Top Banner
Biology in primary school: Doing a big experiment and writing it up Dr. Peter Farrell EdD, MAppSc, GDipEd, PGCert Primary Mathematics Teaching, BAppSc(Hons) TeachingPrincipal Zeerust Primary School Zeerust, Victoria, Australia, 3634 CONTENTS INTRODUCTION 2 IT ALL BEGINS WITH A QUESTION 2 ANTICIPATING PROBLEMS 4 WHAT TO DO WHILE WAITING 5 AND NOW FOR SOMETHING COMPLETELY DIFFERENT (NUMERACY) 6 LET THE THINKING BEGIN [OR NOT] 8 SHARING PRACTICE 9 DISCUSSION 10 AUGMENTS MY PRACTICAL KNOWLEDGE 10 CHALLENGES MY PRACTICAL KNOWLEDGE 11 LEGITIMISES MY PRACTICAL KNOWLEDGE 11 CONCLUSION 12 ABOUT THE AUTHOR 12 REFERENCES 12 FURTHER INFORMATION 13
13

Biology in primary school: Doing a big experiment and writing it up

May 05, 2023

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Biology in primary school: Doing a big experiment and writing it up

Biology   in   primary   school:  Doing   a   big  experiment  and  writing  it  up  Dr.  Peter  Farrell  EdD,  MAppSc,  GDipEd,  PGCert  Primary  Mathematics  Teaching,  BAppSc(Hons)  Teaching-­‐Principal  Zeerust  Primary  School  Zeerust,  Victoria,  Australia,  3634    

   CONTENTS  INTRODUCTION   2  IT  ALL  BEGINS  WITH  A  QUESTION   2  ANTICIPATING  PROBLEMS   4  WHAT  TO  DO  WHILE  WAITING   5  AND  NOW  FOR  SOMETHING  COMPLETELY  DIFFERENT  (NUMERACY)   6  LET  THE  THINKING  BEGIN  [OR  NOT]   8  SHARING  PRACTICE   9  DISCUSSION   10  AUGMENTS  MY  PRACTICAL  KNOWLEDGE   10  CHALLENGES  MY  PRACTICAL  KNOWLEDGE   11  LEGITIMISES  MY  PRACTICAL  KNOWLEDGE   11  CONCLUSION   12  ABOUT  THE  AUTHOR   12  REFERENCES   12  FURTHER  INFORMATION   13  

Page 2: Biology in primary school: Doing a big experiment and writing it up

 

Peter  Farrell  –  16  November  14  

2  

Introduction  I   was   sitting   with   a   teaching   colleague   from   another   school   watching   a   ‘science  show’.   After   the   show,   which   was   very   polished,   I   stated   to   this   teacher   that   it  seemed  to  me  that  primary  school  science  is  often  trivialised  into  a  series  of  tricks  with   a   ‘fill-­‐in-­‐the-­‐blanks’   worksheet   at   the   end.   I   stated   that   this   was   a   shame  because  science  can  be  so  much  more  than  that.  At  the  time  I  was  being  deliberately  provocative   because   I   knew   that  my   colleague   had   put   together   a   comprehensive  science  kit   for  her   students,   and   that  very   term   they  had  embarked  on  a   series  of  unrelated  ‘experiments’  culminating  in  the  science  show  we  had  just  watched  with  our  students.  The  teacher  asked  me  what  I  did  with  science.  I  replied  that  we  did  big  science  experiments  at  my  school,  and  wrote  it  up  as  a  science  paper.  After  further  discussion,  she  asked  if  I  could  send  her  something  about  what  I  did.  An  earlier  draft  of  this  essay  was  the  result  and  it  began:    Doing  a  big  science  experiment  and  then  writing  it  up  is  an  ambitious  undertaking  for   most   primary   school   teachers   and   the   children   in   their   class,   but   it   is   a  worthwhile  thing  to  do,  because  it  leads  to  such  deep  learning  as  student’s  research,  reason  and  retell  what  they  know.  In  this  essay  I  will  share  the  work  of  my  students  as  we  worked  through  a  big  experiment  over  sixteen  50  to  60  minute  sessions.    

It  all  begins  with  a  question  For   my   class   that   question   was   simply   this:   What   is   a   plant?   As   the   students  explored  this  question  both  on-­‐line  and  in  books,  I  acted  as  their  scribe  and  created  the  following  introduction  to  our  science  report:    

There  are  some  300  000  species  of  plants  on  the  earth  (Wikipedia).  Unlike  animals,  plants  can  create  their  own  food.  They  do  this  through  a  process  called  photosynthesis  (discussed  below).   All   plants   have   leaves,   roots   and   a   stem.   Some   plants   have   branches   and   flowers.  Some   plants   attract   insects,   birds   and/or   animals   while   some   plants   try   to   defend  themselves  against  attack.    

 Plants   draw   nutrients   like   nitrogen,   phosphorous,   potassium   and   other   trace   elements   up  through   their   roots.  The  main   root   is   the   tap-­‐root,   and   this  will   also  draw  water  up   to   the  plant  stem  and  out  through  the  leaves.  Special  passageways  through  the  stem  are  called  the  xylem   and   phloem.   The   excess   water   exits   via   the   stomates   as   vapour.   These   are   small  openings   on   the   underside   of   the   leaf;   which   are   connected   to   vascular   plant   tissue.   This  process   is   called   transpiration.   Water   gives   the   plant   rigidity,   rather   like   blowing   up   a  modelling  balloon  with  air.  Plants  lacking  water  wilt  because  they  need  to  store  more  water.  About  90%  of   the  water   that  enters  a  plant   is  stored  and  used  to  provide  rigidity,  cool   the  plant  down,  and  for  later  growth.      Photosynthesis   is   the  other   significant  process   that  plants   are   capable  of.  Occurring   in   the  chloroplasts,   which   are   found   in   the   leaves,   photosynthesis   takes   water,   carbon   dioxide,  nutrients,  and  sunlight  to  create  a  glucose  product;  this  is  used  for  growth.  The  glucose  finds  its  way  into  the  cell  walls  of  the  plant  and  in  the  roots  as  starch.      Chloroplasts   are   green   because   the   plant   does   not   absorb   this  wavelength   of   light.  White  light   is  made   up   of   different  wavelengths   ranging   from   infrared   to   ultraviolet.   The   visible  band  of  light  falls  between  these  two  extremes.  Plants  prefer  red  and  blue  wavelengths.      

Page 3: Biology in primary school: Doing a big experiment and writing it up

 

Peter  Farrell  –  16  November  14  

3  

This   took   about   two   50-­‐minute   sessions   for   us   to   create   this   introduction.   My  students   discovered   many   great   resources   on-­‐line   as   they   did   so;   U-­‐tube   movies  were  particularly   helpful.   In   addition   to   increasing  my   student’s   understanding  of  plants,  I  wanted  to  model  for  them  how  complex  ideas  could  be  written  down.  I  also  wanted   them   to   start   thinking   about   an   experiment.   In   a   nutshell,   primary   school  biology,   where   it   is   assessed,   is   concerned   with   form   and   function.   In   our  introduction  we  had  briefly  described  the  form  of  a  plant  and  we  had  touched  on  the  importance   of   nutrition,   and   the   processes   of   transpiration   and   photosynthesis.  Could  one  of  these  factors  form  the  basis  of  an  experiment?      The   answer   was   yes,   and   the  students   and   I   initially  worked  on  two  questions.  The   first   related   to  photosynthesis   and   the   impact   of  filtered   light   upon   plant   growth  and   development.   One   of   the  students   had   seen   an   example   of  this  experiment  during  our  earlier  research.   The   second   experiment  was   about   the   impact   of  malnutrition  and  overcrowding.  As  it   happens,   because   of   the  seasonality   of   plant   growth,   we  never   actually   started   the   second  experiment,  because  our  candidate  plant  (rhubarb),  chosen  after  much  deliberation,   was   not   then  available   from   our   local   nursery,  and  we  did  not  think  anything  else  that   was   available   would   work  quite   as   well.   We   did   however  spend   a   lot   of   time   designing   this  experiment.      Fortunately,   the   first   experiment  was  completed  and  again,  after  much  deliberation,  the  candidate  plant  was  chosen,  and  an  additional  paragraph  was  inserted  into  our  introduction:          

Peas   are   an   edible   plant   that   climb.   They   are   grown   commercially   worldwide   and   their  seedpods  and/or   the  seeds   inside  are  eaten.  Snow  peas   (Pisum  sativum)  are  grown   in   late  winter  and  early  autumn  and  need  eight  to  10  days  to  germinate.  It  was  for  this  reason  they  chosen   as   an   experimental   species.  We   wanted   to   find   out   what   filtered   light,   effects   the  growth  of  the  climbing  pea?  We  anticipate  that  seeds  planted  under  green  light  will  not  grow  as  well  as  seeds  planted  under  red  and  blue  filters.      

 There  are  two  points  to  make  here.  The  first  is  about  writing  an  introduction  while  the  second  relates  to  scientific  method.  You  will  note  that  initially,  our  introduction  

Scientific  method  is  a  formal  process  where  problems  are  tackled  in  a  particular  way:    1.  The  scientist  asks  a  question.  2.  The  scientist  does  background  research.  3.  The  scientist  constructs  a  hypothesis  (this  is  an  assumption  about  what  is  going  on).  4.  The  scientist  tests  their  hypothesis  by  doing  an  experiment  (or  making  a  model).  5.  The  scientist  analyses  their  results  and  draws  a  conclusion  that  may  include  further  experiments.  6.  The  scientist  communicates  the  results  in  a  transparent  way.    a.  Experiments  should  be  replicable  –  that  is  if  other  scientist  do  them  then  similar  results  will  be  seen.    b.  Peer-­‐review  is  a  process  by  which  scientists  working  in  the  same  field  critically  analyse  the  work  of  the  author.    c.  Science  is  built  upon  the  work  of  others.  Remember  steps  1  and  2  above.      

Page 4: Biology in primary school: Doing a big experiment and writing it up

 

Peter  Farrell  –  16  November  14  

4  

was  broad  in  its  scope  before  it  narrowed  down  to  very  specific  information  about  the  snow  pea,  our  experimental  candidate.  I  often  use  the  metaphor  of  funnel  with  my  children  to  describe  how  they  should  structure  their  writing.  The  second  point  is  that   it   is   here,   in   this   final   paragraph   of   the   introduction,   that   we   presented   our  hypothesis  as  required  by  scientific  method  (see  side  bar).  You  will  see  that  not  only  do  we  say  what  we  want  find  out,  we  make  a  prediction  (hypothesis),  when  we  use  the  word  ‘anticipate’  about  what  will  happen.    

Anticipating  problems  For  me,  as  an  ex-­‐scientist,  designing  the  experiment  is  one  of  the  fun  parts.  And  one  of   the   problems   I   have   with   science   done   as   a   series   of   quick   tricks,   is   that   the  students   never   engage   in   the   process   of   solving   the   problems   that   go   along  with  designing   an   experiment.   In   fact,   I   have   already   shared   one   problem-­‐solving   tale  with  you.  You  will  recall  that  we  had  to  choose  appropriate  plants  as  candidates  for  our   experiments.   This   took   a   session   to   do,   and   then   experiment   2   had   to   be  abandoned  because  of  a  lack  of  supply.      The  problems  we  dealt  with   at   this   point   of   the   experiment  was  how   to   filter   the  light,  where   to  grow  the  plants,  how  to  prepare   the  soil,  how  to  choose   the  seeds,  how  we  would  we  have  a  control  to  compare  our  treated  plants  with,  when  would  we  wrap  the  experiment  up,  what  would  we  measure  to  show  any  differences,  and  what  would  we  do  while  we  waited  for  the  plants  to  germinate  and  grow?      In   the  write-­‐up   of   a   science   experiment   this   is   called   the  materials   and  method  section.   Literacy   teachers   will   know   this   writing   as   procedural   text.   Once   again   I  assisted   the   students   with   the   writing   but   only   to   a   preliminary   draft   stage.   The  intention  was  that  each  student  in  my  grade  3-­‐6  class  would  assume  more  and  more  responsibility  for  the  writing  to  come.  This  is  how  it  looked  when  they  got  copies  of  the  report:      

Materials  and  Method    Light  Experiment  16  x  snow  peas,    16x  1.25  litre  clear  plastic  bottles,    Coloured  cellophane  (green,  red  and  blue),  planter  box  with  organically  fertilised  soil,  watering  regime  (five  days  in  seven),      The  bottles  were  washed  and  the  labels  removed.  The  bottom  of  the  bottles  was  cut  off  and  some  bottles  were  wrapped  in  cellophane.  Three  bottles  each  were  wrapped  in  blue,  red  and  green  cellophane  respectively.  The  cellophane  was  held  in  place  with  sticky  tape  and  elastic  bands.   The   remaining   seven   bottles,   the   controls,  were   clear.   It  was   intended   that   four   of  these  would  be  sacrificed  and  examined.          The   soil   in   the   box  was   turned   over   and  weeded.   16   seeds,   chosen   for   uniformity   in   size,  were  planted  at  5cm  into  the  soil.  A  bottle  was  place  over  the  top  and  pushed  into  the  soil  about   2cm.   The   seeds   were   watered   where   a   puddle   formed   over   the   top;   this   was   the  method  used  on  five  days  out  of  seven.    

Page 5: Biology in primary school: Doing a big experiment and writing it up

 

Peter  Farrell  –  16  November  14  

5  

 During   the   course   of   the   experiment   individual   peas   were   examined   under   a   dissecting  microscope.  These  were  whole,  crushed,  germinating,  seedlings.      Result  At  day  six  some  seeds  had  germinated.  

 Conclusion  

 You  will  note  that  even  at  this  point  the  headings  for  the  results  and  conclusion  are  already  ‘pencilled  in’.  The  other  thing  to  realise  is  that  the  procedures  shown  so  far  only  describe  the  method  used  to  prepare  the  soil  and  plant  the  seeds.  The  students  were  expected   to  complete   the  remainder  of   the  section,  with  my  assistance,   later  on.  We  had  gone  from  full  on  modelling  of  writing  to  a  shared  writing  approach,  and  from  now  on  the  writing  examples  will  be  provided  by  my  students.      

What  to  do  while  waiting  Earlier   I   said   that  primary   school  biology,  where   it   is   assessed,   is   about   form  and  function.  We  were  about  to  deal  with  the  latter,  but  what  of  the  former.  How  do  we  teach  the  students  about  plant  form?  The  answer  is  through  scientific  drawing.      The  week  after  we  planted  our  experimental  plants  in  the  box  outside,  we  also  made  use  of   the   cut-­‐off   bottoms  of   the   soft-­‐drink  bottles  by  putting   layers  of  wet  paper  towel  in  the  bottom  and  placing  a  single  seed  in  each.  During  the  same  session  we  had  a  look  at  the  seeds  under  a  dissecting  microscope  we  had  been  given  by  a  local  secondary   college   (it  was   old),   and  we   also   used  magnifying   glasses.   Later,  when  these   seeds   germinated   (we   kept   them   in   the   classroom)   we   took   them   out   and  drew  them.      Scientific   drawing   is   done  with   pencil   and   paper   and   includes   a   heading  with   the  species   name   (in   this   case,   Pisum   sativum).   Each   part   of   the   plant   is   labelled   (we  used   the   internet   to  do   this)  and   the  drawing   is  exactly  what   the  student  can  see;  artistic  renderings  are  not  acceptable.  We  spent  three  sessions  working  on  this  and  the   quality   dramatically   improved   each   time.   The   children   gained   an   impressive  understanding  of  the  form  of  a  snow  pea  seedling.  These  drawings  did  not  form  part  of   our   experiment   but   are  mentioned   here   as   a  worthwhile   thing   to   do   in   a   long  biology  experiment.      Returning  now  to  the  materials  and  method  section.  Here  is  what,  Lily,  a  grade  6  girl   wrote,   with   my   assistance   and   the   assistance   of   other   students   in   the   class,  continuing  on  from  before:      

During   the   course   of   the   experiment   individual   peas   were   examined   under   a   dissecting  microscope.  These  were  whole,  crushed,  germinating,  seedlings.      Seeds   were   germinated   and   examined   using   scientific   drawing   and   labelling.   This   was  conducted  three  times.      

Page 6: Biology in primary school: Doing a big experiment and writing it up

 

Peter  Farrell  –  16  November  14  

6  

Some  plants  grew  quickly  and  it  was  necessary  to  plug  the  top  of  the  bottles  with  coloured  cellophane.      On   the   10th   of   September   the   plants   were   retrieved   from   the   soil,   placed   on   labelled  whiteboards  (Red  1,  Red  2  etc.).  We  measured  the  total  length,  counted  the  number  of  leaves,  made  a  judgement  about  the  condition  of  the  leaves,  the  amount  of  secondary  root  growth,  and   the   stem   to   root   ratio.  All   test   plants  were   compared  and   contrasted  with   the   control  group.  The  question  asked  went  like  this,  ‘How  are  the  red  group  plants  similar  to  each  other  and  different  to  the  control  group.’  This  data  was  averaged  and  graphed.        

Lily  also  modified  the  original  materials  section:    

Table  1:  Materials  16   snow   pea   seeds,   16   1.25l   clear   plastic   bottles,   coloured   cellophane   (green,   red,   blue),  planter   box  with   organically   fertilised   soil,   watering   regime   (five   in   seven   days),   drawing  pads,  pencils,  whiteboards,  sticky  tape,  elastic  bands    

 Lily   has   inadvertently   included   the   materials   and   procedure   used   for   scientific  drawing.   You   should   encourage   your   students   to   keep   a   laboratory   notebook   to  record   the  happenings   in   the   experiment   as   they  do.  This   is  why  Lily  was   able   to  record  the  date  of  harvest  so  accurately.  The  retrieval  and  initial  measurement  and  

counting   processes  took   a   whole   session.  We   recorded   leaf  counts   and   average  lengths   as   well   as   our  judgements   about  relative  condition.  

And   now   for  something  completely  different  (numeracy)  The   results   of   a  science  experiment  are  usually   analysed   using  

quantitative   data.   However,   at   the   level   we   are   working   at,   middle   and   upper  primary,  it  is  not  necessary  to  get  into  statistical  analysis.  Using  descriptive  statistics  is  more  than  enough,  and  Microsoft  Excel,  proved  more  than  adequate  to  deal  with  what  we  are  doing  here.  This  part  of  our  experiment  took  four  sessions.  In  the  first  session   I   took   the   students   through   the   process   of   creating   the   charts   from   the  averages  for  each  treatment.  As  the  students  gained  more  confidence  they  became  more  independent  and  created  each  graph  without  my  assistance.  This  was  the  easy  part.   Here   is   Cameron’s   first   chart   about   the   average   length   of   each   treatment.  Cameron  is  a  grade  3.  Graphical  literacy  is  emerging  as  a  significant  area  of  primary  school  literacy  and  I  like  my  students  to  look  at  a  graph  or  table  and  tell  its  story  in  words.  Here  is  what  Cameron  had  to  say  about  his  chart:    

Page 7: Biology in primary school: Doing a big experiment and writing it up

 

Peter  Farrell  –  16  November  14  

7  

With   the  blue  bottles  getting   the  best  average   length,   the  red  and  green   just  about  got   the  same   length  with   red   being   taller   by   3.4mm.   It  was   surprising   to   see   that   the   green  went  better   than   the  control  because  our  hypothesis  was   that   the  red  and  blue  would  do  better  than  the  green  because  the  green  would  be  reflecting  the  colour  wavelengths.  

 Of   course   Cameron   means   that   the   plants   getting   the   blue   light   treatment   are  growing  best  on  average,   this  experiment   is  not  about  growing  blue  bottles.   I  note  here  that  Cameron  has  also  started  to   ‘reason’  as   to  why  something  has  happened  that  is  different  to  our  hypothesis.  Lily,  our  grade  6  student  introduced  earlier,  had  this  to  say  about  the  data  in  the  same  chart:      

Figure   1   shows   the   average   length   of   the   seedlings   in  mm.   All   coloured   treatments   grew  more   than   the   control   (360mm).   The   blue   treatment   averaged   about   417mm   and   about  20mm  more  than  the  red  and  green  treatments  which  were  similar  to  each  other.  

         Lily  has  begun  her  story  by  introducing  Figure  1  and  then  gone  on  to  describe  the  complexity  of  the  graph  in  quite  an  advanced  fashion  for  a  primary  school  student.  She  has  not  yet  drawn  any  conclusions.      For  our  experiment  there  were  three  more  graphs.  One  was  about   leaf  counts  and  the  other  two  were  a  method  to  show  up  the  variability  in  our  length  and  leaf  count  data   sets.   CV(%)   or   coefficient   of   variation   is   calculated   by   dividing   the   standard  deviation  of  your  data  by   the  mean  average  of   that  same  data  and  multiplying   the  answer  by  100  to  get  a  percent  value.  It  is  very  easy  to  set  up  using  the  functions  in  your  spreadsheet.  For  this  data  a  high  score  indicates  that  the  data  is  very  variable  while  a  low  score  indicates  that  each  plant  was  about  the  same  with  respect  to  the  item   being  measured   or   counted.  We   also   included   a   Table  which   deserves   some  explanation.  Here  is  what  Lachie,  a  grade  6  boy,  had  to  say  about  the  table:    

Table   2   shows   the   coloured   treatments   compared   to   the   control.   The   first   colour   we  compared   was   the   blue   to   the   control.   We   can   see   on   the   table   that   the   blue   had   more  secondary  roots,  the  same  stem  length  and  less  leaves.  The  second  colour  we  compared  was  the   red   treatment.   For   the   red,   it   had   less   secondary   roots,   taller   stem   to   root   ratio   and  slightly   less   leaves.  The   final   colour  was   the  green   to   the  control  which  had   just  about   the  same  results  as  the  red  [treatment]  plants.      

 Control   Secondary  roots   Stem  length   Leaves  

Blue   +   =   -­‐  Red   -­‐   +   -­‐  Green   -­‐   +   -­‐  

 All  that  is  missing  from  Lachie’s  story  is  what  each  of  the  symbols  mean  (+,  =  and  -­‐)  although  it  is  possible  to  infer  this  from  his  explanation.  Dealing  with  tabulated  data  is  another  form  of  graphical  literacy  but  the  important  part  here  is  that  the  treated  plants  are  compared  to  the  control.  The  use  of  a  control  is  an  important  component  of  experimental  science.  It  is  something  that  is  almost  impossible  to  replicate  when  studying  natural  phenomena.      

Page 8: Biology in primary school: Doing a big experiment and writing it up

 

Peter  Farrell  –  16  November  14  

8  

So  as  we  come  to  the  end  of  the  results  and  each  student,  has,  to  a  greater  or  lesser  degree,  told  the  story  of  each  graph  or  table.  Cameron  is  already  wondering  why  our  hypothesis  is  under  threat  but  that  should  be  saved  for  the  report’s  conclusion.    

Let  the  thinking  begin  [or  not]  Even  though  each  student  wrote  their  own  conclusion  to  our  experiment  I  found,  as  their  teacher,  I  could  not  remain  silent  as  they  did  so.  As  certain  phenomena  in  our  experiment   was   explained   by   the   eHow   website,   I   could   not   help   but   draw  conclusions  of  my  own,  or  wonder,  out  aloud,  about  what  it  all  meant.  I  am  sure  all  of   my   students   heard   this   thinking   as   they   wrote.   However,   I   did   not   assist   the  students  with  what  they  wrote.        I   think   a   decent   conclusion   should   begin   with   an   introductory   paragraph  introducing   the   overall   theme   of   the   results.   Here   is   Georgie,   a   grade   5   girl,   who  made  a  pretty  good  effort  to  encapsulate  the  outcomes  of  our  experiment:    

All  the  plants  reacted  differently,  and  they  survived  in  all  weather.  If  someone  was  to  do  the  same  experiment  they  would  hopefully  get  the  same  results.  The  threads  in  all  the  graphs  are  that  green  is  nearly  always  2nd,  white  [clear]  is  always  all  over  the  place  and  red  and  blue  are  near  each  other.        

 In  an  excellent  conclusion  to  a  scientific  report  you  will  find  an  attempt  to  compare  and  contrast  the  outcomes  of  the  experiment  with  what  the  literature  (in  this  case  the   web)   has   to   say   about   the   same   phenomena.   Emily,   a   grade   6   wrote   the  following:    

eHow.com  (2014)  said  that  green  light   is  harmful  to  plants  and  red  light  should  encourage  maturation.  The  green-­‐treatments  [in  our  experiment]  did  not  show  any  signs  of  illness  and  we   didn’t   see   maturation   from   the   red-­‐treatments.   That   could   be   possible   if   we   had  continued  the  experiment  for  longer.      

A  good  conclusion  will  not  incorporate  the  literature  quite  so  well  but  it  will  use  it  to  explain  some  phenomena.  Here  is  Lachie:    

Within   Figure   1   you   see   that   red   and   blue   coloured   treatments   did   as   expected   but   the  surprising  twist  was  that  the  green  went  as  well  as  both  the  red  and  the  blue.  That  is  because  little  hypocotyls  in  the  plant  react  to  the  green  light  in  the  short  term.    

Lachie  is  almost  right  with  his  explanation  except  that  there  is  only  one  hypocotyl.  This  is  the  part  of  a  seedling  that  forms  the  transition  between  stem  and  root.  A  less  well  developed  conclusion,  which  should  be  forgiven  because  the  author  is  in  grade  3,  is  this  one  by  Jordan:    

All  of  the  plants  did  differently,  depending  on  the  colour  of  the  plants  filtered  light  they  were  under.    

 This  statement   is   true  enough  and  after  some  paragraphs   that   retell   the  stories  of  each  of  the  graphs  and  the  table,  Jordan  makes  reference  to  the  original  hypothesis:  

Page 9: Biology in primary school: Doing a big experiment and writing it up

 

Peter  Farrell  –  16  November  14  

9  

 Our  hypothesis  was   that   the  plants  with   the  red  and  blue   filtered   lighting  would  do  better  than  all  the  plants  [with  green]  filtered  light.      

I  have  inserted  the  two  words  that  correctly  state  our  hypothesis.  Although  Jordan  referred   to   the   hypothesis   he   did   not   draw   a   conclusion   as   to   whether   our  hypothesis  was  proven  or  not.  Jayk,  a  grade  5  boy,  did  better:    

So  all  through  the  experiment  we  thought  the  red  and  the  blue  would  do  better  than  the  rest.  But  the  green  was  the  same  as  the  blue  and  the  red  on  Figure  1.  Then  on  the  Figure  2  the  red  and  the  blue  is  not  doing  as  well  as  the  control  and  the  green.      

It   should   be   noted   that   I   have   cherry-­‐picked   the   above   quotes   from   my   seven  students  in  order  to  make  my  point.  I  am  indebted  to  Cameron,  Emily,  Georgie,  Jayk,  Jordan,  Lachie  and  Lily  for  being  such  willing  participants  in  this  work.  Writing  the  conclusion  took  six  sessions  and  I  used  the  writing  block  to  get  it  done.    As  a  minimum  a  conclusion  to  a  science  experiment  should  make  reference  to  the  original   hypothesis   (Jordan)   and   it   should   combine   the   evidence   in   the   results  indicating  the  hypothesis  was  proven  or  not  (Jayk).  Going  one  step  better  it  should  use  other  sources  of   information   to  explain  what  we  have  seen   in  our  experiment  (Lachie)   and   then   suggesting   how   any   issues   encountered  might   be   addressed   by  future  experiments  (Emily).      Elsewhere   I   have  written   about   the   Six   Rs   which   are   reading,   writing,   ‘rithmatic,  researching,  reasoning  and  retelling.  This  big  biology  experiment  and  corresponding  write   up   ticks   every   box.   It   is   properly   constituted   integrated   learning   that   offers  support  and  differentiated  expectation  to  the  students  involved.  

Sharing  practice    An  earlier  draft  of   this  essay  was  provided  to  my  teaching  colleague   from  another  school  and  we  arranged  a  meeting  via  Polycom  ™ to  discuss  it.  Polycom  allowed  our  two  schools  to  conduct  a  face-­‐to-­‐face  meeting  without  the  necessity  of  travel.  As   it  happens  both  my  teacher  in  my  school  where  I  am  the  principal,  and  the  principal  at  my   colleague’s   school   involved   themselves   in   a   discussion   about  what   I   had  done  and  what  my  students  had  achieved.  Everyone  had  read  the  essay  first.      What  was  apparent  to  me  was  that  I  was  the  only  scientist  in  the  discussion  and  that  as   generalist-­‐teachers,   my   colleagues   particularly   appreciated   the   literacy-­‐based  approach  provided  by  the  science  report  format.  The  use  of  modelled  writing  in  the  introduction   where   the   teacher   acted   as   scribe   resonated   with   them.   They   were  familiar   with   the   procedural   text   used   in   the   materials   and   method   section.   The  criteria  writing  a  conclusion  was  welcome  and  they  were  impressed  by  the  work  of  my  students.      However,   it   was   apparent   that   the   teachers   at   the   other   school   were   concerned  about  how  the  results  had  been  made  into  charts  using  a  spreadsheet  –  as  they  were  

Page 10: Biology in primary school: Doing a big experiment and writing it up

 

Peter  Farrell  –  16  November  14  

10  

unfamiliar  with   this   process.   Notwithstanding   that,   telling   the   story   of   a   chart   or  table  was  an  idea  that  they  did  understand.    

Discussion  I   have   advocated   elsewhere   that   reflective   teaching   practice   should   make   use   of  academic  and  professional  literature,  blogs  and  webpages  to  augment,  challenge  and  legitimise  practical  knowledge  (Farrell  undated).  With  this  in  mind  I  have  searched  through  Academia.edu,  an  online  source  of  free  academic  and  professional  writings  by   authors   from   around   the   world   and   identified   a   number   of   papers   about  elementary/primary  science  teaching.  After  reading  six  papers  I  have  settled  on  four  for   this   discussion.   The   first   is   concerned   with   teaching   physics   via   experiment  and/or  text,   the  second  related  to  the  importance  of  graphical   literacy,  the  third  is  about  writing  and  science,  and  the  last  paper  is  about  using  a  laboratory  notebook  to  underpin  environmental  enquiry.    

Augments  my  practical  knowledge  Magnusson,  Palincsar,  Hapwood  and  Lomangino  (2004)  carried  out  an  experiment  teaching   science   in   primary   school  where   they   looked   at   the   interaction   between  primary   and   secondary   investigations.   A   primary   investigation   is   hands-­‐on   and  engages  the  student  with  the  materials,  in  this  instance  the  use  of  a  ramp  or  a  table  to  investigate  mass  and  force  on  the  motion  of  objects.  A  secondary  investigation  is  text-­‐based  and  requires  no  experimentation.  The  authors  had  created  a   laboratory  notebook  as  a  learning  artefact  for  children  to  learn  from.  The  book  was  simplified  for   its   intended   audience   (grade   4   students).   Magnusson   et   al.   (2004)   developed  their   laboratory   notes   as   the   professional   musings   of   a   fictitious   scientist   named  Lesley  Park.  By  way  of  contrast  we  created  our  own  science  report.   I  can  see  how  with   some   classes   a   pre-­‐prepared   notebook   could   be   helpful   but   I   am   satisfied  making  our  own  artefact  worked  for  us  this  time.      Magnusson   et   al.   (2004)   determined   that   when   primary   and   then   secondary  investigations   work   in   interplay   then   good   learning   outcomes   regarding   the  application  of  scientific  reasoning  are  realised.  As   far  as   learning  scientific  content  the  order  of  delivery  was  not  significant.  Our  own  investigation  started  with  on-­‐line  secondary   sources   (the   introduction),   then   primary   sources   (designing   and  implementing  the  experiment),  and  then  writing  the  conclusion  (secondary  sources  found   on-­‐line).   I   think   the   interplay   between   secondary   and   primary  methods   of  inquiry  worked  very  well  in  our  own  investigation  too  and  I  could  not  teach  science  in  a  way  where  primary  and  secondary  forms  of  inquiry  were  not  combined.      Nicolaou,   Nicolaidou,   Zacharia,   and   Constantinou   (2007)   wrote   about   the   use   of  specialised  software  to  create  line-­‐graphs  in  an  experiment  about  states  of  matter  in  water.  The  important  thing  Nicolaou  et  al.  (2007)  learnt  in  their  study  was  that  the  graphs  produced  should  not  be  the  end  point   in   itself.  Having  your  students  apply  graphical  literacy  techniques  to  their  understanding  of  phenomena  was  particularly  significant   in   improving   student   learning   outcomes   around   science.   The   value   of  data  loggers  as  used  in  this  experiment  is  in  the  amount  of  time  saved.  There  was  a  

Page 11: Biology in primary school: Doing a big experiment and writing it up

 

Peter  Farrell  –  16  November  14  

11  

time  cost  for  my  students  as  they  needed  to  be  lead  through  the  process  of  creating  charts  using  Excel  spread-­‐sheets.  Fortunately,  I  was  able  to  provide  that  leadership.  Students  attending  my  colleague’s  school  would  have  found  this  step  difficult.  Data-­‐loggers   such   as   those   used   in   the   study   by   Nicolaou   et   al.   (2007)   would   have  circumvented  this  issue.  

Challenges  my  practical  knowledge  Günel  (2009)  writes  about  two  schools  of  thought  around  the  use  of  writing  in  the  science   classroom.  One,   values   how   students   learn   proper   technical   language   and  the  structure  of  scientific  genre.  The  other  believes  that  students  should  be  able  to  use  their  own  words  and  write  in  a  variety  of  styles,  in  a  way  that  is  much  closer  to  their   own   discourse   level.   I   have   not   really   thought   about   this   before,   I   tend   to  promote  scientific  structure  and  language  while  at  the  same  time  realising  that  not  all  of  my  students  will  be  capable  of  reproducing  it  yet.  For  example,  Emily,  is  well  on  the  way  to  expressing  herself  in  scientific  way  whereas  Jake  is  still  using  informal  language.      Günel  (2009)  suggests  that  science  writing  should  have  more  than  one  dimension  as  topics,   audiences,   purposes,   and   genres   can   all   vary;   as   can   the   method   of   text  production.   My   own   text   production   above   deliberately   moved   from   modelled,  shared,   guided   and   semi-­‐independent   writing.   And   while   ostensibly   a   science  report,  each  part  of  the  report  had  a  different  purpose  and  thus  adopted  a  different  genre  of  writing.  From  a  broad  brushed  explanation  to  a  procedural  text,  back  to  an  explanation   (this   time   more   fine-­‐grained)   and   finally   a   discussion.   However,   the  purpose  was  firmly  embedded  in  writing  like  a  scientist.  Perhaps,  in  future  I  might  consider  having  my  students  writing  about  scientific  ideas  but  not  necessarily  in  the  guise  of  scientist.  

Legitimises  my  practical  knowledge  Muthersbaugh,  Kern,  Pegg  and  Clark  (2011)  set  out  to  deliberately  combine  science  and  literacy  in  their  investigation  into  waste.  Like  my  students  the  children  in  their  study  were  encouraged  to  maintain  a  laboratory  notebook  and,  in  a  similar  intention  to  my   own,  Muthersbaugh   et  al.   (2011)   used   this   literacy-­‐based   form   to   facilitate  learning.   I   had,   in   times   past   used   this   exact   approach,   but   this   time,   my   chosen  vehicle  to  drive  the  learning  of  my  children  was  the  write  up  of  the  experiment.  Both  approaches  pose  a  problem,  develop  a  hypothesis,  design  and  plan  an  experiment,  collect   data,   make   claims   based   on   their   findings,   and   write   a   conclusion.  Muthersbaugh  et  al.  (2011)  suggest  that  this  is  the  most  important  part  but  is  often  overlooked  due  to  time  constraints.  For  my  class  their  conclusion  was  critical,  it  was  the  part  I  assessed  and  I  allowed  lots  of  time  for  this  step.      The  similarities  between  my  approach  and   that  of  Muthersbaugh  et  al.   (2011)  are  hard   to   ignore   even   though   this  work  was   posited   in   environmental   studies.   The  conclusion   is   that   learning   science   can   be   underpinned   by   a   hands-­‐on,   literacy-­‐based  approach.    

Page 12: Biology in primary school: Doing a big experiment and writing it up

 

Peter  Farrell  –  16  November  14  

12  

Conclusion  Researchers   operating   out   of   the   science-­‐based   tradition  where   research   is   about  teachers  and  teaching  may  be  surprised  by  the  structure  of  this  paper.  My  research  paradigm   follows   the   self-­‐study  model  where   reflection,   reading   and   professional  experimentation   is   performed   in   the   practical-­‐knowledge   tradition.   That   is   my  research   is   for   teachers  and   teaching,  especially  my  own.  This  essay  never  was  an  experiment.   It  was  simply  a  means  to  share  a  classroom  practice  with  a  colleague.  However,  once  written,  it  could  not  be  finished  unless  subject  to  a  reflective  process  which   involved   interacting   with   other   perspectives   to   augment,   challenge   and  legitimise  my  practical  knowledge.    

About  the  author  Peter  Farrell  teaches  at  a  small  rural  school  in  country  Victoria,  Australia,  where  he  is   the   principal.   Peter   has   a   science   background   and   worked   and   trained   as   a  scientist  before  becoming  a  teacher.  Doing  big  science  is  a  feature  of  Peter’s  teaching  and   he   has   written   about   small   school   pedagogy   and   teaching   science   elsewhere  (see:  https://independent.academia.edu/PeterFarrell).    

References    Nicolaou,   C.T,   Nicolaidou,   I.A.,   Zacharia,   Z.C.,   and   Constantinou,   O.P.   (2007)  Enhancing  fourth  graders’  ability  to  interpret  graphical  representations  through  the  use   of   microcomputer-­‐based   labs   implemented   within   an   inquiry-­‐based   activity  sequence.    Journal  of  Computers  in  Mathematics  and  Science  Teaching,  Vol.  26(1),  75-­‐99    Farrell,  P.   (undated)  The  use  of  professional  reflection  and  professional  reading  to  challenge,   legitimize   and   augment   practitioner   knowledge,   values   and   attitudes.  Retrieved   from:  https://www.academia.edu/7785311/The_use_of_professional_reflection_and_professional_reading_to_challenge_legitimize_and_augment_practitioner_knowledge_values_and_attitudes  on  Sunday  16  November  2014.    Magnusson,  S.  J.,  Palincsar,  A.S.,  Hapwood  S.,  and  Lomangino  A.  (2004)  How  should  learning   be   structured   in   inquiry-­‐based   science   instruction?:   Investigating   the  interplay   of   1st-­‐   and   2nd-­‐hand   investigations.   Retrieved   from:  https://www.academia.edu/4714932/How_Should_Learning_Be_Structured_in_Inquiry-­‐based_Science_Instruction_Investigating_the_Interplay_of_1_st_-­‐and_2_nd_-­‐hand_Investigations  on  Sunday  16  November  2014    Günel,  M.  (2009)  Writing  as  a  cognitive  process  and  learning  tool  in  elementary  science   education.   Elementary   Education   Online   8(1),   200-­‐211.   Retrieved   from:  https://www.academia.edu/4691886/Writing_as_a_Cognitive_Process_and_Learning_Tool_in_Elementary_Science_Education  on  Sunday  16  November  2014.      

Page 13: Biology in primary school: Doing a big experiment and writing it up

 

Peter  Farrell  –  16  November  14  

13  

Muthersbaugh,  D.,  Kern,  A.L.,  Pegg,  J.,  and  Clark,  H.W.  (2011)  Science  notebooks  and  a   “Big   Waste   Problem”.   The   Earth   Scientist,   27(4)   21-­‐26.   Retrieved   from:  https://www.academia.edu/7600678/Science_notebooks_and_a_Big_waste_problem_  on  Sunday  16  November  2014.  

Further  Information  http://artplantaetoday.com/2012/02/03/scientific-­‐illustration-­‐in-­‐the-­‐elementary-­‐school-­‐classroom/