Top Banner
Teknologi Pembakaran Pada PLTU Batubara Posted by imambudiraharjo on March 6, 2009 Pendahuluan Klasifikasi kualitas batubara secara umum terbagi 2, yaitu pembagian secara ilmiah dalam hal ini berdasarkan tingkat pembatubaraaan, dan pembagian berdasarkan tujuan penggunaannya. Berdasarkan urutan pembatubaraannya, batubara terbagi menjadi batubara muda (brown coalatau lignite), sub bituminus, bituminus, dan antrasit. Sedangkan berdasarkan tujuan penggunaannya, batubara terbagi menjadi batubara uap (steam coal), batubara kokas (coking coal atau metallurgical coal), dan antrasit. Batubara uap merupakan batubara yang skala penggunaannya paling luas. Berdasarkan metodenya, pemanfataan batubara uap terdiri dari pemanfaatan secara langsung yaitu batubara yang telah memenuhi spesifikasi tertentu langsung digunakan setelah melalui proses peremukan (crushing/milling) terlebih dulu seperti pada PLTU batubara, kemudian pemanfaatan dengan memproses terlebih dulu untuk memudahkan penanganan (handling) seperti CWM (Coal Water Slurry), COM (Coal Oil Mixture), dan CCS (Coal Cartridge System), dan selanjutnya pemanfataan melalui proses konversi seperti gasifikasi dan pencairan batubara Pada PLTU batubara, bahan bakar yang digunakan adalah batubara uap yang terdiri dari kelas sub bituminus dan bituminus. Lignit juga mulai mendapat tempat sebagai bahan bakar pada PLTU belakangan ini, seiring dengan perkembangan teknologi pembangkitan yang mampu mengakomodasi batubara berkualitas rendah. Gambar 1. Skema pembangkitan listrik pada PLTU batubara
20

blog.ub.ac.idblog.ub.ac.id/.../10/Teknologi-Pembakaran-Pada-PLTU.docx · Web viewturbin dan memutar generator. Kinerja pembangkitan listrik pada PLTU sangat ditentukan oleh efisiensi

Mar 03, 2019

Download

Documents

ngocong
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: blog.ub.ac.idblog.ub.ac.id/.../10/Teknologi-Pembakaran-Pada-PLTU.docx · Web viewturbin dan memutar generator. Kinerja pembangkitan listrik pada PLTU sangat ditentukan oleh efisiensi

Teknologi Pembakaran Pada PLTU Batubara

Posted by imambudiraharjo on March 6, 2009

Pendahuluan

Klasifikasi kualitas batubara secara umum terbagi 2, yaitu pembagian secara ilmiah dalam hal ini

berdasarkan tingkat pembatubaraaan, dan pembagian berdasarkan tujuan penggunaannya. Berdasarkan

urutan pembatubaraannya, batubara terbagi menjadi batubara muda (brown coalatau lignite), sub

bituminus, bituminus, dan antrasit. Sedangkan berdasarkan tujuan penggunaannya, batubara terbagi

menjadi batubara uap (steam coal), batubara kokas (coking coal atau metallurgical coal), dan antrasit.

Batubara uap merupakan batubara yang skala penggunaannya paling luas. Berdasarkan metodenya,

pemanfataan batubara uap terdiri dari pemanfaatan secara langsung yaitu batubara yang telah

memenuhi spesifikasi tertentu langsung digunakan setelah melalui proses peremukan (crushing/milling)

terlebih dulu seperti pada PLTU batubara, kemudian pemanfaatan dengan memproses terlebih dulu

untuk memudahkan penanganan (handling) seperti CWM (Coal Water Slurry), COM (Coal Oil Mixture),

dan CCS (Coal Cartridge System), dan selanjutnya pemanfataan melalui proses konversi seperti

gasifikasi dan pencairan batubara

Pada PLTU batubara, bahan bakar yang digunakan adalah batubara uap yang terdiri dari kelas sub

bituminus dan bituminus. Lignit juga mulai mendapat tempat sebagai bahan bakar pada PLTU

belakangan ini, seiring dengan perkembangan teknologi pembangkitan yang mampu mengakomodasi

batubara berkualitas rendah.

Gambar 1. Skema pembangkitan listrik pada PLTU batubara

(Sumber: The Coal Resource, 2004)

Pada PLTU, batubara dibakar di boiler menghasilkan panas yang digunakan untuk mengubah air dalam

pipa yang dilewatkan di boiler tersebut menjadi uap, yang selanjutnya digunakan untuk menggerakkan

Page 2: blog.ub.ac.idblog.ub.ac.id/.../10/Teknologi-Pembakaran-Pada-PLTU.docx · Web viewturbin dan memutar generator. Kinerja pembangkitan listrik pada PLTU sangat ditentukan oleh efisiensi

turbin dan memutar generator. Kinerja pembangkitan listrik pada PLTU sangat ditentukan oleh efisiensi

panas pada proses pembakaran batubara tersebut, karena selain berpengaruh pada efisiensi

pembangkitan, juga dapat menurunkan biaya pembangkitan. Kemudian dari segi lingkungan, diketahui

bahwa jumlah emisi CO2 per satuan kalori dari batubara adalah yang terbanyak bila dibandingkan dengan

bahan bakar fosil lainnya, dengan perbandingan untuk batubara, minyak, dan gas adalah 5:4:3. Sehingga

berdasarkan uji coba yang mendapatkan hasil bahwa kenaikan efisiensi panas sebesar 1% akan dapat

menurunkan emisi CO2 sebesar 2,5%, maka efisiensi panas yang meningkat akan dapat mengurangi

beban lingkungan secara signifikan akibat pembakaran batubara. Oleh karena itu, dapat dikatakan bahwa

teknologi pembakaran (combustion technology) merupakan tema utama pada upaya peningkatan

efisiensi pemanfaatan batubara secara langsung sekaligus upaya antisipasi isu lingkungan ke depannya.

Pada dasarnya metode pembakaran pada PLTU terbagi 3, yaitu pembakaran lapisan tetap (fixed bed

combustion), pembakaran batubara serbuk (pulverized coal combustion /PCC), dan pembakaran lapisan

mengambang (fluidized bed combustion / FBC). Gambar 3 di bawah ini menampilkan jenis – jenis boiler

yang digunakan untuk masing – masing metode pembakaran.

Gambar 2. Tipikal boiler berdasarkan metode pembakaran

(Sumber: Idemitsu Kosan Co., Ltd)

Pembakaran Lapisan Tetap

Metode lapisan tetap menggunakan stoker boiler untuk proses pembakarannya. Sebagai bahan bakarnya

adalah batubara dengan kadar abu yang tidak terlalu rendah dan berukuran maksimum sekitar 30mm.

Selain itu, karena adanya pembatasan sebaran ukuran butiran batubara yang digunakan, maka perlu

dilakukan pengurangan jumlah fine coal yang ikut tercampur ke dalam batubara tersebut. Alasan tidak

digunakannya batubara dengan kadar abu yang terlalu rendah adalah karena pada metode pembakaran

ini, batubara dibakar di atas lapisan abu tebal yang terbentuk di atas kisi api (traveling fire grate)

pada stoker boiler. Bila kadar abunya sangat sedikit, lapisan abu tidak akan terbentuk di atas kisi tersebut

Page 3: blog.ub.ac.idblog.ub.ac.id/.../10/Teknologi-Pembakaran-Pada-PLTU.docx · Web viewturbin dan memutar generator. Kinerja pembangkitan listrik pada PLTU sangat ditentukan oleh efisiensi

sehingga pembakaran akan langsung terjadi pada kisi, yang dapat menyebabkan kerusakan yang parah

pada bagian tersebut. Oleh karena itu, kadar abu batubara yang disukai untuk tipe boiler ini adalah

sekitar 10 – 15%. Adapun tebal minimum lapisan abu yang diperlukan untuk pembakaran adalah 5cm.

Gambar 3. Stoker Boiler

(Sumber: Idemitsu Kosan Co., Ltd)

Pada pembakaran dengan stoker ini, abu hasil pembakaran berupa fly ash jumlahnya sedikit, hanya

sekitar 30% dari keseluruhan. Kemudian dengan upaya seperti pembakaran NOx dua tingkat, kadar NOx

dapat diturunkan hingga sekitar 250 – 300 ppm. Sedangkan untuk menurunkan SOx, masih diperlukan

tambahan fasilitas berupa alat desulfurisasi gas buang.

Pembakaran Batubara Serbuk (Pulverized Coal Combustion/PCC)

Saat ini, kebanyakan PLTU terutama yang berkapasitas besar masih menggunakan metode PCC pada

pembakaran bahan bakarnya. Hal ini karena sistem PCC merupakan teknologi yang sudah terbukti dan

memiliki tingkat kehandalan yang tinggi. Upaya perbaikan kinerja PLTU ini terutama dilakukan dengan

meningkatkan suhu dan tekanan dari uap yang dihasilkan selama proses pembakaran.

Perkembangannya dimulai dari sub critical steam, kemudian super critical steam, serta ultra super critical

steam (USC). Sebagai contoh PLTU yang menggunakan teknologi USC adalah pembangkit no. 1 dan 2

milik J-Power di teluk Tachibana, Jepang, yang boilernya masing – masing berkapasitas 1050 MW

buatan Babcock Hitachi. Tekanan uap yang dihasilkan adalah sebesar 25 MPa (254.93 kgf/cm2) dan

Page 4: blog.ub.ac.idblog.ub.ac.id/.../10/Teknologi-Pembakaran-Pada-PLTU.docx · Web viewturbin dan memutar generator. Kinerja pembangkitan listrik pada PLTU sangat ditentukan oleh efisiensi

suhunya mencapai 600℃/610℃ (1 stage reheat cycle). Perkembangan kondisi uap dan grafik

peningkatan efisiensi pembangkitan pada PCC ditunjukkan pada gambar 4 di di bawah ini.

Gambar 4. Perkembangan kondisi uap PLTU

(Sumber: Clean Coal Technologies in Japan, 2005)

Pada PCC, batubara diremuk dulu dengan menggunakan coal pulverizer (coal mill) sampai berukuran

200 mesh (diameter 74μm), kemudian bersama – sama dengan udara pembakaran disemprotkan ke

boiler untuk dibakar. Pembakaran metode ini sensitif terhadap kualitas batubara yang digunakan,

terutama sifat ketergerusan (grindability), sifat slagging, sifat fauling, dan kadar air (moisture content).

Batubara yang disukai untuk boiler PCC adalah yang memiliki sifat ketergerusan dengan HGI (Hardgrove

Grindability Index) di atas 40 dan kadar air kurang dari 30%, serta rasio bahan bakar (fuel ratio) kurang

dari 2. Pembakaran dengan metode PCC ini akan menghasilkan abu yang terdiri diri dari clinker

ash sebanyak 15% dan sisanya berupa fly ash.

Page 5: blog.ub.ac.idblog.ub.ac.id/.../10/Teknologi-Pembakaran-Pada-PLTU.docx · Web viewturbin dan memutar generator. Kinerja pembangkitan listrik pada PLTU sangat ditentukan oleh efisiensi

Gambar 5. PCC Boiler

(Sumber: Idemitsu Kosan Co., Ltd)

Ketika dilakukan pembakaran, senyawa Nitrogen yang ada di dalam batubara akan beroksidasi

membentuk NOx yang disebut dengan fuel NOx, sedangkan Nitrogen pada udara pembakaran akan

mengalami oksidasi suhu tinggi membentuk NOx pula yang disebut dengan thermal NOx. Pada total

emisi NOx dalam gas buang, kandungan fuel NOx mencapai 80 – 90%. Untuk mengatasi NOx ini,

dilakukan tindakan denitrasi (de-NOx) di boiler saat proses pembakaran berlangsung, dengan

memanfaatkan sifat reduksi NOx dalam batubara.

Gambar 6. Proses denitrasi pada boiler PCC

(Sumber: Coal Science Handbook, 2005)

Pada proses pembakaran tersebut, kecepatan injeksi campuran batubara serbuk dan udara ke dalam

boiler dikurangi sehingga pengapian bahan bakar dan pembakaran juga melambat. Hal ini dapat

menurunkan suhu pembakaran, yang berakibat pada menurunnya kadar thermal NOx.

Selain itu, sebagaimana terlihat pada gambar 6 di atas, bahan bakar tidak semuanya dimasukkan ke

zona pembakaran utama, tapi sebagian dimasukkan ke bagian di sebelah atasburner utama. NOx yang

dihasilkan dari pembakara utama selanjutnya dibakar melalui 2 tingkat. Di zona reduksi yang merupakan

pembakaran tingkat pertama atau disebut pula pembakaran reduksi (reducing combustion), kandungan

Nitrogen dalam bahan bakar akan diubah menjadi N2. Selanjutnya, dilakukan pembakaran tingkat kedua

atau pembakaran oksidasi (oxidizing combustion), berupa pembakaran sempurna di zona pembakaran

Page 6: blog.ub.ac.idblog.ub.ac.id/.../10/Teknologi-Pembakaran-Pada-PLTU.docx · Web viewturbin dan memutar generator. Kinerja pembangkitan listrik pada PLTU sangat ditentukan oleh efisiensi

sempurna. Dengan tindakan ini, NOx dalam gas buang dapat ditekan hingga mencapai 150 – 200 ppm.

Sedangkan untuk desulfurisasi masih memerlukan peralatan tambahan yaitu alat desulfurisasi gas

buang.

Pembakaran Lapisan Mengambang (Fluidized Bed Combustion/FBC)

Pada pembakaran dengan metode FBC, batubara diremuk terlebih dulu dengan

menggunakancrusher sampai berukuran maksimum 25mm. Tidak seperti pembakaran

menggunakan stokeryang menempatkan batubara di atas kisi api selama pembakaran atau metode PCC

yang menyemprotkan campuran batubara dan udara pada saat pembakaran, butiran batubara dijaga

agar dalam posisi mengambang, dengan cara melewatkan angin berkecepatan tertentu dari bagian

bawah boiler. Keseimbangan antara gaya dorong ke atas dari angin dan gaya gravitasi akan menjaga

butiran batubara tetap dalam posisi mengambang sehingga membentuk lapisan seperti fluida yang selalu

bergerak. Kondisi ini akan menyebabkan pembakaran bahan bakar yang lebih sempurna karena posisi

batubara selalu berubah sehingga sirkulasi udara dapat berjalan dengan baik dan mencukupi untuk

proses pembakaran.

Karena sifat pembakaran yang demikian, maka persyaratan spesifikasi bahan bakar yang akan

digunakan untuk FBC tidaklah seketat pada metode pembakaran yang lain. Secara umum, tidak ada

pembatasan yang khusus untuk kadar zat terbang (volatile matter), rasio bahan bakar (fuel ratio) dan

kadar abu. Bahkan semua jenis batubara termasuk peringkat rendah sekalipun dapat dibakar dengan

baik menggunakan metode FBC ini. Hanya saja ketika batubara akan dimasukkan ke boiler, kadar air

yang menempel di permukaannya (free moisture) diharapkan tidak lebih dari 4%. Selain kelebihan di

atas, nilai tambah dari metode FBC adalah alat peremuk batubara yang dipakai tidak terlalu rumit, serta

ukuran boiler dapat diperkecil dan dibuat kompak.

Bila suhu pembakaran pada PCC adalah sekitar 1400 – 1500℃, maka pada FBC, suhu pembakaran

berkisar antara 850 – 900℃ saja sehingga kadar thermal NOx yang timbul dapat ditekan. Selain itu,

dengan mekanisme pembakaran 2 tingkat seperti pada PCC, kadar NOx total dapat lebih dikurangi lagi.

Kemudian, bila alat desulfurisasi masih diperlukan untuk penanganan SOx pada metode pembakaran

tetap dan PCC, maka pada FBC, desulfurisasi dapat terjadi bersamaan dengan proses pembakaran

di boiler. Hal ini dilakukan dengan cara mencampur batu kapur (lime stone, CaCO3) dan batubara

kemudian secara bersamaan dimasukkan ke boiler. SOx yang dihasilkan selama proses pembakaran,

akan bereaksi dengan kapur membentuk gipsum (kalsium sulfat). Selain untuk proses desulfurisasi, batu

kapur juga berfungsi sebagai media untuk fluidized bedkarena sifatnya yang lunak sehingga pipa

pemanas (heat exchanger tube) yang terpasang di dalam boiler tidak mudah aus.

Page 7: blog.ub.ac.idblog.ub.ac.id/.../10/Teknologi-Pembakaran-Pada-PLTU.docx · Web viewturbin dan memutar generator. Kinerja pembangkitan listrik pada PLTU sangat ditentukan oleh efisiensi

Gambar 7. Tipikal boiler FBC

(Sumber: Coal Science Handbook, 2005)

Berdasarkan mekanisme kerja pembakaran, metode FBC terbagi 2 yaitu Bubbling FBC

danCirculating FBC (CFBC), seperti ditampilkan pada gambar 7 di atas. Dapat dikatakan

bahwaBubbling FBC merupakan prinsip dasar FBC, sedangkan CFBC merupakan pengembangannya.

Pada CFBC, terdapat alat lain yang terpasang pada boiler yaitu cyclone suhu tinggi. Partikel

media fluidized bed yang belum bereaksi dan batubara yang belum terbakar yang ikut terbang bersama

aliran gas buang akan dipisahkan di cyclone ini untuk kemudian dialirkan kembali keboiler. Melalui proses

sirkulasi ini, ketinggian fluidized bed dapat terjaga, proses denitrasi dapat berlangsung lebih optimal, dan

efisiensi pembakaran yang lebih tinggi dapat tercapai. Oleh karena itu, selain batubara berkualitas

rendah, material seperti biomasa, sludge, plastik bekas, dan ban bekas dapat pula digunakan sebagai

bahan bakar pada CFBC. Adapun abu sisa pembakaran hampir semuanya berupa fly ash yang mengalir

bersama gas buang, dan akan ditangkap lebih dulu dengan menggunakan Electric Precipitator sebelum

gas buang keluar ke cerobong asap (stack).

Gambar 8. CFBC Boiler

Page 8: blog.ub.ac.idblog.ub.ac.id/.../10/Teknologi-Pembakaran-Pada-PLTU.docx · Web viewturbin dan memutar generator. Kinerja pembangkitan listrik pada PLTU sangat ditentukan oleh efisiensi

(Sumber: Idemitsu Kosan Co., Ltd)

Pada FBC, bila tekanan di dalam boiler sama dengan tekanan udara luar, disebut denganAtmospheric

FBC (AFBC), sedangkan bila tekanannya lebih tinggi dari pada tekanan udara luar, sekitar 1 MPa,

disebut dengan Pressurized FBC (PFBC).

Faktor tekanan udara pembakaran memberikan pengaruh terhadap perkembangan teknologi FBC ini.

Untuk Bubbling FBC berkembang dari PFBC menjadi Advanced PFBC (A-PFBC), sedangkan untuk

CFBC selanjutnya berkembang menjadi Internal CFBC (ICFBC) dan kemudian PressurizedICFBC

(PICFBC).

PFBC

Pada PFBC, selain dihasilkan panas yang digunakan untuk memanaskan air menjadi uap untuk memutar

turbin uap, dihasilkan pula gas hasil pembakaran yang memiliki tekanan tinggi yang dapat memutar turbin

gas, sehingga PLTU yang menggunakan PFBC memiliki efisiensi pembangkitan yang lebih baik

dibandingkan dengan AFBC karena mekanisme kombinasi (combined cycle) ini. Nilai efisiensi bruto

pembangkitan (gross efficiency) dapat mencapai 43%.

Sesuai dengan prinsip pembakaran pada FBC, SOx yang dihasilkan pada PFBC dapat ditekan dengan

mekanisme desulfurisasi bersamaan dengan pembakaran di dalam boiler, sedangkan NOx dapat ditekan

dengan pembakaran pada suhu relatif rendah (sekitar 860℃) dan pembakaran 2 tingkat. Karena gas

hasil pembakaran masih dimanfaatkan lagi dengan mengalirkannya ke turbin gas, maka abu pembakaran

yang ikut mengalir keluar bersama dengan gas tersebut perlu dihilangkan lebih dulu. Pemakaian CTF

(Ceramic Tube Filter) dapat menangkap abu ini secara efektif. Kondisi bertekanan yang menghasilkan

pembakaran yang lebih baik ini secara otomatis akan menurunkan kadar emisi CO2 sehingga dapat

mengurangi beban lingkungan.

Page 9: blog.ub.ac.idblog.ub.ac.id/.../10/Teknologi-Pembakaran-Pada-PLTU.docx · Web viewturbin dan memutar generator. Kinerja pembangkitan listrik pada PLTU sangat ditentukan oleh efisiensi

Gambar 9. Prinsip kerja PFBC

(Sumber: Coal Note, 2001)

Untuk lebih meningkatkan efisiensi panas, unit gasifikasi sebagian (partial gasifier) yang menggunakan

teknologi gasifikasi lapisan mengambang (fluidized bed gasification) kemudian ditambahkan pada unit

PFBC. Dengan kombinasi teknologi gasifikasi ini maka upaya peningkatan suhu gas pada pintu masuk

(inlet) turbin gas memungkinkan untuk dilakukan.

Pada proses gasifikasi di partial gasifier tersebut, konversi karbon yang dicapai adalah sekitar 85%. Nilai

ini dapat ditingkatkan menjadi 100% melalui kombinasi dengan pengoksidasi (oxidizer). Pengembangan

lebih lanjut dari PFBC ini dinamakan dengan Advanced PFBC (A-PFBC), yang prinsip kerjanya

ditampilkan pada gambar 10 di bawah ini. Efisiensi netto pembangkitan (net efficiency) yang dihasilkan

pada A-PFBC ini sangat tinggi, dapat mencapai 46%.

Gambar 10. Prinsip kerja A-PFBC

(Sumber: Coal Science Handbook, 2005)

ICFBC

Penampang boiler ICFBC ditampilkan pada gambar 11 di bawah ini.

Page 10: blog.ub.ac.idblog.ub.ac.id/.../10/Teknologi-Pembakaran-Pada-PLTU.docx · Web viewturbin dan memutar generator. Kinerja pembangkitan listrik pada PLTU sangat ditentukan oleh efisiensi

Gambar 11. Penampang boiler ICFBC

(Sumber: Coal Note, 2001)

Seperti terlihat pada gambar, ruang pembakaran utama (primary combustion chamber) dan ruang

pengambilan panas (heat recovery chamber) dipisahkan oleh dinding penghalang yang terpasang miring.

Kemudian, karena pipa pemanas (heat exchange tube) tidak terpasang langsung pada ruang

pembakaran utama, maka tidak ada kekhawatiran terhadap keausan pipa sehingga pasir silika digunakan

sebagai pengganti batu kapur untuk media FBC. Batu kapur masih tetap digunakan sebagai bahan

pereduksi SOx, hanya jumlahnya ditekan sesuai dengan keperluan saja.

Di bagian bawah ruang pembakaran utama terpasang windbox untuk mengalirkan angin ke boiler,

dimana angin bervolume kecil dialirkan melalui bagian tengah untuk menciptakan lapisan bergerak

(moving bed) yang lemah, dan angin bervolume besar dialirkan melewati kedua sisiwindbox tersebut

untuk menimbulkan lapisan bergerak yang kuat. Dengan demikian maka pada bagian tengah ruang

pembakaran utama akan terbentuk lapisan bergerak yang turun secara perlahan, sedangkan pada kedua

sisi ruang tersebut, media FBC akan terangkat kuat ke atas menuju ke bagian tengah ruang pembakaran

utama dan kemudian turun perlahan – lahan, dan kemudian terangkat lagi oleh angin bervolume besar

dari windbox. Proses ini akan menciptakan aliran berbentuk spiral (spiral flow) yang terjadi secara

kontinyu pada ruang pembakaran utama. Mekanisme aliran spiral dari media FBC ini dapat menjaga

suhu lapisan mengambang supaya seragam. Selain itu, karena aliran tersebut bergerak dengan sangat

dinamis, maka pembuangan material yang tidak terbakar juga lebih mudah.

Kemudian, ketika media FBC yang terangkat kuat tersebut sampai di bagian atas dinding penghalang,

sebagian akan berbalik menuju ke ruang pengambilan panas. Karena pada ruang pengambilan panas

tersebut juga dialirkan angin dari bagian bawah, maka pada ruang tersebut akan terbentuk lapisan

Page 11: blog.ub.ac.idblog.ub.ac.id/.../10/Teknologi-Pembakaran-Pada-PLTU.docx · Web viewturbin dan memutar generator. Kinerja pembangkitan listrik pada PLTU sangat ditentukan oleh efisiensi

bergerak yang turun perlahan juga. Akibatnya, media FBC akan mengalir dari ruang pembakaran utama

menuju ke ruang pengambilan panas kemudian kembali lagi ke ruang pembakaran utama, membentuk

aliran sirkulasi (circulating flow) di antara kedua ruang tersebut. Menggunakan pipa pemanas yang

terpasang pada ruang pengambilan panas, panas dari ruang pembakaran utama diambil melalui

mekanisme aliran sirkulasi tadi.

Secara umum, perubahan volume angin yang dialirkan ke ruang pengambilan panas berbanding lurus

dengan koefisien hantar panas secara keseluruhan. Dengan demikian maka hanya dengan mengatur

volume angin tersebut, tingkat keterambilan panas serta suhu pada lapisan mengambang dapat dikontrol

dengan baik, sehingga pengaturan beban dapat dilakukan dengan mudah pula.

Untuk lebih meningkatkan kinerja pembangkitan, proses pada ICFBC kemudian diberi tekanan dengan

cara memasukkan unit ICFBC ke dalam wadah bertekanan (pressurized vessel), yang selanjutnya

disebut dengan Pressurized ICFBC (PICFBC). Dengan mekanisme ini maka selain uap air, akan

dihasilkan pula gas hasil pembakaran bertekanan tinggi yang dapat digunakan untuk memutar turbin gas

sehingga pembangkitan secara kombinasi (combined cycle) dapat diwujudkan.

Pembangkitan Kombinasi Dengan Gasifikasi Batubara

Peningkatan efisiensi pembangkitan dengan mekanisme kombinasi melalui pemanfaatan gas sintetis

hasil proses gasifikasi seperti pada A-PFBC, selanjutnya mengarahkan teknologi pembangkitan untuk

lebih mengintensifkan penggunaan teknologi gasifikasi batubara ke dalam sistem pembangkitan. Upaya

ini akhirnya menghasilkan sistem pembangkitan yang disebut dengan Integrated

Coal Gasification Combined Cycle (IGCC).

Karena tulisan ini hanya membahas perkembangan teknologi pembangkitan listrik, maka penjelasan

tentang bagaimana proses gasifikasi batubara berlangsung tidak akan diterangkan disini.

IGCC

Garis besar diagram alir pembangkit listrik sistem IGCC ditampilkan pada gambar 12 di bawah ini.

Page 12: blog.ub.ac.idblog.ub.ac.id/.../10/Teknologi-Pembakaran-Pada-PLTU.docx · Web viewturbin dan memutar generator. Kinerja pembangkitan listrik pada PLTU sangat ditentukan oleh efisiensi

Gambar 12. Tipikal IGCC

(Sumber: Clean Coal Technologies in Japan, 2005)

Seperti terlihat pada gambar, pada sistem ini terdapat alat gasifikasi (gasifier) yang digunakan untuk

menghasilkan gas, umumnya bertipe entrained flow. Yang tersedia di pasaran saat ini untuk tipe tersebut

misalnya Chevron Texaco (lisensinya sekarang dimiliki GE Energy), E-Gas (lisensinya dulu dimiliki Dow,

kemudian Destec, dan terakhir Conoco Phillips ), dan Shell. Prinsip kerja ketiga alat tersebut adalah

sama, yaitu batubara dan oksigen berkadar tinggi dimasukkan kedalamnya kemudian dilakukan reaksi

berupa oksidasi sebagian (partial oxidation) untuk menghasilkan gas sintetis (syngas), yang 85% lebih

komposisinya terdiri dari H2 dan CO. Karena reaksi berlangsung pada suhu tinggi, abu pada batubara

akan melebur dan membentukslag dalam kondisi meleleh (glassy slag). Adapun panas yang ditimbulkan

oleh proses gasifikasi dapat digunakan untuk menghasilkan uap bertekanan tinggi, yang selanjutnya

dialirkan ke turbin uap.

Oksigen yang digunakan untuk proses gasifikasi dihasilkan dari fasilitas Air Separation Unit(ASU). Unit ini

berfungsi untuk memisahkan oksigen dari udara melalui mekanisme cryogenic separation, menghasilkan

oksigen berkadar sekitar 95%. Selain oksigen, pada ASU juga dihasilkan nitrogen yang digunakan

sebagai media inert untuk feeding batubara ke gasifier, selain dapat pula digunakan untuk menurunkan

suhu pada combustor sehingga emisi NOx dapat terkontrol.

Pada gas sintetis, selain H2 dan CO juga dihasilkan unsur lain yang tidak ramah lingkungan seperti HCN,

H2S, NH3, COS, uap air raksa, dan char. Oleh karena itu, gas harus diproses terlebih dulu untuk

menghilangkan bagian tersebut sebelum dikirim ke turbin gas. Gas buang dari turbin gas kemudian

mengalir ke Heat Recovery Steam Generator (HRSG) yang berfungsi mengubah panas dari gas tersebut

menjadi uap air, yang selanjutnya dialirkan menuju turbin uap. Dengan mekanisme seperti ini, efisiensi

netto pembangkitan yang dihasilkan juga jauh melebihi pembangkitan pada sistem biasa (PCC) yang

saat ini mendominasi. Selain efisiensi pembangkitan, kelebihan lain IGCC adalah sangat rendahnya

kadar emisi polutan yang dihasilkan, fleksibilitas bahan bakar yang dapat digunakan, penggunaan air

Page 13: blog.ub.ac.idblog.ub.ac.id/.../10/Teknologi-Pembakaran-Pada-PLTU.docx · Web viewturbin dan memutar generator. Kinerja pembangkitan listrik pada PLTU sangat ditentukan oleh efisiensi

yang 30-40% lebih rendah dibanding PLTU konvensional (PCC), tingkat penangkapan CO2 yang

signifikan, slagyang dapat dimanfaatkan untuk material pekerjaan konstruksi, dan lain – lain.

Sebagai contoh adalah Nuon IGCC yang terletak di Buggenum, Belanda, berkapasitas 250MW.

Pembangkit ini menghasilkan efisiensi netto sebesar 43% (Low Heating Value), dengan performansi baku

mutu lingkungan yang sangat bagus. Emisi NOx yang dihasilkan sangat rendah yaitu kurang dari 10 ppm,

kemudian efisiensi pembuangan sulfur di atas 99%, tingkat emisi flyash, senyawa klorida dan logam berat

mudah menguap yang bisa dibilang nol, serta air limbah yang bisa diresirkulasi kembali sehingga tidak

ada buangan air limbah ke lingkungan.

Di samping kelebihan tersebut, terdapat pula kelemahan pada sistem IGCC yang dikembangkan saat ini,

misalnya, besarnya kapasitas pembangkitan yang ditentukan berdasarkan banyaknya unit dan model

turbin gas yang akan digunakan. Contohnya untuk turbin gas GE Frame 7FA yang berkapasitas 275MW.

Apabila IGCC akan dioperasikan dengan kapasitas pembangkitan 275MW, berarti cukup 1 unit yang

dipasang. Bila 2 unit yang akan digunakan, berarti kapasitas pembangkitan menjadi 550MW, dan bila 3

unit maka akan menjadi 825MW. Kemudian bila kapasitas pembangkitan yang diinginkan adalah di

bawah 200MW, maka model yang dipakai bukan lagi GE Frame 7FA, tapi GE 7FA yang berkapasitas

197MW. Demikian pula bila menghendaki kapasitas pembangkitan yang lebih kecil lagi, maka GE 6FA

yang berkapasitas 85MW dapat digunakan.

Dengan kombinasi antara model dan banyaknya unit turbin gas yang akan digunakan ini, selain akan

membatasi kapasitas pembangkitan pada IGCC, sebenarnya juga akan mempersempit rentang operasi.

Misalnya ketika akan menurunkan beban pada saat operasi puncak, hal itu mesti dilakukan dengan

menurunkan beban pada turbin gas. Penurunan beban turbin gas ini otomatis akan menurunkan efisiensi

pembangkitan dan akibat yang kurang baik pada emisi polutan yang dihasilkan. Kelemahan lain yang

perlu dicermati dari sistem IGCC saat ini adalah ongkos pembangkitan per kW

dan operation & maintenance (O & M) yang lebih mahal, sertaavailability factor (AF) yang lebih rendah

dibanding PCC.

Sejarah IGCC dimulai pada tahun 1970 ketika perusahaan STEAG dari Jerman Barat mengembangan

IGCC berkapasitas 170MW. Jauh setelahnya, proyek demonstration plant IGCC bernama Cool

Water diluncurkan di AS pada tahun 1984, yang mengoperasikan IGCC berkapasitas 120MW sampai

dengan tahun 1989. Sampai tulisan ini dibuat, sebenarnya belum ada unit IGCC yang murni komersial.

Penyebab utamanya adalah investasi pembangunannya yang besar, serta teknologi IGCC yang belum

terbukti. Teknologi IGCC disini maksudnya adalah rangkaian proses dari keseluruhan bangunan (building

block) yang membentuk sistem IGCC utuh. Hal ini perlu ditekankan karena teknologi dari masing –

masing unit pada IGCC misalnyagasifier, HRSG, turbin gas, turbin uap, dan yang lainnya merupakan

Page 14: blog.ub.ac.idblog.ub.ac.id/.../10/Teknologi-Pembakaran-Pada-PLTU.docx · Web viewturbin dan memutar generator. Kinerja pembangkitan listrik pada PLTU sangat ditentukan oleh efisiensi

teknologi yang sudah terbukti. Selama perkembangan yang berlangsung sekitar 20 tahun lebih sejak

proyek Cool Water, unit IGCC yang beroperasi secara komersial saat ini baik di AS maupun di Eropa

pada awalnya berstatus demonstration plant. Contoh beberapa plant IGCC tersebut adalah

1. Tampa Electric Polk 250MW IGCC Power Station, terletak di Florida, AS. IGCC ini beroperasi sejak

September 1996 dibawah proyek Tampa, menggunakan gasifier dari Chevron Texaco (sekarang GE

Energy). Bahan bakar yang digunakan adalah batubara dan petroleum coke (petcoke). Masalah yang

dihadapi adalah lebih rendahnya tingkat konversi karbon dibandingkan dengan nilai yang

direncanakan. Pernah pula terjadi fauling pada gas cooler.

2. Wabash River 260MW IGCC Power Station, terletak di Indiana, AS. Beroperasi sejak September 1995

dibawah proyek Wabash River, pembangkit ini menggunakan teknologi gasifikasi dari Global Energy

(saat ini bagian dari Conoco Phillips). Sejak berakhirnya proyek dari Departemen Energi AS (DOE)

pada tahun 2001, bahan bakar yang digunakan adalahpetcoke 100%.

3. Nuon 250MW IGCC Power Station, terletak di Buggenum, Belanda. IGCC ini bermula dari proyek

Demkolec yang dimulai pada bulan Januari 1994. Teknologi yang digunakan adalah dari Shell, yang

bahan bakarnya adalah batubara dicampur dengan biomassa (sludge dan sampah kayu) untuk lebih

mengurangi emisi CO2. Masalah yang pernah terjadi adalah kebocoran pipa gas cooler dan

timbulnya fauling pada gas cooler ketika campuran sludge sekitar 4-5%.

Gambar 13. Nuon IGCC, Buggenum

(Sumber: Thomas Chhoa, Shell Gas & Power, 2005)

4. Elcogas 300MW IGCC Power Station, terletak di Puertollano, Spanyol.  Pembangkit IGCC ini

beroperasi sejak Juni 1996 dibawah proyek Puertollano, menggunakan teknologi gasifikasi dari

Page 15: blog.ub.ac.idblog.ub.ac.id/.../10/Teknologi-Pembakaran-Pada-PLTU.docx · Web viewturbin dan memutar generator. Kinerja pembangkitan listrik pada PLTU sangat ditentukan oleh efisiensi

Prenflow (saat ini bagian dari Shell). Bahan bakarnya berupa campuran petcoke dan batubara

berkadar abu 40% dengan perbandingan 50:50. Di bawah program dari Uni Eropa,plant ini

direncanakan sebagai tempat untuk proyek pengambilan CO2 (CO2 recovery) dan produksi H2.

Dengan mempertimbangkan berbagai faktor diantaranya efisiensi pembangkitan yang tinggi, faktor ramah

lingkungan, dan teknologi gasifikasi yang sudah terbukti, upaya untuk lebih mengurangi kelemahan IGCC

sudah mulai dilakukan.

Selain dari segi biaya, dilakukan pula upaya untuk lebih meningkatkan efisiensi pembangkitan, yaitu

dengan menambahkan sel bahan bakar (fuel cell) ke dalam sistem IGCC. Dengan demikian, akan

terdapat 3 jenis kombinasi pembangkitan pada sistem yang baru ini yaitu turbin gas, turbin uap, dan fuel

cell. Metode pembangkitan ini disebut dengan Integrated CoalGasification Fuel Cell Combined

Cycle (IGFC), yang diagram alirnya ditampilkan pada gambar 16 di bawah ini.

Gambar 14. Tipikal IGFC

(Sumber: Clean Coal Technologies in Japan, 2005)

Pada sel bahan bakar, pembangkitan listrik dilakukan secara langsung melalui reaksi elektrokimia antara

hidrogen dan oksigen sehingga tingkat kerugian energinya sedikit dan efisiensi pembangkitannya tinggi.

Hidrogen tersebut dapat berasal dari gas alam, gas bio, atau gas hasil gasifikasi batubara. Berdasarkan

material yang digunakan untuk elektrolitnya, sel bahan bakar terbagi 4 yaitu Phosphoric-Acid Fuel

Cell (PAFC), Molten Carbonate Fuel Cell(MCFC), Solid-Oxide Fuel Cell (SOFC), dan Proton-Exchange

Membrane Fuel Cell (PEFC). Di bawah ini ditampilkan karakteristik dari keempat jenis sel bahan bakar

tersebut.

Tabel 1. Karakteristik Sel Bahan Bakar

(Sumber: Clean Coal Technologies in Japan, 2005)

Page 16: blog.ub.ac.idblog.ub.ac.id/.../10/Teknologi-Pembakaran-Pada-PLTU.docx · Web viewturbin dan memutar generator. Kinerja pembangkitan listrik pada PLTU sangat ditentukan oleh efisiensi

Dari tabel di atas terlihat bahwa sel bahan bakar yang sesuai untuk kombinasi pembangkitan dengan

turbin gas adalah SOFC, karena reaksinya menghasilkan suhu yang sangat tinggi.

Dibandingkan dengan PCC, pembangkitan dengan metode IGFC ini secara teoretis mampu mengurangi

emisi CO2 sebesar 30%. Kelebihan lainnya adalah tingginya efisiensi pembangkitan yang dapat dicapai

yaitu minimal 55%. Disamping kelebihan tersebut, terdapat beberapa hal yang perlu diperhatikan

sebelum IGFC benar – benar dapat diaplikasikan secara komersial. Yang pertama adalah urgensi

pematangan teknologi IGCC, karena IGFC pada dasarnya adalah pengembangan dari IGCC. Kemudian,

perlunya pengembangan sel bahan bakar yang berefisiensi tinggi tapi murah, untuk mendukung biaya

pembangkitan yang kompetitif ke depannya.

Penutup

Perkembangan teknologi pembakaran pada PLTU batubara telah disajikan di atas. Secara umum dapat

dikatakan bahwa suatu teknologi yang berkembang tidak terlepas dari hal pokok yang disebut 3E,

yaitu Engineering (sisi teknis), Economy (sisi ekonomis), dan Environment (sisi lingkungan). Pada tahap

awal, faktor Economy mungkin menjadi pertimbangan utama untuk pembangunan fasilitas pembangkitan,

diikuti Engineering, dan terakhir Environment. Namun seiring dengan upaya pengurangan polusi atau

pencemaran lingkungan yang menyebabkan makin ketatnya baku mutu lingkungan, terlihat bahwa urutan

3E tersebut mulai berubah. FaktorEnvironment secara perlahan menempati urutan pertama dalam

pertimbangan pengembangan teknologi, kemudian Engineering, dan terakhir justru Economy.

Mengambil contoh IGCC, adalah wajar bila tahap awal perkembangannya pasti memerlukan biaya yang

besar. Namun seiring dengan menguatnya isu lingkungan dan matangnya teknologi tersebut, biaya itu

akan menurun dan pada waktu tertentu akan kompetitif terhadap teknologi yang sudah ada. Sebaliknya,

teknologi pembangkitan yang ada, misalnya PCC yang saat ini mendominasi, lambat laun akan semakin

mahal untuk mengakomodasi standar mutu lingkungan yang semakin ketat, dan pada akhirnya justru

malah akan membebani dari segi ekonomi. Di bawah ini ditampilkan perbandingan biaya pembangkitan

antara IGCC dan PCC di AS selama kurun 20 tahun terakhir, dan prediksinya di masa depan.

Page 17: blog.ub.ac.idblog.ub.ac.id/.../10/Teknologi-Pembakaran-Pada-PLTU.docx · Web viewturbin dan memutar generator. Kinerja pembangkitan listrik pada PLTU sangat ditentukan oleh efisiensi

Gambar 15. Perbandingan Biaya Pembangkitan per kW IGCC dan PCC di AS

(Sumber: JCOAL Journal, vol.3, Jan. 2006)

Dari grafik di atas terlihat bahwa selama 20 tahun terakhir, biaya pembangkitan untuk PCC meningkat

sekitar 50%. Peningkatan tersebut diakibatkan oleh penambahan peralatan untuk mengurangi beban

lingkungan, misalnya fasilitas desulfurisasi (FGD). Sebaliknya, biaya pembangkitan per kW pada IGCC

justru semakin menurun, dan diharapkan pada tahun 2010, nilainya akan sama dengan pada PCC, yaitu

sekitar $1200.

Referensi

1. Amick, Phil, Coal Gasification Flexibility for Fuels & Products, ConocoPhillips, 2005

2. Baardson, John A., Coal to Liquids: Shell Coal Gasification with Fischer-Tropsch Synthesis, Baardson

Energy LLC, 2003.

3. Chhoa, Thomas, Shell Gasification Business in Action, Shell Gas & Power, 2005.

4. JCOAL, Coal Science Handbook, Japan Coal Energy Center, 2005.

5. JCOAL, JCOAL Journal Vol. 2, Nov. 2005, Japan Coal Energy Center, 2005.

6. JCOAL, JCOAL Journal Vol. 3, Jan. 2006, Japan Coal Energy Center, 2006.

7. JCOAL, JCOAL Journal Vol. 4, Mar. 2006, Japan Coal Energy Center, 2006.

8. Material Presentasi, Idemitsu Kosan Co., Ltd, 2003.

9. Sekitan no Kiso Chishiki, Sekitan Shigen Kaihatsu Kabushiki Kaisha.

10. Shigen Enerugi- Chou Shigen Nenryou Bu, Ko-ru No-to 2001 Nen Ban, Shigen Sangyou Shinbunsha,

2001.

Page 18: blog.ub.ac.idblog.ub.ac.id/.../10/Teknologi-Pembakaran-Pada-PLTU.docx · Web viewturbin dan memutar generator. Kinerja pembangkitan listrik pada PLTU sangat ditentukan oleh efisiensi

11. Sema, Tohru, Karyoku Hatsuden Souron, Denki Gakkai, 2002.

12. WCI, The Coal Resource, World Coal Institute, 2004.

Samarinda, 2006.