Top Banner
Bibliography Abrams, P.A. 1993. Effect of increased productivity on the abundances of trophic levels. Am. Nat. 141:351–371 Abrams, P.A. 1995. Monotonic or unimodal diversity–productivity gradients: what does competition theory predict? Ecology 76:2019–2027 Abtew, W. and N. Khanal. 1994. Water budget analysis for the Everglades agricultural area drainage basin. Water Resour. Bull. 30:429–439 Abtew, W., J. Obeysekera, M. Irisarry-Oritz, D. Lyons, and A. Reardon. 2003. Evapotranspiration estimation for South Florida. In World Water and Environmental Resources Congress: Proceedings of the Congress: 23–26 June 2003. Philadelphia, Pennsylvania, eds. S.M. Davis and J.C. Ogden. CD-Rom edition. Reston, VA: American Society of Civil Engineers Abtew, W., R.S. Huebner, and V. Ciuca. 2006. Hydrology of the South Florida environment. In 2006 South Florida Environmental Report, SFWMD (South Florida Water Management District), Chapter 5. West Palm Beach, FL: South Florida Water Management District Adorisio, C., C. Bedregal, S. Daroub, J. DeLeon, M. Edwards, C. Garvey, et al. 2006. Phosphorus controls for the Basins Tributary to the Everglades Protection Area. In 2006 South Florida Environmental Report, SFWMD (South Florida Water Management District), Chapter 3. West Palm Beach, FL: South Florida Water Management District Ahn, H. 1997. Detection and treatment of contaminated samples in atmospheric deposition data. In Proceedings of the Conference on Atmospheric Deposition into South Florida. Measuring Net Atmospheric Inputs of Nutrients, eds. G.W. Redfied and N.H. Urban, pp. 51–52. West Palm Beach, FL: South Florida Water Management District Alexander, T.R. and A.G. Crook. 1973. South Florida Ecology Study. Part 1. Recent and Long- Term Vegetation Changes and Patterns in South Florida. Coral Gables, FL: University of Miami. Report NTIS PB 231–939 Allen, T.F.H. and T.B. Starr. 1982. Hierarchy: Perspectives for Ecological Complexity. Chicago, IL: University of Chicago Press Allen, T.F.H., and E.P. Wyleto. 1983. A hierarchical model for the complexity of plant communities. J. Theor. Biol. 101:529–540 Amador, J.A. and R.D. Jones. 1993. Nutrient limitations on microbial respiration in peat soils with different total phosphorus content. Soil Biol. Biochem. 25:793–801 American Fisheries Society. 1990. Common and Scientific Names of Fishes from the United States and Canada, 5th edition. Bethesda, MD: American Fisheries Society Amrhein, J.F., C.A. Stow, and C.M. Wible. 1999. Whole-fish vs. filet PCB concentrations: an analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern approach to the classification system of cyano- phytes 3-oscillatoriales. Arch. Hydrobiol./Suppl. 71, Algol. Stud. 50/53:327–472 Anderson, J.A. 1926. The influence of available nitrogen on the fermentation of cellulose in the soil. Soil Sci. 21:115–126 643
57

Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

May 15, 2018

Download

Documents

truongthuy
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

Bibliography

Abrams, P.A. 1993. Effect of increased productivity on the abundances of trophic levels. Am. Nat. 141:351–371

Abrams, P.A. 1995. Monotonic or unimodal diversity–productivity gradients: what does competition theory predict? Ecology 76:2019–2027

Abtew, W. and N. Khanal. 1994. Water budget analysis for the Everglades agricultural area drainage basin. Water Resour. Bull. 30:429–439

Abtew, W., J. Obeysekera, M. Irisarry-Oritz, D. Lyons, and A. Reardon. 2003. Evapotranspiration estimation for South Florida. In World Water and Environmental Resources Congress: Proceedings of the Congress: 23–26 June 2003. Philadelphia, Pennsylvania, eds. S.M. Davis and J.C. Ogden. CD-Rom edition. Reston, VA: American Society of Civil Engineers

Abtew, W., R.S. Huebner, and V. Ciuca. 2006. Hydrology of the South Florida environment. In 2006 South Florida Environmental Report, SFWMD (South Florida Water Management District), Chapter 5. West Palm Beach, FL: South Florida Water Management District

Adorisio, C., C. Bedregal, S. Daroub, J. DeLeon, M. Edwards, C. Garvey, et al. 2006. Phosphorus controls for the Basins Tributary to the Everglades Protection Area. In 2006 South Florida Environmental Report, SFWMD (South Florida Water Management District), Chapter 3. West Palm Beach, FL: South Florida Water Management District

Ahn, H. 1997. Detection and treatment of contaminated samples in atmospheric deposition data. In Proceedings of the Conference on Atmospheric Deposition into South Florida. Measuring Net Atmospheric Inputs of Nutrients, eds. G.W. Redfied and N.H. Urban, pp. 51–52. West Palm Beach, FL: South Florida Water Management District

Alexander, T.R. and A.G. Crook. 1973. South Florida Ecology Study. Part 1. Recent and Long-Term Vegetation Changes and Patterns in South Florida. Coral Gables, FL: University of Miami. Report NTIS PB 231–939

Allen, T.F.H. and T.B. Starr. 1982. Hierarchy: Perspectives for Ecological Complexity. Chicago, IL: University of Chicago Press

Allen, T.F.H., and E.P. Wyleto. 1983. A hierarchical model for the complexity of plant communities. J. Theor. Biol. 101:529–540

Amador, J.A. and R.D. Jones. 1993. Nutrient limitations on microbial respiration in peat soils with different total phosphorus content. Soil Biol. Biochem. 25:793–801

American Fisheries Society. 1990. Common and Scientific Names of Fishes from the United States and Canada, 5th edition. Bethesda, MD: American Fisheries Society

Amrhein, J.F., C.A. Stow, and C.M. Wible. 1999. Whole-fish vs. filet PCB concentrations: an analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823

Anagnostidis, K. and J. Komárek. 1988. Modern approach to the classification system of cyano-phytes 3-oscillatoriales. Arch. Hydrobiol./Suppl. 71, Algol. Stud. 50/53:327–472

Anderson, J.A. 1926. The influence of available nitrogen on the fermentation of cellulose in the soil. Soil Sci. 21:115–126

643

Page 2: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

644 Bibliography

Anderson, R.O. and R.M. Neumann. 1996. Length, weight, and associated structural indices. In Fisheries Techniques, 2nd edition, eds. B.R. Murphy and D.W. Willis, pp. 447–482. Bethesda, MD: American Fisheries Society

Anderson, M.P. and W.W. Woessner. 1992. Applied Groundwater Modeling: Simulation of Flow and Advective Transport. San Diego, CA: Academic

Anderson, N.J., B. Rippey, and C.E. Gibson. 1993. A comparison of sedimentary and diatom-inferred phosphorus profiles: implications for defining pre-disturbance nutrient conditions. Hydrobiologia 253:357–366

Angelone, M. and C. Bini. 1992. Trace elements concentrations in soils and plants of Western Europe. In Biogeochemistry of Trace Metals, ed. D.C. Adriano, pp. 19–60. Boca Raton, FL: Lewis

Apfelbaum, S.I. 1985. Cattail (Typha spp.) management. Nat. Areas J. 5(3):9–17Apfelbeck, R.S. 1999. Development of Biocriteria for Wetlands in Montana. Helena, MT:

Montana Department of Environmental QualityAPHA (American Public Health Association). 1992. Standard Methods for the Evaluation of

Water and Wastewater, 18th edition. Washington, DC: American Public Health AssociationArrhenius, O. 1921. Species and area. Ecology 9:95–99Avery, G.N. and L. Loope. 1980. Plants of Everglades National Park: A Preliminary Checklist of

Vascular Plants. Homestead, FL: South Florida Research Center, Everglades National Park. Report T-558

Avery, G.B., Jr., C.T. Hackney, and A.N. Clark. 2001. Impact of increased salinity on the geochemistry of tidal wetlands: a model for sea level rise. Presentation at the 16th Biennial Conference of the Estuarine Research Federation (4–8 November 2001), St. Petersburg, FL

Bailey, R.C., M.G. Kennedy, M.Z. Dervish, and R.M. Taylor. 1998. Biological assessment of freshwater ecosystems using a reference condition approach – comparing predicted and actual benthic invertebrate communities in Yukon streams. Freshwater Biol. 39(4):765–774

Balogh, S.J., M.L. Meyer, and K.K. Johnson. 1997. Mercury and suspended sediment loadings in the lower Minnesota River. Environ. Sci. Technol. 31:198–202

Balogh, S.J., D.R. Engstrom, J.E. Almendinger, and D.K. Johnson. 1999. History of mercury loading in the upper Mississippi River reconstructed from the sediments of Lake Pepin. Environ. Sci. Technol. 33:3297–3302

Barber, M.L. 2003. The effect of agricultural run-off on mercury biogeochemistry in the Everglades. Ph.D. Dissertation, Duke University

Barbour, M.T., J.B. Stribling, and J.R. Karr. 1995. The multimetric approach for establishing biocriteria and measuring biological condition. In Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making, eds. W.S. Davis and T.P. Simon, pp. 63–80. Boca Raton, FL: Lewis

Barbour, M.T., J. Gerritsen, G.E. Griffith, R. Frydenborg, E. McCarron, J.S. White, and M.L. Bastian. 1996. A framework for biological criteria for Florida streams using benthic macroin-vertebrates. J. N. Am. Benthol. Soc. 15:185–211

Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates, and fish. Washington, DC: US Environmental Protection Agency, Office of Water. EPA 841-0B-99-002

Barnes, T. 2005. Caloosahatchee Estuary conceptual ecological model. Wetlands 25(4):884–897Bartlett, D.S., K.B. Bartlett, J.M. Hartmann, R.C. Harriss, D.L. Sebacher, R. Pelletier-Travis, D.D.

Dow, and D.P. Brannon. 1989. Methane emissions from the Florida Everglades: patterns of variability in a regional wetland ecosystem. Global Biogeochem. Cycles 3:363–374

Bartlett, K.B., R.S. Clymo, C.B. Craft, and C.J. Richardson. 1995. Non-coastal wetlands. In Intergovernmental Panel on Climate Change (IPCC) Working Group II Second Assessment Report, eds. M.G. Oquist and B.H. Svensson, Chapter 6. Paris: International Council of Scientific Unions

Bartow, S.M., C.B. Craft, and C.J. Richardson. 1996. Reconstructing historical changes in Everglades plant community composition using pollen distributions in peat. J. Lake Reserv. Manage. 12:313–322

Page 3: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

Bibliography 645

Bass, O.L. 1998. Small mammal population dynamics on tree islands. Oral Presentation at Tree Islands of the Everglades Symposium (July 14 and 15), Boca Raton, FL

Bates, A.L., W.H. Orem, J.W. Harvey, and E.C. Spiker. 2002. Tracing sources of sulfur in the Florida Everglades. J. Environ. Qual. 31:287–299

Batzer, D.P. and V.H. Resh. 1991. Trophic interactions among a beetle predator, a chironomid grazer, and periphyton in a seasonal wetland. Oikos 60:251–257

Batzer, D.P., and S.A. Wissinger. 1996. Ecology of insect communities in nontidal wetlands. Annu. Rev. Entomol. 41:75–100

Bauer, R.L., K.H. Orvis, and E.G. Edlund. 1991. CalPalyn Pollen Diagram Program. Unpublished computer program, Pollen Laboratory, University of California at Berkeley

Bedford, B.L. 1996. The need to define hydrologic equivalence at the landscape scale for freshwater wetland mitigation. Ecol. Appl. 6:57–68

Belanger, T.V., D.J. Scheidt, and J.R. Platko, II. 1989. Effects of nutrient enrichment on the Florida Everglades. J. Lake Reserv. Manage. 5:101–111

Bender, M.M. 1971. Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry 10:1239–1244

Benke, A.C., A.D. Huryn, L.A. Smock, and J.B. Wallace. 1999. Length–mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. J. N. Am. Benthol. Soc. 18:308–343

Bennetts, R.E., M.W. Collopy, and J.A. Rodgers, Jr. 1994. The snail kite in the Florida Everglades: a food specialist in a changing environment. In Everglades: The Ecosystem and Its Restoration, eds. S.M. Davis and J.C. Ogden, pp. 507–532. Delray Beach, FL: St. Lucie

Bennion, H., S. Juggins, and N.J. Anderson. 1996. Predicting epilimnetic phosphorus concentra-tions using an improved diatom-based transfer function and its application to lake eutrophication management. Environ. Sci. Technol. 30:2004–2007

Berner, L. and M.L. Pescador. 1988. The Mayflies of Florida, revised edition. Gainesville, FL: University of Florida Press

van der Bijl, L., K. Sand-Jansen, and A.L. Hjermind. 1989. Photosynthesis and canopy structure of a submerged plant, Potamogeton pectinatus, in a Danish lowland stream. J. Ecol. 77:947–962

Binford, M.W. 1990. Calculation and uncertainty analysis of 210Pb dates for PIRLA project lake sediment cores. J. Paleolimnol. 3:253–267

Birks, H.J.B. and H.H. Birks. 1980. Quaternary Palaeoecology. Baltimore, MD: University Park Press

Blake, N.M. 1980. Land into Water – Water into Land. Tallahassee, FL: University Presses of Florida

Bloom, N.S. 1992. On the chemical form of mercury in edible fish and marine invertebrate tissue. Can. J. Fish. Aquat. Sci. 49:1010–1017

Bloom, N.S. and E.A. Crecelius. 1983. Determination of mercury in seawater at subnanogram per liter levels. Mar. Chem. 14:49

Bodle, M.J., A.P. Ferriter, and D.D. Thayer. 1994. The biology, distribution and ecological conse-quences of Melaleuca quinquenervia in the Everglades. In Everglades: The Ecosystem and Its Restoration, eds. S.M. Davis and J.C. Ogden, pp. 341–356. Delray Beach, FL: St. Lucie

Bonnewell, V., W.L. Koukkari, and D.C. Pratt. 1983. Light, oxygen and temperature requirements of Typha latifolia seed germination. Can. J. Bot. 61:1330–1336

Botkin, D.B. 1991. Discordant Harmonies, a New Ecology for the Twenty-First Century. Oxford, UK: Oxford University Press

Brandt, L.A. 1997. Spatial and temporal patterns of tree islands in the Arthur R. Marshall Loxahatchee National Wildlife Refuge. Dissertation. Gainesville, FL: University of Florida

Braun-Blanquet, J. 1964. Pflanzensoziologie, 3rd edition. Berlin Heidelberg New York: SpringerBray, J.R. and J.T. Curtis. 1957. An ordination of the upland forest communities of southern

Wisconsin. Ecol. Monogr. 27:325–349

Page 4: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

646 Bibliography

Brazner, J.C. 1997. Regional, habitat, and human development influences on coastal wetland and beach fish assemblages in Green Bay, Lake Michigan. J. Great Lakes Res. 23:36–51

Breiman, L., J.H. Friedman, R.A. Olshen, and C.J. Stone. 1984. Classification and Regression Trees. New York, NY: Chapman and Hall

Bridgham, S.D. and C.J. Richardson. 1993. Hydrology and nutrient gradients in North Carolina peatlands. Wetlands 13(3):207–218

Brinson, M.M. 1977. Decomposition and nutrient exchange of litter in an alluvial swamp forest. Ecology 58:601–609

Brinson, M.M. and R. Rheinhardt. 1996. The role of reference wetlands in functional assessment and mitigation. Ecol. Appl. 6:69–76

Brinson, M.M., A.E. Lugo, and S. Brown. 1981. Primary productivity, decomposition and consumer activity in freshwater wetlands. Annu. Rev. Ecol. Syst. 12:123–161

Brinson, M.M., F.R. Hauer, L.C. Lee, W.L. Nutter, R.D. Rheinhardt, R.D. Smith, and D.F. Whigham. 1995. A guidebook for application of hydrogeomorphic assessments to riverine wetlands. US Army Corps of Engineers Waterways Experiment Station, Vicksburg, MS. USA. Wetlands Research Program Technical. Report WRP-DE-11

Brix, H. 1999. Genetic diversity, ecophysiology and growth dynamics of reed (Phragmites austra-lis). Aquat. Bot. 64:179–184

Brock, T.D. 1970. Photosynthesis of algal epiphytes of Utricularia in Everglades National Park. Bull. Mar. Sci. 20:952–956

Brookes, P.C., D.S. Powlson, and D.S. Jenkinson. 1982. Measurement of microbial biomass P in the soil. Soil Biol. Biochem. 14:319–329

Brooks, H.K. 1968. The Plio-Pleistocene of Florida with special references to the strata outcrop-ping on the Caloosahatchee River. In Late Cenozoic Stratigraphy of Southern Florida: A Reappraisal, 2nd Annual Field Trip of the Miami Geological Society, ed. R.D. Perkins, pp. 3–64. Miami: Miami Geological Society

Broome, S.W., E.D. Seneca, and W.W. Woodhouse, Jr. 1983. The effects of source, rate and place-ment of nitrogen and phosphorus fertilizers on growth of Spartina alterniflora transplants in North Carolina. Estuaries 6:212–226

Browder, J.A. 1982. Biomass and Primary Production of Microphytes and Macrophytes in Periphyton Habitats of the Southern Everglades. Homestead, FL: National Park Service, South Florida Research Center, Everglades National Park

Browder, J.A., S. Black, P. Schroeder, M. Brown, M. Newman, D. Cottrell, et al. 1981. Perspective on the Ecological Causes and Effects of the Variable Algal Composition of Southern Everglades Periphyton, Homestead, FL: South Florida Research Center. Report T-643

Browder, J.A., D. Cotrrell, M. Brown, S. Newman, R. Edards, J. Yuska, et al. 1982. Biomass and Primary Production of Microphytes and Macrophytes in Periphyton Habitats of the Southern Everglades. Homestead, FL: National Park Service, South Florida Research Center, Everglades National Park. Report T-662

Browder, J.A., P.J. Gleason, and D.R. Swift. 1994. Periphyton in the Everglades: spatial variation, environmental correlates and ecological implications. In Everglades: The Ecosystem and Its Restoration, eds. S.M. Davis and J.C. Ogden, pp. 379–418. Delray Beach, FL: St. Lucie

Brown, J.G. and A.D. Cohen. 1985. Palynologic and petrographic analyses of peat deposits, Little Salt Spring. Natl Geogr. Res. 1:21–31

Bruland, G.L., S. Grunwald, T.Z. Osborne, K.R. Reddy, and S. Newman. 2006. Spatial distribu-tion of soil properties in Water Conservation Area 3 of the Everglades. Soil Sci. Soc. Am. J. 70:1662–1676

Brush, G.S. 1989. Rates and patterns of estuarine sediment accumulation. Limnol. Oceanogr. 34:1235–1246

Busch, E., W.F. Loftus, and O.L. Bass, Jr. 1998. Long-term hydrologic effects on marsh plant community structure in the southern Everglades. Wetlands 18:230–241

Bush, M.B. 1994. Amazonian speciation: a necessarily complex model. J. Biogeogr. 21:5–17Bush, M.B and C.J. Richardson. 1995. Phophatase as a biochemical indicator of phosphorus

availability. In Effects of Phosphorus and Hydroperiod Alterations on Ecosystem

Page 5: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

Bibliography 647

Structure and Function in the Everglades, eds. C.J. Richardson, C.B. Craft, R.G. Qualls, J. Stevenson, P. Vaithiyanathan, M. Bush, and J. Zahina. Chapter 8. Durham, NC: Nicholas School of the Environment, Duke University, Duke Wetland Center Publication 95-05

Bushaw, K.L., R.G. Zepp, M.A. Tarr, D. Schulz-Jander, R.A. Bourbonniere, R.E. Hodson, W.L. Miller, D.A. Bronk, and M.A. Moran. 1996. Photochemical release of biologically available nitrogen from aquatic dissolved organic matter. Nature 381:404–407

Cairns, J., Jr. (ed.). 1982. Artificial Substrates. Ann Arbor, MI: Ann Arbor Science PublishersCairns, J., Jr. 1983. Are single species tests alone adequate for estimating hazard? Hydrobiologia

137:271–278Cairns, J., Jr. and P.V. McCormick. 1991. The use of community- and ecosystem-level end points

in environmental hazard assessment: a scientific and regulatory evaluation. Environ. Audit. 2(4):239–248

Cairns, J., Jr. and J.R. Pratt. 1986. Editorial on the relation between structural and functional analyses of ecosystems. Environ. Toxicol. Chem. 5:785–786

Campeau, S., H.R. Murkin, and R.D. Titman. 1994. Relative importance of algae and emergent plant litter to freshwater marsh invertebrates. Can. J. Fish. Aquat. Sci. 51:681–692

Cao, Y., D.D. Williams, and N.E. Williams. 1998. How important are rare species in aquatic ecology and bioassessment? Limnol. Oceanogr. 43:1403–1409

Carlin, B.P., A.E. Gelfand, and A.F.M. Smith. 1992. Hierarchical Bayesian analysis of change-point problems. Appl. Stat. 41:389

Carpenter, S.R., D. Ludwig, and W. Brock. 1999. Management of lakes subject to potentially irreversible change. Ecol. Appl. 9(3):751–771

Carter, M.R., L.A. Burns, T.R. Cavinder, K.R. Dugger, P.L. Fore, D.B. Hicks, H.L. Revells, and T.W. Schmidt. 1973. Ecosystem Analysis of the Big Cypress Swamp and Estuaries. Atlanta, GA: US EPA 904/9-74-002, Region IV

CERP (Comprehensive Everglades Restoration Plan). 1999. Central and Southern Florida Project Comprehensive Review Study. Final Integrated Feasibility Report and Programmatic Environmental Impact Statement. April 1999. CD-Rom edition. Jacksonville, FL/West Palm Beach, FL: US Army Corps of Engineers/South Florida Water Management District

CERP (Comprehensive Everglades Restoration Plan). 2005. 2005 Report to Congress. (n.p.): US Army Corps of Engineers, http://www.evergladesplan.org/pm/program_docs/cerp_report_congress_2005.cfm (accessed 1 May 2006)

CERP (Comprehensive Everglades Restoration Plan), Welcome to the official website of the Comprehensive Everglades Restoration Plan (CERP), US Army Corps of Engineers, South Florida Water Management District, http://www.evergladespplan.org/index.aspx (accessed 21 March 2007)

Chang, S.C. and M.L. Stewart. 1957. Fractionation of soil phosphorus. Soil Sci. 84:133–144Chanton, J., G.J. Whiting, J.D. Happell, and G. Gerard. 1993. Contrasting rates and diurnal

patterns of methane emission from aquatic macrophytes. Aquat. Bot. 46:111–128Chapin, F.S., III. 1980. The mineral nutrition of wild plants. Annu. Rev. Ecol. Syst. 11:233–260Chapin, F.S., III. 1991. Integrated responses of plants to stress. BioScience 41:29–36Chen, Z. and T. Fontaine. 1997. Simulating the impact of rainfall phosphorus inputs on the phos-

phorus concentrations in the Everglades Protection Area. In Proceedings of the Conference on Atmospheric Deposition into South Florida. Measuring Net Atmospheric Inputs of Nutrients, eds. G.W. Redfied and N.H. Urban, p. 19. West Palm Beach, FL: South Florida Water Management District

Chen, M., S.H. Daroub, T.A. Lang, and O.A. Diaz. 2006. Specific conductance and ionic charac-teristics of farm canals in the Everglades Agricultural Area. J. Environ. Qual. 35:141–150

Chiang, C., C.B. Craft, and C.J. Richardson. 1994. Fertilizer study – the effects of nutrient additions on photosynthesis by cattail (Typha domingensis Pers.) and sawgrass (Cladium jamaicense Crantz) in the Everglades. In Annual Report: Effects of Nutrient Loadings and Hydroperiod Alterations on Control of Cattail Expansion, Community Structure and Nutrient Retention in the Water Conservation Areas of South Florida, eds. C.J. Richardson, C.B. Craft, R.G. Qualls,

Page 6: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

648 Bibliography

J. Stevenson, and P. Vaithiyanathan, pp. 49–71. Durham, NC: School of the Environment, Duke University, Duke Wetland Center Publication 94-08

Chiang, C., C.B. Craft, D.W. Rogers, and C.J. Richardson. 2000. Effects of 4 years of nitrogen and phosphorus additions on Everglades plant communities. Aquat. Bot. 68:61–78

Childers, D.L., R.F. Doren, R. Jones, G.B. Noe, M. Rugge, and L.J. Scinto. 2003. Decadal change in vegetation and soil phosphorus pattern across the Everglades landscape. J. Environ. Qual. 32:344–362

Cholnoky, B.J. 1968. Die Ökologie der Diatomeen in Binnengewassern. Lehre: J. CramerClark, L.A. and D. Pregibon. 1992. Tree-based models. In Statistical Models, eds. J.M. Chambers

and T.J. Hastie, pp. 377–419. Pacific Grove, CA: S. Wadsworth and BrooksClarke, K.R. 1993. Non-parametric multivariate analyses of changes in community structure.

Aust. J. Ecol. 18:117–143Cleckner, L.B., C.C. Gilmour, J.P. Hurley, and D.P. Krabbenhoft. 1999. Mercury methylation in

periphyton of the Florida Everglades. Limnol. Oceanogr. 44(7):1815–1825Cleveland, W.S. 1993. Visualizing Data. New Jersey: HobartCoale, F.J. 1994. Sugarcane production in the EAA. In Everglades Agricultural Area (EAA).

Water, Soil, Crop and Environmental Management, eds. A.B. Bottcher and F.T. Izuno, pp. 224–237. Gainesville, FL: University Press of Florida

Cohen, J.E., F. Briand, and C.M. Newman. 1990. Community Food Webs: Data and Theory. Berlin Heidelberg New York: Springer

Colinvaux, P.A. 1992. Ecology, 2nd edition. New York: WileyConley, D.J. 1988. Biogenic silica as an estimate of siliceous microfossil abundance in Great Lake

sediments. Biogeochemistry 6:161–179Connell, J.H. 1975. Some mechanisms producing structure in natural communities: a model and

evidence from field experiments. In Ecology and Evolution of Communities, eds. M.L. Cody and J.M. Diamond, pp. 460–490. Cambridge, MA: Belknap

Connell, J.H. 1978. Diversity in tropical rainforests and coral reefs. Science 199:1302–1310Conway, V.M. 1936. Studies on the autecology of Cladium mariscus R. Br. I. Structure and devel-

opment. New Phytol. 35:177–204Cooke, C.W. 1939. Scenery of Florida, interpreted by a geologist. Fla. Geol. Surv. Bull. 17:1–118Cooke, J.G., L. Stub, and N. Mora. 1992. Fractionation of phosphorus in the sediment of a wetland

after a decade of receiving sewage effluent. J. Environ. Qual. 21:726–732Cooper, S.R. 1993. A 2,500-year history of anoxia and eutrophication in Chesapeake Bay.

Estuaries 16:617–626Cooper, S.R. 1995. Chesapeake Bay watershed historical land use: impacts on water quality and

diatom communities. Ecol. Appl. 5:703–723Cooper, R.M. and J. Roy. 1991. An Atlas of Surface Water Management Basins in the Everglades:

The Water Conservation Areas and Everglades National Park. DRE 300. West Palm Beach, FL: Water Resources Department of Research and Evaluation, South Florida Water Management District

Cooper, S.R., J. Huvane, P. Vaithiyanathan, and C.J. Richardson. 1999. Calibration of diatoms along a nutrient gradient in Florida Everglades Water Conservation Area 2A, USA. J. Paleolimnol. 22:413–437

Correll, D.L. 1998. The role of phosphorus in the eutrophication of receiving waters: a review. J. Environ. Qual. 27:261–266

Courtemanch, D.L. 1996. Commentary on the subsampling procedures used for rapid bioassess-ments. J. N. Am. Benthol. Soc. 15:381–385

Courtney, G.W., H.J. Teskey, R.W. Merritt, and B.A. Foote. 1996. Aquatic Diptera, Part 1. Larvae of aquatic Diptera. In An Introduction to the Aquatic Insects of North America, 3rd edition, eds. R.W. Merritt and K.W. Cummins, pp. 484–514. Dubuque, IA: Kendall-Hunt

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deepwater habitats of the United States. Washington, DC: US Fish and Wildlife Service, Department of the Interior

Page 7: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

Bibliography 649

Craft, C.B. and C.J. Richardson. 1993a. Peat accretion and nitrogen, phosphorus and organic carbon accumulation in nutrient-enriched and unenriched Everglades peatlands. Ecol. Appl. 3:446–458

Craft, C.B. and C.J. Richardson. 1993b. Peat accretion and phosphorus accumulation along a eutrophication gradient in the northern Everglades. Biogeochemistry 22:133–156

Craft, C.B. and C.J. Richardson. 1994. Response of Everglades plant communities to nitrogen and phosphorus additions. In Effect of Nutrient Loadings and Hydroperiod Alterations on Control of Cattail Expansion, Community Structure and Nutrient Retention in the Water Conservation Areas of South Florida, ed. C.J. Richardson, pp. 9–48. Durham: Duke University Wetland Center Publication 94-08

Craft, C.B. and C.J. Richardson. 1997. Relationships between soil nutrients and plant species composition in Everglades peatlands. J. Environ. Qual. 26:224–232

Craft, C.B. and C.J. Richardson. 1998. Recent and long-term organic soil accretion and nutrient accumulation in the Everglades. Soil Sci. Soc. Am. J. 62:834–843

Craft, C.B., J. Vymazal, and C.J. Richardson. 1995. Response of Everglades plant communities to nitrogen and phosphorus additions. Wetlands 15:258–271

Craighead, F.C., Sr. 1971. The Trees of South Florida. Vol. 1: The Natural Environments and Their Succession. Coral Gables, FL: University of Miami Press

Craighead, F.C., Sr. 1984. Hammocks of South Florida. In Environments of South Florida, Present and Past II, ed. P.J. Gleason, pp. 53–56. Miami, FL: Miami Geological Society

Cressie, N.A.C. 1991. Statistics for Spatial Data. New York: WileyCrocker, W. 1938. Life span of seeds. Bot. Rev. 4:235–272CSSS (Canadian Society of Soil Science). 1993. Soil Sampling and Methods of Analysis, ed. M.R.

Carter. Boca Raton, FL: LewisDaigle, J.J. 1991. Florida Damselflies (Zygoptera): A Species Key to the Aquatic Larval Stages.

Technical Series Vol. 11, No. 1. Tallahassee, FL: State of Florida Department of Environmental Regulation

Daigle, J.J. 1992. Florida Dragonflies (Anisoptera): A Species Key to the Aquatic Larval Stages. Technical Series Vol. 12, No. 1. Tallahassee, FL: State of Florida Department of Environmental Regulation

van Dam, H. 1982. On the use of measures of structure and diversity in applied diatom ecology. Nova Hedwigia 73:97–115

Danielson, T.J. 1998. Wetland bioassessment fact sheets. Washington, DC: US Environmental Protection Agency, Office of Wetlands, Oceans, and Watersheds, Wetlands Division. EPA 843-F-98-001

David, P.G. 1996. Changes in plant communities relative to hydrologic conditions in the Florida Everglades. Wetlands 16:15–23

Davis, J.H. 1943. The natural features of southern Florida. Fla. Geol. Surv. Bull. 25:1–311Davis, J.C. 1986. Statistics and Data Analysis in Geology, 2nd edition. New York: WileyDavis, S.M. 1989. Sawgrass and cattail production in relation to nutrient supply in the Everglades.

In Freshwater Wetlands and Wildlife, CONF-8603101. DOE Symposium Serial No. 61, eds. R.R. Sharitz and J.W. Gibbons, pp. 325–341. Oak Ridge, TN: USDOE Office of Scientific and Technical Information

Davis, S.M. 1991. Growth, decomposition and nutrient retention of Cladium jamaicense Crantz and Typha domingensis Pers. in the Florida Everglades. Aquat. Bot. 40:203–224

Davis, S.M. 1994. Phosphorus inputs and vegetation sensitivity in the Everglades. In Everglades: The Ecosystem and Its Restoration, eds. S.M. Davis and J.C. Ogden, pp. 357–378. Delray Beach, FL: St. Lucie

Davis, S.M. and J.C. Ogden (eds.). 1994a. Everglades: The Ecosystem and Its Restoration. Delray Beach, FL: St. Lucie

Davis, S.M. and J.C. Ogden. 1994b. Toward ecosystem restoration. In Everglades: The Ecosystem and Its Restoration, eds. S.M. Davis and J.C. Ogden, pp. 769–796. Delray Beach, FL: St. Lucie

Page 8: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

650 Bibliography

Davis, S.M., L.H. Gunderson, W.A. Park, J.R. Richardson, and J.E. Mattson. 1994. Landscape dimension, composition, and function in a changing Everglades ecosystem. In Everglades: The Ecosystem and Its Restoration, eds. S.M. Davis and J.C. Ogden, pp. 419–444. Delray Beach, FL: St. Lucie

DeAngelis, D.L. 1994. Synthesis: spatial and temporal characteristics of the environment. In Everglades: The Ecosystem and Its Restoration, eds. S.M. Davis and J.C. Ogden, pp. 307–320. Delray Beach, FL: St. Lucie

DeBusk, W.F. and K.R. Reddy. 1998. Turnover of detrital organic carbon in a nutrient-impacted Everglades marsh. Soil Sci. Soc. Am. J. 62:1460–1468

DeBusk, W.F., K.R. Reddy, M.S. Koch, and Y. Wang. 1994. Spatial distribution of soil nutrients in a northern Everglades marsh: water conservation area 2A. Soil Sci. Soc. Am. J. 58:543–552

Delettre, Y.R. and N. Morvan. 2000. Dispersal of adult aquatic Chironomidae (Diptera) in agricultural landscapes. Freshwater Biol. 44:399–411

Delfino, J.J., T.L. Crisman, J.F. Gottgens, B.E. Rood, and C.D.A. Earle. 1993. Spatial and tempo-ral distribution of mercury in Everglades and Okefenokee wetland sediments. Final Report to South Florida Water Management District, US Geological Survey and Florida Department of Environmental Regulation. Gainesville, FL: University of Florida, Department of Environmental Engineering Sciences

Dineen, J.W. 1972. Life in the tenacious Everglades. Central and Southern Flood Control District, West Palm Beach, Florida, In-Depth Report 1:1–10

Dineen, J.W. 1974. Examination of water management alternatives in conservation area 2A. Depth Report, Central and Southern Florida Flood Control District, West Palm Beach, Florida, In-Depth Report 2:1–10

Dixit, S.S. and J.P. Smol. 1994. Diatoms as indicators in the environmental monitoring and assess-ment program-surface waters (EMAP-SW). Environ. Monit. Assess. 31:275–306

Dixit, S.S., B.F. Cumming, H.J.B. Birks, J.P. Smol, J.C. Kingston, A.J. Uutala, et al. 1993. Diatom assemblages from Adirondack lakes (New York, USA) and the development of inference models for retrospective environmental assessment. J. Paleolimnol. 8:27–47

Dodson, S.I. and D.G. Frey. 1991. Cladocera and other Branchiopoda. In Ecology and Classification of North American Freshwater Invertebrates, eds. J.H. Thorp and A.P. Covich, pp. 723–786. San Diego, CA: Academic

Dohrenwend, R.E. 1977. Evapotranspiration patterns in Florida. Fla. Sci. 40:184–192Doren, R.F., T.V. Armentano, L.D. Whiteaker, and R.D. Jones. 1997. Marsh vegetation patterns

and soil phosphorus gradients in the Everglades ecosystem. Aquat. Bot. 56:145–163Douglas, M.S. 1947. The Everglades: River of Grass. New York: BallantineDraper, N.R. and H. Smith. 1981. Applied Regression Analysis. New York: WileyDrouet, F. 1968. Revision of the Classification of the Oscillatoriaceae. Monograph 15.

Philadelphia, PA: The Academy of Natural Sciences of PhiladelphiaDrouet, F. 1981. Revision of the Stigonemataceae with a summary of the classification of the

blue-green algae, Nova Hedwigia 66:1–221Du Rietz, G.E. 1954. Die Mineralbodenwasserzeigergrenze als Grundlage einer natürlichen

Zweigliederung der nord-und mitteleuropäischen Moore. Vegetatio 5–6:571–585Duever, M.J., J.E. Carlson, L.A. Riopelle, L.H. Gunderson, and L.C. Duever. 1976. Ecosystem

analyses at Corkscrew Swamp. In Cypress Wetlands for Water Management, Recycling, and Conservation, eds. H.T. Odum, K.C. Ewel, J.W. Ordway, and M.K. Johnston, pp. 707–737. Gainesville, FL: Center for Wetlands

Duever, M.J., J.E. Carlson, J.F. Meeder, L.C. Duever, L.H. Gunderson, L.A. Riopelle, et al. 1986. The Big Cypress National Preserve, pp. 32–33. New York: National Audubon Society. Research Report No. 8

Dufrêne, M. and P. Legendre. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67:345–366

DUWC (Duke University Wetland Center). 1995. Comprehensive quality assurance plan for Quality Assurance Section, Florida Department of Environmental Protection. Durham, NC: Duke University Wetland Center (COMPQAP 950381)

Page 9: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

Bibliography 651

Eakins, J.D. and R.T. Morrison. 1978. A new procedure for the determination of Lead-210 in lake and marine sediments. Int. J. Appl. Radiat. Isot. 29:531–536

Efron, B. and R.J. Tibshirani. 1993. An Introduction to Bootstrap. London, UK: Chapman and Hall

Egglishaw, H.J. 1972. An experimental study of the breakdown of cellulose in fast flowing streams. Mem. 1st. Ital. Idrobiol. 29(Suppl.):405–428

Eisenreich, S.J., P.J. Emmling, and A.M. Beeton. 1977. Atmospheric loading of phosphorus and other chemicals to Lake Michigan. J. Great Lakes Res. 3:291–304

Elwood, J.W., J.D. Newbold, A.F. Trimble, and R.W. Stark. 1981. The limiting role of phosphorus in a woodland stream ecosystem: effect of P enrichment on leaf decomposition and primary producers. Ecology 62:146–158

Enos, P. and R.D. Perkins. 1977. Quaternary Sedimentation in South Florida. Boulder, CO: Geological Society of America

Environmental Systems Research Institute, Inc. 1998. Arc Version 7.2.1 Patch 1, Arcview Version 3.1

Epler, J.H. 1995. Identification Manual for the Larval Chironomidae (Diptera) of Florida, revised edition. Tallahassee, FL: Florida Department of Environmental Protection

Epler, J.H. 1996. Identification Manual for the Water Beetles of Florida. Tallahassee, FL: Florida Department of Environmental Protection

Eubank, R. 1988. Spline Smoothing and Nonparametric Regression. New York: DekkerFaegri, K. and J. Iversen. 1989. Textbook of Pollen Analysis, 4th edition. New York: WileyFaith, D.P. and Norris, R.H. 1989. Correlation of environmental variables with patterns of distribu-

tion and abundance of common and rare freshwater macroinvertebrates. Biol. Conserv. 50:77–98

Faith, D.P., P.R. Minchin, and L. Belbin. 1987. Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69:57–68

FDEP (Florida Department of Environmental Protection). 1996. Standard operating procedures manual – benthic macroinvertebrate sampling and habitat assessment methods: 1. Freshwater streams and rivers. Tallahassee, FL: Florida Department of Environmental Protection

FDEP (Florida Department of Environmental Protection). 2003. Appendix 2A-3: Annual Summary Statistics for Phosphorus Concentrations at Everglades Protection Area Monitoring Stations. In 2003 Everglades Consolidated Report. West Palm Beach, FL: South Florida Water Management District

Feng, K.E. and Molz, F.J. 1997. A 2-D, diffusion-based, wetland flow model. J. Hydrol. 196:230–250

Fennema, R.J., C.J. Neidrauer, R.A. Johnson, T.K. MacVicar, and W.A. Perkins. 1994. A compu-ter model to simulate natural Everglades hydrology. In Everglades: The Ecosystem and Its Restoration, eds. S.M. Davis and J.C. Ogden, pp. 249–290. Delray Beach, FL: St. Lucie

Fernald, M.L. 1950. Gray’s Manual of Botany, 8th edition. New York: American Book Company

Field, C.B. and H.A. Mooney. 1986. The nitrogen/phosphorus relationship in wild plants. In On the Economy of Plant Form and Function, ed. T.J. Givinsh, pp. 25–55. Cambridge, UK: Cambridge University Press

Fisher, R. 1953. Dispersion on a sphere. Proc. R. Soc. Lond. A 217:295–305Fisher, N.I. 1993. Statistical Analysis of Circular Data. Cambridge: Cambridge University PressFisher, M.M. and K.R. Reddy. 2001. Phosphorus flux from wetland soils affected by long-term

nutrient loading. J. Environ. Qual. 30:261–271Flint, R.F. 1971. Glacial and Quaternary Geology. New York: WileyFlora, M.D., D.R. Walker, D.J. Scheidt, R.G. Rice, and D.H. Landers. 1988. The Response of the

Everglades Marsh to Increased Nitrogen and Phosphorus Loading: Part I. Nutrient Dosing, Water Chemistry, and Periphyton Productivity. Homestead, FL: National Park Service, South Florida Research Center, Everglades National Park

Fore, L.S., J.R. Karr, and R.W. Wisseman. 1996. Assessing invertebrate responses to human activities: evaluating alternative approaches. J. N. Am. Benthol. Soc. 15:212–231

Page 10: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

652 Bibliography

Forsberg, C. 1964. Phosphorus, a maximum factor in the growth of Characeae. Nature 201:517–518

Foster, D.R., M. Fluet, and E.R. Boose. 1999. Human or natural disturbance: landscape-scale dynamics of the tropical forests of Puerto Rico. Ecol. Appl. 9:555–572

Franklin, J. 1993. Preserving biodiversity: species, ecosystems or landscapes? Ecol. Appl. 3:202–205Frazier, W.J. and D.R. Schwimmer. 1987. Regional Stratigraphy of North America. New York:

PlenumFrederick, P.C. and M.G. Spalding. 1994. Factors affecting reproductive success of wading birds

(Ciconiiformes) in the Everglades ecosystem. In Everglades: The Ecosystem and Its Restoration, eds. S.M. Davis and J.C. Ogden, pp. 659–691. Delray Beach, FL: St. Lucie

Funkhauser, J.W. and W.R. Evitt. 1959. Preparation techniques for acid insoluble microfossils. Micropaleontology 5:369–375

Gabor, T.S., H.R. Murkin, M.P. Stainton, J.A. Boughen, and R.D. Titman. 1994. Nutrient addi-tions to wetlands in the Interlake region of Manitoba, Canada: effects of a single pulse addition in spring. Hydrobiologia 279/280:497–510

Gambrell, R.P. 1994. Trace and toxic metals in wetlands. J. Environ. Qual. 23:883–891Gardner, N.L. 1927. New Myxophyceae from Puerto Rico. Mem. N.Y. Bot. Garden 7:1–144Gawlik, D.E. and D.A. Rocque. 1998. Avian communities in bayheads, willowheads and sawgrass

marshes of the central Everglades. Wilson Bull. 110:45–55Geider, R.J., B.A. Osborne, and J.A. Raven. 1985. Light dependence of growth and photosynthesis

in Phaeodactylum tricornutum (Bacillariophyceae). J. Phycol. 21:609–619Geller, A. 1986. Comparisons of mechanisms enhancing biodegradability of refractory lake water

constituents. Limnol. Oceanogr. 31:755–764Germano, J.D. 1999. Ecology, statistics, and the art of misdiagnosis: the need for a paradigm shift.

Environ. Rev. 7:167–190Gernes, M.C. and J.C. Helgen. 1999. Indexes of Biotic Integrity (IBI) for Wetlands: Vegetation and

Invertebrate IBIs. Minneapolis, MN: Minnesota Pollution Control Agency, Environmental Outcomes Division. Report to USEPA, #CD995525-01

Ghoshal, N. and K.P. Singh. 1995. Effects of farmyard manure and inorganic fertilizer on the dynamics of soil microbial biomass in a tropical dryland agroecosystem. Biol. Fert. Soils 19:231–238

Gilmour, C.C. 2003. Status report on the effect of water quantity and quality on methlymercury production. In 2003 Everglades Consolidated Report, Appendix 2B-2. West Palm Beach, FL: South Florida Water Management District

Gilmour, C.C. and E.A. Henry. 1991. Mercury methylation in aquatic systems affected by acid deposition. Environ. Pollut. 71:131–169

Gilmour, C.C., E.A. Henry, and R. Mitchell. 1992. Sulfate stimulation of mercury methylation in freshwater sediments. Environ. Sci. Technol. 26:2281–2287

Gilmour, C.C., G.S. Riedel, M.C. Ederlington, J.T. Bell, J.M. Beniot, G.A. Gill, and M.C. Stordal. 1998. Methylmercury concentrations and production rates across a trophic gradient in the Northern Everglades. Biogeochemistry 40:326–346

Gilpin, M.E. and I.A. Hanski. 1991. Metapopulation Dynamics: Empirical and Theoretical Investigations. London: Academic

Gleason, P.J. 1972. The origin, sedimentation, and stratigraphy of a calcite mud located in the southern freshwater Everglades. Ph.D. Dissertation, Pennsylvania State University

Gleason, P.J. (ed.). 1974a. Environments of South Florida: Present and Past. Miami, FL: Miami Geological Society

Gleason, P.J. 1974b. Chemical Quality of Water in Conservation Area 2A and Associated Canals. West Palm Beach, FL: Resource Planning Department, Central and Southern Florida Flood Control District. Technical Bulletin 74-1

Gleason, P.J. (ed.). 1984. Environments of South Florida: Present and Past II. Memoir 2. Coral Gables, FL: Miami Geological Society

Gleason, H.A. and A. Cronquist. 1963. Manual of Vascular Plants of Northeastern United States and Adjacent Canada. New York: D. Van Nostrand

Page 11: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

Bibliography 653

Gleason, P.J. and W. Spackman, Jr. 1974. Calcareous periphyton and water chemistry in the Everglades. In Environments of South Florida: Present and Past, Memoir 2, ed. P.J. Gleason, pp. 146–181. Miami, FL: Miami Geological Society

Gleason, P.J. and P. Stone. 1994. Age, origin and landscape evolution of the Everglades peatlands. In Everglades: The Ecosystem and Its Restoration, eds. S.M. Davis and J.C. Ogden, pp. 149–197. Delray Beach, FL: St. Lucie

Gleason, P.J., A.D. Cohen, W.G. Smith, H.K. Brooks, P.A. Stone, R.L. Goodrick, and W. Spackman, Jr. 1984. The environmental significance of Holocene sediments from the Everglades and saline tidal plain. In Environments of South Florida: Present and Past II, ed. P.J. Gleason, pp. 297–351. Coral Gables, FL: Miami Geological Society

Goldsborough, L.G. and G.G.C. Robinson. 1996. Pattern in wetlands. In Algal Ecology, eds. R.J. Stevenson, M.L. Bothwell, and R.L. Lowe, pp. 77–117. San Diego, CA: Academic

Goodrick, R.L. 1984. The wet prairies of the northern Everglades. In Environments of South Florida, Present and Past II, ed. P.J. Gleason, pp. 185–190. Miami, FL: Miami Geological Society

Grace, J.B. 1983. Autotoxic inhibition of seed germination by Typha latifolia: an evaluation. Oecologia 59:366–369

Grace, J.B. 1989. Effects of water depth on Typha latifolia and Typha domingensis. Am. J. Bot. 76:762–768

Green, R.H. 1979. Sampling Design and Statistical Methods for Environmental Biologists. New York, NY: Wiley

Green, P.J. and B.W. Silverman. 1994. Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach. London: Chapman and Hall

Greeson, P.E. 1977. Diel oxygen curve method for estimating primary productivity and commu-nity metabolism. In Techniques of Water Resources Investigations of USGS, pp. 269–279. Washington, DC: US Geological Survey

Grieb, T.M., C.T. Driscoll, S.P. Gloss, C.L. Schofield, G.L. Bowie, and D.B. Porcella. 1990. Factors affecting mercury accumulation in fish in the upper Michigan peninsula. Environ. Toxicol. Chem. 9:919–930

Grime, J.P. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111:1169–1194

Grimshaw, H.J., R.G. Wetzel, M. Brandenburg, K. Segerblom, L.J. Wenkert, G.A. Marsh, W. Charnetzky, J.E. Haky, and C. Carraher. 1997. Shading of periphyton communities by wetland emergent macrophytes: decoupling of algal photosynthesis from microbial nutrient retention. Arch. Hydrobiol. 139:17–27

Growns, J.E., J.A. Davis, F. Cheal, L.G. Schmidt, R.S. Rosich, and S.J. Bradley. 1992. Multivariate pattern analysis of wetland invertebrate communities and environmental variables in Western Australia. Aust. J. Ecol. 17:275–288

Grunwald, M. 2006. The Swamp: The Everglades, Florida, and the Politics of Paradise. New York: Simon and Schuster

Guardo, M., L. Fink, T.D. Fontaine, S. Newman, M. Chimney, R. Bearzotti, and G. Goforth. 1995. Large-scale constructed wetlands for nutrient removal from stormwater runoff: an Everglades restoration project. Environ. Manage. 19:879–889

Guentzel, J.L., W.M. Landing, G.A. Gill, and C.D. Pollman. 2001. Processes influencing rainfall deposition of mercury in Florida. Environ. Sci. Technol. 35:863–873

Gunderson, L.H. 1990. Historical hydropatterns in vegetation communities of Everglades National Park. In Freshwater Wetlands and Wildlife, eds. R.R. Sharitz and J.W. Gibbons, pp. 1099–1111. Oak Ridge, TN: US Department of Energy

Gunderson, L.H. 1994. Vegetation of the Everglades: determinants of community composition. In Everglades: The Ecosystem and Its Restoration, eds. S.M. Davis and J.C. Ogden, pp. 323–340. Delray Beach, FL: St. Lucie

Gunderson, L.H. and W.T. Loftus. 1993. The Everglades. In Biodiversity of the Southeastern United States: Lowland Terrestrial Communities, eds. W.H. Martin, S.G. Boyce, and A.C.E. Echtemacht, pp. 199–255. New York: Wiley

Page 12: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

654 Bibliography

Gunderson, L.H. and J.R. Snyder. 1994. Fire patterns in the southern Everglades. In Everglades: The Ecosystem and Its Restoration, eds. S.M. Davis and J.C. Ogden, pp. 291–306. Delray Beach, FL: St. Lucie

Gunderson, L.H., C.S. Holling, and G.D. Peterson. 2002. Surprises and sustainability: cycles of renewal in the Everglades. In Panarchy: Understanding Transformations in Human and Natural Systems, eds. L.H. Gunderson and C.S. Holling, pp. 315–332. Washington, DC: Island

Hairston, N.G., F.E. Smith, and L.B. Slobodkin. 1960. Community structure, population control, and competition. Am. Nat. 94:421–425

Hall, G.B. and R.G. Rice. 1990. Response of the Everglades Marsh to Increased Nitrogen and Phosphorus Loading, Part III: Periphyton Community Dynamics. Homestead, FL: National Park Service, South Florida Research Center, Everglades National Park

Hammer, D.A. (ed.). 1989. Constructed Wetlands for Wastewater Treatment: Municipal, Industrial, and Agricultural. Chelsea, MI: Lewis

Hann, B.J. and L.G. Goldsborough. 1997. Responses of a prairie wetland to press and pulse additions of inorganic nitrogen and phosphorus: invertebrate community structure and interac-tions. Arch. Hydrobiol. 140:169–194

Happell, J.D., G.J. Whiting, W.S. Showers, and J.P. Chanton. 1993. A study contrasting methane emission from marshlands with and without active methanotrophic bacteria. J. Geophys. Res. 98:307–314

Härdle, W. 1990. Smoothing Techniques: With Implementation in S. Berlin Heidelberg New York: Springer

Harrison, S. and L. Fahrig. 1995. Landscape pattern and population conservation, In Mosaic Landscapes and Ecological Processes, eds. L. Hannson, L. Fahrig, and G. Merriam, pp. 293–308. London: Chapman and Hall

Hart, D.D. and C.T. Robinson. 1990. Resource limitation in a stream community: phosphorus enrichment effects on periphyton and grazers. Ecology 71:1494–1502

Harvey, J.W., J.T. Newlin, and S.L. Krupa. 2006. Modeling decadal timescale interactions between surface water and ground water in the central Everglades, Florida, USA. J. Hydrol. 320:400–420

Hastie, T.J. and R.J. Tibshirani. 1990. Generalized Additive Models. London: Chapman and HallHawkins, C.P. and R.H. Norris. 2000. Performance of different landscape classifications for

aquatic bioassessments: introduction to the series. J. N. Am. Benthol. Soc. 19:367–369Hawkins, C.P., R.H. Norris, J.N. Hogue and J.W. Feminella. 2000. Development and evaluation

of predictive models for measuring the biological integrity of streams. Ecol. Appl. 10:1456–1477

Hedley, M.J. and J.W.B. Stewart. 1982. Method to measure microbial phosphate in soils. Soil Biol. Biochem. 14:377–385

Hedley, M.J., J.W.B. Stewart and B.S. Chauhan. 1982. Changes in inorganic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci. Soc. Am. J. 46:970–976

Hemond, H.F. 1980. Biogeochemistry of Thoreau’s Bog, Concord, Massachusetts. Ecol. Monogr. 50:507–526

Hemond, H.F. 1983. The nitrogen budget of Thoreau’s Bog. Ecology 64:99–109Hendry, C.D., P.L. Brezonik, and E.S. Edgerton. 1981. Atmospheric deposition of nitrogen and

phosphorus in Florida. In Atmospheric Pollutants in Natural Waters, ed. S.J. Eisenreich, pp. 199–215. Ann Arbor, MI: Ann Arbor Science Publishers

Hershey, A.E., A.L. Hiltner, M.A.J. Hullar, M.C. Miller, J.R. Vestal, M.A. Lock, S. Rundle, and B.J. Peterson. 1988. Nutrient influence on a stream grazer: Orthocladius microcommunities respond to nutrient input. Ecology 69:1383–1892

Hobbs, H.H. 1942. The crayfishes of Florida. Fla. Univ. Publ. Biol. Sci. Ser. 3:1–179Hoffman, W., G.T. Bancroft, and R.J. Sawicki. 1994. Foraging habitat of wading birds in the

Water Conservation Areas of the Everglades. In Everglades: The Ecosystem and Its Restoration, eds. S.M. Davis and J.C. Ogden, pp. 585–614. Delray Beach, FL: St. Lucie

Page 13: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

Bibliography 655

Hoffmeister, J.E. and H.G. Multer. 1968. Geology and origin of the Florida keys. Geol. Soc. Am. Bull. 79:1487–1502

Holling, C.S. 1973. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4:1–23Holling, C.S., L.H. Gunderson, and C.J. Walters. 1994. The structure and dynamics of the everg-

lades system: guidelines for ecosystem restoration. In Everglades: The Ecosystem and Its Restoration, eds. S.M. Davis and J.C. Ogden, pp. 741–756. Delray Beach, FL: St. Lucie

Holmgren, G.G.S., M.W. Meyer, R.L. Chaney, and R.L. Daniels. 1993. Cadmium, lead, zinc, copper and nickel in agricultural soils of the United States of America. J. Environ. Qual. 22:335–348

van Horn, S. 1996. Hydrometeorologic Monitoring Network Metadata Report, WRE #344. West Palm Beach, FL: South Florida Water Management District

House, W.A. 1990. The prediction of phosphate coprecipitation with calcite in freshwaters. Water Resour. 24:1017–1023

Howarth, R.W. and S.G. Fisher. 1976. Carbon, nitrogen, and phosphorus dynamics during leaf decay in nutrient-enriched microecosystems. Freshwater Biol. 6:221–228

Hubert, W.A. 1996. Passive capture techniques. In Fisheries Techniques, 2nd edition, eds. B.R. Murphy and D.W. Willis, pp. 157–182. Bethesda, MD: American Fisheries Society

Hunt, R. 1978. Plant Growth Analysis. The Institute of Biology’s Studies in Biology No. 96. London: Edward Arnold

Hurlbert, S.A. 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577–586

Hustedt, F. 1927–1930. Die Kieselalgen Deutschlands, Österreichs und der Schweiz (3 vols.), In Dr. L. Rabenhorst’s Kryptogamen-Flora von Deutschland, Österreich und der Schweiz. Band 7, Die Kieselalgen. Akademische Verlagsgesellschaft

Hvorslev, M.J. 1951. Time lag and soil permeability in ground water observations. US Army Corps Eng. Waterway Exp. Station Bull. 36

IPCC (Intergovernmental Panel on Climate Change). 2007. Climate Change 2007: Summary for Policymakers. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC Secretariat

IUPAC (International Union of Pure and Applied Chemistry). 1978. Nomenclature, symbols, and their usage in spectrochemical analysis-II. Data interpretation. Spectrochim. Acta 33:241–245

Ives, J.C. 1856. Memoir to Accompany a Military Map of the Peninsula of Florida South of Tampa Bay. New York: [US] War Department

Jackson, T.A. 1988. The mercury problem in recently formed reservoirs of northern Manitoba (Canada): effects of impoundments and other factors on the production of methyl mercury by microorganisms. Can. J. Fish. Aquat. Sci. 45:97–121

Jensen, J.E. 1998. Calibration of Everglades modern pollen with vegetation and nutrient levels in Water Conservation Area 2A. M.Sc. Thesis, Duke University

Jensen, J.R., K. Rutchey, M.S. Koch, and S. Narumalani. 1995. Inland wetland change detection in Everglades water conservation area 2A using a time series of normalized remotely sensed data. Photogramm. Eng. Remote Sens. 61:199–209

Jensen, J.E., S.R. Cooper, and C.J. Richardson. 1999. Development of a calibration model of modern pollen along a nutrient gradient in Everglades Water Conservation Area-2A, USA. Wetlands 19:675–688

Johnson, D.H. 1999. The insignificance of statistical significance testing. J. Wildlife Manage. 63:763–772

Jones, L.A. 1948. Soils, geology, and water control in the Everglades region. Univ. Fla. Agri. Exp. Station Bull. 442. Gainesville, FL

Jones, J.I., B. Moss, and J.O. Young. 1998. Interactions between periphyton, nonmolluscan inver-tebrates, and fish in standing freshwaters. In The Structuring Role of Submerged Macrophytes in Lakes, eds. E. Jeppesen, Ma. Søndergaard, Mo. Søndergaard, and K. Christoffersenp, pp. 69–90. Berlin Heidelberg New York: Springer

Jordan, C.L. 1984. Florida’s weather and climate implications for water. In Water Resources Atlas of Florida, eds. E.A. Fernald and D.J. Patton, pp. 18–35. Tallahassee: Florida State University

Page 14: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

656 Bibliography

Jordan, C.F. 1996. Spatial Ecology of Decapods and Fishes in a Northern Everglades Wetland Mosaic. Gainesville, FL: University of Florida

Jordan, C.F., Jelks, H.L., and Kitchens, W.M. 1997. Habitat structure and plant community composition in a northern Everglades wetland landscape. Wetlands 17:275–283

Kadlec, R.H. 1999. The limits of phosphorus removal in wetlands. Wetlands Ecol. Manage. 7:165–175

Kadlec, R.H. and R.L. Knight. 1996. Treatment Wetlands. Boca Raton, FL: CRC/LewisKang, W.-J., J.H. Trefry, T.A. Nelson, and H.R. Wanless. 2000. Direct atmospheric inputs versus

runoff fluxes of mercury to the lower Everglades and Florida Bay. Environ. Sci. Technol. 34:4058–4063

Kapp, R.O. 1969. How to Know Pollen and Spores. Dubuque: Brown and CompanyKarr, J.R. 1981. Assessment of biotic integrity using fish communities. Fisheries 6:21–27Karr, J.R. and E.W. Chu. 1997. Biological Monitoring and Assessment: Using Multimetric Indexes

Effectively. Seattle, WA: University of Washington. EPA 235-R97-001Karr, J.R., K.D. Fausch, P.L. Angermeier, P.R. Yant, and I.J. Schlosser. 1986. Assessing Biological

Integrity in Running Waters: A Method and Its Rationale. Special Publication 5. Urbana, IL: Illinois Natural History Survey

Kaštovský, J. and J. Komárek. 2001. Phototrophic microvegetation of thermal springs in Karlovy Vary, Czech Republic. In Algae and Extreme Environments, eds. J. Elster, J. Seckbach, W.F. Wincent, and O. Lhotsky, pp. 107–119. Nova Hedwigia Beih. 123

Keddy, P.A. 2000. Wetland Ecology: Principles and Conservation. Cambridge, UK: Cambridge University Press

Keeney, D.R. and D.W. Nelson. 1982. Nitrogen – inorganic forms. In Methods of Soil Analysis, eds. A.L. Page, R.H. Miller, and D.R. Keeney, pp. 643–698. Madison, WI: American Society of Agronomy

Keiber, J.R., X. Zhou, and K. Mopper. 1990. Formation of carbonyl compounds from UV-induced photodegradation of humic compounds in the sea. Limnol. Oceanogr. 35:1503–1515

Keith and Schnars, P.A. 1993. G.P.S. Geodetic Survey in the Everglades, WCA-2A and WCA-3A, prepared for Peeples, Earl and Blank, P.A.

Keough, J.R., M.E. Sierszen, and C.A. Hagley. 1996. Analysis of a Lake Superior coastal food web with stable isotope techniques. Limnol. Oceanogr. 41:136–141

Keyser, D. 1975. Ostracodes of the mangroves of South Florida, their ecology and biology. Bull. Am. Paleontol. 65:489–499

King, R.S. 2001. Dimensions of invertebrate assemblage organization across a phosphorus-limited Everglades landscape. Ph.D. Dissertation, Duke University

King, R.S. and C.J. Richardson. 2002. Evaluating subsampling approaches and macroinvertebrate taxonomic resolution for wetland bioassessment. J. N. Am. Benthol. Soc. 21:150–171

King, R.S. and C.J. Richardson. 2003. Integrating bioassessment and ecological risk assessment: an approach to develop numerical water-quality criteria. Environ. Manage. 31:795–809

King, R.S. and D.A. Wrubleski. 1998. Spatial and diel availability of flying insects as potential duckling food in prairie wetlands. Wetlands 18(1):100–114

King, R.S., K.T. Nunnery, and C.J. Richardson. 2000. Macroinvertebrate assemblage response to highway crossings in forested wetlands: implications for biological assessment. Wetlands Ecol. Manage. 8(4):243–256

King, R.S., C.J. Richardson, D.L. Urban, and E.A. Romanowicz. 2004. Spatial dependency of vegetation–environment linkages in an anthropogenically influenced wetland ecosystem. Ecosystems 7:74–97

Klein, H. and C.R. Causaras. 1982. Biscayne aquifer, southeast Florida, and contiguous surficial aquifer to the north, In Principal Aquifers in Florida, ed. B.J. Franks, pp. 1–4. Tallahassee, FL: US Geological Survey. Water-Resources Investigations. Open-File Report

Kleiner, J. 1988. Coprecipitation of phosphate with calcite in lake water: a laboratory experimental modeling phosphorus removal with calcite in lake Constance. Water Resour. 22:1259–1265

Klemm, D.J. 1995. Identification Guide to the Freshwater Leeches (Annelida: Hirudinea) of Florida and other Southern States. Tallahassee, FL: Florida Department of Environmental Protection

Page 15: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

Bibliography 657

Kloor, K. 2000. Everglades restoration plan hits rough waters. Science 288:1166–1167Knight, R.L., R.H. Kadlec, S.G. Reed, R.W. Ruble, J.D. Waterman, and D.S. Brown. 1994. North

American Wetlands for Water Quality Treatment Database, EPA/600/C-94/002Koch, M.S. and P.S. Rawlik. 1993. Transpiration and stomatal conductance of two wetland

macrophytes (Cladium jamaicense and Typha domingensis) in the subtropical Everglades. Am. J. Bot. 80:1146–1154

Koch, M.S. and K.R. Reddy. 1992. Distribution of soil and plant nutrients along a trophic gradient in the Florida Everglades. Soil Sci. Soc. Am. J. 56:1492–1499

Koch-Rose, M.S., K.R. Reddy, and J.P. Chanton. 1994. Factors controlling seasonal nutrient profiles in a subtropical peatland of the Florida Everglades. J. Environ. Qual. 23:526–533

Koerselman, W. and A.F.M. Meuleman. 1996. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 33:1441–1450

Komárek, J. 1989. Studies on the cyanophytes of Cuba 7–9. Folia Geobot. Phytotax. Praha 24:131–206

Komárek, J. and K. Anagnostidis. 1998. Cyanoprokaryota, Vol. 1: Chroococcales. In Süsswasserflora von Mitteleuropa 19/1, eds. H. Ettl, G. Gärtner, H. Heynig, and D. Mollenhauer, Jena: Gustav Fischer

Koroleff, F. 1983. Simultaneous oxidation of nitrogen and phosphorus compounds by persulfate. In Methods of Seawater Analysis, 2nd edition, eds. K. Grasshoff, K. Kremling, and M. Ehrhardt, pp. 168–169. Weinheimer, Germany: Verlag Chemie

Kostecke, R.M., L.M. Smith, and H.M. Hands. 2004. Vegetation response to cattail management at Cheyenne Bottoms, Kansas. J. Aquat. Plant Manage. 42:39–45

Krabbenhoft, D.P., W.H. Orem, G.R. Aiken, and C.C. Gilmour. 2006a. Unraveling the Complexities of Mercury Methylation in the Everglades. Florida Greater Everglades Ecosystem Restoration Conference – 2006 “Planning, Policy and Science” Geer Conference abstract. Lake Buena Vista, FL, 5–9 June 2006

Krabbenhoft, D.P., W.H. Orem, G.R. Aiken, and C.C. Kendall. 2006b. Aquatic cycling of mercury in the Everglades. USGS fact sheet http://sofia.usgs.gov/projects/evergl_merc/

Krammer, K. and H. Lange-Bertalot. 1987–1991. Bacillariophyceae (4 vols.). In Süßwasserflora von Mitteleuropa 2/1–4, eds. H. Ettl, G. Gärtner, H. Heynig, and D. Mollenhauer. Jena: Gustav Fischer

Krammer, K. and H. Lange-Bertalot. 1988. Bacillariophyceae, Vol. 2: Bacillariaceae. In Süßwasserflora von Mitteleuropa 2/2, eds. H. Ettl, G. Gärtner, H. Heynig, and D. Mollenhauer. Jena: Gustav Fischer

Krammer, K. and H. Lange-Bertalot. 1991a. Bacillariophyceae, Vol. 3: Centrales, Fragilariaceae, Eunotiaceae. In Süßwasserflora von Mitteleuropa 2/3, eds. H. Ettl, G. Gärtner, H. Heynig, and D. Mollenhauer. Jena: Gustav Fischer

Krammer, K. and H. Lange-Bertalot. 1991b. Bacillariophyceae, Vol. 4: Achnanthaceae. In Süßwasserflora von Mitteleuropa 2/4, eds. H. Ettl, G. Gärtner, H. Heynig, and D. Mollenhauer. Jena: Gustav Fischer

Krammer, K. and H. Lange-Bertalot. 1997. Bacillariophyceae, Vol. 1: Naviculaceae. In Süßwasserflora von Mitteleuropa 2/2, 2nd edition, eds. H. Ettl, G. Gärtner, H. Heynig, and D. Mollenhauer. Jena: Gustav Fischer

Kuhn, N.L., I.A. Mendelssohn, K.L. McKee, H. Brix, and S.L. Miao. 2002. Root phosphatase activity in Cladium jamaicense and Typha domingensis grown under ambient and elevated phosphorus levels. Wetlands 22:794–800

Kushlan, J.A. 1974. Observations on the role of the American alligator (Alligator Mississippiensis) in the southern Florida wetlands. Copeia 1974:993–996

Kushlan, J.A. 1987. External threats and internal management: the hydrologic regulation of the Everglades, FL, USA. Environ. Manage. 11:109–119

Kushlan, J.A. 1989. Wetlands and wildlife: the Everglades perspective. In Freshwater Wetlands and Wildlife, CONF-8603101. DOE Symposium Serial No. 61, eds. R.R. Sharitz and J.W. Gibbons, pp. 773–790. Oak Ridge, TN: USDOE Office of Scientific and Technical Information

Kushlan, J.A., S.A. Voorhees, W.F. Loftus, and P.C. Frohring. 1986. Length, mass, and calorific relationships of Everglades animals. Fla. Sci. 49:65–79

Page 16: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

658 Bibliography

Kusler, J. and Niering, W. 1998. Wetland assessment: have we lost our way? Natl Wetlands Newslett. 20:8–14

Květ, J., J.P. Ondok, J. Nečas, and P.G. Jarvis. 1971. Methods of growth analysis. In Plant Photosynthetic Production: Manual of Methods, eds. Z. Šesták, J. Čatský, and P.G. Jarvis, pp. 343–391. The Hague, The Netherlands: Dr. W. Junk N.V. Publishers

Lamberti, G.A. 1996. The role of periphyton in benthic food webs. In Algal Ecology, eds. R.J. Stevenson, M.L. Bothwell, and R.L. Lowe, pp. 533–572. San Diego, CA: Academic

Lamberti, G.A. and J.W. Moore. 1984. Aquatic insects as primary consumers. In The Ecology of Aquatic Insects, eds. V.H. Resh and D.M. Rosenberg, pp. 164–195. New York: Praeger

Lange, T.R., H.E. Royals, and L.L. Connor. 1993. Influence of water chemistry on mercury con-centration in largemouth bass from Florida lakes. Trans. Am. Fish. Soc. 122:74–84

Larsen, P. 1994. Everglades water budget – principles and overview. Technical Advisory Committee presentation, Governor’s Commission for a Sustainable South Florida (October 19), Miami, FL

Larsen, D.P. and A.T. Herlihy. 1998. The dilemma of sampling streams for macroinvertebrate richness. J. N. Am. Benthol. Soc. 17:359–366

Leduc, A., P. Drapeau, Y. Bergeron, and P. Legendre. 1992. Study of spatial components of forest cover using partial Mantel tests and path analysis. J. Veg. Sci. 3:69–78

Legendre, P. and M.J. Anderson. 1999. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69:1–24

Legendre, P. and L. Legendre. 1998. Numerical Ecology, 2nd edition. Amsterdam, The Netherlands: Elsevier

Lemly, A.D. and R.S. King. 2000. An insect-bacteria bioindicator for assessing detrimental nutri-ent enrichment in wetlands. Wetlands 20:91–100

Lemly, A.D. and C.J. Richardson. 1997. Guidelines for risk assessment in wetlands. Environ. Monit. Assess. 47:117–134

Levinspeil, O. 1972. Chemical Reaction Engineering. New York: WileyLiebig, J. 1840. Chemistry in Its Application to Agriculture and Physiology. London, UK: Taylor

and WaltonLietz, A.C. 2000. Analysis of Water-Quality Trends at Two Discharge Stations – One Within Big

Cypress National Preserve and One Near Biscayne Bay – Southern Florida, 1966–1994. Tallahassee, FL: US Geological Survey. Water-Resources Investigations. Report 00–4099

Light, S.S. and J.W. Dineen. 1994. Water control in the Everglades: a historical perspective. In Everglades: The Ecosystem and Its Restoration, eds. S.M. Davis and J.C. Ogden, pp. 47–84. Delray Beach, FL: St. Lucie

Likens, G.E. and F.H. Bormann. 1995. Biochemistry of a Forested Ecosystem, 2nd edition. Berlin Heidelberg New York: Springer

Linde, A.F., T. Janisch, and D. Smith. 1976. Cattail – The Significance of Its Growth, Phenology and Carbohydrate Storage to Its Control and Management. Madison, WI: Department of Natural Resources. Technical Bulletin 94

Line, J.M., C.J.F. ter Braak, and H.J.B. Birks. 1994. WACALIB version 3.3 – a computer program to reconstruct environmental variables from fossil assemblages by weighted averaging and to derive sample-specific errors of prediction. J. Paleolimnol. 10:147–152

Lissner, J.I., A. Mendelssohn, B. Lorenzen, H. Brix, K.L. McKee, and S. Miao. 2003. Interactive effects of redox intensity and phosphate availability on growth and nutrient relations of Cladium jamaicense. Am. J. Bot. 90:736–748

Livingstone, D.R. 1991. Organic xenobiotic metabolism in marine invertebrates. In Advances in Comparative and Environmental Physiology, ed. R. Gilles, pp. 45–185. Berlin Heidelberg New York: Springer

Lockaby, B.G., R.S. Wheat, and R.G. Clawson. 1996. Hydroperiod influence on litter conversion to soil organic matter in a floodplain forest. Soil Sci. Soc. Am. J. 60:1989–1993

Lodge, T.E. 2005. The Everglades Handbook: Understanding the Ecosystem, 2nd edition. Boca Raton, FL: CRC

Page 17: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

Bibliography 659

Lodge, D.M., G. Cronin, E. van Donk, and A.J. Foelich. 1998. Impact of herbivory on plant standing crop: comparisons among biomes, between vascular and nonvascular plants, and among fresh-water herbivore taxa. In The Structuring Role of Submerged Macrophytes in Lakes, eds. E. Jeppesen, Ma. Søndergaard, Mo. Søndergaard, and K. Christoffersen, pp. 149–174. Berlin Heidelberg New York: Springer

Loftus, W.F. and A.M. Eklund. 1994. Long-term dynamics of an Everglades small-fish assem-blage. In Everglades: The Ecosystem and Its Restoration, eds. S.M. Davis and J.C. Ogden, pp. 461–483. Boca Raton, FL: St. Lucie

Long, R.W. and O. Lakela. 1971. A Flora of Tropical Florida. A Manual of the Seed Plants and Ferns of Southern Peninsular Florida. Coral Gables, FL: University of Miami Press

Lorenzen, B., H. Brix, I.A. Mendelssohn, K.L. McKee, and S.L. Miao. 2001. Growth, biomass allocation and nutrient use efficiency in Cladium jamaicense and Typha domingensis as affected by phosphorus and oxygen availability. Aquat. Bot. 70(2):117–133

Loveless, C.M. 1959. A study of the vegetation in the Florida Everglades. Ecology 40:1–9Lowe, E.F. and L.W. Keenan. 1997. Managing phosphorus based cultural eutrophication in

wetlands: a conceptual approach. Ecol. Eng. 9:109–118Ludlam, S.D., S. Feeney, and M.S.V. Douglas. 1996. Changes in the importance of lotic and littoral

diatoms in a high arctic lake over the last 191 yrs. J. Paleolimnol. 16:187–204Lutz, J.R. 1977. Water Quality and Nutrient Loading of the Major Inflows from the Everglades

Agricultural Area to the Conservation Areas, Southeast Florida. Technical Publication 77–6. West Palm Beach, FL: South Florida Water Management District

Maberly, S.C. and D.H.N. Spence. 1983. Photosynthetic inorganic carbon use by freshwater plants. J. Ecol. 71:705–724

MacArthur, R.H. and E.O. Wilson. 1967. The Theory of Island Biogeography. Princeton, NJ: Princeton University Press

MacVicar, T.K. and S.T. Lin. 1984. Historical rainfall activity in central and southern FL: Average, return period estimates and selected extremes. In Environments of South Florida: Present and Past II. Memoir 2, ed. P.J. Gleason, pp. 477–509. Coral Gables, FL: Miami Geological Society

Manly, B.F.J. 1997. Randomization, Bootstrap, and Monte Carlo Methods in Biology, 2nd edition. London: Chapman and Hall

Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Res. 27:209–220

MathSoft (1997), S-Plus 4 User’s Guide. Seattle, WA: MathSoftMaxted, J.R., M.T. Barbour, J. Gerritsen, V. Poretti, N. Primrose, A. Silvia, et al. 2000. Assessment

framework for mid-Atlantic coastal plain streams using benthic macroinvertebrates. J. N. Am. Benthol. Soc. 19:128–144

May, R.M. 1975. Patterns of species abundance and diversity. In Ecology and Evolution of Communities, ed. M.L. Cody and J.M. Diamond, pp. 81–120. Cambridge, MA: Harvard University Press

McAndrews, J.H., A.A. Berti, and G. Norris. 1973. Key to the Quaternary Pollen and Spores of the Great Lakes Region, Royal Ontario Museum: Life Sciences Misc. Publications

McCally, D. 1999. The Everglades: An Environmental History (The Florida History and Culture). Gainesville, FL: The University of Florida Press

McCormick, P.V. and M.B. O’Dell. 1996. Quantifying periphyton responses to phosphorus in the Florida Everglades: a synoptic-experimental approach. J. N. Am. Benthol. Soc. 15:450–468

McCormick, P.V., P.S. Rawlik, K. Lurding, E.P. Smith, and F.H. Sklar. 1996. Periphyton–water quality relationships along a nutrient gradient in the northern Everglades. J. N. Am. Benthol. Soc. 15:433–449

McCormick, P.V., M.J. Chimney, and D.R. Swift. 1997. Diel oxygen profiles and water column community metabolism in the Florida Everglades, USA. Arch. Hydrobiol. 140:117–129

McCormick, P.V., R.B.E. Shuford, III, J.G. Backus, and W.C. Kennedy. 1998. Spatial and seasonal patterns of periphyton biomass and productivity in the northern Everglades, Florida, USA. Hydrobiologia 362:185–208

Page 18: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

660 Bibliography

McCormick, P.V., S. Newman, S. Miao, R. Reddy, D. Gawlik, C. Fitz, et al. 1999. Ecological needs of the Everglades. In 1999 Everglades Interim Report, ed. G. Redfield, Chapter 3. West Palm Beach, FL: South Florida Water Management District

McCormick, P.V., S. Newman, G. Payne, S. Miao, and T. Fontaine. 2000. Ecological effects of P enrichment. In 2000 Everglades Consolidated Report, Chapter 3. West Palm Beach, FL: South Florida Water Management District

McCormick, P.V., S. Newman, S.L. Miao, D.E. Gawlik, D. Marley, K.R. Reddy, and T.D. Fontaine. 2001. Effects of anthropogenic phosphorus inputs on the Everglades. In The Everglades, Florida Bay, and Coral Reefs of the Florida Keys: An Ecosystem Sourcebook, eds. J.W. Porter and K.G. Porter, pp. 83–126. Boca Raton, FL: CRC

McDowell, L.L., J.C. Stephens, and E.H. Stewart. 1969. Radiocarbon chronology of the Florida Everglades peat. Soil Sci. Soc. Am. Proc. 33:743–745

McElhinny, M.W. 1973. Paleomagnetism and Plate Tectonics. Cambridge: Cambridge University Press

McGarigal, K. and B.J. Marks. 1995. Fragstats: Spatial pattern analysis program for quantifying landscape structure. Portland, OR: USDA Forest Service, Pacific Northwest Research Station. General Technical Report PNW-GTR-351

McKelvie, I.D. 2005. Separation, preconcentration and speciation of organic phosphorus in envi-ronmental samples. In Organic Phosphorus in the Environment, eds. B.L. Turner, E. Frossard, E.T.H. Lindau, and D.S. Baldwin, pp. 1–20. Cambridge, MA: CAB International

McKnight, D., E.M. Thurman, and R.L. Wershaw. 1985. Biogeochemistry of aquatic humic sub-stances in Thoreau’s bog, Concord, Massachusetts. Ecology 66:1339–1352

McNaughton, S.J. 1966. Ecotype function in the Typha community-type. Ecol. Monogr. 36:297–325

McPherson, B.F., G.Y. Hendrix, H. Klein, and H.M. Tysus. 1976. The Environment of South Florida: A Summary Report. U.S.G.S. Professional Paper 1011. Washington, DC: US Geological Survey

Meffe, G.K. and C.R. Carroll. 1994. Principles of Conservation Biology, 2nd edition. Sunderland, MA: Sinauer. 1997; Groome, M.J., G.K. Meffe, and R.L. Carroll. 2006. 3rd edition

Mermutt, A.R., J.C. Jain, L. Song, R. Kerrich, L. Kozak, and S. Jana. 1996. Trace element con-centrations of selected soils and fertilizers in Saskatchewan, Canada. J. Environ. Qual. 25:845–853

van Meter-Kasanof, N.N. 1973. Ecology of the micro-algae of the Florida Everglades. Part 1. Environment and some aspects of freshwater periphyton, 1959–1963. Nova Hedwigia 24:619–664

Meyer, E. 1989. The relationship between body length parameters and dry mass in running water invertebrates. Arch. Hydrobiol. 117:191–203

Miao, S.L. and F.H. Sklar. 1998. Biomass and nutrient allocation of sawgrass and cattail along a nutrient gradient in the Florida Everglades. Wetlands Ecol. Manage. 5:245–263

Miao, S.L., R.E. Borer, and F.H. Sklar. 1997. Sawgrass seedling response to transplanting and nutrient additions. Restor. Ecol. 5:162–168

Miao, S.L., S. Newman, and F.H. Sklar. 2000. Effects of habitat nutrients and seed sources on growth and expansion of Typha domingensis. Aquat. Bot. 68(4):297–311

Mierle, G. and R. Ingram. 1991. The role of humic substances in the mobilization of mercury from watersheds. Water Air Soil Pollut. 56:349–357

Mihuc, T.B. 1997. The functional trophic role of lotic primary consumers: generalist vs. specialist strategies. Freshwater Biol. 37:455–462

Mikkelsen, D.S. and Brandon, D.M. 1975. Zinc deficiency in California rice. Calif. Agric. 29:8–9

Miller, J.A. 1997. Hydrogeology of Florida. In The Geology of Florida, eds. A.F. Randazzo and D.S. Jones, pp. 69–88. Tallahassee, FL: University of Florida Press

Milligan, M.R. 1997. Identification Manual for the Aquatic Oligochaeta of Florida, Vol. I: Freshwater Oligochaetes. Tallahassee, FL: Florida Department of Environmental Protection

Page 19: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

Bibliography 661

Minchin, P.R. 1987. An evaluation of the relative robustness of techniques for ecological ordina-tion. Vegetatio 69:89–107

Miskimmin, B.M., J.W.M. Rudd, and C.A. Kelly. 1992. Influence of dissolved organic carbon, pH and microbial respiration rates on mercury methylation and demethylation in lake water. Can. J. Fish. Aquat. Sci. 49:17–22

Mitsch, W.J. and J.G. Gosselink. 2000. Wetlands, 3rd edition. New York: WileyMoeller, R.E. 1978. Carbon uptake by the submerged hydrophyte Utricularia purpurea. Aquat.

Bot. 55:209–216Mooney, H.A., P.J. Ferrar, and R.O. Slayter. 1978. Photosynthetic capacity and carbon allocation

patterns in diverse growth forms of Eucalyptus. Oecologia 36:103–111Moore, P.D. and D.J. Bellamy. 1974. Peatlands. Berlin Heidelberg New York: SpringerMoore, P.D., J.A. Webb, and M.E. Collinson. 1991. Pollen Analysis, 2nd edition. Oxford, UK:

Blackwell Scientific PublicationsMopper, K., X. Zhou, R.J. Kieber, D.J. Kieber, R.J. Sikorski, and R.D. Jones. 1991. Photochemical

degradation of dissolved organic carbon and its impact on the oceanic carbon cycle. Nature 352:60–62

Moss, B. 1976. The effects of fertilization and fish community structure and biomass of aquatic macrophytes and epiphytic algal populations. An ecosystem experiment. J. Ecol. 64:313–342

Moss, D., J.F. Wright, M.T. Furse, and R.T. Clarke. 1999. A comparison of alternative techniques for prediction of the fauna of running-water sites in Great Britain. Freshwater Biol. 41:167–181

Mueller-Dombois, D. and H. Ellenberg. 1974. Aims and Methods of Vegetation Ecology. New York: Wiley

Mundie, J.H., K.S. Simpson, and C.J. Perrin. 1991. Responses of stream periphyton and benthic insects to increases in dissolved inorganic phosphorus in a mesocosm. Can. J. Fish. Aquat. Sci. 48:2061–2072

Murdoch, W.W. 1966. Community structure, population control and competition – a critique. Am. Nat. 100:219–226

Murkin, H.R. 1989. The basis for food chains in prairie wetlands. In Northern Prairie Wetlands, ed. A.G. van der Valk, pp. 316–338. Ames, IA: Iowa State University Press

Murkin, H.R., D.A. Wrubleski, and F.A. Reid. 1994a. Sampling invertebrates in aquatic and terrestrial habitats. In Research and Management Techniques for Wildlife and Habitats, ed. T.A. Boukhout, pp. 349–369. Bethesda, MD: The Wildlife Society

Murkin, H.R., J.B. Pollard, M.P. Stainton, J.A. Boughen, and R.D. Titman. 1994b. Nutrient addi-tions to wetlands in the Interlake region of Manitoba, Canada: effects of periodic additions throughout the growing season. Hydrobiologia 279/280:483–495

Murphy, T.P., K.J. Hall, and I. Yesaki. 1983. Co-precipitation of phosphate with calcite in a naturally eutrophic lakes. Limnol. Oceanogr. 28:58–69

Nealon, D. 1984. Groundwater Quality Study of the Water Conservation Areas. DRE-180. West Palm Beach, FL: South Florida Water Management District

Nedoma, J., J. Vrba, T. Hanzl, and L. Nedbalová. 2001. Quantification of pelagic filamentous microorganisms in aquatic environments using the live-intercept method. FEMS Microbiol. Ecol. 38:81–85

Neill, C. and J.C. Cornwell. 1992. Stable carbon, nitrogen, and sulfur isotopes in a prairie marsh food web. Wetlands 12:217–224

Nelson, N.F. and R.H. Dietz. 1966. Cattail control methods in Utah. Salt Lake City, UT: Utah Department of Fish and Game. Publication 66-2

Nepf, H.M. 1999. Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour. Res. 35:479–489

Newbold, J.D., J.W. Elwood, M.S. Schulze, R.W. Stark, and J.C. Barmeier. 1983. Continuous ammonium enrichment of a woodland stream: uptake kinetics, leaf decomposition and nitrifi-cation. Freshwater Biol. 13:193–204

Newman, F.I. 1966. A method of estimating the total length of root in a sample. J. Appl. Ecol. 3:139–145

Page 20: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

662 Bibliography

Newman, S. and K.R. Reddy. 1992. Sediment resuspension effects on alkaline phosphatase activ-ity. Hydrobiologia 245:75–86

Newman, S., J.B. Grace, and J.W. Koebel. 1996. The effects of nutrients and hydroperiod on mixtures of Typha domingensis, Cladium jamaicense, and Eleocharis interstincta: implica-tions for Everglades restoration. Ecol. Appl. 6:774–783

Newman, S., J. Schuette, J.B. Grace, K. Rutchey, T. Fontaine, K.R. Reddy, and M. Pietrucha. 1998. Factors influencing cattail abundance in the northern Everglades. Aquat. Bot. 60:265–280

NOAA (National Oceanic and Atmospheric Administration), NNDC Climate Data Online, http://www.ncdc.noaa.gov/onlineprod/drought/xmgr.html (accessed 21 March 2007)

Noe, G.B., D.L. Childers, and R.D. Jones. 2001. Phosphorus biogeochemistry and the impact of phosphorus enrichment: why is the Everglades so unique? Ecosystems 4:603–624

Noe, G.B., D.L. Childers, A.L. Edwards, E. Gairser, K. Jayachandran, D. Lee, et al. 2002. Short-term changes in an oligotrophic Everglades wetland ecosystem receiving experimental nutrient enrichment. Biogeochemistry 59:239–267

Noe, G.B., L.J. Scinto, J. Taylor, D.L. Childers, and R.D. Jones. 2003. Phosphorus cycling and partitioning in an oligotrophic Everglades wetland ecosystem: a radioisotope tracing study. Freshwater Biol. 48:1993–2008

Obeysekera, J. and K. Rutchey. 1997. Selection of scale for Everglades landscape models. Landscape Ecol. 12(1):7–18

Odum, E.P. 1971. Fundamentals of Ecology, 3rd edition. Philadelphia, PA: W.B. SaundersOdum, E.P. 1984. The mesocosm. BioScience 34:558Odum, E.P., J.T. Finn, and E.H. Franz. 1979. Perturbation theory and the subsidy–stress gradient.

BioScience 29:349–352Oksanen, J. 1996. Is the humped–shaped relationship between species richness and biomass an

artefact due to plot size? J. Ecol. 84:293–295Oksanen, L., S.D. Fretwell, J. Arruda, and P. Niemela. 1981. Exploitation ecosystems in gradients

of primary productivity. Am. Nat. 118:240–261Oliver, I. and A.J. Beattie. 1996. Invertebrate morphospecies as surrogates for species: a case

study. Conserv. Biol. 10:99–109Olsen, S.R. and L.E. Sommers. 1982. Phosphorus. In Methods of Soil Analysis, eds. A.L. Page,

R.H. Miller, and D.R. Keeney, pp. 403–430. Madison, WI: American Society of AgronomyOlsson, U. 1986. Radiometric dating. In Handbook of Holocene Palaeoecology and

Palaeohydrology, ed. B.E. Berglund, pp. 273–312. New York: WileyO’Neill, R.V., D.L. DeAngelis, J.B. Waide, and T.F.H. Allen. 1986. A Hierarchical Concept of the

Ecosystem. Princeton, NJ: Princeton University PressOrnes, W.H. and K.K. Steward. 1973. Effect of phosphorus and potassium on phytoplankton

populations in field enclosures. Washington, DC: US Department of the Interior. South Florida Environmental Project Ecological Report No. DI-SFEP-74-07

Ostendorp, W. 1989. Die-back of reeds in Europe – a critical review of literature. Aquat. Bot. 35:5–26

Ozimek, T., E. Pieczynska, and A. Hankiewicz. 1991. Effects of filamentous algae on submerged macrophyte growth: a laboratory experiment. Aquat. Bot. 41:309–315

Pahl, J.W., C.J. Richardson, and P.V. Sundareshwar. 2004. Fire and disturbance as mechanisms to limit the expansion of Typha domingensis in the northern Everglades. Presentation at the Seventh Intecol International Wetlands Conference (July 29), Utrecht, Netherlands

Paine, R.T. 1966. Food web complexity and species diversity. Am. Nat. 100:65–75Paine, R.T. 1974. Intertidal community structure: experimental studies on the relationship between

a dominant competitor and its principal predator. Oecologia 15:93–120Paine, R.T. 1980. Food webs: linkage interaction strength and community infrastructure. J. Anim.

Ecol. 49:667–685Palmer, M.W. 1990. The estimation of species richness by extrapolation. Ecology 71:1195–1198Palmer, M.A., C.M. Swan, K. Nelson, P. Silver, and R. Alvestad. 2000. Streambed landscapes:

evidence that stream invertebrates respond to the type and spatial arrangement of patches. Landscape Ecol. 15:563–576

Page 21: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

Bibliography 663

Pan, Y., R.J. Stevenson, P. Vaithiyanathan, J. Slate, and C.J. Richardson. 2000. Changes in algal assemblages along observed and experimental phosphorus gradients in a subtropical wetland, USA. Freshwater Biol. 44:339–353

Parker, G.G. and C.W. Cooke. 1944. Late Cenozoic Geology of Southern Florida, with a Discussion of the Ground Water. Bulletin 27. Tallahassee, FL: Florida Geological Survey

Parker, G.G., G.E. Ferguson, and S.K. Love. 1955. Water Resources of Southeastern Florida. Washington, DC: US Geological Survey. Water-Supply Paper 1255

Patrick, R. and C.W. Reimer. 1966 and 1975. The Diatoms of the United States. Vols. 1 and 2. Monographs of the Academy of Natural Sciences of Philadelphia, No. 13

Payne, G.G., K.C. Weaver, and S.K. Xue. 2006. Status of phosphorus and nitrogen in the Everglades protection area. In 2006 South Florida Environmental Report, Chapter 2c. West Palm Beach, FL: South Florida Water Management District

Perkins, R.D. 1977. Depositional framework of Pleistocene rocks in South Florida. In Quaternary Sedimentation in South Florida, eds. P. Enos and R.D. Perkins, pp. 131–198. Boulder, CO: Geological Society of America

Perrin, C.J. and J.S. Richardson. 1997. N and P limitation of benthos abundance in the Nechako River, British Columbia. Can. J. Fish. Aquat. Sci. 54:2574–2583

Pescador, M.L., A.K. Rasmussen, and S.C. Harris. 1995. Identification Manual for the Caddisfly (Trichoptera) Larvae of Florida. Tallahassee, FL: Florida Department of Environmental Protection

Peters, N.E. and Reese, R.S. 1995. Spatial and temporal variations of weekly atmospheric deposition in a small area on the shore of Lake Okeechobee, Florida. Atmos. Environ. 29:179–187

Peterson, B.J., L. Deegan, J. Helfrich, J.E. Hobbie, M. Hullar, B. Moller, T.E. Ford, A. Hershey, A. Hiltner, G. Kipphut, A. Lock, D.M. Fiebig, V. McKinley, M.C. Miller, R. Vestal, R. Ventullo, and G. Volk. 1993. Biological responses of a tundra river to fertilization. Ecology 74:653–672

Pettersson, K. and M. Jansson. 1978. Determination of phosphatase activity in lake water – a study of methods. Int. Ver. Theor. Ange. Limnol. 20:1226–1230

Petuch, E.J. 1986. The Pliocene reefs of Miami: their geomorphological significance in the evolution of the Atlantic Coastal Ridge, Southeastern Florida, USA. J. Coastal Res. 2:391–408

Phillips, E.A. 1959. Methods of Vegetation Study. New York: Holt, Rinehart and WinstonPhillips, G.L. 1978. A mechanism to account for the decline in macrophytes in progressively

eutrophic freshwater wetlands. Aquat. Bot. 4:103–126Phillips, J.D. 1999. Divergence, convergence, and self-organization in landscapes. Ann. Assoc.

Am. Geogr. 89:466–88Pielou, E.C. 1984. The Interpretation of Ecological Data: A Primer on Classification and

Ordination. New York: WileyPimm, S.L., J.H. Lawton, and J.E. Cohen. 1991. Food web patterns and their consequences.

Nature 350:669–674Plafkin, J.L., M.T. Barbour, K.D. Porter, S.K. Gross, and R.M. Hughes. 1989. Rapid Bioassessment

Protocols for Use in Streams and Rivers: Benthic Macroinvertebrates and Fish. EPA/440/4-89-001. Washington, DC: Office of Water, US Environmental Protection Agency

Pluchino, E.S. 1984. Guide to the Common Water Mite Genera of Florida. Technical Series Vol. 7, No. 1. Tallahassee, FL: Florida Department of Environmental Regulation

Ponzio, K.J., S.J. Miller, and M.A. Lee. 1995. Germination of sawgrass, Cladium jamaicense Crantz, under varying hydrologic conditions. Aquat. Bot. 51:115–120

Porter, J.W. and K.F. Porter. 2002. The Everglades, Florida Bay, and Coral Reefs of the Florida Keys: An Ecosystem Sourcebook. Boca Raton, FL: CRC

Preston, F.W. 1948. The commonness, and rarity, of species. Ecology 29:254–283Puri, H.S. and R.O. Vernon. 1964. Summary of the Geology of Florida and Guidebook to the

Classic Exposures. Tallahassee, FL: Florida Geological Survey. Special Publication No. 5Qian, S.S. 1997a. Estimating the area affected by phosphorus runoff in an Everglades wetland: a

comparison of universal kriging and Bayesian kriging (with discussion). Environ. Ecol. Stat. 4:1–29

Page 22: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

664 Bibliography

Qian, S.S. 1997b. An illustration of model structure identification. J. Am. Water Resour. Assoc. 33:811–824

Qian, S.S. and C.W. Anderson. 1999. Exploring factors controlling the variability of pesticide concentrations in the Willamatte River basin using tree-based models. Environ. Sci. Technol. 33:3332–3340

Qian, S.S. and K.H. Reckhow. 1998. Modeling phosphorus trapping in wetlands using nonpara-metric Bayesian regression. Water Resour. Res. 34:1745–1754

Qian, S.S. and C.J. Richardson. 1997a. Testing the feasibility of using first order kinetics for modeling phosphorus in an Everglades wetland (WCA-2A): a dynamic linear modeling approach. In Effects of Phosphorus and Hydroperiod Alterations on Ecosystem Structure and Function in the Everglades, ed. C.J. Richardson, Chapter 20. Durham, NC: Nicholas School of the Environment, Duke University

Qian, S.S. and C.J. Richardson. 1997b. Estimating the long-term phosphorus accretion rate in the Everglades: a Bayesian approach with risk assessment. Water Resour. Res. 33:1681–1688

Qian, S.S., R.S. King, and C.J. Richardson. 2003. Two statistical methods for the detection of environmental thresholds. Ecol. Model. 166:87–97

Qian, S.S., Y. Pan, and R.S. King. 2004. Soil total phosphorus threshold in the Everglades: a Bayesian changepoint analysis for multinomial response data. Ecol. Indicators 4:29–37

Qualls, R.G. 1984. The role of leaf litter nitrogen immobilization in the nitrogen budget of a swamp stream. J. Environ. Qual. 13:640–644

Qualls, R.G. and B.L. Haines. 1991. Geochemistry of dissolved organic nutrients in water percolating through a forest ecosystem. Soil Sci. Soc. Am. J. 52:1112–1123

Qualls, R.G. and C.J. Richardson. 1992. Gradient study – water chemistry along the gradient: comparison of 1990 and 1991 periods. In Effects of Nutrient Loadings and Hydroperiod Alterations on Control of Cattail Expansion, Community Structure and Nutrient Retention in the Water Conservation Areas of South Florida, ed. C.J. Richardson, pp. 196–285. Annual Report. Durham, NC: School of the Environment, Duke University Wetland Center publication 92-11

Qualls, R.G. and C.J. Richardson. 1995. Forms of soil phosphorus along a nutrient enrichment gradient in the northern Everglades. Soil Sci. 160:183–198

Qualls, R.G. and C.J. Richardson. 2000. Phosphorus enrichment affects litter decomposition, immobilization, and soil microbial phosphorus in wetland mesocosms. Soil Sci. Soc. Am. J. 64:799–808

Qualls, R.G. and C.J. Richardson. 2003. Factors controlling concentration, export, and decompo-sition of dissolved organic nutrients in the Everglades of Florida. Biogeochemistry 62(2):197–229

Qualls, R.G., M.H. Dorfman, and J.D. Johnson. 1989. Evaluation of the efficiency of ultraviolet disinfection systems. Water Res. 23:317–325

Qualls, R.G., C.J. Richardson, R. Johnson, and J. Zahina. 1994. Dosing study – response of Everglades slough communities to increased concentrations of PO

4: operation of experimental

field mesocosms. In Annual Report: Effects of Nutrient Loadings and Hydroperiod Alterations on Control of Cattail Expansion, Community Structure and Nutrient Retention in the Water Conservation Areas of South Florida, eds. C.J. Richardson, B.C. Craft, R.G. Qualls, R.J. Stevenson, and P. Vaithiyanathan. Chapter 3. Durham, NC: School of the Environment, Duke University

Qualls, R.G., C.J. Richardson, and L.J. Sherwood. 2001. Soil reduction-oxidation potential along a nutrient enrichment gradient in the Everglades. Wetlands 21:403–411

Rader, R.B. and C.J. Richardson. 1992. The effects of nutrient enrichment on algae and macroin-vertebrates in the Everglades: a review. Wetlands 12:121–135

Rader, R.B. and C.J. Richardson. 1994. Response of macroinvertebrates and small fish to nutrient enrichment in the Everglades. Wetlands 14:134–146

Raftery, A.E. and V.E. Akman. 1986. Bayesian analysis of a poison process with a change-point. Biometrika 73:85–89

Page 23: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

Bibliography 665

Rahmstorf, S.A., Cazenave, J.A. Church, J.E. Hansen, R.F. Keeling, D.E. Parker, and R.C.J. Somerville. 2007. Recent climate observations compared to projections. Science 316:709

Raschke, R.L. 1993. Diatom (Bacillariophyta) community response to phosphorus in the Everglades National Park, USA. Phycologia 32:48–58

Reckhow, K.H. and S.S. Qian. 1994. Modeling phosphorus trapping in wetlands using generalized additive models. Water Resour. Res. 30:3105–3114

Reddy, K.R. and W.H. Patrick, Jr. 1984. Nitrogen transformations and loss in flooded soils and sediments. CRC Crit. Rev. Environ. Contr. 13:273–309

Reddy, K.R. and P.S.C. Rao. 1983. Nitrogen and phosphorus fluxes from a flooded organic soil. Soil Sci. 136:300–307

Reddy, K.R., W.F. DeBusk, Y. Wang, R. DeLaune, and M. Koch. 1991. Physico-chemical properties of soils in the Water Conservation Area 2 of the Everglades. West Palm Beach, FL: Final report submitted to South Florida Water Management District

Reddy, K.R., R.D. DeLaune, W.F. DeBusk, and M.S. Koch. 1993. Long-term nutrient accumulation rates in the Everglades. Soil Sci. Soc. Am. J. 57:1147–1155

Reddy, K.R., W.F. DeBusk, Y. Wang, and S. Newman. 1994a. Physico-chemical properties of soils in the Water Conservation Area 1 of the Everglades. West Palm Beach, FL: Final report submitted to South Florida Water Management District

Reddy, K.R., W.F. DeBusk, Y. Wang, and S. Newman. 1994b. Physico-chemical properties of soils in the Water Conservation Area 3 of the Everglades. West Palm Beach, FL: Final report submitted to South Florida Water Management District

Reddy, K.R., Y. Wang, W.F. DeBusk, M.M. Fisher, and S. Newman. 1998. Forms of soil phosphorus in selected hydrologic units of the Florida Everglades. Soil Sci. Soc. Am. J. 62:1134–1147

Redfield, A.C. 1958. The biological control of chemical factors in the environment. Am. Sci. 46:205–21Redfield, G.W. and N.H. Urban, eds. 1997. Proceedings of the Conference on Atmospheric

Deposition into South Florida. Measuring Net Atmospheric Inputs of Nutrients. West Palm Beach, FL: South Florida Water Management District

Reice, S.R. 1994. Nonequilibrium determinants of biological community structure. Am. Sci. 82:424–435

Rejmankova, E. 2001. Effect of experimental phosphorus enrichment on oligotrophic tropical marshes in Belize, Central America. Plant Soil 236:22–53

Reyes, E. and M. Merino. 1991. Diel dissolved oxygen dynamics and eutrophication in a shallow, well-mixed Tropical lagoon (Cancun, Mexico). Estuaries 14:372–381

Reynolds, J.B. 1996. Electrofishing. In Fisheries Techniques, 2nd edition, eds. B.R. Murphy and D.W. Willis, pp. 221–251. Bethesda, MD: American Fisheries Society

Reynoldson, T.B., R.C. Bailey, K.E. Day, and R.H. Norris. 1995. Biological guidelines for fresh-water sediment based on BEnthic Assessment of SedimenT (the BEAST) using a multivariate approach for predicting biological state. Aust. J. Ecol. 20:198–219

Reynoldson, T.B., R.H. Norris, V.H. Resh, K.E. Day, and D.M. Rosenberg. 1997. The reference condition: a comparison of multimetric and multivariate approaches to assess water-quality impairment using benthic macroinvertebrates. J. N. Am. Benthol. Soc. 16:833–852

Richardson, C.J. 1985. Mechanisms controlling phosphorus retention capacity in freshwater wetlands. Science 228:1424–1427

Richardson, C.J. 1991. Biogeochemical cycles: regional. In Wetlands and Shallow Continental Water Bodies, ed. B.C. Patten, pp. 259–279. The Hague, The Netherlands: SPB Academic

Richardson, C.J. 1995. Wetlands Ecology. In: Encyclopedia of Environmental Biology, ed. W.A. Nierenberg, Vol. 3, pp. 535–550. San Diego, CA: Academic

Richardson, C.J., ed. 1997. Effects of Phosphorus and Hydroperiod Alterations on Ecosystem Structure and Function in the Everglades. Duke Wetland Center Publication 97-05. Durham, NC: Nicholas School of the Environment, Duke University

Richardson, C.J. 1999. The role of wetlands in storage, release, and cycling of phosphorus on the landscape: a 25-year retrospective. In Phosphorus Biogeochemistry in Sub-Tropical Ecosystems, eds. K.R. Reddy, G.A. O’Connor, and C.L. Schelske, pp. 47–68. Boca Raton, FL: CRC/Lewis

Page 24: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

666 Bibliography

Richardson, C.J. 2000. Freshwater Wetlands. In North American Terrestrial Vegetation, eds. M.G. Barbour and W.D. Billings, pp. 448–499. New York: Cambridge University Press

Richardson, C.J. and Craft, C.B. 1990. Phase One: A Preliminary Assessment of Nitrogen and Phosphorus Accumulation and Surface Water Quality in Water Conservation Areas 2A and 3A of South Florida. Duke Wetland Center Publication 90-01. Durham, NC: School of Forestry and Environmental Studies, Duke University

Richardson, C.J. and C.B. Craft. 1993. Effective phosphorus retention in wetlands: fact or fiction. In Constructed Wetlands for Water Quality Improvement, ed. G.A. Moshiri, pp. 271–282. Boca Raton, FL: CRC/Lewis

Richardson, C.J. and N.A. Hussain. 2006. Restoring the Garden of Eden: an ecological assessment of the Marshes of Iraq. BioScience 56:477–489

Richardson, C.J. and J.K. Huvane. 2001. Everglades Restoration: A Primer. Final Report to the EAA Environmental Protection District, March 2001. Durham, NC: Nicholas School of the Environment and Earth Sciences, Duke University

Richardson, C.J. and P.E. Marshall. 1986. Processes controlling movement, storage and export of phosphorus in a fen peatland. Ecol. Monogr. 56:279–302

Richardson, C.J. and S.S. Qian. 1999. Long-term phosphorus assimilative capacity in freshwater wetlands: a new paradigm for sustaining ecosystem structure and function. Environ. Sci. Technol. 33:1545–1551

Richardson, C.J. and B.R. Schwegler. 1986. Algal bioassay and gross productivity experiments using sewage effluent in a Michigan wetland. Water Res. Bull. 22:111–120

Richardson, C.J. and P. Vaithiyanathan. 1995. Phosphorus sorption characteristics of Everglades soils along a eutrophication gradient. Soil Sci. Soc. Am. J. 59:1782–1788

Richardson, C.J. and P. Vaithiyanathan. 1997. A preliminary analysis of three years of atmospheric nutrient deposition in WCA-2A. In Proceedings of the Conference on Atmospheric Deposition into South Florida. Measuring Net Atmospheric Inputs of Nutrients, eds. G.W. Redfield and N.H. Urban, pp. 41–42. West Palm Beach, FL: South Florida Water Management District

Richardson, K., J. Beardall, and J.A. Raven. 1983. Adaptation of unicellular algae to irradiance: an analysis of strategies. New Phytol. 93:157–191

Richardson, C.J., C.B. Craft, R.G. Qualls, R.B. Rader, and R.R. Johnson. 1991. Annual Report: Effects of Nutrient Loadings and Hydroperiod Alterations on Control of Cattail Expansion, Community Structure and Nutrient Retention in the Water Conservation Areas of South Florida. Duke University Wetland Center publication 91-08. Durham, NC: School of the Environment, Duke University

Richardson, C.J., C.B. Craft, R.R. Johnson, R.G. Qualls, R.B. Rader, L. Sutter, and J. Vymazal. 1992. Effects of Nutrient Loadings and Hydroperiod Alterations on Control of Cattail Expansion, Community Structure and Nutrient Retention in the Water Conservation Areas of South Florida. Wetland Center Publication 92-11. Durham, NC: Duke University

Richardson, C.J., C.B. Craft, R.R. Johnson, R.G. Qualls, R.B. Rader, L. Sutter, and J. Vymazal. 1993. Annual Report: Effects of Nutrient Loadings and Hydroperiod Alterations on Control of Cattail Expansion, Community Structure and Nutrient Retention in the Water Conservation Areas of South Florida. Duke Wetland Center Publication 92-11. Durham, NC: School of the Environment, Duke University

Richardson, C.J., C.B. Craft, R.G. Qualls, R.J. Stevenson, and P. Vaithiyanathan. 1994. Annual Report: Effects of Nutrient Loadings and Hydroperiod Alterations on Control of Cattail Expansion, Community Structure and Nutrient Retention in the Water Conservation Areas of South Florida. Duke Wetland Center Publication 94–08. Durham, NC: School of the Environment, Duke University

Richardson, C.J., C.B. Craft, R.G. Qualls, R.J. Stevenson, P. Vaithiyanathan, M. Bush, and J. Zahina. 1995. Annual Report: Effects of Phosphorus and Hydroperiod Alterations on Ecosystem Structure and Function in the Everglades. Duke Wetland Center Publication 95–05. Durham, NC: Nicholas School of the Environment, Duke University

Richardson, C.J., S.S. Qian, C.B. Craft, and R.G. Qualls. 1997a. Predictive models for phosphorus retention in wetlands. Wetlands Ecol. Manage. 4:159–175

Page 25: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

Bibliography 667

Richardson, C.J., P. Vaithiyanathan, E.A. Romanowicz, and C.B. Craft. 1997b. Macrophyte community responses in the Everglades with an emphasis on cattail (Typha domingensis) and sawgrass (Cladium jamaicense) interactions along a gradient of long-term nutrient additions, altered hydroperiod and fire. In Effects of Phosphorus and Hydroperiod Alterations on Ecosystem Structure and Function in the Everglades, ed. C.J. Richardson, Chapter 14. Durham, NC: Nicholas School of the Environment, Duke University

Richardson, C.J., P. Vaithiyanathan, R.G. Qualls, and C. Stow. 1997c. Dosing study chemistry analysis: four-year response (1992–1996) of Everglades sloughs to increased concentrations of PO

4: operation of experimental field mesocosms and water quality analysis. In Effects of

Phosphorus and Hydroperiod Alterations on Ecosystem Structure and Function in the Everglades, ed. C.J. Richardson, Chapter 15. Durham, NC: Nicholas School of the Environment, Duke University

Richardson, C.J., R.G. Qualls, and P. Vaithiyanathan. 1997d. Dosing study – changes in macrophyte community composition and calcareous mat cover over four years of P additions to Everglades mesocosms. In Effects of Phosphorus and Hydroperiod Alterations on Ecosystem Structure and Function in the Everglades, ed. C.J. Richardson, Chapter 17. Durham, NC: Nicholas School of the Environment, Duke University

Richardson, C.J., G.M. Ferrell, and P. Vaithiyanathan. 1999. Nutrient effects on stand structure, resorp-tion efficiency, and secondary compounds in Everglades sawgrass. Ecology 80:2182–2192

Richardson, C.J., P. Vaithiyanathan, R.J. Stevenson, R.S. King, C.A. Stow, R.G. Qualls, and S.S. Qian. 2000a. The Ecological Basis for a Phosphorus (P) Threshold in the Everglades: Directions for Sustaining Ecosystem Structure and Function. Duke Wetland Center Publication 2000-02. Durham, NC: Nicholas School of the Environment, Duke University

Richardson, C.J., P. Vaithiyanathan, J. Vymazal, J. Komárková, K. Kubecková, J. Kaštovský, and P. Znachor. 2000b. Everglades Monitoring, Recovery and Restoration. Phase II Year-End Report. Durham, NC: Duke University Wetland Center

Richardson, C.J., R.S. King, S.S. Qian, P. Vaithiyanathan, C.A. Stow, and R.G. Qualls. 2003. A Scientific Basis for Determining Phosphorus Imbalance Effects in the Everglades. Final Report to Environmental Regulation Commission, State of Florida. Duke University Wetland Center Publication 2003-3. Durham, NC: Nicholas School of the Environment and Earth Sciences, Duke University

Richardson, C.J., P. Reiss, N.A. Hussain, A.J. Alwash, and D.J. Pool. 2005. The restoration potential of the Mesopotamian marshes of Iraq. Science 307:1307–1311

Richardson, C.J., R.S. King, S.S. Qian, P. Vaithiyanathan, and R.G. Qualls. 2007. Estimating eco-logical thresholds for phosphorus in the Everglades. Environ. Sci. Technol. 41(28):8084–8091

Ritter, A. and R. Muñoz-Carpena. 2006. Dynamic factor modeling of ground and surface water levels in an agricultural area adjacent to Everglades National Park. J. Hydrol. 317:340–354

Rivard, P.G. and P.M. Woodard. 1989. Light, ash, and pH effects on the germination and seedling growth of Typha latifolia (cattail). Can. J. Bot. 67:2783–2787

Rivero, R.G., S. Grunwald, T.Z. Osborne, K.R. Reddy, and S. Newman. 2007. Characterization of the spatial distribution of soil properties in Water Conservation Area 2A, Everglades, Florida. Soil Sci. 172(2):149–166

Robertson, W.B. 1953. A Survey of the Effects of Fire in Everglades National Park. Washington, DC: US Department of Interior, National Park Service

Robertson, W.B., Jr. and P.C. Frederick. 1994. The faunal chapters: contexts, synthesis, and departures. In Everglades: The Ecosystem and Its Restoration, eds. S.M. Davis and J.C. Ogden, pp. 709–737. Delray Beach, FL: St. Lucie

Romanowicz, E.A. and C.J. Richardson. 1997. Hydrologic investigation of Water Conservation Area 2A. In Effects of Phosphorus and Hydroperiod Alterations on Ecosystem Structure and Function in the Everglades, ed. C.J. Richardson, pp. 12.1–12.29. Durham, NC: Nicholas School of the Environment, Duke University

Romanowicz, E.A., C.J. Richardson, and P. Vaithiyanathan. 1996. Evidence for differential ground-water flow inputs and multiple surface-water flow domains in the northern Everglades (Water Conservation Area 2-A), Florida. EOS, Trans. Am. Geophys. Union Suppl. 77:140

Page 26: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

668 Bibliography

Rood, B.E., J.F. Gottgens, J.J. Delfino, C.D. Earle, and T.L. Crisman. 1995. Mercury accumula-tion trends in Florida Everglades and Savannas Marsh flooded soils. Water Air Soil Pollut. 80:981–990

Rosenberg, D.M. and Resh, V.H. (eds.). 1993. Freshwater Biomonitoring and Benthic Macroinvertebrates. New York: Chapman and Hall

Rosendahl, P.C. and P.W. Rose. 1981. Freshwater flow rates and distribution within the Everglades marsh. In Proceedings of the National Symposium on Freshwater Inflow to Estuaries, eds. R.D. Cross and D.L. Williams. San Antonio, TX, 9–11 September 1980. Vol. II. Slidell, LA: US Fish and Wildlife Service

Rosenzweig, M.L. 1971. Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171:385–387

Rosenzweig, M.L. and Z. Abramsky. 1993. How are diversity and productivity related? In Species Diversity in Ecological Communities: Historical and Geographical Perspectives, eds. R.E. Ricklefs and D. Schluter, pp. 52–65. Chicago, IL: University of Chicago Press

Russell-Hunter, W.D. 1970. Aquatic Productivity: An Introduction to Some Basic Aspects of Biological Oceanography and Limnology. London, UK: MacMillan

Rutchey, K. and L. Vilcheck. 1994. Development of an Everglades vegetation map using a SPOT image and the global positioning system. Photogramm. Eng. Remote Sens. 60:767–775

Rutchey, K. and L. Vilcheck. 1999. Air photo interpretation and satellite imagery analysis techniques for mapping cattail coverage in a northern Everglades impoundment. Photogramm. Eng. Remote Sens. 65(2):185–191

Rydin, H. and J.K. Jeglum. 2006. The Biology of Peatlands. New York: Oxford University PressSale, P.J.M. and R.G. Wetzel. 1983. Growth and metabolism of Typha species in relation to cutting

treatments. Aquat. Bot. 15:321–334Sample, B.E., R.J. Cooper, R.D. Greer and R.C. Whitmore. 1993. Estimation of insect biomass by

length and width. Am. Midl. Nat. 129:234–240Sanchez, S.A. 1990. Soil-Testing and Fertilization Recommendations for Crop Production on

Organic Soils in Florida. Gainesville, FL: University of Florida, Agricultural Experiment Station, Institute of Food and Agricultural Sciences. Bulletin 876

Sanderson, M.W. 1982. Aquatic and semiaquatic heteroptera. In Aquatic Insects and Oligochaetes of North and South Carolina, eds. A.R. Brigham, W.U. Brigham, and A. Gnilka, pp. 6.1–6.94. Mahomet, IL: Midwest Aquatic Enterprises

Sanderson, R.A., S.P. Rushton, A.J. Cherrill, and P. Byrne. 1995. Soil, vegetation and space: an analysis of their effects on the invertebrate communities of a moorland in north–east England. J. App. Ecol. 32:506–518

Sand-Jensen, K. and J. Borum. 1991. Interactions among phytoplankton, periphyton and macrophytes in temperate freshwaters and estuaries. Aquat. Bot. 41:137–175

Sand-Jensen, K., N.P. Revsbach, and B.B. Jørgensen. 1985. Microprofiles of oxygen in epiphyte communities on submerged macrophytes. Mar. Biol. 89:55–66

Sanudo-Wilhelmy, S. and G.A. Gill. 1999. Impact of the clean air act on the levels of toxic metals in urban estuaries: the Hudson River estuary revisited. Environ. Sci. Technol. 33:3477–3491

SAS. 1988. Statistical Analysis System. SAS User’s Guide. Release 6.03. Cary, NC: SAS Institute

Scheffer, M., S.H. Hosper, M.L. Meijer, B. Moss, and E. Jeppesen. 1993. Alternative equilibria in shallow lakes. Trends Ecol. Evol. 8:275–279

Schelske, C.L., A. Peplow, M. Brenner, and C.N. Spencer. 1994. Low-background gamma counting: applications for 210Pb dating of sediments. J. Paleolimnol. 10:115–128

Schlesinger, W.H. 1977. Carbon balance in terrestrial detritus. Annu. Rev. Ecol. Syst. 8:51–81Schlesinger, W.H. 1978. Community structure, dynamics and nutrient cycling in the Okefenokee

cypress swamp forest. Ecol. Monogr. 48:43–65Schlesinger, W.H. 1997. Biogeochemistry: An Analysis of Global Change. 2nd edition. New York:

AcademicSchmidt, W. 1997. Geomorphology and Physiography of Florida, In The Geology of Florida, eds.

A.F. Randazzo and D.S. Jones, pp. 1–12. Tallahassee, FL: University of Florida Press

Page 27: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

Bibliography 669

Schoener, T.W. 1982. The controversy over interspecific competition. Am. Sci. 70:586–595Schomer, N.S. and R.D. Drew. 1982. An Ecological Characterization of the Lower Everglades,

Florida Bay, and the Florida Keys. FWS/OBS-82/58.1. Washington, DC: US Fish and Wildlife Service, Office of Biological Services

Schroeder, L.D., D.L. Sjoquist, and P.E. Stephan. 1986. Understanding Regression Analysis: An Introductory Guide. Newberry Park, CA: Sage University

Schueneman, T.J. and Sanchez, C.A. 1994. Vegetable production in the EAA. In Everglades Agricultural Area (EAA), eds. A.B. Bottcher and F.T. Izuno, pp. 238–277. Gainesville, FL: University Press of Florida

Scott, T.M. 1997. Miocene to Holocene history of Florida. In The Geology of Florida, eds. A.F. Randazzo and D.S. Jones, pp. 57–68. Tallahassee, FL: University of Florida Press

Scott, J.T., R.D. Doyle, and C.T. Filstrup. 2005. Periphyton nutrient limitation and nitrogen fixation potential along a wetland nutrient depletion gradient. Wetlands 25:439–448

SCS (Soil Conservation Service). 1978. Soil Survey of Palm Beach County Area of Florida. Washington, DC: US Government Printing Office

Secretary of the Army. 1949. Comprehensive Report on Central and Southern Florida for Flood Control and Other Purposes. Washington, DC: US Government Printing Office. House Document 643

SFWMD (South Florida Water Management District). 1990. Surface Water Improvement and Management Plan for the Everglades. West Palm Beach, FL: South Florida Water Management District

SFWMD (South Florida Water Management District). 1992. Surface Water Improvement and Management Plan for the Everglades. Supporting Information Document. West Palm Beach, FL: South Florida Water Management District

SFWMD (South Florida Water Management District). 1994. Effects of Phosphorus and Hydrology on the Everglades. Unpublished handout from staff presentation to ERC. West Palm Beach, FL: South Florida Water Management District

SFWMD (South Florida Water Management District). 1995. Users Guide to REMO, Remote Access to the South Florida Water Management District’s Water Quality and Hydrometeorological Databases. West Palm Beach, FL: South Florida Water Management District

SFWMD (South Florida Water Management District). 1998. Natural Systems Model. Version 4.5 Documentation. West Palm Beach, FL: South Florida Water Management District, Hydrologic Systems Modeling Division

SFWMD (South Florida Water Management District). 1999. 1999 Everglades Interim Report. West Palm Beach, FL: South Florida Water Management District

SFWMD (South Florida Water Management District). 2000. 2000 Everglades Consolidated Report. West Palm Beach, FL: South Florida Water Management District

SFWMD (South Florida Water Management District). 2001. 2001 Everglades Consolidated Report. West Palm Beach, FL: South Florida Water Management District

SFWMD (South Florida Water Management District). 2002. 2002 Everglades Consolidated Report. West Palm Beach, FL: South Florida Water Management District

SFWMD (South Florida Water Management District) 2003. 2003 Everglades Consolidated Report. West Palm Beach, FL: South Florida Water Management District

SFWMD (South Florida Water Management District). 2004. 2004 Everglades Consolidated Report. West Palm Beach, FL: South Florida Water Management District

SFWMD (South Florida Water Management District). 2005. 2005 South Florida Environmental Report. West Palm Beach, FL: South Florida Water Management District

SFWMD (South Florida Water Management District). 2006. 2006 South Florida Environmental Report. West Palm Beach, FL: South Florida Water Management District

SFWMD (South Florida Water Management District), Lake Okeechobee WSE Schedule, http://www.sfwmd.gov/org/pld/hsm/reg_app/lok_reg/index.html (accessed 21 March 2007)

Shannon, C.E. and W. Weaver. 1949. The Mathematical Theory of Communication. Urbana, IL: University of Illinois Press

Page 28: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

670 Bibliography

Sharitz, R.R. and D.P. Batzer. 1999. An introduction to freshwater wetlands in North America and their invertebrates. In Invertebrates in Freshwater Wetlands of North America: Ecology and Management, eds. D.P. Batzer, R.B. Rader, and S.A. Wissinger, pp. 1–22. New York: Wiley

Sharma, M. and R. Agarwal. 2003. Maximum likelihood method for parameter estimation in non-linear models with below detection data. Environ. Ecol. Stat. 10:445–454

Shelford, V.E. 1913. Animal Communities in Temperate America. Chicago, IL: University of Chicago Press

Shuman, M.S. 1990. Carboxyl acidity of aquatic organic matter: possible systematic errors introduced by XAD extraction. In Organic Acids in Aquatic Ecosystems: Report to the Dahlem Workshop on Organic Acids in Aquatic Ecosystems, eds. E.M. Perdue and E.T. Gjessing, pp. 97–108. New York: Wiley

Sifton, H.B. 1959. The germination of light-sensitive seeds of Typha latifolia L. Can. J. Bot. 37:719–739

Silveira, J E. 1996. Landscape dynamics in the Everglades: vegetation pattern and disturbance in Water Conservation Area 1. Ph.D. Dissertation, University of Florida

Sjors, H. 1948. Mire vegetation in Bergslagen Sweden. Acta Phytogeographica Suecica 21:1–299

Sklar, F.H. and A.G. van der Valk (eds.). 2002. Tree Islands of the Everglades. Dordrecht, The Netherlands: Kluwer

Sklar, F.H., C. McVoy, R. Van Zee, D.E. Gawlik, K. Tarboton, D. Rudnick, and S. Miao. 2002. The effects of altered hydrology on the ecology of the Everglades. In The Everglades, Florida Bay, and Coral Reefs of the Florida Keys: An Ecosystem Sourcebook, eds. J.W. Porter and K.G. Porter, pp. 40–73. Boca Raton, FL: CRC

Slate, J.E. 1998. Inference of present and historical environmental conditions in the Everglades with diatoms and other siliceous microfossils. Ph.D. Dissertation, University of Louisville

Slate, J.E. and R.J. Stevenson. 2000. Recent and abrupt environmental change in the Florida Everglades indicated from siliceous microfossils. Wetlands 20:346–356

Small, J.K. 1929. From Eden to Sahara: Florida’s Tragedy. Lancaster, PA: The Science PressSmit, H., E. dudok van Heel, and S. Wiersma. 1993. Biovolume as a tool in biomass determination

of Oligochaeta and Chironomidae. Freshwater Biol. 29:37–46Smith, S.M. and S. Newman. 2001. Growth of southern cattail (Typha domingensis Pers.)

seedlings in response to fire-related soil transformations in the northern Florida Everglades. Wetlands 21(3):363–369

Smith, M.J., W.R. Kay, D.H.D. Edward, P.J. Papas, K.S.J. Richardson, M. Simpson, D.J. Cale, P.H.J. Horwitz, J.A. Davis, F.H. Yung, R.H. Norris, and S.A. Halse. 1999. AusRivAS: using macroinvertebrates to assess ecological condition of rivers in Western Australia. Freshwater Biol. 41:269–282

Smol, J.P. 1992. Paleolimnology: an important tool for effective ecosystem management. J. Aquat. Ecosyst. Health 1:49–58

Snyder, G.H. and J.M. Davidson. 1994. Everglades agriculture: past, present, and future. In Everglades: The Ecosystem and Its Restoration, eds. S.M. Davis and J.C. Ogden, pp. 85–116. Delray Beach, FL: St. Lucie

Sokal, R.R. and F.J. Rohlf. 1995. Biometry, 3rd edition. New York: W.H. FreemanSommers, L.E. and D.W. Nelson. 1972. Determination of total phosphorus in soils: a rapid perchloric

acid digestion procedure. Soil Sci. Soc. Am. Proc. 36(6):902–904Stanford, G. and S.J. Smith. 1972. Nitrogen mineralization potentials of soils. Soil Sci. Soc. Am.

Proc. 36:465–472Steel, R.G.D. and J.H. Torrie. 1980. Principles and Procedures of Statistics: A Biometrical

Approach. New York: McGraw-HillSteinman, A.D., K.E. Havens, H.J. Carrick, and R. Van Zee. 2002. The past, present, and future

hydrology and ecology of Lake Okeechobee and its watersheds. In The Everglades, Florida Bay, and Coral Reefs of the Florida Keys: An Ecosystem Sourcebook, eds. J.W. Porter and K.G. Porter, pp. 19–37. Boca Raton, FL: CRC

Page 29: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

Bibliography 671

Stephens, D.A. 1994. Bayesian retrospective multiple-changepoint identification. Appl. Stat. 43:159–178

Stephens, J.C. and L. Johnson. 1951. Subsidence of organic soils in the upper Everglades region of Florida. Soil Crop Sci. Soc. Fla. Proc. 11:191–237

Sterner, R.W. and J.J. Elser. 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton, NJ: Princeton University Press

Stevens, W.K. 1999. Putting Things Right in the Everglades. The New York Times, April 13, p. D1Stevenson, R.J. and L.R. Lowe. 1986. Sampling and interpretation of algal patterns for water

quality assessment. In Rational for Sampling and Interpretation of Ecological Data in the Assessment of Freshwater Ecosystems, ed. B.G. Isom, pp. 118–149. Philadelphia, PA: American Society for Testing and Materials

Stevenson, R.J. and C.J. Richardson. 1994. Dosing study: response of Everglades periphyton com-munities to increased concentrations of PO

4 in experimental mesocosms. In Annual Report:

Effects of Nutrient Loadings and Hydroperiod Alterations on Control of Cattail Expansions, Community Structure and Nutrient Retention in the Water Conservation Areas of South Florida, eds. C.J. Richardson, C.B. Craft, R.G. Qualls, R.J. Stevenson, and P. Vaithiyanathan, pp. 121–190. Durham, NC: School of the Environment, Duke University

Stevenson, R.J. and C.J. Richardson. 1995. Response of Everglades algal communities to increased concentrations of PO

4 in experimental mesocosms. In Annual Report: Effects of

Phosphorus and Hydroperiod Alterations on Ecosystem Structure and Function in the Everglades, eds. C.J. Richardson, C.B. Craft, R.G. Qualls, R.J. Stevenson, P. Vaithiyanathan, M. Bush, and J. Zahina, pp. 107–184. Durham, NC: Nicholas School of the Environment, Duke University

Stevenson, A.C., S. Juggins, H.J.B. Birks, D.S. Anderson, N.J. Anderson, R.W. Battarbee, F. Berge, R.B. Davis, R.J. Flower, E.Y. Haworth, V.J. Jones, J.C. Kingston, A.M. Kreiser, J.M. Line, M.A.R. Munro, and I. Renberg. 1991. The Surface Waters Acidification Project Palaeolimnology Programme: Modern Diatom/Lake-Water Chemistry Data-Set. London: ENSIS Publishing

Steward, K.K. and W.H. Ornes. 1975a. Assessing a marsh environment for wastewater renovation. J. Water Pollut. Contr. Fed. 47:1880–1891

Steward, K.K. and W.H. Ornes. 1975b. The autecology of sawgrass in the Florida Everglades. Ecology 56:162–171

Steward, K.K. and W.H. Ornes. 1983. Mineral nutrition of sawgrass (Cladium jamaicense Crantz) in relation to nutrient supply. Aquat. Bot. 16:349–359

Stewart, H., S.L. Miao, M. Colbert, and C.E. Carraher, Jr. 1997. Seed germination of two cattail (Typha) species as a function of Everglades nutrient levels. Wetlands 17:116–122

Stober, Q.J., R.D. Jones, and D.J. Scheidt. 1995. Ultra-trace level mercury in the Everglades eco-system: a multimedia canal pilot study. Water Air Soil Pollut. 80:991–1001

Stockmarr, J. 1971. Tablets with spores used in absolute pollen analysis. Pollen Spores 8:615–621Stoermer, E.F., N.A. Andresen, and C.L. Schelske. 1992. Diatom succession in the recent sedi-

ments of Lake Okeechobee, Florida, USA. Diatom Res. 7:367–386Stone, P.A. 2000. Prehistoric hydrologic shifts in the Everglades and implications to restoration.

Poster presentation at the Greater Everglades Ecosystem Restoration (G.E.E.R.) Science Conference (December 11–15), Naples, FL

Strober, M.C., R.D. Jones, and D.J. Scheidt. 1995. Ultra-trace level mercury in the Everglades ecosystem: a multimedia canal pilot study. Water Air Soil Pollut. 80:991–1001

Suberkropp, K. and E. Chauvet. 1995. Regulation of leaf breakdown by fungi in streams: influences of water chemistry. Ecology 76:1433–1445

Suter, G.W. 1993. Ecological Risk Assessment. Chelsea, MI: LewisSuter, G.W. 1996. Abuse of hypothesis testing statistics in ecological risk assessment. Hum. Ecol.

Risk Assess. 2:331–347Sutter, L.A. 1992. Effects of phosphorus concentrations and water depth on sawgrass (Cladium

jamaicense Crantz) growth and nutrient uptake. M.Sc. Thesis, Duke University

Page 30: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

672 Bibliography

Swift, D.R. 1981. Preliminary Investigations of Periphyton and Water Quality in the Everglades Water Conservation Areas. Technical Publication 81–05. West Palm Beach, FL: South Florida Water Management District

Swift, D.R. 1984. Periphyton and water quality relationships in the Everglades Water Conservation Areas. In Environments of South Florida Present and Past II, ed. P.J. Gleason, pp. 97–117. Coral Gables, FL: Miami Geological Society

Swift, D.R. 1989. Water quality section. In Vegetation Water Quality. Estuarine Salinity and Productivity in C-111 Basin. West Palm Beach, FL: South Florida Water Management District

Swift, D.R. and R.B. Nicholas. 1987. Periphyton and Water Quality Relationships in the Everglades Water Conservation Areas: 1978–1982. Technical Publication 87–02. West Palm Beach, FL: South Florida Water Management District.

Swift, M.J., O.W. Heal, and J.M. Anderson. 1979. Decomposition in Terrestrial Ecosystems. Studies in Ecology, Vol. 5. Berkeley, CA: University of California Press

Tate, R.L., III. 1980. Microbial oxidation of histosols. Adv. Microb. Ecol. 4:169–210Technicon Industrial Systems. 1988. Phosphorus, Total. TRAACS 800 Method, Bran & Luebbe

Industrial Method No. 787-86TTer Braak, C.J.F. 1990. CANOCO – Version 3.10. Unpublished computer program, Agricultural

Mathematics Group, 6700 AC WageningenTer Braak, C.J.F. 1995. Ordination. In Data Analysis in Community and Landscape Ecology, eds.

R.H.J. Jongman, C.J.F. ter Braak, and O.F.R. Van Tongeren, pp. 91–173. Cambridge, UK: Cambridge University Press

Ter Braak, C.J.F. and P. Šmilauer. 2002. CANOCO Reference Manual and CanDraw for Windows Users Guide: Software for Canonical Ordination (Version 4.5). Ithaca, NY: Microcomputer Power

Terczak, E.F. 1980. Aquatic Macrofauna of the Water Conservation Areas, September 1979–1980. West Palm Beach, FL: South Florida Water Management District

TerraServer USA, http://terraserver.microsoft.com. Last referenced 25 May 2006Terry, R.E. and R.L. Tate, III. 1980. Nitrogen mineralization in Florida histosols. Soil Sci. Soc.

Am. J. 44:747–750Thayer, D., A. Ferriter, M. Bodie, K. Langeland, K. Serbesoff, D. Jones, and B. Doren. 2000.

Exotic plants in the Everglades. P9. 14.1–14.48. In 2000 Everglades Consolidated Report. West Palm Beach, FL: South Florida Water Management District

Thompson, F.G. 1984. The Freshwater Snails of Florida: A Manual for Identification. Gainesville, FL: University of Florida Press

Thurman, E. 1985. Organic Geochemistry of Natural Waters. Dordrecht, The Netherlands: Nijhoff/Junk

Tilman, D. 1982. Resource Competition and Community Structure. Princeton, NJ: Princeton University Press

Tilman, D. 1990. Competition and Plant Communities. Princeton, NJ: Princeton University Press

Tilman, D., J. Knops, D. Wedin, P. Reich, M. Ritchie, and E. Siemann. 1997. The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302

Tobe, J.D., K.C. Burks, R.W. Cantrell, M.A. Garland, M.E. Sweeley, D.W. Hall, et al. 1998. Florida Wetland Plants. An Identification Manual. Tallahassee, FL: Florida Department of Environmental Protection

Toth, L.A. 1987. Effects of Hydrologic Regimes on Lifetime Production and Nutrient Dynamics of Sawgrass. Technical Publication 87-6. West Palm Beach, FL: South Florida Water Management District

Toth, L.A. 1988. Effects of Hydrologic Regimes on Lifetime Production and Nutrient Dynamics of Sawgrass. Technical Publication 88-6. West Palm Beach, FL: South Florida Water Management District

Triska, F.J. and J.R. Sedell. 1976. Decomposition of our species of leaf litter in response to nitrate manipulation. Ecology 57:783–792

Page 31: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

Bibliography 673

Tsukuda, S., M. Sugiyama. Y. Harita, and K. Nishimura. 2006. Atmospheric phosphorus deposi-tion in Ashiu, central Japan – sources apportionment for the estimations of true input to a terrestrial ecosystem. Biogeochemistry 77:117–138

Tufte, E.R. The Visual Display of Quantitative Information. Cheshire, CT: Graphics PressTurner, A.M., J.C. Trexler, C.F. Jordan, S.J. Slack, P. Geddes, J.H. Chick, and W.F. Loftus. 1999a.

Targeting ecosystem features for conservation: Standing crops in the Florida Everglades. Conserv. Biol. 13:898–911

Turner, S.J., J.E. Hewitt, M.R. Wilkinson, D.J. Morrisey, S.F. Thrush, V.J. Cummings, and G. Funnell. 1999b. Seagrass patches and landscapes: the influence of wind-wave dynamics and hierarchical arrangements of spatial structure on macrofaunal seagrass communities. Estuaries 22:1016–1032

Twilley, R.R., W.M. Kemp, K.W. Staver, J.C. Stevenson, and W.R. Boynton. 1985. Nutrient enrichment of estuarine submersed vascular plant communities. 1. Algal growth and effects on production of plants and associated communities. Mar. Ecol. Prog. Ser. 23:179–191

Ulanowicz, R.E. 1995. Utricularia’s secret: the advantage of positive feedback in oligotrophic environments. Ecol. Model. 79:49–57

Urban, D.L. 2000. Using model analysis to design monitoring programs for landscape management and impact assessment. Ecol. Appl. 10:1820–1832

Urban, N.H. and J.W. Koebel. 1992. Colonization of Macroinvertebrates in Sawgrass and Cattail Litter during Two Years of Decomposition in the Florida Everglades. Unpublished report. West Palm Beach, FL: South Florida Water Management District

Urban, D.L., R.V. O’Neill, and H.H. Shugart, Jr. 1987. Landscape ecology: a hierarchical perspec-tive can help scientists understand spatial patterns. BioScience 37:119–127

Urban, N.H., S.M. Davis, and N.G. Aumen. 1993. Fluctuations in sawgrass and cattail density in Everglades Water Conservation Area 2A under varying nutrient, hydrologic and fire regimes. Aquat. Bot. 46:203–223

USACE (US Army Corps of Engineers). 1987. Corps of Engineers Wetlands Delineation Manual. Vicksburg, MS: US Army Engineer Waterways Experiment Station. Technical Report Y-87-1

USACE (US Army Corps of Engineers). 1994. Central and Southern Florida Project Reconnaissance Report, Comprehensive Review Study. Jacksonville, FL: US Army Corps of Engineers

USACE (US Army Corps of Engineers). 1999. Central and Southern Florida Project Comprehensive Review Study: Final Integrated Feasibility Report and Programmatic Environmental Impact Statement. Jacksonville, FL: US Army Corps of Engineers and South Florida Water Management District

USACE (US Army Corps of Engineers), Jacksonville District and South Florida Water Management District. 2006. Central and Southern Florida Project. Final Supplemental Environmental Impact Statement, Interim. Operational Plan (IOP) for Protection of the Cape Sable Seaside. Sparrow (December 2006), Jacksonville FL

USACE (US Army Corps of Engineers), Jacksonville District Website, Everglades Division Modified Water Deliveries, http://www.saj.usace.army.mil/dp/mwdenp-c111/index.htm (accessed 21 March 2007)

US EPA (United States Environmental Protection Agency). 1983. Methods for Chemical Analysis of Water and Wastes. Cincinnati, OH: US EPA

US EPA (United States Environmental Protection Agency). 1989. Risk Assessment Guidance for Superfund. Vol. I. Human Health Evaluation Manual (Part A). Interim Final. Washington, DC: US Environmental Protection Agency, Office of Emergency and Remedial Response. EPA/540/I-89/002

US EPA (United States Environmental Protection Agency). 1997a. Wetlands: biological assessment methods and criteria development workshop. Proceedings, 18–20 September 1996, Boulder, Colorado (Washington, DC): US EPA, Office of Water. EPA 843–3–97–001

US EPA (United States Environmental Protection Agency). 1997b. Field and Laboratory Methods for Macroinvertebrate and Habitat Assessment of Low Gradient, Nontidal Streams. Wheeling, WV: Mid-Atlantic Coastal Streams Workgroup, Environmental Services Division, Region 3

Page 32: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

674 Bibliography

US EPA (United States Environmental Protection Agency). 1998. National Strategy for the Development of Regional Nutrient Criteria. Washington, DC: US EPA Office of Water. Publication 822-R-98-002

Vaithiyanathan, P. and C.J. Richardson. 1994. Dosing study – diel variations in pH, dissolved oxygen, and inorganic nutrients in an Everglades slough: effects of phosphorus additions. In Annual Report: Effects of Nutrient Loadings and Hydroperiod Alterations on Control of Cattail Expansion, Community Structure and Nutrient Retention in the Water Conservation Areas of South Florida, eds. C.J. Richardson, C.B. Craft, R.G. Qualls, R.J. Stevenson, and P. Vaithiyanathan. Chapter 4. Durham, NC: School of the Environment, Duke University

Vaithiyanathan, P. and C.J. Richardson. 1995. Dosing study – diel variations in pH and dissolved oxygen in an Everglades slough: effects of phosphorus additions. In Annual Report: Effects of Phosphorus and Hydroperiod Alterations on Ecosystem Structure and Function in the Everglades, eds. C.J. Richardson, C.B. Craft, R.G. Qualls, R.J. Stevenson, P. Vaithiyanathan, M. Bush, and J. Zahina, pp. 58–69. Durham, NC: Nicholas School of the Environment, Duke University

Vaithiyanathan, P. and C.J. Richardson. 1997a. Nutrient profiles in the Everglades: Examination along the phosphorus gradient. Sci. Total Environ. 205:81–95

Vaithiyanathan, P. and C.J. Richardson. 1997b. Accumulation of copper and zinc along a eutrophi-cation gradient in the Florida Everglades. In Effects of Phosphorus and Hydroperiod Alterations on Ecosystem Structure and Function in the Everglades, ed. C.J. Richardson, Chapter 11. Durham, NC: Nicholas School of the Environment, Duke University

Vaithiyanathan, P. and C.J. Richardson. 1998. Biogeochemical characteristics of the Everglades sloughs. J. Environ. Qual. 27:1439–1450

Vaithiyanathan, P. and C.J. Richardson. 1999. Macrophyte species changes in the Everglades: examination along a eutrophication gradient. J. Environ. Qual. 28:1347–1358

Vaithiyanathan, P., C.J. Richardson, R.G. Kavanaugh, C.B. Craft, and T. Barkay. 1996. The rela-tionships of eutrophication to the distribution of mercury and to the potential for methylmercury production in the peat soils of the Everglades. Environ. Sci. Technol. 30:2591–2597

Vaithiyanathan, P., T. Minto, and C.J. Richardson. 1997a. Calcium carbonate precipitation in the Everglades sloughs: influence of water column phosphorus concentration. In Effects of Phosphorus and Hydroperiod Alterations on Ecosystem Structure and Function in the Everglades, ed. C.J. Richardson, Chapter 6. Durham, NC: Nicholas School of the Environment, Duke University

Vaithiyanathan, P., J. Zahina, S.R. Cooper, and C.J. Richardson. 1997b. Examination of the seed bank along a eutrophication gradient in the Northern Everglades. In Annual Report: Effects of Phosphorus and Hydroperiod Alterations on Ecosystem Structure and Function in the Everglades, ed. C.J. Richardson, Chapter 10. Durham, NC: Nicholas School of the Environment, Duke University

van der Valk, A.G. and T.R. Rosburg. 1997. Seed bank composition along a phosphorus gradient in the northern Florida Everglades. Wetlands 17:228–236

Van Meter, N. 1965. Some quantitative and qualitative aspects of periphyton in the Everglades. M.Sc. Thesis, University of Miami

Venables, W.N. and B.D. Ripley. 1994. Modern Applied Statistics with S-Plus. Berlin Heidelberg New York: Springer

Verduin, J. 1960. Phytoplankton communities of western Lake Erie and the CO2 and O

2 changes

associated with them. Limnol. Oceanogr. 5:57–83Verhoeven, J.T.A. 1986. Nutrient dynamics in minerotrophic peat mires. Aquat. Bot. 25:117–137Verhoeven, J.T.A., W. Koerselman, and A.F.M. Meuleman. 1996. Nitrogen- or phosphorus-limited

growth in herbaceous, wet vegetation: relations with atmospheric inputs and management regimes. Trends Ecol. Evol. 11:494–497

Vignoles, C.B. 1823. Observations upon the Floridas. New York: E. Bliss and E. WhiteVinson, M.R. and C.P. Hawkins. 1996. Effects of sampling area and subsampling procedure on

comparisons of taxa richness among streams. J. N. Am. Benthol. Soc. 15:392–399

Page 33: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

Bibliography 675

Vitousek, P.M., L.R. Walker, L.D. Whiteaker, D. Mueller-Dombois, and P.A. Matson, P.A. 1987. Biological invasion by Myrica faya alters ecosystem development in Hawaii. Science 238:802–804

Vogt, K.A., C.C. Grier, and D.J. Vogt. 1968. Production, turnover, and nutrient dynamics of above- and belowground detritus of world forests. Adv. Ecol. Res. 15:303–377

Voinov, A., C. Fitz, and R. Costanza. 1997. Landscape model provides Everglades management tool. GIS World 10:48–50

Volk, B.G. 1973. Everglades histosol subsidence. 1. CO2 evolution as affected by soil type,

temperature, and moisture. Proc. Soil Crop Sci. Soc. Fla. 32:132–135Von Post, L. and E. Granlund. 1926. Sodra Sveriges torvtillgangar I. Sver. Geol. Unders. C 335:1–127Vymazal, J. 1995. Algae and Element Cycling in Wetlands. Boca Raton, FL: CRC/LewisVymazal, J. and C.J. Richardson. 1992. Dosing study – determination of phosphorus dosing

threshold concentrations altering Everglade slough communities: baseline sampling of macro-phytes and periphyton. In Annual Report: Effects of Nutrient Loadings and Hydroperiod Alterations on Control of Cattail Expansion, Community Structure and Nutrient Retention in the Water Conservation Areas of South Florida, eds. C.J. Richardson, C.B. Craft, R.R. Johnson, R.G. Qualls, R.B. Rader, L. Sutter, and J. Vymazal, Chapter 4. Durham, NC: Duke University

Vymazal, J. and C.J. Richardson. 1995. Species composition, biomass, and nutrient content of periphyton in the Florida Everglades. J. Phycol. 31:343–354

Vymazal, J., C.B. Craft, and C.J. Richardson. 1994. Periphyton response to nitrogen and phosphorus additions in Florida Everglades. Algol. Stud. 73:75–97

Vymazal, J., J. Komárková, K. Kubecková, J. Kaštovský, and P. Znachor. 2000. Species Composition of Periphyton Growing on Natural and Artificial Substrata along the C-Transect of the Everglades WCA-2A. Part 1: Comparison of Species Abundance. Prague, Czech Republic/Ceské Budejovice, Czech Republic: Ecology and Use of Wetlands/Institute of Hydrobotany

Vymazal, J., J. Komárková, K. Kubecková, J. Kaštovský, and M. Bastl. 2001a. Species Composition of Periphyton Growing on Artificial Substrata along the C-Transect of the Everglades WCA-2A. Part 2: Periphyton Biovolume–Biomass. Prague, Czech Republic/Ceské Budejovice, Czech Republic: Ecology and Use of Wetlands/Institute of Hydrobotany

Vymazal, J., J. Kaštovský, V. Baxová, and M. Bastl. 2001b. Species Composition of Periphyton Growing on Natural and Artificial Substrata along the C-Transect of the Everglades WCA-2A. Part 3: Comparison of Periphyton Growing on Natural and Artificial Substrata. Prague, Czech Republic/Ceské Budejovice, Czech Republic: Ecology and Use of Wetlands/Institute of Hydrobotany

Wade, D.D., J.J. Ewel, and R.H. Hofstetter. 1980. Fire in South Florida Ecosystems. Asheville, NC: Southeastern Forest Experiment Station. Forest Service General Technical Report SE-17

Wagner, G.M. and K.E. Mshigeni. 1986. The Utricularia–Cyanophyte association and its nitro-gen-fixing capacity. Hydrobiologia 141:255–261

Waide, R.B., M.R. Willig, C.F. Steiner, G. Mittelbach, L. Gough, S.I. Dodson, G.P. Juday, and R. Parmenter. 1999. The relationship between productivity and species richness. Annu. Rev. Ecol. Syst. 30:257–300

Walbridge, M.R. 1991. Phosphorus availability in acid organic soils of the lower North Carolina coastal plain. Ecology 72:2083–2100

Walker, W.W., Jr. 1995. Design basis for Everglades stormwater treatment areas, Water Resour. Bull. 31:671–685

Walker, W.W., Jr. 2000. Estimation of a Phosphorus TMDL for Lake Okeechobee. West Palm Beach, FL. Final Report for FDEP and US Department of the Interior

Walker, W.W., Jr. and R.H. Kadlec. 2006. Dynamic Model for Stormwater Treatment Areas. Model Version 2. West Palm Beach, FL. Report for US Department of the Interior and US Army Corps of Engineers

Walker, D.R., M.D. Flora, R.D. Rice, and D.J. Scheidt. 1989. Response of the Everglades Marsh to Increased Nitrogen and Phosphorus Loading: Part II: Macrophyte Community Structure

Page 34: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

676 Bibliography

and Chemical Composition. Homestead, FL: National Park Service, South Florida Research Center, Everglades National Park

Walters, C., L. Gunderson, L., and C.S. Hollings. 1992. Experimental policies for water management in the Everglades. Ecol. Appl. 2:189–202

Ware, F.J., H. Royals, and T. Lange. 1990. Mercury contamination in Florida largemouth bass. Proc. Annu. Conf. Southeastern Assoc. Fish Wildlife Agencies 44:5–12

Washington, H.G. 1984. Diversity, biotic and similarity indices: a review with special relevance to aquatic ecosystems. Water Res. 18:653–694

Watt, A.S. 1947. Pattern and process in the plant community. J. Ecol. 35:1–22Watts, W.A. 1975. A late quaternary record of vegetation from Lake Annie, south-central Florida.

Geology 3:344–346Weaver, K., G. Payne, and S. Xue. 2007. Status of Water Quality in the Everglades Protection

Area. In The 2007 South Florida Environmental Report, Vol. I: The South Florida Environment. Chapter 3A. https://my.sfwmd.gov/pls/portal/docs/page/pg_grp_sfwmd_sfer/portlet_sfer/tab2236041/2007_volume1/chapters/v1_ch_3a.pdf (20 June 2007)

Webb, T. 1987. Is vegetation in equilibrium with climate? How to interpret late Quarternary pollen data. Vegetatio 67:75–91

Weber, C.I. 1973. Biological Field and Laboratory Methods for Measuring the Quality of Surface Waters and Effluents. EPA-670/4-73-001. Cincinnati, OH: US Environmental Protection Agency

Weber, J.H. 1993. Review of possible paths for abiotic methylation of mercury (II) in the aquatic environment. Chemosphere 11:2063–2077

Weiher, E. 1999. The combined effects of scale and productivity on species richness. J. Ecol. 87:1005–1011

Weins, J.A., N.C. Stenseth, V. Van Horne, and R.A. Ims. 1993. Ecological mechanisms and landscape ecology. Oikos 66:369–380

Weller, M.W. 1975. Studies of cattail in relation to management for marsh wildlife. Iowa State J. Res. 49:383–412

Werner, H.W. 1975. The Effects of Fire on Sawgrass in Shark Slough. Homestead, FL: USDI National Park Service

Westman, W.E. 1985. Ecology, Impact Assessment, and Environmental Planning. New York, NY: Wiley

Wetzel, R.G. 2001. Limnology. Lakes and River Ecosystems. New York: AcademicWetzel, R.G. and Likens, G.E. 1990. Limnological Analyses. Berlin Heidelberg New York:

SpringerWetzel, R.G., P.G. Hatcher, and T.S. Bianchi. 1995. Natural photolysis by ultraviolet irradiance of

recalcitrant dissolved organic matter to simple substrates for microbial metabolism. Limnol. Oceanogr. 40:1369–1380

Wetzel, P.R., A.G. van der Valk, S. Newman, D.E. Gawlik, T. Troxler Gann, C.A. Coronado-Molina, D.L. Childers and F.H. Sklar. 2005. Maintaining tree islands in the Florida Everglades: nutrient redistribution is the key. Front. Ecol. Environ. 3:370–376

Whiting, G.J., J. Chanton, D. Bartlett, and J. Happell. 1991. Methane flux, net primary productivity and biomass relationships in a sub-tropical grassland community. J. Geophys. Res. 96:13067–13071

Wieder, R.K., M. Novak, W.R. Schell, and T. Rhodes. 1994. Rates of peat accumulation over the past 200 years in five Sphagnum dominated peatlands. J. Paleolimnol. 12:35–47

Wiggins, G.B., R.J. Mackay, and I.M. Smith. 1980. Evolutionary and ecological strategies of animals in annual temporary pools. Arch. Hydrobiol./Suppl. 58:96–206

Wilcox, D.A., S.I. Apfelbaum, and R.D. Hiebert. 1985. Cattail invasion of sedge meadows following hydrologic disturbance in the Cowles Bog wetland complex, Indiana. Wetlands 4:115:128

Willard, D.A. 1997. Pollen Census Data from Southern Florida: Sites along a Nutrient Gradient in Water Conservation Area 2A. Open-File Report 97–497. Reston, VA: US Geological Survey

Willard, D.A. and L.M. Weimer. 1997. Palynological Census Data from Surface Samples in South Florida. Open-File Report 97-867. Reston, VA: US Geological Survey

Page 35: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

Bibliography 677

Willard, D.A., L. Brewster-Wingard, C. Fellman, and S.E. Ishman. 1997. Paleontological Data from Mud Creek, Southern Florida. Open-File Report 97–736. Reston, VA: US Geological Survey

Willard, D.A., L.M. Weimer, and W.L. Riegel. 2001. Pollen assemblages as paleoenvironmental proxies in the Florida Everglades. Rev. Palaeobot. Palynol. 113(4):213–235

Willard, D.A., C.W. Holmes, M.S. Korvela, D. Mason, J.B. Murray, W.H. Orem, and T. Towles. 2002. Paleoecological insights on fixed tree island development in the Florida Everglades: I. Environmental controls. In 2002 Tree Islands of the Everglades, eds. Sklar, F.H. and A.G. van der Valk, Dordrecht, The Netherlands: Kluwer

Williams, D.D. and B.W. Feltmate. 1992. Aquatic Insects. Wallingford, Oxon, UK: C.A.B. International

Williams, S.J., K. Dodd, and K.K. Gohn. 1990. Coasts in crisis. Circular No. 1075. (n.p.): US Geological Survey

Williamson, C.E. 1991. Copepoda. In Ecology and Classification of North American Freshwater Invertebrates, eds. J.H. Thorp and A.P. Covich, pp. 787–822. San Diego, CA: Academic

Willoughby, H.L. 1898. Across the Everglades: A Canoe Journey of Exploration. Philadelphia, PA: J.B. Lippincott

Wilson, S.U. 1974. Metabolism and biology of a blue-green algal mat. M.Sc. Thesis, University of Miami

Wilson, C.A., R.J. Mitchell, J.J. Hendricks, and L.R. Boring. 1999. Patterns and controls of ecosystem function in longleaf pine–wiregrass savannas. II. Nitrogen dynamics. Can. J. Forest Res. 29:752–760

Winfrey, M.R. and J.W.M. Rudd. 1990. Environmental factors affecting the formation of methyl-mercury in low pH lakes. Environ. Toxicol. Chem. 9:853–869

Winter, T.C. and M.K. Woo. 1990. Hydrology of lakes and wetlands. In Surface Water Hydrology, Vol. 0–1, Geology of North America, eds. M.G. Wolman and H.C. Riggs, pp. 159–187 and Plate 2. Boulder, CO: Geological Society of America

Wissinger, S.A. 1999. Ecology of wetland invertebrates: synthesis and applications for conservation and management. In Invertebrates of Freshwater Wetlands of North America: Ecology and Management, eds. D.P. Batzer, S.A. Wissinger, and R.B. Rader. pp. 1043–1086. New York: Wiley

Wood, E.J.F. and N.G. Maynard. 1974. Ecology of the micro-algae of the Florida Everglades. In Environments of South Florida, Present and Past, ed. P.J. Gleason, pp. 123–145. Miami, FL: Miami Geological Society

Wood, J.M. and G.W. Tanner. 1990. Graminoid community composition and structure within four Everglades management areas. Wetlands 10(2):127–150

Worth, D. 1983. Preliminary Environmental Responses to Marsh Dewatering and Reduction in Water Regulation Schedule in Water Conservation Area-2A. Technical Publication 83–6. West Palm Beach, FL: South Florida Water Management District

Worth, D. 1988. Environmental Response of WCA-2A to Reduction in Regulation Schedule and Marsh Drawdown. District Technical Publication 88–2. West Palm Beach, FL: South Florida Water Management

Wright, H.E., D.A. Livingstone, and E.J. Cushing. 1965. Coring devices for lake sediments. In Handbook of Paleontological Techniques, eds. B. Kummel and D. Raup, pp. 494–520. San Francisco, CA: Freeman

Wright, H.E., D.H. Mann, and P.H. Glaser. 1984. Piston corers for peat and lake sediments. Ecology 65:657–659

Wrubleski, D.A. and N.E. Detenbeck. Stable carbon, nitrogen, and sulfur isotope determinations of trophic relationships in prairie pothole wetlands. Unpublished manuscript

Wu, Y., F.H. Sklar, and K. Rutchey. 1997. Analysis and simulations of fragmentation patterns in the Everglades. Ecol. Appl. 7:268–276

Wulff, R.D. 1995. Environmental maternal effects of seed quantity and germination. In Seed Development and Germination, eds. J. Kigel and G. Galili, pp. 491–509. New York: Dekker

Page 36: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

678 Bibliography

Zahina, J.G. and C.J. Richardson. 1997. A survey of vascular plants in Water Conservation Area 2 of the northern Everglades. In Effects of Phosphorus and Hydroperiod Alterations on Ecosystem Structure and Function in the Everglades, ed. C.J. Richardson, Chapter 7. Durham, NC: Nicholas School of the Environment, Duke University

Zamora-Muñoz, C. and J. Alba-Tercedor. 1996. Bioassessment of organically polluted Spanish rivers, using a biotic index and multivariate methods. J. N. Am. Benthol. Soc. 15:332–352

Zedler, J.B. 2000. Progress in wetland restoration ecology. Trends in Ecology and Evolution 15:402–407

Zedler, J.B. 2005. Ecological restoration: guidance from theory. San Francisco Estuary and Watershed Science 3(2): Article 4. http://repositories.cdlib.org/jmie/sfews/vol3/iss2/art4

Page 37: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

679

Index

A32P experiment, 398Abiotic DOC mineralization, 366Aboriginal tribes, 631Accretion

carbon, 344nitrogen, 344phosphorus, 344

Accumulation ratesBSi, 344Ca, 333, 344Cd, 141Cu, 140Hg, 144, 145Na, 333P, 50, 144, 150, 330Pb, 140, 144

Achnanthes minutissima var. scoticai, 329, 337as indicator of flow patterns, 348

Adams-Onis Treaty, 322Adaptive management, 2, 10, 44, 47, 65,

633, 635Adaptive management plan, 47, 633Aerobic incubations, 446Agricultural runoff, 33, 592

nutrients, 51Agriculture, 3, 9, 16, 28, 80, 161

algal response, 348land area, 195water storage reservoirs, 45

Airboatdisturbance, 543

Aleutian Islands, 601Algae

fresh biomass, 266lifeforms, 266natural and artificial substrates, 469number of species, 463photosynthetic activity, 500

sampling methods, 262taxonomic groups, 266

Algal assemblages, 461Algal indicators

Aphanothece variabilis, 466Chroococcus minutus, 466Lyngba, 466Mougeotia, 466Oedogonium, 466Scytonema, 466

Algal mats, 81cover growth, 540interstitial water, 436

Algal responses, 261Algivores, 303Alismataceae, 26Alligator mississippiensis, 543, 601Alligator weed. See Alternanthera

philoxeroidesAllochthonous, 278Alternanthera philoxeroides, 90, 507Aluminum-bound organic phosphorus, 513Ambrosia artemisiifolia, 26, 91American alligator. See Alligator

mississippiensisAmmodramus maritimus mirabilis, 45Ammonia, 106, 423, 506

volatilization, 506Ammonium, 366, 506Ammonium chloride, 510Ammonium-nitrogen

concentrations, 400Amphipoda, 485Amphora coffeaeformis, 463, 465Amphora lineolata, 329, 334, 337Amphora veneta, 329Anaerobic mineralization, 445Anaerobic respiration, 631Anastasia Formation, 15, 170

Page 38: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

680 Index

Annona glabra, 192communities, 624

restoration, 628Anoxic benthic environment, 435Anthropogenic disturbance, 4, 15, 23, 44,

70, 141, 172, 225, 343, 348, 361, 551, 587

paleoecological evidence, 24, 348Anthropogenic impacts, 622Anthropogenic influence, 588APA activity, 408, 410, 417, 572, 576Aphanothece, 465Aquifer storage

ASR wells, 44Arrowhead. See SagittariaArtificial substrates

algae, 478Assemblage composition

determinantsmacroinvertebrates, 314

Assimilative capacityphosphorus, 569

Atlantic Coastal Ridge, 168Attributes

assemblage-level, 483Australian melaleuca tree. See MelaleucaAustralian pine. See CasuarinaAutochthonous, 278

BBacillariophyceae, 270, 463Bacopa caroliniana, 507Balance of nature, 611Bayesian changepoint detection method,

568, 606, 608Bayesian Hierarchical Changepoint

Model, 605, 610Bayesian kriging, 583Bayhead/swamp forests, 80Beach-elder. See Iva imbricateBeardius truncatus, 311, 314Bedrock

CaCO3, 124, 160, 347

configuration, 16depressions, 171hydraulic conductivity, 176limestone, 170map, 16permeability, 15

Below detection limit (BDL)water quality data, 108

Belowground biomassmacrophytes, 157

Best Management Practices, 617P reduction program, 54

Big Cypress National Preserve, 627Bioassessment, 278, 638

multimetric approach, 316multivariate approach, 316

Biogenic silica, 322Biological attributes, 599

algae-diatomrelative abundance, 603

blue-green algae biovolume, 603Bray-Curtis dissimilarity, 603calcareous mat cover, 603diatom biovolume, 603diatom density, 603Gastropoda

percent, 603macroinvertebrates

abundance, 603biomass, 603taxa, 603

Oligochaetanumber, 603

predatorspercent, 603

sensitive speciespercent, 603

trophic level, 603Utricularia purpurea

stem densities, 603Biological metrics, 596

ecological change, 599Biological monitoring, 596Biomass, 437

responsecumulative P additions, 522

Biomonitoring, 596Biovolume evaluation

algae, 265Bladderwort. See UtriculariaBlue-green algae, 461Bluefin killifish. See Lucania goodeiBMP. See Best Management PracticesBoard of Drainage Commisioners, 323Bog, 31Bootstrap simulation, 225, 252, 286, 328,

607, 614Bottom-up control, 316Br/SRP ratios, 394Brachysira vitrea, 329, 334, 337Braun-Blanquet

scale, 462, 534Braun-Blanquet cover classes, 282–283, 536Bray-Curtis dissimilarity, 286, 288, 603

Page 39: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

Index 681

Brazilian pepper. See Schinus terebinthifoliusBromide, 107

sodium bromide, 387, 394Bulbochaete, 466Bulk density, 135, 587

as function of peat depth, 64Bulrush. See ScirpusButtonbush. See Cephalanthus occidentalis

CC:N ratio, 443, 501C:N:P ratios, 397C:P ratios, 397, 443C3 photosynthetic pathway

Cattail and sawgrass, 549Cadmium, 140, 141Caecidotea, 303Calcite

Mud, 20Calcium carbonate, 20, 22, 161, 169, 346,

388, 417, 515, 638Calcium-bound inorganic phosphorus, 514Calcium-to-magnesium ratios, 399Caloosahatchee Canal, 39Canal L-38, 580Canal systems, 197Canal-and-levee effects, 256Canals

P gradient, 315water Quality, 28

Canonical Correspondence Analysisperiphyton composition, 463

Cape Sable Seaside Sparrow. See Ammodramus maritimus mirabilis

Carbonbudgets, 352cycling, 351litter loss, 446microbial biomass, 359

Carbon dating. See Radiometric datingCarbon dioxide, 82, 521

gaseous, 358Carbon mineralization, 445, 451Carbon-14, 66Carbonate alkalinity, 398Carboxylic acids, 368Carnivores, 601CART models. See Classification and

regression tree modelsCasuarina litorea, 28, 329Cattail control

mechanical disturbance, 631Cattail invasion potential, 625

Cattail removal, 630Cattail. See Typha domingensisCellulose, 442Central and South Florida Project for Flood

Control and Other Purposes, 40,195, 196

Central and Southern Florida Flood Control District, 323

Centroids, 223Cephalanthus occidentalis, 26CERP. See Comprehensive Everglades

Restoration PlanCesium-137, 66

activity, 326from thermonuclear weapons tests, 580

Changepoints, 569, 599, 612cumulative probability distributions, 614

Channel flow, 389Channels

designationP dosing, 376

Chara, 130, 230, 236, 385, 411, 535P treatments

fertilizer study, 420, 481, 505, 521, 542optimum growth cover

PO4-P concentration, 432

percent coverage, 535populations, 430

Chemical control of Typha, 630Chenopodiaceae/Amaranthaceae, 329Chenopodium, 26, 238Chilled seeds, 552, 558Chironomidae, 285, 301, 485Chloride

molar ratios, 400pore water, 175

Chloride gradient, 122, 124, 236Chlorophyceae

biomass, 269Chlorophyta, 463, 466

growth, 540Chroococcales, 266Chroococcus, 465Chroococcus deltoids, 466Chrysobalanus icaco, 192CI. See Credible intervalCladium jamaicense, 78, 154, 329, 535

aboveground biomass, 154, 526biomass, 518carbon fixation rate, 550establishment, 547fire management, 631frequency, 231

relationship with soil TP, 238

Page 40: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

682 Index

Cladium jamaicense (cont.)germination curves, 556germination experiments, 551germination rate, 554lifespan, 549litter

C:N ratio, 455C:P ratio, 455Cu concentrations, 455decay, 446N:P ratio, 455P accumulation, 450P concentrations, 455

litter bags, 444N:P ratios, 229, 455, 518, 572nitrogen concentrations, 517P effects, 217photosynthesis, 511, 455physiology, 538reestablishment, 538regeneration, 630Relative Growth Rate, 562seed production, 551, 553seedling growth, 547species description, 548tissue nutrient concentrations, 515

Cladium mariscus, 7, 89, 549Cladocera, 481, 485Cladophora glomerata, 418Cladotanytarsus, 311Class III waterbody

Everglades classification, 481Classification and Regression Tree Models,

423, 605Clean Water Act

Section 101a, 278Climate, 36, 171, 215

phosphorus inputs, 49, 51precipitation, 37

Climate change, 627Climbing fern, 632Clone

sawgrass, 550Cluster analysis

pollen assemblages, 338Cocoplum. See Chrysobalanus

icacoColeoptera, 303Community level

restoration guidelines, 636Community metabolism, 415Community structure, 559Competitive exclusion, 558

Compositionvegetation

fire, 257Compositional patterns

fine-scale, 256Comprehensive Everglades Restoration Plan,

1, 9, 39, 621, 641goals, 2, 57, 194, 633website, 44

Concept of limiting factors, 597Conjugatophyceae, 466

biomass, 269Cosmarium, 269Mougeotia, 269Pleurotaenium, 269Spirogyra, 269Staurastrum, 269

Connell’s intermediate disturbance hypothesis, 598

Constant Rate of Supply Model, 326, 329Constructed wetlands, 569Control

reference sites, 535, 602Controlled burns, 629

cattail removalsuccession, 634

Copepoda, 481, 485Copper, 140, 141, 450

as limiting nutrient, 457Co-precipitation

P and CaCO3, 388

Cosmarium, 465Credible interval, 569, 609CRS Model. See Constant Rate of Supply

ModelCyanobacteria, 461Cyanophyta

nitrogen fixation, 438Cyanoprokaryota, 266, 270, 461

Oscillatoriales, 270Chroococcales, 270Nostocales, 271total biomass, 271

Cyclopoid copepods, 501Cyclotella meneghiniana, 334Cymatopleura solea, 466Cymbella, 327, 334, 466Cymbella cymbiformis, 466Cyperaceae, 548

pollen, 341Cypress, 80Cypridopsis okeechobei, 501Cytheridella alosa, 501

Page 41: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

Index 683

DDahoon holly. See Ilex cassineDark germination, 552, 560Dark inhibition, 560Database

ACCESS, 5Davis, J.H.

The Natural Features of Southern Florida, 3

Decapoda, 301Decomposition, 156, 332, 352, 358

effect of aerobic vs. anaerobic conditions, 442effects of exogenous inorganic nutrients,

367, 442litter and peat, 441, 445, 455

Deep water, 84Delta Marsh, 496Denitrification, 446, 506Depth calculations

soft-bottom, 222Detrended Correspondence Analysis

algal analysis, 328, 467periphyton mat composition, 463

Diatoms, 28, 334, 463analysis, 321as indicators of high soil P, 329as indicators of low soil P, 329assemblages, 347

cluster analysis, 334Cymatopleura solea, 466Cymbella, 466Cymbella cymbiformis, 466decline in diversity, 347Detrended Correspondence Analyses, 328Diploneis elliptica, 466identification, 264indicator species, 328indicator taxa, 327methods, 326native taxa, 348Navicula lanceolata, 466Navicula rhynchocephala, 466Nedium, 466Nitzschia linearis, 466Nitzschia recta, 466oligotrophic (low-nutrient) sites, 272species abundance, 337

Diel oxygen, 389, 413, 600Diel pattern, 404

NH4-N and NO

3-N uptake, 400

Diel variationPO

4-P, 408

Dike systems, 197, 198

Diploneis elliptica, 466Diptera, 485Dissolved Organic Carbon, 352, 361, 369,

446, 607biodegradation, 367humic fractions, 367hydrophilic acid fraction, 367methods, 107, 352pore water, 362

Dissolved Organic Matter, 351, 355controlling processes, 369

Dissolved Organic Nitrogen, 357, 454budgets, 357, 362

Dissolved Organic Phosphorusdosing channels, 396

Dissolved Oxygen, 411community effects, 129dosing, 404 frequency, 411sediment-water interface, 435State of Florida criteria, 129

Disturbance, 639germination, 563seedling growth, 563

Disturbance experimentdeep-water treatments, 537experimental design, 533fertilized treatments, 537plot establishment, 532plot location, 532randomized complete block design, 536site monitoring, 533tilled treatments, 537vegetation removed plots, 537water chemistry, 541water depth, 534

Diversity (Shannon’s H’), 336DO. See Dissolved OxygenDOC. See Dissolved Organic CarbonDog-fennel. See EupatoriumDOM. See Dissolved Organic MatterDON. See Dissolved Organic NitrogenDormancy, 559Dose

response curves, 604Dosing, 385–418

Ca, 399Cl, 399Mg, 399Na, 399operations, 387TP loadings, 391sampling, 388

Page 42: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

684 Index

Dosing channelsENP, 420, 477oxygen, 406SRP concentrations, 394TP concentrations, 394

Dosing experimentP threshold, 602

Dosing flumes, 391, 406algal assemblages

sampling, 461applied PO

4 concentrations, 391

background water quality, 391control channel TP values, 391diel oxygen pattern, 404DOP, 106, 362, 394ecosystem response, 411fish data analysis, 484fish sampling, 482litter decomposition, 455macroinvertebrate data analysis, 483macroinvertebrate sampling, 480P/R, 413phosphatase activity, 408PP, 394productivity, 413respiration, 413SRP, 394vegetation, 478

Chara, 478Eleocharis cellulosa, 478Eleocharis elongata, 478Nymphaea, 478Panicum hemitomon, 478Utricularia foliosa, 478Utricularia purpurea, 478

water depth, 478water level changes, 393

Dosing mesocosms. See Dosing flumesDouglas, Marjory Stoneman, 1, 13Drainage

blocked, 14effects, 16, 23, 34, 170, 347, 442

canals, 195, 262carbon, 359indicators of changed hydroperiod,

23, 227nutrients, 63, 70

Drouet classificationalgae, 272

Drought, 23, 37, 46, 226, 245, 391Dry downs, 544Dry levee, 87Duck-potato. See Sagittaria

lancifolia

EEAA. See Everglades Agricultureal AreaEcological imbalance, 599, 610, 616Ecological thresholds

multiple trophic levels, 617Ecosystem function, 32, 164, 200, 599Ecosystem level

restoration guidelines, 635Ecosystem services, 641Eichhornia crassipes, 84, 90, 633Eleocharis, 230

N:P mass ratio, 518P-limitation, 518tissue P concentrations, 517water depth

controls, 437Eleocharis cellulosa, 418, 422, 425, 507, 522

biomass per plot, 422density, 425mortality, 433

Eleocharis elongata, 418, 425density, 425stem density, 430survival, 432

Enallagma civile, 311Environmental factors

plant communitites, 246Environmental Regulatory Commission, 601Epiphytes

effects of dense communities on macrophytes, 418

Epiphytic habitats, 87Epiphytic periphyton, 422, 437

growth measurements, 422Epiphyton

vegetatively attached periphyton, 283Equipotential surface, 179, 183ERC. See Environmental Regulatory

CommissionEuclidean distances, 225Eudocimus albus, 209Eunotia, 28, 334

acidophilous species, 347Eunotia arcus, 347Eunotia camelus, 347Eupatorium, 26Eutrophic lakes, 432Eutrophic sites, 272Eutrophication, 26, 32, 69, 322, 417

gradient, 134, 572mercury, 147periphyton community, 261, 417, 465

Evaporation rates, 172Evapotranspiration, 38, 171, 174, 364

Page 43: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

Index 685

Evergladesarea, 59as P-limited ecosystem, 595classification, 29classification as Class III waterbody, 481comparison with other North American

peatlands, 70fen restoration, 621–642formation, 15geologic settings, 167historic formation, 15historical background, 322hydrology gradients, 167maps, 6, 17, 99, 169, 198, 282plant communities, 74

Everglades Agricultural Area, 16, 195carbon budget, 352DON budgets, 364phosphorus loadings, 54

Everglades National Park, 6, 17, 67, 117, 32314C, 66cattail invasion potential, 626N:P ratios, 54soil C, N, P, 64spatial patterns of STP, 586

Everglades peatland complexformation, 14

Everglades Protection Area, 55rainfall P inputs, 49

Everglades snail kite. See Rostrhamus sociabilis plumbeus

Exchangeable inorganic phosphorus, 514Experimental drawdowns, 630Experimental sites

location, 7, 279, 602Exposure dose

P, 604

FFeeding groups

macroinvertebrates, 575Fen, 1, 31, 56, 72, 398

classification, 29, 83definition, 13

Ferns, 26Fertilizer application

N and P, 510Fertilizer study, 505–527

aboveground biomass (Live + standing litter), 518

biomass analysis, 511cattail

response to P, 520

hydroperiod, 507leaf area index, 511phosphorus and nitrogen pools, 524photosynthesis, 511randomized complete block design, 507soil analysis, 511water analysis, 510

Fire, 4, 7, 18, 33, 35, 67, 159, 216, 229, 234, 244, 257, 627, 628, 629

Fire management, 165, 632, 634, 637succession, 627

Fire suppression, 277, 631Fish

abundanceand Eleocharis stem densities, 495, 498

biomass, 305subsidy-stress relationships, 305

data analysis, 484density, 314, 316

subsidy-stress relationships, 305hypotheses

P-enrichment, 478mercury concentrations, 142response to P additions, 477, 494sampling, 286, 482

Flats, 78, 85biomass, 84

Floating mats, 469biomass, 474removal, 435

Florida Project Comprehensive Review Study, 43

problems, 43Flow gates

S-10A, C, D, E, 173S-144, 173, 521

Flumes, 376, 385construction, 378design and materials, 379

battery platform, 379channels, 380mixing tanks, 379pump platform, 379solar array, 380

location, 377physical layout of design, 377systems operation, 380

electrical, 382plumbing, 380

Formation of the Evergladeshistoric Everglades, 15

Fort Thompson Formation, 15, 66, 170Fossils

indicators, 328

Page 44: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

686 Index

Fragilaria, 329, 334, 337Fragilaria ulna, 465Fragrant waterlily. See Nymphaea

odorataFreeze, 245Frustulia rhomboides, 334Functional redundancy, 601, 605Future

water demand, 641

GGambusia holbrooki, 316, 482, 495Gastropoda, 285, 485, 499Geologic history, 168Geologic history of Everglades peatland.

See PeatlandGermination, 551, 554

curves, 555inhibitors, 559

Germination experimentsCladium jamaicense, 551methods

chilled seeds, 552dark germination, 552seedling growth, 552

Typha domingensis, 551Germination studies, 639Gleason, P.J., 16Gloeothece interspersa, 465, 466Gomphonema olivaceum, 466Gomphonema parvulum, 329, 334, 337GPP. See Gross Primary ProductivityGradient studies, 97–101

enrichment gradientsmethods, 104sampling locations, 104site establishment, 104

Gradient studiesGPS locations, 98–101objectives, 98

Gradientscourse-scale, 249DOC concentrations, 363fine-scale, 249hydrology, 220, 595nutrient, 116, 121, 262, 595soil analysis, 220

Graham, Bob, 323Great Blue Heron, 209Great Egret, 209Green algae. See ChlorophytaGross Primary Productivity

sloughs, 411, 413, 414

Groundwater flow, 39, 43, 622WCA-2A, 175

HHardwood swamps

TP, 628Hardwood upland hammocks, 76, 80, 218Heavy metal, 104, 112, 140Hemiptera, 303Herbert Hoover Dike, 41, 622, 629Hester-Dendy artificial substrates, 481Heterandria Formosa, 316Hierarchical changepoint analysis, 610Hierarchy theory, 280–281Hillsboro Canal, 117, 195, 343, 580Hirudinea, 303Historic Everglades

original area, 215surface sheet flow, 194

Histosols, 19, 442, 457Human population, 59, 195, 197, 323, 622Humic acids

copper, 457Hurricanes, 38, 53Hydraulic conductivity, 176Hydraulic gradient, 171, 183Hydraulic loading rate, 568Hydrocotyle umbellata, 507Hydrogeology

water sources, 630Hydrologic budget

WCA-2A, 172Hydrologic equivalence, 32Hydrologic pattern, 637Hydrology

future plans, 43shifts on the landscape, 39

Hydropattern, 33, 177, 215Hydroperiod, 7, 20, 26, 56, 67, 187, 227, 243,

627, 628definition, 33macroinvertebrate response, 243, 342, 507,

540model, 627restoration, 629–633vegetation response, 243, 255, 342, 507,

540Hypothesis

assemblage responsescattail invasions 218macroinvertebrates and fish, 311, 478,

496, 501mercury methylation, 147

Page 45: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

Index 687

periphyton change, 237, 312restoration, 35vegetation patterns, 255Utricularia, 539Utriculatia decline, 406, 429

hydrology, 255intermediate disturbance, 598microbial activity

PO4, 456

P assimilative capacity, 567P threshold, 599subsidy-stress, 279Utricularia inhibition, 429

IIBI. See Index of Biological IntegrityIce age

Wisconsin, 170Ilex cassine, 192Imbalance

definition, 599, 610flora and fauna, 375, 597, 609indicator. 611

Impact zone, 578Impacted zone indicators, 311

taxa, 311Anopheles, 311Caecidotea, 311Scirtes, 311Uranotaenia sapphirina, 311

Inceptisols, 19, 20Index of Biological Integrity, 316, 613Indiana Dunes National Lakeshore, 547Indicator species, 242, 328, 607Indicator Species Analysis, 288,

298, 311Indicator taxa

Cladotanytarsus, 315Cypretta brevisaepta, 315Parakiefferiella, 315Paraponyx, 315Tanytarsus, 315

Indicesecosystem response, 572metrics, 277–278trophic level response, 595

Initial germination, 556INSPAN. See Indicator Species

AnalysisInterim Operation Plan, 45Intermediate disturbance hypothesis, 598Inundation, 197Invasive species, 90, 232, 632

Invasive vegetation, 310Mikania, 310Sarcostemma, 310Typha, 310

Invertebratesbenthic, 575taxa list, 288

Iraq, 641Island Biogeographic Theory, 410Iva imbricata, 26

JJordanella floridae, 495

KKernel smoothers, 581Keystone species, 410, 427, 601Kissimmee Basin, 41Komvophoron, 465Kriging, 583Kriging model, 583

LLabile phosphorus, 134Lake Okeechobee, 39, 41, 624

P concentration, 52water level, 41water supply/environmental schedule, 41

Land development, 622Landscape

P gradient, 52Landscape evolution of Everglades peatland.

See PeatlandLandscape fragmentation, 636Landscape level

restoration guidelines, 635Largemouth bass. See Micropterus salmoidesLaw

water Resources Development Act, 45

Lead, 140, 163Lead-210, 51, 66Leaf area index, 511Least killifish. See Heterandria FormosaLemna, 257Lepomis punctatus, 495 Leptolyngbya, 263Liebig, Justis von

concept of limiting factors, 597Lignin, 442Liguus, 209

Page 46: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

688 Index

Limits of tolerance, 279, 499, 597Limnogenous, 31, 47, 622, 629Litter, 156, 158, 367, 443, 524

biomass, 156, 520copper accumulation, 457decomposition, 358, 455, 639microbial immobilization, 446

Livingstone piston coring device, 325Location of research sites, 6Lower East Coast, 41Loxahatchee Channel, 171Loxahatchee National Wildlife Refuge.

See Water Conservation Area 1Lucania goodei, 495Lycopodium

spike, 327Lygodium, 632Lyngbya, 263

MMacroinvertebrate assemblages

biomass, 301, 485density, 485

Macroinvertebratesassemblage-environment relationships, 299bioassessment, 278biomass estimation, 285biomass response to P, 287, 311composition-environment relationships,

491, 493data analysis, 286, 483density, 286diversity, 287, 572, 575dose-response relationships, 485gradient, 283hypotheses

P-enrichment, 478indicator species, 311metrics, 612predators, 489response to P additions, 477sampling, 283, 480sampling design, 281sensitive taxa, 613species accumulation curves, 301species diversity, 312species list, 289–298species richness, 287, 499study area, 284subsamples, 300

fixed counts, 300fixed-area, 300

successional vectors, 500

taxon density, 485taxon richness, 485, 498taxonomic dissimilarity, 499taxonomic resolution, 284tolerant taxa, 613

Macronutrientslitter immobilization

copper, 456Macrophyte survey

oxygen study, 129Macrophytes, 418

biomass, 518declines, 417direct effects on macroinvertebrates,

500–501gradient responses, 277N:P ratios, 397phosphorus effects, 426plant species listing, 88–93responses

season, 424temperature, 424TP level, 424water depth, 424

species distribution, 248in WCA-2A, 230

species increase with P enrichment, 240

Magnesium, 262Magnolia virginiana, 192Maidencane. See Panicum

hemitomonManaged water flow, 31, 47, 623Managenous. See PeatlandManagenous water flow. See Managed

water flowMantel test, 252Marl, 15, 78, 81, 170, 218

calcium carbonate, 20, 515Marsh, 83, 85

definition, 14Mass spectrometry

C-14, 18Mastogloia smithii, 329, 334, 337,

463, 465Mat cover

biomass, 437metric, 610pH, 399temperature, 399

Matric water potential, 446Maximum germination, 556

time, 557Mean total N, 120

Page 47: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

Index 689

Melaleuca quinquernervianonnative taxa, 28, 33, 216, 632

Meotrophic, 32Mercury, 112, 142

demethylation, 147deposition, 146methylation, 147

Mesocosm, 385construction, 378experiment, 376flow rate, 381P treatment levels, 376phosphorus experiments, 375systems operation, 380

electrical, 382plumbing, 380

Mesopotamian marshes, 641Metal accumulation rates

soil, 141Metaphyton

cover, 305floating periphyton mats, 283

Methaneemission, 360loss, 358production, 352

Method detection limits (MDL), 106Metric multidimensional scaling, 224

Bray-Curtis dissimilarity, 224, 286, 298, 484, 603

partial Mantel tests, 224Metrics, 316, 596, 599

definition, 596density, 596feeding ecology, 316guild classes, 596number of taxa, 596richness of species, 596taxonomic richness, 316taxonomic structure, 316tolerance/intolerance, 316trophic level response, 595

Miami Canal, 45, 140, 195, 212Miami Formation, 15Miami limestone, 66, 170Miccosukee Tribe, 44Microalga

Chara, 527Microbial C biomass, 359Microbial decomposition, 442Microbial methylation, 147Microbial P biomass, 360, 457,

514, 515soil, 457

Microbial phosphorus, 514, 515Microbial respiration, 443, 458Microcosm studies

P uptakeperiphyton, 395

Microcrustacea, 485Micropterus salmoides, 495Mikania scandens, 85, 88, 230, 310

biomass, 156Mineralization potential

enrichment gradient, 445Minerotrophic system, 31, 622Minerogenous system, 31, 622Minimum detection limit (MDL), 108Mire

definition, 13water, 31

ModelBayesian model, 605changepoint, 605Classification and Regression Tree,

423, 605Constant Rate of Supply, 326, 329Hierarchical model, 605Integrated hierarchical model

P threshold, 602Interaction of hydroperiod and

fire, 627Kriging, 583Natural System, 41, 171, 174Phosphorus Accretion Rate, 582piecewise linear model, 569subsidy-stress model, 279–280,

478, 597three dimensional control

Everglades, 628Modified water delivery plan, 45Monitoring wells

fertilizer study, 508Monocalcium phosphate, 510Monte Carlo simulation, 463, 590Mosquitoes, 316

Coquillettidia perturbans, 316larvae, 316Mansonia titillans, 316Uranotaenia sapphirina, 316

Mosquitofish. See Gambusia holbrooki

Mougeotiadiatom, 466

MSL. See Sea levelMultidimensional scaling, 288Mycteria Americana, 45, 209Myrica cerifera, 28, 192, 329

Page 48: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

690 Index

NN:P ratio, 54, 397, 455, 571, 572

P limitations, 14, 518Native seed bank, 33, 215, 324, 533, 560, 632Natural System Model, 41, 174Navicula confervacea, 329, 337Navicula lanceolata, 466Navicula rhynchocephala, 466NAWDB. See North American Wetlands for

Water Quality Treatment DatabasenCPA. See Nonparametric Changepoint

AnalysisNedium, 466Net Primary Productivity, 351, 412, 442

belowground, 358WCA-2A, 357

Never Glades, 13Niche width, 410, 598Nitrate reductase, 400Nitrogen, 450, 506

accumulation, 67, 69and phosphorus fertilization

experimental design, 507nitrogen concentrations, 62, 121, 256,

262, 515, 517study location, 507

as function of peat depth, 64budgets, 524elevated, 257soils, 14, 62, 138standing stock, 156, 158

Nitrogen fixation, 4, 438Nitzschia, 334Nitzschia amphibia, 329, 332Nitzschia linearis, 466Nitzschia palea, 329, 337Nitzschia recta, 466nMDS. See Nonmetric multidimensional

scalingNonmetric multidimensional scaling, 483Nonmetric multidimensional scaling

ordination, 252Nonparametric Changepoint Analysis

(nCPA), 606Nonparametric regression, 581North American Wetlands for Water Quality

Treatment Database, 568North New River Canal, 195Nostoc, 465NPP. See Net Primary ProductivityNuphar lutea, 7, 79, 93, 349Nutrient gradient, 228Nutrient limitation, 351, 518, 537

criteria, 576

Nutrient storage, 154, 158Nutrient storage capacity, 4, 567Nutrient-IBI, 612Nutrients, 355

anthropogenic inputs, 53, 343deprivation, 563runoff, 51

Nymphaea, 7, 230Nymphaea odorata, 7, 329, 418,

422, 507pollen, 342populations, 430rhizomes, 524shading, 437

Nymphaeaceaepollen, 339

OOdonata, 303, 485Oecetis, 311Oedogonium, 266, 269, 466Old litter, 156, 524Oligocaeta, 485Oligotrophy, 32, 129, 402Ombrotrophy, 31, 622Opportunistic species, 563Ordination, 288, 314

invertebrate species composition, 307landscape-scale dimension, 314local-scale dimension, 314

Organic anionsionic balance contribution, 368

Organic carbonaccumulation, 67, 441as function of peat depth, 64

Organic phosphorus, 514Organic pollution

Chironomus stigmaterusindicators, 311

Goeldichironomus holoprasinusindicators, 311

Orthophosphate (SRP), 50, 105, 262, 385

doses, 386dosing

biological driven responses, 404interstitial water, 436residual, 386

Oscillatoria, 263, 466Oscillatoriales, 266Osmunda regalis, 507Ostracoda, 481, 485, 501Oxyethira, 311

Page 49: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

Index 691

Oxygenconcentrations, 129, 133, 391, 404, 435methods, 389plant germination, 555

PP criterion, 617P efflux rates, 152P enrichment

shift in species dominance, 347P fractions

soilgradient, 445

P gradientedge effect, 577

P limitationbiochemical indices, 572

P loadingfertilizer study, 522gradient study, 571rainfall, 49

P threshold model, 606P threshold load, 567P/R ratio, 411PAC. See Phosphorus Assimilative CapacityPa-hay-okee

grassy lake, 13Palaemonetes paludosus, 301, 311Paleoecology

analysis, 321anthropogenic disturbance, 24calibration, 324core analysis, 638core collection, 325study site

WCA-2A, 323timeline, 29

Pamlico Terrace, 170Pan evaporation, 171, 364Panicum hemitomon, 420, 478, 507, 522

N:P mass ratio, 518P-limitation, 518tissue P concentrations, 517

Pappuscattail, 553

PAR. See Phosphorus Accretion RateParakiefferiella, 311Paratanytarsus, 311Partial Mantel’s test, 492P-assimilative capacity. See Phosphorus

Assimilative CapacityPath diagram

relationships, 492

Pattern and process, 197Peat, 60–62

accretion, 65, 352, 580increased water effects, 70nutrient loading, 70

accretion rates, 329carbon, 451classification, 62core sites, 19core stratigraphies, 21, 22Everglades peat, 60formation 5000 YBP, 18Gandy peat, 60, 192geochemistry, 330Loxahatchee peat, 60mineralization, 458nitrogen, 451nutrient accumulation, 70Okeechobee muck, 60radiocarbon dating, 16, 18soil depths, 18, 20, 21thickness, 65types, 60

Peat batteries, 85Peat mineralization

anaerobic conditions, 451Peatland

definition, 13formation, 14geologic history, 15, 168limnogenous peatland, 31, 622managenous, 31, 623minerotrophic peatland, 31ombrogenous peatland, 31ombrotrophic peatland, 31restoration concepts, 633soligenous peatland, 31, 623topogenous peatland, 31, 622

Peat-litterP and N pool, 524

Peltandra virginica, 75, 85, 89, 236Pennywort. See Hydrocotyle umbellataP-enrichment gradient

WCA-2A, 116, 228WCA-3A, 120

Percent coveralgal mat, 422

Periphyton, 81, 261AFDM, 82, 492ash content, 471biomass, 82, 415biomass analysis, 471biomass N and P concentrations, 471C:N ratio, 303, 492

Page 50: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

692 Index

Periphyton (cont.)calcareous periphyton, 82, 346, 638composition

Effect of TP, 464diversity, 467food quality for primary consumers, 502mat cover, 418N:P ratios, 399noncalcareous, 433removal, 417removal experiment, 422, 434seasonal dynamics, 468

Periphyton matsash content, 398N and K, 256

Persea borbonia, 80, 86, 92, 192pH

calcium carbonate, 346depletion of free CO

2, 429, 607

in water column, 398, 406, 434pore water, 402

Phormidium, 465Phosphatase

limitation threshold, 410production, 410unit chlorophyll (APA-c), 408

Phosphatase activity, 363, 408, 572Phosphate

coprecipitation, 398diel pattern, 406uptake, 396

rates, 397response

inhibition, 439optimum response, 439stimulation, 439

Phosphorus, 115accretion rates, 579, 582, 588

percentage of area, 589accumulation in soil, 67, 69adsorption, 458affected area, 592as function of peat depth, 64budgets, 524content in live leaf and root tissue, 43criterion, 53dilution, 389doses, 478dosing facilities, 376dosing mesocosms, 638dosing operations, 387fractionation methods, 109hot spots, 36, 625imbalance, 599

impacted zones, 281litter immobilization, 451, 456loads, 478methods, 113microbial immobilization, 458plant succession, 531rainfall, 48reference zones, 281sodium phosphate, 387soil efflux, 113, 150spatial distribution, 579, 588, 591speciation, 105, 106, 386standing stock, 156, 158threshold, 595–617

determination by technology-based criteria, 595

transition zones, 281uptake

channels, 389Phosphorus Accretion Rate, 579

background level, 592modeling

nonparametric regression model, 582piecewise linear model, 582

Phosphorus Assimilative Capacity, 567–578, 595, 637

Phosphorus concentrationgeometric mean, 108, 595median, 595

Phosphorus dosing. See also Dosing flumesecosystem responses, 385experimental setup, 376macrophyte community response, 417orthophosphorus, 385particulate phosphorus, 396, 398plant analysis methods, 420soil chemistry, 385Soluble Reactive Phosphorus, 385, 396total phosphorus, 384water quality, 384

Phosphorus loadings, 54, 571, 579WCAs, 228, 570

Phosphorus threshold, 595gradient study, 612zone, 615, 616

Phosphorus threshold concentration zone, 599Photochemistry

mineralization experiment, 366Photosynthesis, 511, 525

foliar N concentration, 526foliar P concentration, 526measurements, 524

Photosynthetic C3 pathwaycattail and sawgrass, 549

Page 51: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

Index 693

Photosynthetic light compensation, 418Photosynthetically available radiation

(PAR), 418light reduction, 436measurement, 423readings, 436

Physical control of Typha, 630Physiography, 168Phytosociological relevés, 462Pickerel-weed. See Pontederia cordataPiecewise linear model, 569Piezometer, 177Pigweed. See ChenopodiumPine. See PinusPinnularia gibba, 466Pinus, 26

pollen, 338Pisaster, 601Pistia stratiotes, 232, 633pK dissociation relationships

CO2, 607

CO3=, 607

HCO3-, 607

Planorbella duryi, 499Planorbella scalaris, 499Plant biomass, 84, 154

compartments, 353–355, 363, 524P gradient, 154

Plant communities, 17, 74, 246, 419, 507, 627controlling factors, 33, 237response to N and P fertilization, 232, 505response to disturbance, 531structure, 215, 572

Plant density responses to P additions, 426Plant frequency gradient, 231Plant gradient

survey methods, 219Plant litter

organic nutrients, 355Plant species composition along nutrient

gradients in WCA-2A, 230Plant species composition in WCA-3A, 234Plant succession, 627

disturbance, 531, 639phosphorus, 531water level, 531

Plantsspecies diversity

method, 512Plexiglas

algae, 273, 462, 469mat comparisons, 470

Plexiglas slides, 262, 480, 501, 637periphyton, 491

P-limitationecosystem, 595Eleocharis, 518

PO4. See Phosphorus; speciation

Pollenabsolute diagram, 339analysis, 322as P indicator, 329assemblages, 348diversity, 349diversity changes, 340indicator taxa, 327influx, 339methods, 327profiles, 23, 25, 27spore taxa, 337

Polygonum, 84, 93, 160, 237, 329Pond apple. See Annona glabraPond apple forests, 80Ponds, 79Pontederia cordata, 75, 80, 90,

232, 236Pore water, 237, 423

Ca, 402, 541Na, 541NH

4-N, 402, 541

NO3-N, 541

pH, 401, 541PO

4, 402

Potassium, 256, 262, 400, 457, 522Precipitation

rainfall, 37, 171, 225, 226, 398atmosphic P deposition, 50nutrients, 47, 48orthophosphate, 50total P concentration, 50

Prescribed burning, 259, 630, 631, 637Primary consumers, 489Procambarus fallax, 301, 311Production

macrophytes, 157, 363, 437, 520, 524, 525

ProductivityEverglades sloughs, 413plant gradient, 572, 574subsidy-stress model, 418

Project overviewcentral questions, 4research program, 4

Pseudanabaena, 263, 466

QQuality Assurance Plan (QAP), 105

Page 52: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

694 Index

Rr adapted species, 417Radiocarbon dating, 18Radiometric dating

Pb-210, C-14, Cs-137, 18, 21, 22, 580Ragweed. See AmbrosiaRainfall. See PrecipitationRaised-bog, 622Recalcitrant phosphorus, 514Recovery wells, 44Red bay. See Persea borboniaRedox

soil, 257, 332, 358, 360, 459, 542Reference area, 105, 223, 595Reference system, 595Reference zone, 246, 248, 253, 282, 311Refugia, 625Relative Growth Rate (RGR), 561Research program, 5Reservoirs

water area, 212Residence times

WCA-2A, 175, 188, 387Resource limitation, 495, 496Restoration, 621–642

community restoration target areas, 623

ecological approach, 621–642lessons

algal responses, 274–275carbon cycling, 368–370decomposition of litter and peat, 459Dissolved Organic Matter export,

368–370ecosystem responses to P dosing,

415–418effects of disturbance, P, and water

level on plant succession, 542–544

enrichment gradients, 151–165environmental and human factors,

56–58establishment and seedling growth of

Typha domingensis and Cladium jamaicense, 563–564

historical changes, 350–351hydrology gradients, 187macroinvertebrate responses, 317–319macroinvertebrate and fish response

to P, 502macrophyte community response,

258–260macrophyte slough community

response to experimental P, 438

management decisions for tree islands, 212

P dosing and soil chemistry, 415–418P dosing and water quality, 415–418P effects on algal assemblages, 472P threshold, 616–617phosphorus accretion rates, 592–593phosphorus Assimilative Capacity,

577–578plant community response to N and P

fertilization, 526–527soil characteristics, 72–73spatial distribution of TP, 592–593vegetation and algae, 87

plans, 633pond apple communities, 628sloughs, 629successional dynamics, 626tree islands, 630wet prairie, 629

Restoration guidelines, 634–640Restoration model, 628Restudy. See Florida Project Comprehensive

Review StudyRGR. See Relative Growth RateRisk

uncertainty analysis, 606River of Grass, 1, 13, 188, 636Root:shoot mass ratio, 562Rostrhamus sociabilis plumbeus, 45, 209Royal fern. See Osmunda regalis,Ruderal-competitor, 563

SSagittaria, 75, 78, 89, 160

P response, 422pollen, 340

Sagittaria lancifolia, 26, 230, 232. 236, 237, 329, 420, 507

Salix, 76, 80, 85, 93, 232, 237TP, 232, 628

Salix caroliniana, 236, 257Saltwater, 627Salvinia minima, 89, 232, 257Sampling

centroidsvegetation, 223

Sangamon interglacial stage, 170Sapric peat, 351Sarcostemma, 231Saturation index

Ca, 398Save Our Everglades, 323

Page 53: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

Index 695

Sawgrass. See Cladium jamaicenseSchinus terebinthifolius

nonnative taxa, 28, 33, 216, 632Schoenoplectus tabernaemontani, 90, 232Scirpus, 232Scytonema, 465Sea level, 14, 59, 168, 170Sea level rise, 627Sea otter, 601Secondary production, 500Sediment

P chemistry, 403TP, 303, 492, 500

Sediment APA-c, 410Seed bank, 631Seed germination rate, 538Seed mass, 552

number, 552Seed production, 552Seed viability, 554Seedling growth, 552, 560Seedling mass, 561Seedling relative growth rate, 561Sentinel wetland, 641Seral stage, 627SFWMD. See South Florida Water

Management DistrictShannon-Weaver diversity, 596

algae, 463, 468diatoms, 327pollen, 327

Shark River Bedrock Slough, 19, 45, 79, 171, 420Shelford’s Law of Tolerance, 279, 499, 497Shrub swamps

TP, 628Silica, 128, 238, 332Silver Bluff Terrace, 170Slough surface

orthophosphate, 129, 394, 436Sloughs, 78, 84

dosing experiment, 385fertilizer experiment, 507plant communities, 7, 26, 75, 217, 230,

249, 385, 419restoration, 629

Small, J.K.From Eden to Sahara, 24

Smoothing splines, 581Sodium, 124

accumulation, 333gradient, 122, 262molar ratios, 400porewater, 237vegetation, 257

Soilaccumulation rates, 329, 342

BSi, C, Ca, N, Na, P, 330bulk density, 62, 135, 137, 153, 353,

581, 587natural gradient, 586

characteristics, 59chloroform released P, 451dating methods, 326disturbance, 532exchangeable P, 451methods, 60microbial biomass P, 451nitrogen concentrations, 62, 515organic carbon, 62phosphorus, 62, 628phosphorus concentrations, 62, 512respiration, 352total phosphorus

pore water gradient, 229spatial distribution, 579threshold, 242volume-based STP, 584weight-based STP, 584

Soil gradientsurvey methods, 219

Soil phosphorusfractionation, 109, 133, 517historical concentrations, 134Kriged mapping results, 137spatial distribution model, 583

Soil physical properties, 110bulk density, 110spatial extent, 110

Soil subsidence rate, 442Soil Total Phosphorus (STP). See Soil; total

phosphorusSoligenous. See PeatlandSoluble Reactive Phosphorus, 53, 105, 116, 118,

385, 396, 613loadings, 396

South Florida, 168South Florida Water Management District, vii

website, 3, 41Spatial distribution patterns

volume-based STP, 586weight-based STP, 586

Species compositionpoint intercept method, 220

Species turnover, 410Spirogyra, 266, 269, 273, 461Spirulina subsalsa, 270, 466S-Plus, 607Spotted sunfish. See Lepomis punctatis

Page 54: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

696 Index

SRP. See Soluble reactive phosphorusSt. Lucie Canal, 39, 40, 42Standing litter, 524Starfish. See PisasterSTAs. See Stormwater Treatment AreasStaurastrum, 466Stigonema, 263, 465, 472Stomatal conductance

cattail and sawgrass, 550Stormwater Treatment Areas, 55, 567, 630

design criteria, 578P discharges, 56, 617P loadings, 56, 578reductions, 56seed source

Typha domingensis, 564STP. See Soil; total phosphorusStress response, 279, 301Stress-tolerant species, 563Subsampling effects

macroinvertebrates, 299Subsidy effect, 598Subsidy responses, 301Subsidy-stress gradient, 279Subsidy-stress model, 279–280, 478, 597Substrata, natural

algae, 273Subsurface soil

N mineralization, 451Subtropical fen, 72, 641Succession, 627

controlling factors, 33, 35, 57, 216, 225, 273model, 627restoration, 531, 537, 626vectors, 453, 495

Sugarcane fieldsDOC, 365production, 195

Sugarcane production, 195Sulfate

dosing concentrations, 400gradients, 125–127

Sulfur bacteria, 636Superphosphate, 510Surface soil

N mineralization, 451Surface water

Dissolved Oxygen, 109irradiation reduction

PAR, 436Mg, 541NH

4-N, 541

Surface water flow, 185resistance, 185

Surface water qualityWater Conservation Area 2A, 115Water Conservation Area 3A, 115

Swamp bay. See Magnolia virginianaSwamplands Act of 1850, 195Sweep net, 497

TTamiami Basin, 171Taxonomic groups, 87Temperature

daily, 36mat, 399

Thelypteris, 26, 236Three dimensional control

modelEverglades, 628

Thresholdprobability, 609

Throw traps, 497Tillers

cattail and sawgrass, 550Tolypothrix, 263Top-down control, 316, 496Top-down regulation, 312Topogenous. See PeatlandTotal P

loadsEPA, 55Hillsboro Canal, 118

TP thresholdnonexceedance value, 617

TP/PO4-P ratio, 605

Trace metals analysis, 112, 142Transition zone indicators

Macroinvertebrates, 311Transitional levee

Habitat, 86Transplant experiments

Dosing, 432Transplant study

Dosing, 421Utricularia purpurea, 421

Tree islands, 80, 86, 191–214, 625Classes, 202Comparison between WCA-1 and

WCA-2, 211Edge-to-edge ratio, 208Habitat edge, 206Imagery analysis, 201Landscape pattern, 203Loss, 204Nearest neighbor, 206

Page 55: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

Index 697

Patch density, 206Perimeter reduction, 211Restoration, 630Total numbers, 204Total perimeter, 206TP, 628

Tree snails. See LiguusTrichoptera, 303Trophic levels, 495Type 1 error, 607Typha domingensis, 154, 549, 607

Aboveground biomass, 154Carbohydrate reserves, 630Carbon fixation rate, 550Control

Mechanical disturbance, 631Establishment, 547Frequency, 230, 575

Relationship with soil TP, 238Germination, 540, 554Germination experiments, 551Germination rate, 554Invasion potential, 625Invasions, 539Leaf area, 524Lifespan, 549Litter

C:N ratio, 455C:P ratio, 455Cu concentrations, 455decay, 446N accumulation, 450N:P ratio, 455P concentrations, 455

litter bags, 444N:P ratios, 229, 518P effects, 217photosynthesis, 511, 525pollen, 337Relative Growth Rate, 562seed production, 551removal, 626, 630

chemical control, 630physical control, 630prescribed burning, 630

restoration of community types, 626

seed bank, 639seed germination rate, 630seedling growth, 547species descriptions, 548tissue nutrient concentrations, 515transpiration rate, 548

Typhaceae, 90, 549

UUncertainty

risk, 606analysis, 611, 615

US Army Corps of Engineers, 1, 39, 197, 579Central and Southern Florida Project

for Flood Control and Other Purposes, 195, 323

Comprehensive Plan (1948), 39website, 39, 45

US Environmental Protection Agency, 42, 6175 X rule nondetects, 108P criterion, 617

Utricularia, 75, 85, 92, 230decline, 420, 535disappearance, 506, 518, 521, 538inhibition, 429

hypothesis, 429N:P mass ratio, 518populations

water levels, 425, 538successional pattern, 538

Utricularia foliosa, 501Utricularia purpurea, 93, 242, 418, 501

as keystone species, 427decline, 349, 406, 420density, 425, 429growth rate, 438indicator species, 242, 607P threshold, 433shading effects, 438stem lengths, 438survival, 432

Utricularia spp.keystone species, 612

Utricularia-periphyton complex, 517nitrogen content, 517phosphorus concentrations, 517

UV radiationabiotic mineralization of DOC, 366

VVegetation, 257

communities, 73loss of wetland types, 73historic map, 17

Historical changes, 321Pattern, 318Responses to hydrologic indicators, 242

Vegetation compositioncoarse-scale ordination, 251

Vegetation gradientpartial Mantel tests, 251

Page 56: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

698 Index

Vegetation studies, 217Vegetation-environment linkages, 223, 249

allogenic, 253autogenic, 253

Vegetative reproduction, 549, 550

WWater Conservation Area 1, 9, 192, 580

peat accretion, 67, 580, 582, 622cattail invasion potential, 626DON budgets, 364Total Soil Phosphorus, 584

Water Conservation Area 2A, 83, 120, 125, 154, 197

area, 217cattail invasion potential, 626DON budgets, 364enriched carbon budget, 352high water levels, 227plant communities, 83

biomass, 83soil P, C, and N gradients, 138sulfate, 126Total Soil Phosphorus, 584unenriched carbon budget, 352water control structures, 172

Water Conservation Area 2Bfertilizer study, 532

Water Conservation Area 3A, 83, 118, 120, 124, 125, 158, 236, 580

area, 218cattail invasion potential, 626DON budgets, 364nutrient storage, 158plant biomass, 158plant communities, 83

biomass, 83soil P, C, and N gradients, 138Total Soil Phosphorus, 584

Water Conservation Areas, 579inflow P concentrations, 52interior P concentrations, 52N:P ratios, 54nitrogen gradient, 54outflow P concentrations, 52spatial P distributions, 579

Water demand, 622, 641agriculture, 641Everglades, 641urban, 641

Water depth, 236, 243, 534, 607recurrence interval calculations, 223recurrence intervals, 180–182

Water flow, 39, 170, 636direction, 183historic conditions, 41

Water hyacinth. See Eichhornia crassipes

Water hyssop. See Bacopa carolinianaWater impoundment, 636Water irradiation reduction, 436Water lettuce. See Pistia stratiotesWater level

dosing, 393effects, 242, 259, 346, 347, 425,

479, 535Lake Okeechobee, 41sloughs, 79WCA-2A, 199, 227WCA-2B, 509, 535WCA-3A, 236

Water qualityhistoric, 348pH. 347statistical analysis of data, 108surface, 104, 262

Water Resources Development Act (2000), 45

Water samplingDissolved Organic Phosphorus, 106Methods, 105Particulate P, 106

Water velocity profiles, 185Wax myrtle. See Myrica ceriferaWCAs. See Water Conservation

AreasWest Palm Beach Canal, 195Wet prairies, 75, 78

restoration, 629vegetation, 538

Wetland bioassessment, 278Wetland loss

typesEverglades, 73, 74

White ibis. See Eudocimus albusWilloughby, H.L., 39Willow. See SalixWood stork. See Mycteria

Americana

ZZinc, 140, 141

β-diversityχ2 test, 607

Page 57: Bibliography978-0-387-68923-4...analysis using classification and regression tree (CART) models. Environ. Toxicol. Chem. 18:1817–1823 Anagnostidis, K. and J. Komárek. 1988. Modern

Ecological Studies

Current List of Titles in Ecological Studies Series:

Volume 185Ecology and Conservation of Neotropical Montane Oak ForestsM. Kappelle

Volume 186Biological Invasions in New ZealandR.B. Allen

Volume 187Managed Ecosystems and CO2: Case Studies, Processes, and Perspectives J. Nosberger

Volume 188Boreal Peatland Ecosystems R.K. Wieder

Volume 189Ecology of Harmful AlgaeE. Graneil

Volume 190Wetlands and Natural Resource Management J.T.A. Verhoeven

Volume 191Wetlands: Functioning, Biodiversity Conservation, and Restoration R. Bobbink

Volume 192Geological Approaches to Coral Reef EcologyR.B. Aronson

Volume 193Biological InvasionsW. Nentwig

Volume 194Clusia: A Woody Neotropical Genus of Remarkable Plasticity and Diversity U.E. Luttge

Volume 195The Ecology of Browsing and Grazing I.J. Gordon

Volume 196Western North American Juniperus Communities: A Dynamic Vegetation TypeO. Van Auken

Volume 197Ecology of Baltic Coastal Waters U. Schiewer

Volume 198Gradients in a Tropical Mountain Ecosystem of Ecuador E. Beck

Volume 199Hydrological and Biological Responses to Forest Practices: The Alsea Watershed StudyJ. Stednick

Volume 200Arid Dune Ecosystems: The Nizzana Sands in the Negev DesertS. Breckle

Volume 201The Everglades Experiments: Lessons for Ecosystem RestorationC.J. Richardson