Top Banner
1 1 Bayesian networks for reconstructing transcriptional regulatory networks Prof Su-In Lee Computer Science & Genome Sciences University of Washington, Seattle GENOME 541 Introduction to Computational Molecular Biology II 2 All living organisms are composed of cells
27

Bayesian networks for reconstructing transcriptional ...homes.cs.washington.edu/~suinlee/genome541/... · Goal: Inferring regulatory networks “Expression data” e 1 e 6 … e Q

May 20, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Bayesian networks for reconstructing transcriptional ...homes.cs.washington.edu/~suinlee/genome541/... · Goal: Inferring regulatory networks “Expression data” e 1 e 6 … e Q

1

1

Bayesian networks for reconstructing transcriptional regulatory networks

Prof Su-In LeeComputer Science & Genome Sciences

University of Washington, Seattle

GENOME 541Introduction to Computational Molecular Biology II

2

All living organisms are composed of cells

Page 2: Bayesian networks for reconstructing transcriptional ...homes.cs.washington.edu/~suinlee/genome541/... · Goal: Inferring regulatory networks “Expression data” e 1 e 6 … e Q

2

3

From DNA to proteinperson x’s cell

AGATATGTGGATTGTTAGGATTTATGCGCGTCAGTGACTACGCATGTTACGCACCTACGACTAGGTAATGATTGATC

DNA

AUGUGGAUUGUU AUGCGCGUC AUGUUACGCACCUAC AUGAUUGAURNA

Protein MWIV MRV MLRTY MID

GeneAGATATGTGGATTGTTAGGATTTATGCGCGTCAGTGACTACGCATGTTACGCACCTACGACTAGGTAATGATTGATC

AUGCGCGUC

MID

AUGAUUAUAUGAUUGAU

MID

“Gene Expression”

a switch! (“transcription factor binding site”)

“Gene regulation”

transcription

translation

MWIV MLRTY

Transcription factor

Transcription factor

22,000 genes in human!

MRV

Genes regulate each others’ expression⇒ some biological processes

gene regulatory network

A and B regulate the expression of CA

B

C

4

Inferring the regulatory network

For example,

Given gene expression datameasuring RNA levels of all genes

Infer the regulatory network that controls gene expression

DNA (3 billion-long string)…AGCTATAGCATAGCACTACAGACAGCATACACACCATTTTAAAACGCGCACAAAAATCAGCTAAACCAGGGTTACTACGACACTTACAACTACATT…

gene regulatory network

N instancesDifferent conditions

g1 gQ…g5

gene expression data

Page 3: Bayesian networks for reconstructing transcriptional ...homes.cs.washington.edu/~suinlee/genome541/... · Goal: Inferring regulatory networks “Expression data” e 1 e 6 … e Q

3

5

Outline

Mathematical toolsGene expression data and basic analysis techniquesReconstructing regulatory networksIndividual sequence variation and gene regulation

6

Learning goals

Be familiar with:a well-known Comp Bio problem

Reconstructing the regulatory network from expression dataHow to evaluate the learned network

probabilistic models in ML Bayesian network representationParameter/structure learning of a Bayesian networkFeature selection problem

Page 4: Bayesian networks for reconstructing transcriptional ...homes.cs.washington.edu/~suinlee/genome541/... · Goal: Inferring regulatory networks “Expression data” e 1 e 6 … e Q

4

7

Outline

Mathematical toolsBayesian network representationLearning the structure of Bayesian networks

Gene expression data and basic analysis techniquesReconstructing regulatory networksIndividual sequence variation and gene regulation

8

Probability theory reviewAssume random variables Val(A)={a1,a2,a3}, Val(B)={b1,b2}Conditional probability

Definition

Chain rule

Bayes’ rule

Probabilistic independence

Page 5: Bayesian networks for reconstructing transcriptional ...homes.cs.washington.edu/~suinlee/genome541/... · Goal: Inferring regulatory networks “Expression data” e 1 e 6 … e Q

5

9

Bayesian network semantics [koller and Friedman]

A Bayesian network structure G is a directed acyclic graph whose nodes represent random variables X1,…,Xn.

PaXi: parents of Xi in GNonDescendantsXi: variables in G that are not descendants of Xi.

G encodes the following set of conditional independence assumptions, called the local Markov assumptions, and denoted by IL(G):

For each variable Xi: x1

x2

x3

x4

x5

x6

x3

x7

x11

x10

x8

x9

10

The Genetics example [koller and Friedman]

VariablesB: blood type (a phenotype)G: genotype of the gene that encodes a person’s blood type; <A,A>, <A,B>, <A,O>, <B,B>, <B,O>, <O,O>

Page 6: Bayesian networks for reconstructing transcriptional ...homes.cs.washington.edu/~suinlee/genome541/... · Goal: Inferring regulatory networks “Expression data” e 1 e 6 … e Q

6

11

Bayesian network joint distribution [koller and Friedman]

Let G be a Bayesian network graph over the variables X1,…,Xn. We say that a distribution P factorizes according to G if P can be expressed as:

A Bayesian network is a pair (G,P) where P factorizes over G, and where P is specified as a set of CPDs associated with G’s nodes.

12

The Student example [koller and Friedman]

An intuitive exampleCourse difficulty (D) , Intelligence (I), Grade (G), quality of the recommendation letter (L), SAT (S)Val(D) = {easy, hard}, Val(L) = {strong, weak}, Val (I) = {i1,i0}, Val (S) = {s1,s0}, Val (G) = {g1,g2,g3}

Conditional independenceL ㅗ I, D, S | GS ㅗ I, D, G, L | IG ㅗ S | I, DI ㅗ D

:

Page 7: Bayesian networks for reconstructing transcriptional ...homes.cs.washington.edu/~suinlee/genome541/... · Goal: Inferring regulatory networks “Expression data” e 1 e 6 … e Q

7

13

The Student Bayesian networkJoint distribution

P(I,D,G,S,L) =

14

Parameter estimationAssumptions

Fixed network structureFully observed instances of the network variables: D={d[1],…,d[M]}Maximum likelihood estimation (MLE)!

“Parameters” of the Bayesian network

For example, {i0,d1,g1,l0,s0}

Page 8: Bayesian networks for reconstructing transcriptional ...homes.cs.washington.edu/~suinlee/genome541/... · Goal: Inferring regulatory networks “Expression data” e 1 e 6 … e Q

8

15

The Thumbtack example [koller and Friedman]

Parameter learning for a single variable.

VariableX: an outcome of a thumbtack tossVal(X) = {head, tail}

DataA set of thumbtack tosses: x[1],…x[M]

X

16

Maximum likelihood estimationSay that P(x=head) = Θ, P(x=tail) = 1-Θ

P(HHTTHHH…<Mh heads, Mt tails>; Θ) =

Definition: The likelihood functionL(Θ : D) = P(D; Θ)

Maximum likelihood estimation (MLE)Given data D=HHTTHHH…<Mh heads, Mt tails>, find Θthat maximizes the likelihood function L(Θ : D).

Page 9: Bayesian networks for reconstructing transcriptional ...homes.cs.washington.edu/~suinlee/genome541/... · Goal: Inferring regulatory networks “Expression data” e 1 e 6 … e Q

9

17

MLE for the Thumbtack problemGiven data D=HHTTHHH…<Mh heads, Mt tails>,

MLE solution Θ* = Mh / (Mh+Mt ).

Proof:

18

MLE for Bayesian networksLikelihood decomposition:

The local likelihood function for Xi is:

Bayesian network with table CPDs

Page 10: Bayesian networks for reconstructing transcriptional ...homes.cs.washington.edu/~suinlee/genome541/... · Goal: Inferring regulatory networks “Expression data” e 1 e 6 … e Q

10

19

Activator’s RNA level

A toy example with 4 genesActivator, Repressor, Target, Target2

Bayesian network representationConditional independence structureEstimate the parameters & structure that give the best fit to data.

ChallengesToo many genes (22,000 genes)!Too many possible structures ⇒ too large search space

How to resolve?A new type of probabilistic modelBiologically plausible assumptions

Target2’s RNA level

Target’s RNA level

Learning the regulatory networkRepressor’s

RNA level

0.2

0.1

0.95

0.3

T=high

0.9A=lowR=high

0.8A=lowR=low

0.05A=high R=low

0.7A=high R=high

T=low

TA R T20.1

0.99

T2=high

0.9T=low

0.01T=high

T2=low

gene expression data

N instances

parameters

structure

20

Outline

Mathematical toolsGene expression data and basic analysis techniquesReconstructing the regulatory networkIndividual sequence variation and gene regulation

Page 11: Bayesian networks for reconstructing transcriptional ...homes.cs.washington.edu/~suinlee/genome541/... · Goal: Inferring regulatory networks “Expression data” e 1 e 6 … e Q

11

21

Experiments (samples)

Gen

esInduced

Repressed

j

i

Eij - RNA level of gene j in experiment i

Gene expression data

Down-regulated

Up-regulated

From Dr Segal’s slides

22

Why care about “clustering” ?

E1 E2 E3

Gene 1

Gene 2

Gene N

E1 E2 E3

Gene N

Gene 1

Gene 2

Discover functional relationSimilar expressionfunctionally related

Assign function to unknown gene

Find which gene controls which other genes

Find regulatory motifs (more later)

Page 12: Bayesian networks for reconstructing transcriptional ...homes.cs.washington.edu/~suinlee/genome541/... · Goal: Inferring regulatory networks “Expression data” e 1 e 6 … e Q

12

23

Hierarchical agglomerative

Compute all pairwise distancesData instances

Merge closest pair

From Dr Segal’s slides

24

Clustering expression profilesData instances

Co-regulated genes cluster together

Infer gene function

Limitations:No explanation on what caused expression of each gene(No regulatory mechanism)

Limitations:No explanation on what caused expression of each gene(No regulatory mechanism)

From Dr Segal’s slides

Page 13: Bayesian networks for reconstructing transcriptional ...homes.cs.washington.edu/~suinlee/genome541/... · Goal: Inferring regulatory networks “Expression data” e 1 e 6 … e Q

13

25

Outline

Mathematical toolsGene expression data and basic analysis techniquesReconstructing the regulatory networkIndividual sequence variation and gene regulation

26

Goal: Inferring regulatory networks“Expression data”

e1 eQe6…

Infer the regulatory network that controls gene expression

Causality relationships among e1-Q

Bayesian networks

Q≈2x104

(for human)

A and B regulate the expression of C(A and B are regulators of C)

AB

C

Experimental conditions

Page 14: Bayesian networks for reconstructing transcriptional ...homes.cs.washington.edu/~suinlee/genome541/... · Goal: Inferring regulatory networks “Expression data” e 1 e 6 … e Q

14

27

Regulatory networkBayesian network representation

Xi: expression level of gene iVal(Xi): continuous

InterpretationConditional independenceCausal relationships

Joint distributionP(X) =

X1

X3 X4

X5 X6

X2

Conditional probability distribution (CPD)?

28

Context specificity of gene expression

Context ABasal expression level

Upstream regionof target gene (X5)

RNAlevel

Activator (X3)

activatorbinding site

Context BActivator induces expression

repressorbinding site

Repressor (X4)

activatorbinding site

Activator (X3)

Context CActivator + repressor decrease expression

X1

X3 X4

X5 X6

X2

?

Segal et al. Nat Genet 2003

Page 15: Bayesian networks for reconstructing transcriptional ...homes.cs.washington.edu/~suinlee/genome541/... · Goal: Inferring regulatory networks “Expression data” e 1 e 6 … e Q

15

29

Context specificity of gene expression

Context ABasal expression level

Upstream regionof target gene (X5)

RNAlevel

Activator (X3)

activatorbinding site

Context BActivator induces expression

repressorbinding site

Repressor (X4)

activatorbinding site

Activator (X3)

Context CActivator + repressor decrease expression

X1

X3 X4

X5 X6

X2

?

truefalse

X4

-3

P(Level)

Level

. . .

truefalse

3

P(Level)

Level

0

P(Level)

Level

X3

Context A

Context CContext B

30

ParameterizationTree conditional probability distributions (CPDs)

mean (µ) & variance (σ2) of the normal distribution in each context

X1

X3 X4

X5 X6

X2

Tree CPD

truefalse

X4

-3

P(Level)

Level

. . .

truefalse

3

P(Level)

Level

0

P(Level)

Level

X3

Context AContext B Context C

(μA,σA)(μB,σB) (μC,σC)

Page 16: Bayesian networks for reconstructing transcriptional ...homes.cs.washington.edu/~suinlee/genome541/... · Goal: Inferring regulatory networks “Expression data” e 1 e 6 … e Q

16

31

Reconstructing the networkTraining data

Gene expression data

GoalLearn the structure & tree CPDs parameters

X1

X3 X4

X5 X6

X2truefalse

X4

-3

P(Level)

Level

. . .

truefalse

3

P(Level)

Level

0

P(Level)

Level

X3

Context AContext B Context C

(μA,σA)

(μB,σB)(μC,σC)

32

LearningStructure learning [Koller & Friedman]

Constraint based approachesScore based approachesBayesian model averaging

Scoring functionLikelihood scoreBayesian score

X1

X3 X4

X5 X6

X2

Given a set of all possible network structures and the scoring functionthat measures how well the model fits the observed data, we try to select the highest scoring network structure.

Page 17: Bayesian networks for reconstructing transcriptional ...homes.cs.washington.edu/~suinlee/genome541/... · Goal: Inferring regulatory networks “Expression data” e 1 e 6 … e Q

17

33

Scoring functionsLet S: structure, ΘS: parameters for S, D: dataLikelihood score

Bayesian scoreX1

X3 X4

X5 X6

X2

X1

X3 X4

X5 X6

X2

34

Modularity of regulatory networksGenes tend to be co-regulated with others by the same factors.

X1

X3 X4

X5 X6

X2Module 2

Module 3

Module 1

Same module ⇒Share the CPD

Biologically more relevant

More compact representationSmaller number of parametersReduced search space for structure learning

Candidate regulatorsA small set of genes that can be parents of other modules.

X1

X3 X4

Page 18: Bayesian networks for reconstructing transcriptional ...homes.cs.washington.edu/~suinlee/genome541/... · Goal: Inferring regulatory networks “Expression data” e 1 e 6 … e Q

18

35

Reconstructing the regulatory networkTraining data

Gene expression data

GoalLearn the structure & tree CPDs parameters

X1

X3 X4

X5 X6

X2Module 2

Module 3

Module 1

truefalse

X4

-3

P(Level)

Level

. . .

truefalse

3

P(Level)

Level

0

P(Level)

Level

X3

Context AContext B Context C

(μA,σA)

(μB,σB)(μC,σC)

X1X2:

X6:

genes

experiments (arrays)

Context specificity

36

Review: Structure learningFind the structure S that maximizes P(S|D)

P(Structure|Data) ∝ P(D|S) P(S)maximizeS log P(D|S) + log P(S)

⇒ P(D|S) = ∫ P(D|S,ΘS) P(ΘS|S) dΘS

P(S): prior distribution on the structure

DecomposabilityFor a certain structure S, log P(D|S)

= log ∫ P(D|S,ΘS) P(ΘS|S) dΘS

= log ∫ P(X1|Θm1) P(Θm1) dΘm1

+ log ∫ P(X2,X3,X4|X1,Θm2) P(Θm2) dΘm2

+ log ∫ P(X5,X6|X3,X4,Θm3) P(Θm3) dΘm3

X1

X3 X4

X5 X6

X2

Structure S ?

Data D

X1X2:

X6:

genes

experiments (arrays)

Module 2

Module 3

Module 1

P(X1|Θm1)P(X2,X3,X4|X1,Θm2) P(X5,X6|X3,X4,Θm3)

P(Θm1)P(Θm2) P(Θm3)

dΘm1 dΘm2 dΘm3

ML score: maxΘ log P(D|S,Θ)⇒ More prone to overfitting

module 1 score

module 2 score

module 3 score

Page 19: Bayesian networks for reconstructing transcriptional ...homes.cs.washington.edu/~suinlee/genome541/... · Goal: Inferring regulatory networks “Expression data” e 1 e 6 … e Q

19

37

X1

X3 X4

X5 X6

X2Module 2

Module 3

Module 1

truefalse

X4

-3

P(Level)

Level

. . .

truefalse

3

P(Level)

Level

0

P(Level)

Level

X3

Context AContext B Context C

(μA,σA)

GoalIdentify modules (member genes)Discover module regulation program

genes(X’s)

experiments

Regulation program

X1

X3 X4

Candidate regulators

HAP4

YGR043Ctruefalse

truefalse

38

LearningStructure learning

Find the structure that maximizes Bayesian scorelog P(S|D).

Expectation Maximization (EM) algorithmM-step: Given a partition of the genes into modules, learn the best regulation program (tree CPD)for each module.E-step: Given the inferred regulatory programs, we reassign genes into modules such that the associated regulation program best predicts each gene’s behavior.

Page 20: Bayesian networks for reconstructing transcriptional ...homes.cs.washington.edu/~suinlee/genome541/... · Goal: Inferring regulatory networks “Expression data” e 1 e 6 … e Q

20

39

Iterative procedureCluster genes into modules (E-step)Learn a regulatory program for each module (M-step)

Learning regulatory network

PHO5PHM6

SPL2

PHO3PHO84

VTC3GIT1

PHO2

GPA1

ECM18

UTH1MEC3

MFA1

SAS5SEC59

SGS1

PHO4

ASG7

RIM15

HAP1

TEC1

M1

MSK1

M22

KEM1

MKT1DHH1

PHO2

HAP4MFA1

SAS5PHO4

RIM15

Maximum increase in Bayesian score

Candidate regulators

40

From expression to regulation (M-step)Combinatorial search over the space of trees

Arrays sorted in original order

HAP4

Arrays sorted according to

expression of HAP4Segal et al. Nat Genet 2003

PHO5PHM6

PHO3PHO84

VTC3GIT1

PHO2

HAP4

PHO4

Page 21: Bayesian networks for reconstructing transcriptional ...homes.cs.washington.edu/~suinlee/genome541/... · Goal: Inferring regulatory networks “Expression data” e 1 e 6 … e Q

21

41

From expression to regulation (M-step)

HAP4 SIP4

Segal et al. Nat Genet 2003

PHO5PHM6

PHO3PHO84

VTC3GIT1

PHO2

HAP4

PHO4

SIP4

42

Learning control programs

HAP4

0 0

Score:log P(M | D)

log ∫P(D | M,µ,σ )P(µ,σ) dµdσ

Score of HAP4 split:log P(M | D)

log ∫P(DHAP4 | M,µ,σ )P(µ,σ) dµdσ

+ log ∫P(DHAP4 | M,µ,σ )P(µ,σ) dµdσ

0

Segal et al. Nat Genet 2003

Page 22: Bayesian networks for reconstructing transcriptional ...homes.cs.washington.edu/~suinlee/genome541/... · Goal: Inferring regulatory networks “Expression data” e 1 e 6 … e Q

22

43

Learning control programsHAP4

0 0

Split as long as the score improves

HAP4

0 0

YGR043C

0

Score of HAP4/YGR043C split:log P(M | D) ∝

log ∫P(DHAP4 |M,µ,σ)P(µ,σ) dµdσ+ log ∫P(DHAP4 DYGR043C |M,µ,σ)P(µ,σ) dµdσ

+ log ∫P(DHAP4 DYGR043C |M,µ,σ)P(µ,σ) dµdσ

Score of HAP4 split:log P(M | D) ∝

log ∫P(DHAP4 | M,µ,σ )P(µ,σ) dµdσ+ log ∫P(DHAP4 | M,µ,σ )P(µ,σ) dµdσ

44

Selecting candidate regulators

Direct/Indirect transcriptional regulatorsSelected:

Experimentally verified controllers (known)Putative controllers (by domain)Transcription factors, signaling molecules, receptors

Yeast: ~8% genome

From Dr Segal’s slides

Page 23: Bayesian networks for reconstructing transcriptional ...homes.cs.washington.edu/~suinlee/genome541/... · Goal: Inferring regulatory networks “Expression data” e 1 e 6 … e Q

23

45

Module network proceduredata selectionExpression

data

Experimental tests of computational predictions

Gene reassignment

to modules

Pre-processing

Gene partition

clustering

Module networkprocedure

Modules

Mot

ifsA

nnot

atio

ns

Candidate regulators

regulatorselection

Conditions

Gen

es

(TRANSFAC)

Annotations (GO, KEGG)

Regulation program learning

Functional modules

Post-processing

Graphic presentation GeneXPress.stanford.edu

Segal et al. Nat Genet 2003

M-step

E-step

46

Yeast Stress Data (Gasch et al)Genes

Selected 2355 genes that showedactivity

ExperimentsDiverse environmental stressconditions (heat shock, hydrogenperoxide, menadione,…)Time series for each conditionUsed all 173 arrays

From Dr Segal’s slides

Page 24: Bayesian networks for reconstructing transcriptional ...homes.cs.washington.edu/~suinlee/genome541/... · Goal: Inferring regulatory networks “Expression data” e 1 e 6 … e Q

24

47

Module Evaluation CriteriaAre the module genes functionally coherent?Do the regulators have regulatory roles in the predicted conditions?Are the genes in the module known targets of the predicted regulators?Are the regulators consistent with the regulatory motifs found in upstream of the module genes?

48

Module functional coherence

Metabolic: AA, respiration, glycolysis, galactose

Stress: Oxidative stress, osmotic stress

Cellular localization: Nucleas, ER

Cellular processes: Cell cycle, sporulation, mating

Molecular functions: Protein folding, RNA & DNA processing, trafficking

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Coh

eren

ce (%

)

26 Modules>60% Coherent

41 Modules>40% Coherent

From Dr Segal’s slides

Page 25: Bayesian networks for reconstructing transcriptional ...homes.cs.washington.edu/~suinlee/genome541/... · Goal: Inferring regulatory networks “Expression data” e 1 e 6 … e Q

25

49

Respiration module

HAP4 known to up regulate Oxid. Phos.

From Dr Segal’s slides

50

Respiration Module

HAP4 known to up regulate Oxid. Phos.

HAP4, MSN4, XBP1 known to be regulators under predicted conditions

From Dr Segal’s slides

Page 26: Bayesian networks for reconstructing transcriptional ...homes.cs.washington.edu/~suinlee/genome541/... · Goal: Inferring regulatory networks “Expression data” e 1 e 6 … e Q

26

51

Respiration Module

HAP4, MSN4, XBP1 known to be regulators under predicted conditions

HAP4 known to up regulate Oxid. Phos.

HAP4 Binding sitefound in 39/55 genes

From Dr Segal’s slides

52

Respiration Module

HAP4 Binding sitefound in 39/55 genes

HAP4, MSN4, XBP1 known to be regulators under predicted conditions

HAP4 known to up regulate Oxid. Phos.

MSN4 Binding sitefound in 28/55 genes

From Dr Segal’s slides

Page 27: Bayesian networks for reconstructing transcriptional ...homes.cs.washington.edu/~suinlee/genome541/... · Goal: Inferring regulatory networks “Expression data” e 1 e 6 … e Q

27

53

Complete module evaluation# Modulea # Gb C (%)c Reg.d M C G Reg.d M C G Reg.d M C G Reg.d M C G Motif Signaturee

1 Respiration and carbon regulation 55 84 Hap4 Alpha2 Cmk1 Gac1 [HAP234, ADR1] [HAP234, STRE]Xbp1 Msn4

2 Energy, osmolarity and cAMP signaling 64 64 Tpk1 Kin82 Yer184c Cmk1 [STRE, ADR1] [STRE, CAT8]Ppt1 Kns1

3 Energy and Osmotic stress I 31 65 Xbp1 Kin82 Tpk1 [STRE, MIG1] [STRE, ADR1]4 Energy and Osmotic stress II 42 38 Ypl230w Yap6 Gac1 Wsc4 [REPCAR,ADR1] [REPCAR, STRE] [ADR1, CAT8]5 Glycolysis and Folding 37 86 Gcn20 Ecm22 Bmh1 Bas1 [GCR1, CBF1] [GCR1, STRE]6 Galactose metabolism 4 100 Gal4 Gac1 Hir3 Ime4 [GAL4, REPCAR] [GAL4, ADR1]7 Snf kinase regulated processes 74 47 Ypl230w Yap6 Tos8 Sip2 [N7, ADR1] [N7, STRE] [N7, GCR1]8 Nitrogen catabolite repression 29 66 Gat1 Plp2 [GATA, STRE] [GATA,CBF1] [GATA,GCN4]9 AA metabolism I 39 95 Gat1 Ime4 Cdc20 Slt2 [GCN4,CBF1] [GCN4,GATA]

10 AA metabolism II 37 95 Xbp1 Hap4 Afr1 Uga3 [GCN4,STE12] [GCN4,STRE]Ppt1

11 AA and purine metabolism 53 92 Gat1 Ppz2 Rim11 [N11,GCN4] [N11,STRE]12 Nuclear 47 47 Alpha2 Ino2 [N12,STRE]13 Mixed I 28 50 Pph3 Ras2 Tpk1 [N13,ADR1]14 Ribosomal and phosphate metabolism 32 81 Ppt1 Sip2 Cad1 [N13, LEU3]15 mRNA,rRNA and tRNA processing 43 40 Lsg1 Tpk2 Ppt1 [N13,REB1] [N13,ABF1]16 RNA Processing and Cell Cycle 59 36 Ypl230w Ime4 Ppt1 Tpk2 [N16, GCR1]

Rho2 Mcm117 DNA and RNA processing 77 43 Tpk1 Gis1 Ppt1 [N13, GCN4]18 TFs and RNA processing 59 68 Gis1 Pph3 Tpk2 Lsg1 [N18, N13]19 TFs and nuclear transport 48 56 Ypl230w Met18 Ppt1 [N19, N38] [N19, ABF1]20 TFs I 53 92 Cdc14 Mcm1 Ksp1 [N20,N48]21 TFs II 50 54 [N21, ADR1]22 TFs, cell wall and mating 39 59 Ptc3 Sps1 [MSE, CBF1] [MSE, MATA]23 TFs and sporulation 43 60 Rcs1 Ypl133c [N23, REB1]24 Sporulation and TFs 74 39 Gcn20 Gat1 Ste5 [N24,N46]25 Sporulation and cAMP pathway 59 37 Xbp1 Ypl230w Sip2 Not3 [ADR1, STRE]26 Sporulation and Cell wall 78 40 Ypl230w Yap6 Msn4 [N26, ADR1] [N26, STRE]27 Cell wall and transport I 23 48 Shp1 Bcy1 Gal80 Ime1 [N27,ADR1] [N27,STRE]

Yak128 Cell wall and Transport II 63 46 Ypl230w Kin82 Msn4 [STRE, MCM1]29 Cell differentiation 41 71 Ypl230w Ypk1 Cna1 [STE12, XBP1]30 Cell cycle (G2/M) 30 70 Cdc14 Clb1 Far1 [N30,MCM1]31 Cell cycle, TFs and DNA metabolism 71 85 Gis1 Ste5 Clb532 Cell cycle and general TFs 64 72 Ime4 Ume1 Xbp1 Prr1 [N32,ABF1]

Cnb1 Arp933 Mitochondrial and Signaling 87 60 Tpk1 Cmk1 Yer184c Gis1 [N33,STRE] [N33, ADR1] [STRE, ADR1]34 Mitochondrial and Protein fate 37 78 Ypk1 Sds22 Rsc3 [N34, STRE] [N34, XBP1]35 Trafficking and Mitochondrial 87 56 Tpk1 Sds22 Mrf1' [N35, N30]36 ER and Nuclear 79 86 Gcn20 Yjl103c Not3 Tup1 [N36, ABF1] [N36, XBP1]37 Proteasome and Endocytosis 31 71 Ime4 Cup9 Bmh2 Hrt1 [N37, REB1] [N37, ABF1] [N37, ADR1] [N37, HSF]38 Protein modification and trafficking 62 79 Ypl230w Ptc3 Cdc42 [N38, N7]39 Protein folding 23 87 Bmh1 Bcy1 Ypl230w [HSF, XBP1] [HSF, ADR1] [HSF, GCN4] [HSF, CAT8]40 Oxidative stress I 15 80 Yap1 Sko1 Far1 [YAP1, STRE] [YAP1, HSF] [YAP1, XBP1]41 Oxidative stress II 15 73 Tos8 Flo8 [YAP1, STRE]42 Unkown (sub-telomeric) 82 45 Gcn2043 Unknown genes I 36 42 [STRE, PHO4] [STRE, STE12]44 Unknown genes II 29 14 Apg1 Pcl10 [N44, STRE]45 Unknown genes III 39 5 Xbp1 Kar4 [N45, STRE]46 Mixed II 52 42 Gcn20 Tos8 Sip2 [N46, STRE]47 Mixed III 41 63 Gcn20 Ume1 Cnb1 [XBP1, HAC1] [XBP1, REB1]48 Mixed IV 35 29 Fkh1 Sho1 [N48, N34]49 Ty ORFs 16 650 Missing values 64 39 [N50, STRE]

M: enrichment for motif known to participate in regulation by

respective regulator

G: Respective regulator known to regulate module genes or their

implied process

C: Respective regulator known to have a role under

the predicted condition

Segal et al. Nat Genet 2003

54

Results summarizedModules span a wide variety of processesincluding metabolic pathways, stress responses, cell-cycle related processes, molecular functions, and cellular compartments.

46/50 functionally coherent modules

30/50 modules included genes known to be regulated by the module’s predicted regulators

15/50 modules had a match between the predicted regulator and its known motif (transcription binding sites)

From Dr Segal’s slides