1

(c) x < −1, 0 < x < 1

49. f ′(x) =1 − x2

(1 + x2)2; (a) x = ±1 (b) −1 < x < 1 (c) x < −1, x > 1

50. f ′(x) = (1 − x2)3 + x(3)(1 − x2)2(−2x) = (1 − x2)2(1 − 7x2);

(a) x = ±1, x = ± 17

√7 (b) − 1

7

√7 < x < 1

7

√7

(c) x < −1, −1 < x < − 17

√7, 1

7

√7 < x < 1, x > 1

51.n!

(1 − x)n+152.

(−1)n+1n!(1 + x)n+1

53. n! bn 54.(−1)nn! abn

(bx + c)n+1

55. y = (x2 + 1)3 + C 56. y =(x2 − 1)2

2+ C

57. y = (x3 − 2)2 + C 58. y =(x3 + 2)3

3+ C

59. L′(x) =1

x2 + 1· 2x =

2xx2 + 1

60. H ′(x) = 2f(x)f ′(x) − 2g(x)g′(x) = 2f(x)g(x) − 2g(x)f(x) = 0

61. T ′(x) = 2f(x) · f ′(x) + 2g(x) · g′(x) = 2f(x) · g(x) − 2g(x) · f(x) = 0

62. (a) Suppose f is even: [f(x)]′ = [f(−x)]′ = f ′(−x)(−1) = −f ′(−x); thus f ′(−x) = −f ′(x).

(b) Suppose f is odd: [f(x)]′ = −[f(−x)]′ = −f ′(−x)(−1) = f ′(−x); thus f ′(−x) = f ′(x).

63. Suppose P (x) = (x− a)2q(x), where q(a) �= 0. Then

P ′(x) = 2(x− a)q(x) + (x− a)2q′(x) and P ′′(x) = 2q(x) + 4(x− a)q′(x) + (x− a)2q′′(x),

and it follows that P (a) = P ′(a) = 0, and P ′′(a) �= 0.

Page 28: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

92 SECTION 3.5

Now suppose that P (a) = P ′(a) = 0 and P ′′(a) �= 0.

P (a) = 0 =⇒ P (x) = (x− a)g(x) for some polynomial g.

Then P ′(x) = g(x) + (x− a)g′(x) and

P ′(a) = 0 =⇒ g(a) = 0 and so g(x) = (x− a)q(x) for some polynomial q.

Therefore, P (x) = (x− a)2q(x). Finally, P ′′(a) �= 0 implies q(a) �= 0.

64. Suppose P (x) = (x− a)3q(x), where q(a) �= 0. Then

P ′(x) = 3(x− a)2q(x) + (x− a)3q′(x)

P ′′(x) = 6(x− a)q(x) + 6(x− a)2q′(x) + (x− a)3q′′(x)

P ′′′(x) = 6q(x) + 18(x− a)q′(x) + 9(x− a)2q′′(x) + (x− a)3q′′′(x)

and it follows that P (a) = P ′(a) = P ′′(a) = 0, P ′′′(a) �= 0.

Now suppose that P (a) = P ′(a) = P ′′(a) = 0 and P ′′′(a) �= 0.

P (a) = 0 =⇒ P (x) = (x− a)g(x) for some polynomial g.

Then P ′(x) = g(x) + (x− a)g′(x) and

P ′(a) = 0 =⇒ g(a) = 0 and so g(x) = (x− a)h(x) for some polynomial h.

Therefore, P (x) = (x− a)2h(x). Now P ′′(x) = 2h(x) + 4(x− a)h′(x) + (x− a)2h′′(x) and

P ′′(a) = 0 =⇒ h(a) = 0 and so h(x) = (x− a)q(x) for some polynomial q.

Therefore, P (x) = (x− a)3q(x). Finally, P ′′′(a) �= 0 implies q(a) �= 0.

65. Let P be a polynomial function of degree n. The number a is a root of P of multiplicity k, (k < n) if

and only if P (a) = P ′(a) = · · · = P (k−1)(a) = 0 and P (k)(a) �= 0.

66. A =√

34

x2, where x =2√

33

h. Now

dA

dh=

dA

dx

dx

dh=

√3

2x · 2

√3

3=

2√

33

h;dA

dh= 4 when h = 2

√3

67. V = 43 πr

3 anddr

dt= 2 cm/sec. By the chain rule,

dV

dt=

dV

dr

dr

dt= 4πr2 dr

dt= 8πr2.

At the instant the radius is 10 centimeters, the volume is increasing at the ratedV

dt= 8π(10)2 = 800π cm3/sec.

68. V = 43 πr

3, S = 4πr2, anddV

dt= 200.

dS

dt=

dS

dr· dr

dV· dVdt

= 8πr · 14πr2

· 200

Page 29: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

SECTION 3.5 93

=400r

= 80 when r = 5

The surface area is increasing 80 cm2/sec. at the instant the radius is 5 centimeters.

69. (a)dF

dt=

dF

dr· drdt

=2kr3

· (49 − 9.8t) =2k

(49t− 4.9t2)3(49 − 9.8t), 0 ≤ t ≤ 10

(b)dF

dt(3) =

2k(102.9)3

(19.6);dF

dt(7) = − 2k

(102.9)3(19.6).

70. (a) f(9) = −2, f ′(9) = − 112 ; tangent T : y = − 1

12x− 54 .

(b)

2 4 6 8 10x

-2

-1

y

f

T

(c) (7.4, 10.8)

71. (a) f(1) = 12 , f ′(1) = − 1

2 ; tangent T : y = − 12x + 1.

(b)

1 2x

1

y

f

T

(c) (0.8, 1.2)

72.d

dx

[x2 d4

dx4

(x2 + 1

)4]

= 288(35x5 + 20x3 + x

)

73. (a)d

dx

[f

(1x

)]= −f ′(1/x)

x2(b)

d

dx

[f

(x2 − 1x2 + 1

)]=

4x f ′ [(x2 − 1)/(x2 + 1)]

(1 + x2)2

(c)d

dx

[f(x)

1 + f(x)

]=

f ′(x)[1 + f(x)]2

74. (a)d

dx[u1 (u2(x))] = u′

1 (u2(x))u′2(x) (b)

d

dx[u1 (u2(u3(x)))] = u′

1 [u2(u3(x)]u′2 (u3(x))

u′3(x)

(c)d

dx[u1 (u2[u3(u4(x))])] = u′

1 [u2(u3[u4(x)])]u′2 (u3[u4(x)])u′

3[u4(x)]u′4(x)

75.d2

dx2[f(g(x))] = [g′(x)]2 f ′′[g(x)] + f ′[g(x)]g′′(x)

Page 30: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

94 SECTION 3.6

SECTION 3.6

1.dy

dx= −3 sinx− 4 secx tanx 2.

dy

dx= 2x secx + x2 secx tanx

3.dy

dx= 3x2 cscx− x3 cscx cotx 4.

dy

dx= 2 sinx cosx

5.dy

dt= −2 cos t sin t 6.

dy

dt= 6t tan t + 3t2 sec2 t

7.dy

du= 4 sin3

√u

d

du(sin

√u ) = 4 sin3

√u cos

√u

d

du(√u ) = 2u−1/2 sin3

√u cos

√u

8.dy

du= cscu2 − 2u2 cscu2 cotu2 9.

dy

dx= sec2 x2 d

dx(x2) = 2x sec2 x2

10.dy

dx= − 1

2√x

sin√x 11.

dy

dx= 4[x + cotπx]3[1 − π csc2 πx]

12.dy

dx= 3(x2 − sec 2x)2(2x− 2 sec 2x tan 2x) = 6(x2 − sec 2x)2(x− sec 2x tan 2x)

13.dy

dx= cosx,

d2y

dx2= − sinx 14.

dy

dx= − sinx,

d2y

dx2= − cosx

15.dy

dx=

(1 + sinx)(− sinx) − cosx (cosx)(1 + sinx)2

=− sinx− (sin2 x + cos2 x)

(1 + sinx)2= −(1 + sinx)−1

d2y

dx2= (1 + sinx)−2 d

dx(1 + sinx) = cosx (1 + sinx)−2

16.dy

dx= 3 tan2(2πx) sec2(2πx)(2π) = 6π tan2(2πx) sec2(2πx)

d2y

dx2= 6π(2) tan(2πx) sec2(2πx) sec2(2πx)(2π) + 6π tan2(2πx)(2) sec(2πx)[sec(2πx) tan(2πx)](2π)

= 24π2 tan(2πx) sec2(2πx)[sec2(2πx) + tan2(2πx)]

17.dy

du= 3 cos2 2u

d

du(cos 2u) = −6 cos2 2u sin 2u

d2y

du2= −6[cos2 2u

d

du(sin 2u) + sin 2u

d

du(cos2 2u)]

= −6[2 cos3 2u + sin 2u (−4 cos 2u sin 2u)] = 12 cos 2u [2 sin2 2u− cos2 2u]

18.dy

dt= 5 sin4(3t) cos(3t)(3) = 15 sin4(3t) cos(3t)

d2y

dt2= 15(4) sin3(3t) 3 cos2(3t) + 15 sin4(3t)[−3 sin(3t)] = 45 sin3(3t)[4 cos2(3t) − sin2(3t)]

19.dy

dt= 2 sec2 2t,

d2y

dt2= 4 sec 2t

d

dt(sec 2t) = 8 sec2 2t tan 2t

Page 31: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

SECTION 3.6 95

20.dy

du= −4 csc2 4u;

d2y

du2= −4(2) csc(4u)[− csc(4u) cot(4u)(4)] = 32 csc2(4u) cot(4u)

21.dy

dx= x2(3 cos 3x) + 2x sin 3x

d2y

dx2= [x2(−9 sin 3x) + 2x(3 cos 3x)] + [2x(3 cos 3x) + 2(sin 3x)]

= (2 − 9x2) sin 3x + 12x cos 3x

22.dy

dx=

(1 − cosx) cosx− sinx (−[− sinx])(1 − cosx)2

=cosx− 1

(1 − cosx)2=

−11 − cosx

d2y

dx2= sinx(1 − cosx)−2

23. y = sin2 x + cos2 x = 1 sody

dx=

d2y

dx2= 0

24. y = sec2 x− tan2 x = 1 sody

dx=

d2y

dx2= 0

25.d4

dx4(sinx) =

d3

dx3(cosx) =

d2

dx2(− sinx) =

d

dx(− cosx) = sinx

26.d4

dx4(cosx) =

d3

dx3(− sinx) =

d2

dx2(− cosx) =

d

dx(sinx) = cosx

27.d

dt

[t2

d2

dt2(t cos 3t)

]=

d

dt

[t2

d

dt(cos 3t− 3t sin 3t)

]

=d

dt[t2(−3 sin 3t− 3 sin 3t− 9t cos 3t)]

=d

dt[−6t2 sin 3t− 9t3 cos 3t]

= (−18t2 cos 3t− 12t sin 3t) + (27t3 sin 3t− 27t2 cos 3t)

= (27t3 − 12t) sin 3t− 45t2 cos 3t

28.d

dt

[td

dt(cos t2)

]=

d

dt

[−t sin t2(2t)

]=

d

dt

[−2t2 sin t2

]= −4t sin t2 − 2t2 cos t2(2t) = −4t(sin t2 + t2 cos t2)

29.d

dx[f(sin 3x)] = f ′(sin 3x)

d

dx(sin 3x) = 3 cos 3xf ′(sin 3x)

30.d

dx[sin f(3x)] = cos[f(3x)]f ′(3x)(3) = 3f ′(3x) cos[f(3x)]

31.dy

dx= cosx; slope of tangent at (0, 0) is 1; tangent: y = x.

Page 32: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

96 SECTION 3.6

32.dy

dx= sec2 x; slope of tangent at (π/6,

√3/3) is sec2(π/6) = 4/3;

tangent: y − 13

√3 = 4

3

(x− 1

6π)

33.dy

dx= − csc2 x; slope of tangent at (

π

6,√

3) is −4, an equation for

tangent: y −√

3 = −4(x− π

6).

34.dy

dx= − sinx; slope of tangent at (0, 1) is 0; tangent: y = 1.

35.dy

dx= secx tanx, slope of tangent at (

π

4,√

2) is√

2, an equation for

tangent is y −√

2 =√

2(x− π

4).

36.dy

dx= − cscx cotx, slope of tangent at (π/3, 2

√3/3) is − 2/3;

tangent: y − 23

√3 = − 2

3

(x− 1

3π).

37.dy

dx= − sinx; x = π 38.

dy

dx= cosx; x = 1

2π, x = 32π

39.dy

dx= cosx−

√3 sinx;

dy

dx= 0 gives tanx =

1√3; x =

π

6,

7π6

40.dy

dx= − sinx−

√3 cosx;

dy

dx= 0 gives tanx = −

√3; x =

2π3,

5π3

41.dy

dx= 2 sinx cosx = sin 2x; x =

π

2, π,

3π2

42.dy

dx= −2 sinx cosx = − sin 2x; x =

π

2, π,

3π2

43.dy

dx= sec2 x− 2;

dy

dx= 0 gives secx = ±

√2; x =

π

4,

3π4,

5π4,

7π4

44.dy

dx= −3 csc2 x + 4;

dy

dx= 0 gives cscx = ± 2√

3; x =

π

3,

2π3,

4π3,

5π3

45.dy

dx= 2 secx tanx + sec2 x; since secx is never zero,

dy

dx= 0 gives

2 tanx + secx = 0 so that sinx = −1/2; x =7π6,

11π6

46.dy

dx= − csc2 x + 2 cscx cotx; since cscx is never zero,

dy

dx= 0 gives

2 cotx− cscx = 0 so that cosx = 1/2; x =π

3,

5π3

Page 33: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

SECTION 3.6 97

47. f(x) = x + 2 cos x, f ′(x) = 1 − 2 sin x.

(a) xf ′(x) = 0 : 1 − 2 sin x = 0, sin x = 1/2, x = π/6, 5π/6.

f ′:0 π

65 π6

2 π

-+ +

(b) f ′(x) > 0 on (0, π/6) ∪ (5π/6, 2π), (c) f ′(x) < 0 on (π/6, 5π/6).

48. f(x) = x−√

2 sin x, f ′(x) = 1 −√

2 cos x.

(a) f ′(x) = 0 : 1 −√

2 cos x = 0, cos x =√

2/2, x = π/4, 7π/4.

f ′:0 π

47 π4

+−

(b) f ′(x) > 0 on (π/4, 7π/4), (c) f ′(x) < 0 on (0, π/4) ∪ (7π/4, 2π).

49. f(x) = sin x + cos x, f ′(x) = cos x− sin x.

(a) f ′(x) = 0 : cos x− sin x = 0, cos x = sin x, x = π/4, 5π/4.

f ′: 0 π4

5 π4

2 π

-+ +

(b) f ′(x) > 0 on (0, π/4) ∪ (5π/4, 2π), (c) f ′(x) < 0 on (π/4, 5π/4).

50. f(x) = sin x− cos x, f ′(x) = cos x + sin x.

(a) f ′(x) = 0 : cos x + sin x = 0, cos x = − sin x, x = 3π/4, 7π/4.

f ′: 0 3 π4

7

+-+

π4

2 π

(b) f ′(x) > 0 on (0, 3π/4) ∪ (7π/4, 2π), (c) f ′(x) < 0 on (3π/4, 7π/4).

51. (a)dy

dt=

dy

du

du

dx

dx

dt= (2u)(secx tanx)π = 2π sec2 πt tanπt

(b) y = sec2 πt− 1,dy

dt= 2 secπt (secπt tanπt)π = 2π sec2 πt tanπt

52. (a)dy

dt=

dy

du

du

dx

dx

dt= 3

[12(1 + u)

]2 (12

)(− sinx)(2) = 3

[12(1 + cos 2t)

]2

(− sin 2t)

= 3(cos4 t)(−2 sin t cos t) = −6 cos5 t sin t

(b) y =[12(1 + cos 2t)

]3

= cos6 t;dy

dt= 6 cos5 t(− sin t) = −6 cos5 t sin t

53. (a)dy

dt=

dy

du

du

dx

dx

dt= 4

[12(1 − u)

]3 (−1

2

)(− sinx)(2) = 4

[12(1 − cos 2t)

]3

sin 2t

= 4 sin6 t (2 sin t cos t) = 8 sin7 t cos t

Page 34: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

98 SECTION 3.6

(b) y =[12(1 − cos 2t)

]4

= sin8 t,dy

dt= 8 sin7 t cos t

54. (a)dy

dt=

dy

du

du

dx

dx

dt= (−2u)(− cscx cotx)(3) = (−2 csc(3t)(− csc(3t) cot(3t)3

= 6 csc2(3t) cot(3t)

(b) y = 1 − csc2(3t);dy

dt= −2 csc(3t)[− csc(3t) cot(3t)](3) = 6 csc2(3t) cot(3t)

55.dn

dxn(cosx) =

{(−1)(n+1)/2 sinx, n odd

(−1)n/2 cosx, n even

56. (a)d

dx(cotx) =

d

dx

(cosxsinx

)=

sinx(− sinx) − cosx(cosx)sin2 x

=−1

sin2 x= − csc2 x

(b)d

dx(secx) =

d

dx

(1

cosx

)=

−1cos2 x

(− sinx) =1

cosx· sinx

cosx= secx tanx

(c)d

dx(cscx) =

d

dx

(1

sinx

)=

−1sin2 x

(cosx) =−1

sinx· cosx

sinx= − cscx cotx

57.d

dx(cosx) =

d

dx

[sin

2− x

)]= − cos

2− x

)= − sinx

58. Differentiating both sides, 2 cos 2x = 2(cos2 x− sin2 x). Thus cos 2x = cos2 x− sin2 x.

59. f ′(0) = limh→0

sin(0 + h) − sin 0h

= limh→0

sinh

h= lim

x→0

sinx

x

60. f ′(0) = limh→0

cos(0 + h) − cos 0h

= limh→0

cosh− 1h

= limx→0

cosx− 1x

61. f(x) = 2 sinx + 3 cosx + C 62. f(x) = tanx + cotx + C

63. f(x) = sin 2x + secx + C 64. f(x) =− cos 3x

3+

csc 2x2

+ C

65. f(x) = sin(x2) + cos 2x + C 66. f(x) =tan(x3)

3+ sec 2x + C

67. (a) f ′(x) = sin(1/x) + x cos(1/x)(−1/x2)

= sin(1/x) − (1/x) cos(1/x)

g′(x) = 2x sin(1/x) + x2 cos(1/x)(−1/x2)

= 2x sin(1/x) − cos(1/x)

(b) limx→0

g′(x) = limx→0

[2x sin(1/x) − cos(1/x)] = − limx→0

cos(1/x) does not exist

Page 35: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

SECTION 3.6 99

68. (a) f must be continuous at 0:

limx→0+

f(x) = limx→0+

cosx = 1, limx→0−

f(x) = limx→0−

(ax + b) = b; thus b = 1

Differentiable at 0 :

limh→0+

f(h) − f(0)h

= limh→0+

cosh− 1h

= 0,

limh→0−

f(h) − f(0)h

= limh→0+

ah + 1 − 1h

= a

Therefore, f is differentiable at 0 if a = 0 and b = 1.

(b)

1x

1

y

f

69. (a) Continuity:

limx→2π/3−

sinx =√

32

, limx→2π/3+

(ax + b) =2πa3

+ b; thus2πa3

+ b =√

32

Differentiability:

limx→2π/3−

cosx = − 12, lim

x→2π/3+(a) = a; thus a = − 1

2

Therefore, f is differentiable at 2π/3 if a = − 12 and b = 1

2

√3 + 1

(b)

2π3

x

1 g

y

70. (a) Continuity:

limx→π/3−

(1 + a cos x) = 1 + 12 a, lim

x→π/3+[b + sin (x/2)] = b + 1

2 which implies b = 12 + 1

2 a.

Differentiability:

limx→π/3−

(−a sin x) = − 12

√3 a, lim

x→π/3+[ 12 cos (x/2)] = 1

4

√3 which implies a = − 1

2 .

Therefore, f is differentiable at π/3 if a = − 12 and b = 1

4 .

Page 36: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

100 SECTION 3.6

(b)

π3

x

1f

y

71. Let y(t) = A sinωt + B cosωt. Then

y′(t) = ωA cosωt− ωB sinωt and y′′(t) = −ω2A sinωt− ω2B cosωt

Thus,

d2y

dt2+ ω2y = 0.

72. (a) θ = a sin(ωt + φ); θ′ = aω cos(ωt + φ); θ′′ = −aω2 sin(ωt + φ)

Thus, θ satisfies the equation.

(b)

θ = a sin(ωt + φ0)

= a sin(ωt) cosφ0 − a cos(ωt) sinφ0

= A sin(ωt) + B cos(ωt) where A = −a sinφ0, B = a cosφ0

73. A = 12 c

2 sinx;dA

dx=

12c2 cosx

74. c =√a2 + b2 − 2ab cosx;

dc

dx=

12√a2 + b2 − 2ab cosx

(2ab sinx) =ab sinx√

a2 + b2 − 2ab cosx

75. (a) f (4p)(x) = k4p cos kx, f (4p+1)(x) = −k4p+1 sin kx, f (4p+2)(x) = −k4p+2 cos kx,

f (4p+3)(x) = k4p+3 sin kx, p = 0, 1, 2, . . .

(b) m = k2, k = 1, 2, 3, . . .

76. f(x) = A cos√

2x + B sin√

2x; f ′(x) = −A√

2 sin√

2x + B√

2 cos√

2x

f(0) = 2 =⇒ A = 2; f ′(0) = −3 =⇒ B = − 3√2

= −3√

22

77. f has horizontal at the points with x-coordinate 12π,

32π,

∼= 3.39, ∼= 6.03

78. f(x) = sinx− sin2 x has horizontal tangents at:(π6 ,

14

),

(π2 , 0

),

(5π6 , 1

4

),

(3π2 ,−2

)79. f(x) = sin x, f ′(x) = cos x; f(0) = 0, f ′(0) = 1. Therefore an equation for the tangent line T is

y = x.

Page 37: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

SECTION 3.7 101

The graphs of f and T are:

π2

x

-1

-

1f

T

π2

y

| sin x− x| < 0.01 on (−0.39, 0.39).

80. f(x) = tan x, f ′(x) = sec2 x; f(π/4) = 1, f ′(π/4) = 2. Therefore an equation for the tangent line

T is y = 2x + 1 − 12π.

The graphs of f and T are:

π4 2

x

-1

1

y

f

T

π

| tan x− (2x + 1 − 12π)| < 0.01 on (0.712, 0.852).

SECTION 3.7

1. x2 + y2 = 4

2x + 2ydy

dx= 0

dy

dx=

−x

y

2. x3 + y3 − 3xy = 0

3x2 + 3y2 dy

dx− 3

(y + x

dy

dx

)= 0

dy

dx=

y − x2

y2 − x

3. 4x2 + 9y2 = 36

8x + 18ydy

dx= 0

dy

dx=

−4x9y

4.√x +

√y = 4

12√x

+1

2√y

dy

dx= 0

dy

dx= −

√y√x

5. x4 + 4x3y + y4 = 1

4x3 + 12x2y + 4x3 dy

dx+ 4y3 dy

dx= 0

dy

dx= −x3 + 3x2y

x3 + y3

Page 38: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

102 SECTION 3.7

6. x2 − x2y + xy2 + y2 = 1

2x− 2xy − x2 dy

dx+ y2 + 2xy

dy

dx+ 2y

dy

dx= 0

dy

dx=

2xy − 2x− y2

2xy + 2y − x2

7. (x− y)2 − y = 0

2(x− y)(

1 − dy

dx

)− dy

dx= 0

dy

dx=

2(x− y)2(x− y) + 1

8. (y + 3x)2 − 4x = 0

2(y + 3x)(dy

dx+ 3

)− 4 = 0

dy

dx= −3 +

2y + 3x

9. sin (x + y) = xy

cos (x + y)(

1 +dy

dx

)= x

dy

dx+ y

dy

dx=

y − cos (x + y)cos (x + y) − x

10. tanxy = xy; sec2(xy)(y + x

dy

dx

)= y + x

dy

dx;

dy

dx= − y

x

11. y2 + 2xy = 16

2ydy

dx+ 2x

dy

dx+ 2y = 0

(x + y)dy

dx+ y = 0.

Differentiating a second time, we have

(x + y)d2y

dx2+

dy

dx

(2 +

dy

dx

)= 0.

Substitutingdy

dx=

−y

x + y, we have

(x + y)d2y

dx2− y

(x + y)

(2x + y

x + y

)= 0,

d2y

dx2=

2xy + y2

(x + y)3=

16(x + y)3

.

12. x2 − 2xy + 4y2 = 3

2x− 2y − 2xdy

dx+ 8y

dy

dx= 0

x− y + (4y − x)dy

dx= 0.

Page 39: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

SECTION 3.7 103

Differentiating a second time, we have

1 − dy

dx+

(4dy

dx− 1

)dy

dx+ (4y − x)

d2y

dx2= 0.

Substitutingdy

dx=

y − x

4y − x, we have

d2y

dx2= − 3(x2 − 2xy + 4y2)

(4y − x)3=

−9(4y − x)3

.

13. y2 + xy − x2 = 9

2ydy

dx+ x

dy

dx+ y − 2x = 0.

Differentiating a second time, we have[2

(dy

dx

)2

+ 2yd2y

dx2

]+

[xd2y

dx2+

dy

dx

]+

dy

dx− 2 = 0

(2y + x)d2y

dx2+ 2

[(dy

dx

)2

+dy

dx− 1

]= 0.

Substitutingdy

dx=

2x− y

2y + x, we have

(2y + x)d2y

dx2+ 2

[(2x− y)2 + (2x− y)(2y + x) − (2y + x)2

(2y + x)2

]= 0

d2y

dx2=

10(y2 + xy − x2)(2y + x)3

=90

(2y + x)3.

14. x2 − 3xy = 18

2x− 3y − 3xdy

dx= 0.

Differentiating a second time, we have

2 − 3dy

dx− 3

dy

dx− 3x

d2y

dx2= 0

Substitutingdy

dx=

2x− 3y3x

, we have

d2y

dx2= − 6(x− 3y)

9x2= − 6(x2 − 3xy)

9x3= − 6(18)

9x3= − 12

x3

15. 4 tan y = x3

4 sec2 ydy

dx= 3x2

dy

dx=

34x2 cos2 y

d2y

dx2=

32x cos2 y +

34x2

(2 cos y(− sin y)

dy

dx

)

=32x cos2 y − 9

8x4 sin y cos3 y

Page 40: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

104 SECTION 3.7

16. sin2 x + cos2 y = 1

2 sinx cosx− 2 cos y sin ydy

dx= 0

sin 2x− sin 2ydy

dx= 0

dy

dx=

sin 2xsin 2y

d2y

dx2=

sin 2y(cos 2x)2 − sin 2x(cos 2y)2dy

dxsin2 2y

Substitutingdy

dx=

sin 2xsin 2y

and using the double angle formulas, we find that

d2y

dx2=

8[cos2 x cos2 y(sin2 y − sin2 x) − sin2 x sin2 y(cos2 y − cos2 x)

]sin3 2y

= 0

since sin2 x = sin2 y and cos2 x = cos2 y from the original equation.

17. x2 − 4y2 = 9, 2x− 8ydy

dx= 0.

At (5, 2), we getdy

dx=

58. Then,

2 − 8

[yd2y

dx2+

(dy

dx

)2]

= 0.

At (5, 2) we get

2 − 8[2d2y

dx2+

2564

]= 0 so that

d2y

dx2= − 9

128.

18. x2 + 4xy + y3 + 5 = 0, 2x + 4y + 4xdy

dx+ 3y2 dy

dx= 0.

At (2, −1), we get 4 − 4 + 8dy

dx+ 3

dy

dx= 0 so

dy

dx= 0. Differentiating again,

2 + 4dy

dx+ 4

dy

dx+ 4x

d2y

dx2+ 6y

(dy

dx

)2

+ 3y2 d2y

dx2= 0

At (2, −1) we get 2 + 11d2y

dx2= 0 so

d2y

dx2= − 2

11

19. cos (x + 2y) = 0 − sin (x + 2y)(

1 + 2dy

dx

)= 0.

At (π/6, π/6), we getdy

dx= −1/2. Then,

− cos (x + 2y)(

1 + 2dy

dx

)2

− sin (x + 2y)(

2d2y

dx2

)= 0.

At (π/6, π/6), we get

− cosπ

2(0)2 − sin

π

2

(2d2y

dx2

)= 0 so that

d2y

dx2= 0.

Page 41: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

SECTION 3.7 105

20. x = sin2 y 1 = 2 sin y cos ydy

dx= sin 2y

dy

dx.

At (1/2, π/4), we getdy

dx= 1. Differentiating again,

0 = 2 cos 2y(dy

dx

)2

+ sin 2yd2y

dx2.

At (1/2, π/4), we getd2y

dx2= 0.

21. 2x + 3y = 5

2 + 3dy

dx= 0

slope of tangent at (−2, 3) : −2/3

tangent: y − 3 = − 23 (x + 2)

normal: y − 3 = 32 (x + 2)

22. 9x2 + 4y2 = 72

18x + 8ydy

dx= 0

slope of tangent at (2, 3) : − 32

tangent: y − 3 = − 32 (x− 2)

normal: y − 3 = 23 (x− 2)

23. x2 + xy + 2y2 = 28

2x + xdy

dx+ y + 4y

dy

dx= 0

slope of tangent at (−2,−3) : −1/2

tangent: y + 3 = − 12 (x + 2)

normal: y + 3 = 2(x + 2)

24. x3 − axy + 3ay2 = 3a3

3x2 − ay − axdy

dx+ 6ay

dy

dx= 0

slope of tangent at (a, a) : − 25

tangent: y − a = − 25 (x− a)

normal: y − a = 52 (x− a)

25. x = cos ydy

dx

1 = − sin ydy

dx

slope of tangent at(

12,π

3

):

−2√3

tangent: y − π

3= − 2√

3

(x− 1

2

)

normal: y − π

3=

√3

2

(x− 1

2

)

26. tanxy = x

sec2(xy)(y + x

dy

dx

)= 1

slope of tangent at (1, π/4) :2 − π

4

tangent: y − π

4=

2 − π

4(x− 1)

normal: y − π

4= − 4

2 − π(x− 1)

27.dy

dx=

12(x3 + 1)−1/2 d

dx(x3 + 1) =

32x2(x3 + 1)−1/2 28.

dy

dx= 1

3 (x + 1)−2/3

29.dy

dx=

14(2x2 + 1)−3/4 d

dx(2x2 + 1) = x(2x2 + 1)−3/4

30.dy

dx= 1

3 (x + 1)−2/3(x + 2)2/3 + (x + 1)1/3(

23

)(x + 2)−1/3 =

3x + 43(x + 1)2/3(x + 2)1/3

31.dy

dx=

√2 − x2

[ −x√3 − x2

]+

√3 − x2

[ −x√2 − x2

]=

x(2x2 − 5)√2 − x2

√3 − x2

32.dy

dx= 3

2 (x4 − x + 1)1/2(4x3 − 1) = 32

√x4 − x + 1 (4x3 − 1)

Page 42: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

106 SECTION 3.7

33.d

dx

(√x +

1√x

)=

d

dx(x1/2 + x−1/2) =

12x−1/2 − 1

2x−3/2 =

12x−3/2(x− 1)

34.d

dx

(√3x + 12x + 5

)=

12

(3x + 12x + 5

)−1/2 ((2x + 5)3 − (3x + 1)2

(2x + 5)2

)=

132(2x + 5)2

√2x + 53x + 1

35.d

dx

(x√

x2 + 1

)=

d

dx

(x(x2 + 1)−1/2

)= x

(−1

2(x2 + 1)−3/2(2x)

)+ (x2 + 1)−1/2 = (x2 + 1)−3/2

36.d

dx

(√x2 + 1x

)=

x(

12

)(x2 + 1)−1/2(2x) − (x2 + 1)1/2

x2=

x2

√x2 + 1

−√x2 + 1

x2=

−1x2

√x2 + 1

37. (a) (b) (c)

38. y = (a2 + x2)1/2;dy

dx=

12(a2 + x2)−1/2(2x) = x(a2 + x2)−1/2;

d2y

dx2= (a2 + x2)−1/2 − 1

2x(a2 + x2)−3/2(2x) =

a2

(a2 + x2)3/2

39. y = (a + bx)1/3;dy

dx=

b

3(a + bx)−2/3;

d2y

dx2=

−2b2

9(a + bx)−5/3

40. y = x(a2 − x2)1/2;dy

dx= (a2 − x2)1/2 + 1

2 x(a2 − x2)−1/2(−2x) = (a2 − x2)1/2 − x2(a2 − x2)−1/2

d2y

dx2= 1

2 (a2 − x2)−1/2(−2x) − 2x(a2 − x2)−1/2 − x2(− 1

2

)(a2 − x2)−3/2(−2x) =

x(2x2 − 3a2)(a2 − x2)3/2

41. y =√x tan

√x;

dy

dx=

12√x

tan√x +

√x sec2

√x

(1

2√x

)=

12√x

tan√x +

12

sec2√x

d2y

dx2=

2√x sec2

√x (1/2

√x) − tan

√x(1/

√x)

4x+ sec

√x sec

√x tan

√x(1/2

√x)

=√x sec2

√x− tan

√x + 2x sec2

√x tan

√x

4x√x

42. y =√x sin

√x;

dy

dx=

12√x

sin√x +

√x cos

√x

(1

2√x

)=

12√x

sin√x +

12

cos√x

Page 43: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

SECTION 3.7 107

d2y

dx2=

2√x cos

√x(1/2

√x) − sin

√x(1/

√x)

4x− 1

2sin

√x(1/2

√x)

=√x cos

√x− sin

√x

4x3/2− sin

√x

4√x

43. Differentiation of x2 + y2 = r2 gives 2x + 2ydy

dx= 0 so that the slope of the normal line is

−1dy/dx

=y

x(x �= 0).

Let (x0, y0) be a point on the circle. Clearly, if x0 = 0, the normal line, x = 0, passes through the

origin. If x0 �= 0, the normal line is

y − y0 =y0

x0(x− x0), which simplifies to y =

y0

x0x,

a line through the origin.

44. y2 = x; 2ydy

dx= 1;

dy

dx=

12y

When x = a, y = ±√a.

Slope of tangent at (a,√a) :

12√a

Equation of tangent line: y −√a =

12√a(x− a)

x-intercept: −√a =

12√a(x− a) =⇒ x = −a

Slope of tangent at (a,−√a) : − 1

2√a

Equation of tangent line: y +√a = − 1

2√a(x− a)

x-intercept:√a = − 1

2√a(x− a) =⇒ x = −a

45. For the parabola y2 = 2px + p2, we have 2ydy

dx= 2p and the slope of a tangent is given by m1 = p/y.

For the parabola y2 = p2 − 2px, we obtain m2 = −p/y as the slope of a tangent. The parabolas

intersect at the points (0, ±p). At each of these points m1m2 = −1; the parabolas intersect at right

angles.

46. For y = 2x, the slope is m1 = 2. For x2 − xy + 2y2 = 28, we have

2x− y − xdy

dx+ 4y

dy

dx= 0 so

dy

dx= m2 =

y − 2x4y − x

At a point of intersection of the line and the curve, we have m2 = 0 since y = 2x. Thus

tanα = | −m1| = 2 =⇒ α ∼= 1.107(radians) ∼= 63.4◦

Page 44: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

108 SECTION 3.7

47. For y = x2 we have m1 =dy

dx= 2x; for x = y3 we have 3y2 dy

dx= 1 or m2 =

dy

dx= 1/3y2.

At (1, 1), m1 = 2, m2 = 1/3 and

tanα =∣∣∣∣ m1 −m2

1 −m1m2

∣∣∣∣ =∣∣∣∣ 2 − (1/3)1 + 2(1/3)

∣∣∣∣ = 1 ⇒ α =π

4

At (0, 0), m1 = 0 and m2 is undefined. Thus α = π/2.

48. (x− 1)2 + y2 = 10; 2(x− 1) + 2ydy

dx= 0, m1 =

dy

dx= − x− 1

y

x2 + (y − 2)2 = 5; 2x + 2(y − 2)dy

dx= 0, m2 =

dy

dx= − x

y − 2

The circles intersect at the points (−2, 1) and (2, 3).

At (−2, 1) : m1 = 3, m2 = −2 and tanα =∣∣∣∣ 3 + 21 + (3)(−2)

∣∣∣∣ = 1. Thus α =π

4.

At (2, 3) : m1 = −1/3, m2 = −2 and tanα =∣∣∣∣ (−1/3) + 21 + (−1/3)(−2)

∣∣∣∣ = 1. Thus α =π

4.

49. The hyperbola and the ellipse intersect at the points (±3,±2). For the hyperbola,dy

dx=

x

yand for

the ellipsedy

dx= − 4x

9y. The product of these slopes is − 4x2

9y2. This product is −1 at each of the points

of intersection. Therefore the hyperbola and ellipse are orthogonal.

50. The curves intersect at the points (±1, 1). For the ellipse,dy

dx= − 3x

2yand for y3 = x2 we have

dy

dx=

2x3y2

. The product of these slopes is − 6x2

6y3= − x2

y3. This product is −1 at each of the points of

intersection. Therefore the curves are orthogonal.

51. For the circles,dy

dx= − x

y, y �= 0, and for the straight lines,

dy

dx= m =

y

x, x �= 0. Since the product

of the slopes is −1, it follows that the two families are orthogonal trajectories.

52. For the parabolas, m1 =dy

dx=

12ay

, y �= 0, and for the ellipses, m2 =dy

dx= − 2x

y, y �= 0. Let (x0, y0)

be a point of intersection of a parabola and an ellipse. Then

m1 ·m2 =1

2ay0·(− 2x0

y0

)= − x0

ay20

= −1 since x0 = ay20 .

53. The line x + 2y + 3 = 0 has slope m = −1/2. Thus, a line perpendicular to this line will have slope 2. A

tangent line to the ellipse 4x2 + y2 = 72 has slope m =dy

dx= − 4x

y. Setting − 4x

y= 2 gives y = −2x.

Page 45: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

SECTION 3.7 109

Substituting into the equation for the ellipse, we have

4x2 + 4x2 = 72 ⇒ 8x2 = 72 ⇒ x = ±3

It now follows that y = ∓6 and the equations of the tangents are:

at (3,−6) : y + 6 = 2(x− 3) or y = 2x− 12;

at (−3, 6) : y − 6 = 2(x + 3) or y = 2x + 12.

54. The line 2x + 5y − 4 = 0 has slope m = −2/5. A tangent line to the hyperbola 4x2 − y2 = 36 has slope

dy

dx=

4xy. Therefore a normal line to the hyperbola will have slope m = − y

4x. Setting − y

4x= − 2

5

gives y = 8x/5. Substituting this into the equation for the hyperbola, we have

4x2 − 6425

x2 = 36 =⇒ x = ±5

It now follows that y = 8 when x = 5 and y = −8 when x = −5. The equations of the normals are:

at (5, 8) : y − 8 = − 25 (x− 5) or y = − 2

5x + 10;

at (−5,−8) : y + 8 = − 25 (x + 5) or y = − 2

5x− 10.

55. Differentiate the equation (x2 + y2)2 = x2 − y2 implicitly with respect to x :

2(x2 + y2)(

2x + 2ydy

dx

)= 2x− 2y

dy

dx

Now set dy/dx = 0. This gives

2x(x2 + y2) = x

x2 + y2 =12

(x �= 0)

Substituting this result into the original equation, we get

x2 − y2 =14

Nowx2 + y2 = 1/2

x2 − y2 = 1/4⇒ x = ±

√6

4, y = ±

√2

4

Thus, the points on the curve at which the tangent line is horizontal are:

(√

6/4,√

2/4), (√

6/4,−√

2/4), (−√

6/4,√

2/4), (−√

6/4,−√

2/4).

56. (a) x2/3 + y2/3 = a2/3; 23x

−1/3 + 23y

−1/3 dy

dx= 0, and

dy

dx= −

(y

x

)1/3

Thus, the slope at (x1, y1), x1 �= 0 is: m = −(y1

x1

)1/3

(b) m = 0 : −(y1

x1

)1/3

= 0 =⇒ y1 = 0 and x1 = ± a; (a, 0), (−a, 0)

Page 46: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

110 SECTION 3.7

m = 1 : −(y1

x1

)1/3

= 1 =⇒ y1 = −x1 and x1 = ± 14 a

√2;

(14a√

2,− 14a√

2),

(− 1

4a√

2,14a√

2)

m = −1 : −(y1

x1

)1/3

= −1 =⇒ y1 = x1 and x1 = ± 14 a

√2;

(14a√

2,14a√

2),

(− 1

4a√

2,− 14a√

2)

57. Differentiate the equation x1/2 + y1/2 = c1/2 implicitly with respect to x :12x−1/2 +

12y−1/2 dy

dx= 0 which implies

dy

dx= −

(y

x

)1/2

An equation for the tangent line to the graph at the point (x0, y0) is

y − y0 = −(y0

x0

)1/2

(x− x0)

The x- and y-intercepts of this line are

a = (x0y0)1/2 + x0 and b = (x0y0)1/2 + y0 respectively.

Now

a + b = 2(x0y0)1/2 + x0 + y0 =(x

1/20 + y

1/20

)2

= c.

58. The circle has equation x2 + (y − a)2 = 1 and 2x + 2(y − a)dy

dx= 0. Thus

dy

dx= − x

y − a.

A tangent line to the parabola has slopedy

dx= 4x. Now

4x = − x

y − a=⇒ x(4y − 4a + 1) = 0 =⇒ 4y − 4a + 1 = 0 since x �= 0

It follows that

y = a− 14

=⇒ x = ±√

154

=⇒ y =158

Points of intersection:

√154

,158

)

59. (a) d(h) =3 3√h

h=

3h2/3

(b) d(h) → ∞ as h → 0− and as h → 0+

(c) The graph of f has a vertical tangent at (0, 0).

60. (a) d(h) =3 3√h2

h=

3h1/3

(b) d(h) → −∞ as h → 0−; and d(h) → ∞ as h → 0+

(c) The graph is said to have a “cusp” at (0, 0).

61. f ′(x) > 0 on (−∞,∞)

Page 47: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

SECTION 3.7 111

62. (a) f ′(x) = 0 at x =√

33

; (b) f ′(x) > 0 on(√

3/3,∞); (c) f ′(x) < 0 on

(0,√

3/3)

63. x = t, y =√

4 − t2 x = t, y = −√

4 − t2

64.dy

dx

∣∣∣∣(2,1)

= − 32

65.dy

dx

∣∣∣∣(3,4)

= 3 66.dy

dx

∣∣∣∣(0,π/6)

= 0

67.dy

dx

∣∣∣∣(1,3

√3)

= −√

3

68. (b) x = 3 implies y = 3;dy

dx

∣∣∣∣(3,3)

= −1; tangent line: y − 3 = −(x− 3) or x + y = 6.

(c)

-2 2 3 4x

-2

2

3

4

y

69. (a) The graph of x4 = x2 − y2 is:

-0.5 0.5x

-0.5

0.05

y

(b) Differentiate the equation x4 = x2 − y2

implicitly with respect to x :

4x3 = 2x− 2ydy

dx

Now set dy/dx = 0. This gives 4x3 = 2x

which implies x = ±√

22 .

Page 48: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

112 REVIEW EXERCISES

70. The graph of (2 − x)y2 = x3 is:

x

y

5

-15

-10

-5

10

15

5 10 15

REVIEW EXERCISES

1. f ′(x) = limh→0

f(x + h) − f(x)h

= limh→0

[(x + h)3 − 4(x + h) + 3] − [x3 − 4x + 3]h

= limh→0

3x2h + 3xh2 + h3 − 4hh

= limh→0

(3x2 + 3xh + h2 − 4) = 3x2 − 4.

2. f ′(x) = limh→0

f(x + h) − f(x)h

= limh→0

√1 + 2(x + h) −

√1 + 2x

h

= limh→0

√1 + 2(x + h) −

√1 + 2x

h·√

1 + 2(x + h) +√

1 + 2x√1 + 2(x + h) +

√1 + 2x

= limh→0

2h

h[√

1 + 2(x + h) +√

1 + 2x] =

1√1 + 2x

3.g′(x) = lim

h→0

f(x + h) − f(x)h

= limh→0

1x + h− 2

− 1x− 2

h

= limh→0

(x− 2) − (x + h− 2)h(x + h− 2)(x− 2)

= limh→0

−1(x + h− 2)(x− 2)

=−1

(x− 2)2.

4.F ′(x) = lim

h→0

F (x + h) − F (x)h

= limh→0

(x + h) sin (x + h) − x sin x

h

= limh→0

(x + h)(sin x cos h + cos x sin h) − x sin x

h

= limh→0

x sin x(cos h− 1) + h sin x cos h + x cos x sin h + h cos x sin h

h

= x sin x limh→0

cos h− 1h

+ limh→0

sin x cos h + x cos x limh→0

sin h

h+ lim

h→0cos x sin h

= sin x + x cos x.

5. y′ = 23x

−1/3

Page 49: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

REVIEW EXERCISES 113

6. y′ = 2( 34 )x−1/4 − 4(− 1

4 )x−5/4 = 32 x

−1/4 + x−5/4.

7. y′ =(x3 − 1)(2x + 2) − (1 + 2x + x2)3x2

(x3 − 1)2= −x4 + 4x3 + 3x2 + 2x + 2

(x3 − 1)2.

8. f ′(t) = 3(2 − 3t2)2(−6t) = −18t(2 − 3t2)2.

9. f(x) = (a2 − x2)−1/2; f ′(x) = −12

(a2 − x2)−3/2(−2x) =x

(a2 − x2)3/2.

10. y′ = 2(a− b

x

) (b

x2

)=

2bx2

(a− b

x

).

11. y′ = 3(a +

b

x2

)2 (− 2bx3

)= − 6b

x3

(a +

b

x2

)2

.

12. y′ =√

2 + 3x +x

2(2 + 3x)−1/2(3) =

√2 + 3x +

3x2√

2 + 3x.

13. y′ = sec2√

2x + 1[12 (2x + 1)−1/2(2)

]=

sec2√

2x + 1√2x + 1

.

14. g′(x) = x2 [− sin (2x− 1)(2)] + 2x cos (2x− 1) = 2x cos (2x− 1) − 2x2 sin (2x− 1).

15. F ′(x) = (x + 2)2 12 (x2 + 2)−1/2(2x) +

√x2 + 2 (2)(x + 2) = 2(x + 2)

√x2 + 2 +

x(x + 2)2√x2 + 2

.

16. y′ =(a2 − x2)2x− (a2 + x2)(−2x)

(a2 − x2)2=

4a2x

(a2 − x2)2.

17. h′(t) = sec t2 + t(2t) sec t2 tan t2 + 6t2 = sec t2 + 2t2 tan t2 sec t2 + 6t2.

18. y′ =(1 + cosx)2 cos 2x− sin 2x(− sinx)

(1 + cosx)2=

2 cos 2x1 + cosx

+sin 2x sinx

(1 + cosx)2.

19. s′ =13

(2 − 3t2 + 3t

)−2/3

· (2 + 3t)(−3) − (2 − 3t)(3)(2 + 3t)2

= − 4(2 + 3t)4/3(2 − 3t)2/3

.

20. r′ = θ2( 12 )(3 − 4θ)−1/2(−4) + 2θ

√3 − 4θ = 2θ

√3 − 4θ − 2θ2

√3 − 4θ

.

21. f ′(θ) = −3 csc2(3θ + π).

22. y′ =(1 + x2)(sin 2x + 2x cos 2x) − x sin 2x(2x)

(1 + x2)2=

sin 2x + 2x cos 2x + 2x3 cos 2x− x2 sin 2x(1 + x2)2

.

23. f ′(x) = 13x

−2/3 + 12x

−1/2 =1

3x2/3+

12x1/2

; f ′(64) =148

+116

=112

.

24. f ′(x) =x

21√

8 − x2(−2x) +

√8 − x2 =

√8 − x2 − x2

√8 − x2

; f ′(2) = 0.

Page 50: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

114 REVIEW EXERCISES

25. f ′(x) = x2(2)(π) sinπx cosπx + 2x sin2 πx = 2x sin2 πx + 2πx2 sinπx cosπx; f ′(1/6) =112

+π√

372

.

26. f ′ = −3 csc2 3x; f ′(π/9) = −4.

27. f(x) = 2x3 − x2 + 3, f ′(x) = 6x2 − 2x; f ′(1) = 4.

Tangent line: y − 4 = 4(x− 1) or y = 4x; normal line: y − 4 = − 14 (x− 1) or y = − 1

4x + 174 .

28. f(x) =2x− 33x + 4

, f ′(x) =(3x + 4)2 − (2x− 3)3

(3x + 4)2=

17(3x + 4)2

; f ′(−1) = 17.

Tangent line: y + 5 = 17(x + 1); normal line: y + 5 = − 117 (x + 1).

29. f(x) = (x + 1) sin 2x, f ′(x) = 2(x + 1) cos 2x + sin 2x; f ′(0) = 2.

Tangent line: y = 2x; normal line: y = − 12x.

30. f(x) = x√

1 + x2, f ′(x) =√

1 + x2 +x2

√1 + x2

; f ′(1) = 32

√2.

Tangent line: y −√

2 = 32

√2 (x− 1); normal line: y −

√2 = − 1

3

√2 (x− 1)

31. f ′(x) = − sin(2 − x)(−1) = sin(2 − x), f ′′(x) = cos(2 − x)(−1) = − cos(2 − x).

32. f ′(x) = 32 (x2 + 4)1/2(2x) = 3x(x2 + 4)1/2,

f ′′ = 3x( 12 )(x2 + 4)−1/2(2x) + 3(x2 + 4)1/2 =

3x2

(x2 + 4)1/2+ 3(x2 + 4)1/2 =

6x2 + 12√x2 + 4

.

33. y′ = x cosx + sinx, y′′ = 2 cosx− x sinx.

34. g′(u) = 2 tanu sec2 u, g′′(u) = 2 tanu · 2 secu · secu tanu + 2 sec4 u = 4 sec2 u tan2 u + 2 sec4 u.

35. (−1)n n!bn 36.(−1)n n!abn

(bx + c)n+1

37. 3x2y + x3y′ + y3 + 3xy2y′ = 0, y′ = −y3 + 3x2y

x3 + 3xy2.

38. (1 + 2y′) sec2(x + 2y) = 2xy + x2y′, y′ =2xy − sec2(x + 2y)2 sec2(x + 2y) − x2

.

39. 6x2 + 3 cos y − 3xy′ sin y = 2y + 2xy′, y′ =6x2 + 3 cos y − 2y

2x + 3x sin y.

40. 2x + 3√y +

3xy′

2√y

=1y− xy′

y2, y′ =

2y2 − 4xy3 − 6y7/2

2xy + 3xy5/2.

41. 2x + 2y + 2xy′ − 6yy′ = 0, y′ =x + y

3y − x; at (3, 2) y′ =

53.

Tangent line: y − 2 = 53 (x− 3) or 5x− 3y = 9; normal line: y − 2 = − 3

5 (x− 3) or 3x + 5y = 19.

Page 51: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

REVIEW EXERCISES 115

42. 2y cos 2x + y′ sin 2x− xy′ cos y − sin y = 0, y′ =sin y − 2t cos 2xsin 2x− x cos y

; at ( 14π,

12π) y′ = 1.

Tangent line: y − 12π = x− 1

4π or y = x + 14π; normal line: y − 1

2π = −(x− 14π) or y = −x + 3

4π.

43. f ′(x) = 3(x− 4)(x− 2).

f ′:2 4

-+ +

(a) f ′(x) = 0 at x = 2, 4, (b) f ′(x) > 0 on (−∞, 2) ∪ (4,∞),

(c) f ′(x) < 0 on (2, 4).

44. f ′(x) =2 − 4x2

(1 + 2x2)2.

f ′:1

2

+-

-

-

1

2

(a) f ′(x) = 0 at x = ±√

2/2, (b) f ′(x) > 0 on (−√

2/2,√

2/2),

(c) f ′(x) < 0 on (−∞,−√

2/2) ∪ (√

2/2,∞).

45. f ′(x) = 1 + 2 cos 2x.

f ′:π

+ - + - +2 π 4 π 5 π

3 3 3 3

(a) f ′(x) = 0 at x = π/3, 2π/3, 4π/3, 5π/3,

(b) f ′(x) > 0 on (0, π/3) ∪ (2π/3, 4π/3) ∪ (5π/3, 2π),

(c) f ′(x) < 0 on (π/3, 2π/3) ∪ (4π/3, 5π/3).

46. f ′(x) =√

3 + 2 sinx.

f ′:0 4π

35π π3

2

+ -

(a) f ′(x) = 0 at x = 4π/3, 5π/3, (b) f ′(x) > 0 on (0, 4π/3) ∪ (5π/3, 2π),

(c) f ′(x) < 0 on (4π/3, 5π/3).

47. y′ =√x. (a) 1, (b) 3, (c) 1

3 .

48. y′ = 3x2. The tangent line to the curve y = x3 at the point (a, a3) has equation

y − a3 = 3a2(x− a) or y = 3a2x− 2a3.

Since this line must pass through (0, 2), we have

2 = −2a3 which implies a = −1.

There is one tangent line that passes through (0, 2), namely y = 3x + 2.

Page 52: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

116 REVIEW EXERCISES

49. y′ = 3x2 − 1. The tangent line to the curve y = x3 − x at the point (a, a3 − a) has equation

y − (a3 − a) = (3a2 − 1)(x− a) or y = (3a2 − 1)x− 2a3.

Since this line must past through (−2, 2), we have

2 = −6a2 + 2 − 2a3 which gives 6a2 + 2a3 = 0 and 2a2(3 + a) = 0.

Thus, a = 0, −3. There are two tangent lines that pass through (−2, 2) : y = −x, y = 26x + 54.

50. The curve y = Ax2 + Bx + C passes through the points (1, 3) and (2, 3). This implies that

A + B + C = 3 and 4A + 2B + C = 3.

y′ = 2Ax + B. The line x− y + 1 = 0 has slope 1. At x = 2, y′ = 4A + B. Therefore we have

4A + B = 1. The solution set of the system of equations

A + B + C = 3

4A + 2B + C = 3

4A + B = 1

is: A = 1, B = −3, C = 5; y = x2 − 3x + 5.

51. The curve y = Ax3 + Bx2 + Cx + D passes through the points (1, 1) and (−1,−9). This implies that

A + B + C + D = 1 and −A + B − C + D = −9.

y′ = 3Ax2 + 2Bx + C. The line y = 5x− 4 has slope 5; the line y = 9x has slope 9. At

x = 1, y′ = 3A + 2B + C; at x = −1, y′ = 3A− 2B + C. Therefore we have 3A + 2B + C = 5 and

3A− 2B + C = 9. The solution set of the system of equations

A + B + C + D = 1

−A + B − C + D = −9

3A + 2B + C = 5

3A− 2B + C = 9

is: A = 1, B = −1, C = 4, D = −3; y = x3 − x2 + 4x− 3.

52.1h

[1

(x + h)n− 1

xn

]=

1h

[xn − (x + h)n

(x + h)n xn

]

=1h

[xn − xn − nxn−1h− (terms of the form Cxk hm,m ≥ 2)

(x + h)n xn

]

=−nxn−1 − (terms of the form Cxk hm,m ≥ 1)

(x + h)n xn.

Page 53: Calculus one and several variables 10E Salas solutions manual ch03

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU

JWDD027-03 JWDD027-Salas-v1 November 25, 2006 15:53

REVIEW EXERCISES 117

Therefore,

limh→0

1h

[1

(x + h)n− 1

xn

]= lim

h→0

−nxn−1 − (terms of the form Cxk hm,m ≥ 1)(x + h)n xn

=−nxn−1

x2n=

−n

xn+1.

53. Let f(x) = x2 − 2x + 1; f ′(x) = 2x− 2.

limh→0

(1 + h)2 − 2(1 + h) + 1h

= limh→0

(1 + h)2 − 2(1 + h) + 1 − 0h

= f ′(1) = 0

54. Let f(x) =√x; f ′(x) = 1/2

√x.

limh→0

√9 + h− 3

h= f ′(9) =

16

55. Let f(x) = sinx; f ′(x) = cosx.

limh→0

sin( 16π + h) − 1

2

h= f ′(

16π) =

√3

2

56. Let f(x) = x5; f ′(x) = 5x4.

limx→2

x5 − 32x− 2

= f ′(2) = 80

57. Let f(x) = sinx; f ′(x) = cosx.

limx→π

sinx

x− π= f ′(π) = −1

58. (a) From Figure A, M increases on [a, b], is constant on [b, e], and increases on [e,∞); M is differen-

tiable at b (f ′(b) = 0), M is not differentiable at e (f ′(e) �= 0).

(b) From Figure B, m is constant on [a, c], decreases on [c, d], and is constant on [d,∞); m is not

differentiable at c (f ′(c) �= 0), m is differentiable at d (f ′(d) = 0).

a b e a b e

Figure A Figure B