Top Banner
BIOS E-127 – 08.09.
19

BIOS E-127 – 08.09.29. Phenetics vs. cladistics Lysozyme amino acid changes in unrelated ruminants Phenetics vs. cladistics.

Jan 15, 2016

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: BIOS E-127 – 08.09.29. Phenetics vs. cladistics Lysozyme amino acid changes in unrelated ruminants Phenetics vs. cladistics.

BIOS E-127 – 08.09.29

Page 2: BIOS E-127 – 08.09.29. Phenetics vs. cladistics Lysozyme amino acid changes in unrelated ruminants Phenetics vs. cladistics.

Phenetics vs. cladistics

Page 3: BIOS E-127 – 08.09.29. Phenetics vs. cladistics Lysozyme amino acid changes in unrelated ruminants Phenetics vs. cladistics.

Lysozyme amino acid changes in unrelated ruminants

Phenetics vs. cladistics

Page 4: BIOS E-127 – 08.09.29. Phenetics vs. cladistics Lysozyme amino acid changes in unrelated ruminants Phenetics vs. cladistics.

Maximum Parsimony

Page 5: BIOS E-127 – 08.09.29. Phenetics vs. cladistics Lysozyme amino acid changes in unrelated ruminants Phenetics vs. cladistics.

Microbial systematics

• Formerly Pseudomonas (partial list): Ralstonia, Burkholderia, Hydrogenophaga, Sphingomonas, Methylobacterium, Cellvibrio, Xanthomonas, Acidovorax, Hydrogenophillus, Brevundimonas, Pandoraea

multi-C C1(& all use methanol)

Page 6: BIOS E-127 – 08.09.29. Phenetics vs. cladistics Lysozyme amino acid changes in unrelated ruminants Phenetics vs. cladistics.

Molecular phylogenetics• Zuckerkandl & Pauling. 1965. Molecules as documents of

evolutionary history. J Theor Biol. 8:357-366.

• Neutral theory (Motoo Kimura, 1968)

Page 7: BIOS E-127 – 08.09.29. Phenetics vs. cladistics Lysozyme amino acid changes in unrelated ruminants Phenetics vs. cladistics.

16S rRNA as phylogenetic marker• Why a good molecule?

Page 8: BIOS E-127 – 08.09.29. Phenetics vs. cladistics Lysozyme amino acid changes in unrelated ruminants Phenetics vs. cladistics.

Good Dataset

[A1, A2, A3, A4] [A1, B2, A3, A4]

Bad Dataset

A B

species 1 species 2 species 3 species 4

A1B1

A2B2 A4

B4A3

B3

Ortholog vs. paralog?

Page 9: BIOS E-127 – 08.09.29. Phenetics vs. cladistics Lysozyme amino acid changes in unrelated ruminants Phenetics vs. cladistics.

CGGATAAACCGGATAGACCGCGATAAACCGGATAAC

taxa1taxa2taxa3taxa4

Alignment

Page 10: BIOS E-127 – 08.09.29. Phenetics vs. cladistics Lysozyme amino acid changes in unrelated ruminants Phenetics vs. cladistics.

Example: Neighbor Joining (NJ)

Taxa CharactersSpecies A ATGGCTATTCTTATAGTACGSpecies B ATCGCTAGTCTTATATTACASpecies C TTCACTAGACCTGTGGTCCASpecies D TTGACCAGACCTGTGGTCCGSpecies E TTGACCAGTTCTCTAGTTCG

A

B

C

DE

Choose methods: distance-based

A B C D E Species A ---- 4 10 9 8Species B ---- 8 11 10Species C ---- 3 8Species D ---- 5Species E ----

A B C D E Species A ---- 4 10 9 8Species B -19.3 ---- 8 11 10Species C -10 -14.7 ---- 3 8Species D -10.7 -11.3 -16 ---- 5Species E -12.7 -13.3 -12 -14.7 ----

M(AB)=d(AB) -[(r(A) + r(B))/(N-2)]

Page 11: BIOS E-127 – 08.09.29. Phenetics vs. cladistics Lysozyme amino acid changes in unrelated ruminants Phenetics vs. cladistics.

Ancestral Sequences

Observed Sequences

?Model

Choose “model”

Page 12: BIOS E-127 – 08.09.29. Phenetics vs. cladistics Lysozyme amino acid changes in unrelated ruminants Phenetics vs. cladistics.

Maximum Parsimony (MP): Model: Evolution goes through the least number of changes

Maximum Likelihood (ML): L (data| model)

Bayesian Inference

Pr(data)

Pr(model)model)|Pr(datadata)|Pr(model

Markov chain Monte Carlo (MCMC) method for sampling from posterior probability distribution

Discrete character methods

Page 13: BIOS E-127 – 08.09.29. Phenetics vs. cladistics Lysozyme amino acid changes in unrelated ruminants Phenetics vs. cladistics.

I. Bootstrap

Re-sampling to produce pseudo-dataset (random weighting)

II. Jacknife

Sampling with replacement

III. Permutation test

Random deletion of sub-dataset

Randomize dataset to build null likelihood distribution

CGATCGTTA

CAATGATAG

CGCTGATAA

CGCTGATCG

taxa1

taxa2

taxa3

taxa4

123456789

Dataset1: 729338554Dataset2: 631981282

Dataset1: 1-3-56789Dataset2: 12-45678-

10073

Assess reliability

Page 14: BIOS E-127 – 08.09.29. Phenetics vs. cladistics Lysozyme amino acid changes in unrelated ruminants Phenetics vs. cladistics.

Reconstructed ancestral sequences to infer paleoenvironment

(Gaucher et al., 2003)

Page 15: BIOS E-127 – 08.09.29. Phenetics vs. cladistics Lysozyme amino acid changes in unrelated ruminants Phenetics vs. cladistics.

Signs of selection

(Sawyer & Malik, 2006)

Page 16: BIOS E-127 – 08.09.29. Phenetics vs. cladistics Lysozyme amino acid changes in unrelated ruminants Phenetics vs. cladistics.

5. Assess ReliabilityMolecular clock: HIV-1 origin

(Korber et al., 2000)

Page 17: BIOS E-127 – 08.09.29. Phenetics vs. cladistics Lysozyme amino acid changes in unrelated ruminants Phenetics vs. cladistics.

Genetic exchange in bacteria/archaea

Page 18: BIOS E-127 – 08.09.29. Phenetics vs. cladistics Lysozyme amino acid changes in unrelated ruminants Phenetics vs. cladistics.

Detecting HGT from genomes: atypical nt composition

(Hacker & Carniel, 2001)

Page 19: BIOS E-127 – 08.09.29. Phenetics vs. cladistics Lysozyme amino acid changes in unrelated ruminants Phenetics vs. cladistics.

Monday (10/6): Microbial species, biogeography & population genetics II.