Top Banner
Video Coding For Compression . . . and Beyond Bernd Girod Bernd Girod I nformation Systems Laboratory nformation Systems Laboratory Department of Electrical Engineering Department of Electrical Engineering Stanford University Stanford University
51
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Barcelona keynote web

Video Coding For Compression

. . . and Beyond

Bernd GirodBernd GirodIInformation Systems Laboratorynformation Systems Laboratory

Department of Electrical EngineeringDepartment of Electrical Engineering

Stanford UniversityStanford University

Page 2: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 2

Bit Consumption of US Households

Total for 70M households ~230 Exabyte/year

Television 94%

Radio 1.7%

Recorded Music 0.4%

Newspaper 0.0003%

Books 0.0002%

Magazines 0.0002%

Home video 3.3%

Video games 0.6%

Internet 0.0003%

[Source: UC Berkeley: How much Information]

Bit equivalent, assuming state-of-the-art compression, year 2000

Page 3: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 3

Desirable Compression Ratios

DSL

~200 kbps~ 1,000 : 1

Dial-up modem, wireless link

~ 20 kbps~ 10,000 : 1

ITU-R 601166 Mbps

CIF

QCIF

SDTV broadcasting ~2 Mbps

~ 100 : 1

Page 4: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 4

Outline

Video compression – state-of-the-art Beyond compression

– Rate-scalable video– Wavelet video coding– Error-resilient video transmission– Unequal error protection– Optimal scheduling for packet networks– Distributed video coding

Page 5: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 5

Outline

Video compression – state-of-the-art Beyond compression

– Rate-scalable video– Wavelet video coding– Error-resilient video transmission– Unequal error protection– Optimal scheduling for packet networks– Distributed video coding

Page 6: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 6

“It has been customary in the past to transmit successive complete images of the transmitted picture.” [...]“In accordance with this invention, this difficulty is avoided by transmitting only the difference between successive images of the object.”

Page 7: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 7

Motion-Compensated Hybrid Coding

EntropyCoding

Deq./Inv. Transform

Motion-Compensated

Predictor

ControlData

Quant.Transf. coeffs

MotionData

0

Intra/Inter

CoderControl

Decoder

MotionEstimator

Transform/Quantizer-

Standards: H.261, MPEG-1, MPEG-2, H.263, MPEG-4, H.264/AVC

Video in

Page 8: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 8

Motion-Compensated Hybrid Coding

EntropyCoding

Deq./Inv. Transform

Motion-Compensated

Predictor

ControlData

Quant.Transf. coeffs

MotionData

0

Intra/Inter

CoderControl

Decoder

MotionEstimator

Transform/Quantizer-

Standards: H.261, MPEG-1, MPEG-2, H.263, MPEG-4, H.264/AVC

Video in

¼-pixel accuracy

Page 9: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 9

Motion-Compensated Hybrid Coding

EntropyCoding

Deq./Inv. Transform

Motion-Compensated

Predictor

ControlData

Quant.Transf. coeffs

MotionData

0

Intra/Inter

CoderControl

Decoder

MotionEstimator

Transform/Quantizer-

Standards: H.261, MPEG-1, MPEG-2, H.263, MPEG-4, H.264/AVC

Video in

Adaptive block sizes. . .

Page 10: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 10

Motion-Compensated Hybrid Coding

EntropyCoding

Deq./Inv. Transform

Motion-Compensated

Predictor

ControlData

Quant.Transf. coeffs

MotionData

0

Intra/Inter

CoderControl

Decoder

MotionEstimator

Transform/Quantizer-

Standards: H.261, MPEG-1, MPEG-2, H.263, MPEG-4, H.264/AVC

Video in

Multiple Past Reference Frames

Page 11: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 11

EntropyCoding

Deq./Inv. Transform

Motion-Compensated

Predictor

ControlData

Quant.Transf. coeffs

MotionData

0

Intra/Inter

CoderControl

Decoder

MotionEstimator

Transform/Quantizer-

Motion-Compensated Hybrid Coding

Standards: H.261, MPEG-1, MPEG-2, H.263, MPEG-4, H.264/AVC

Video in

Generalized B-Frames

Page 12: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 12

Rate-Distortion Optimized Coder Control

Minimize Lagrangian cost function

Strategy: minimize Ji for each block i separately, using a common

Lagrange multiplier

i i ii i

J D R D R J

Totaldistortion

Totalbit-rate

Distortion

for block iRate

for block iLagrangian

cost

for block i

Page 13: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 13

Multiple Reference Frames in H.264/AVC

Mobile & Calendar (CIF, 30 fps)

0 1 2 3 426272829303132333435363738

R [Mbit/s]

PS

NR

Y [d

B]

PBB... with generalized B pictures PBB... with classic B pictures PPP... with 5 previous references PPP... with 1 previous reference

~15%

Page 14: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 14

Mobile & Calendar (CIF, 30 fps)

0 1 2 3 426272829303132333435363738

R [Mbit/s]

PS

NR

Y [d

B]

PBB... with generalized B pictures PBB... with classic B pictures PPP... with 5 previous references PPP... with 1 previous reference

>25%

Multiple Reference Frames in H.264/AVC

Page 15: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 15

Mobile & Calendar (CIF, 30 fps)

0 1 2 3 426272829303132333435363738

R [Mbit/s]

PS

NR

Y [d

B]

PBB... with generalized B pictures PBB... with classic B pictures PPP... with 5 previous references PPP... with 1 previous reference

~40%

Multiple Reference Frames in H.264/AVC

Page 16: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 16

Outline

Video compression – state-of-the-art Beyond compression

– Rate-scalable video– Wavelet video coding– Error-resilient video transmission– Unequal error protection– Optimal scheduling for packet networks– Distributed video coding

Page 17: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 17

??

Internet video streaming

Surprising Success of ITU-T Rec. H.263

What H.263 was developed for . . .

Analog videophone

. . . and what is was used for.

Page 18: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 18

Internet Video Streaming

How to accommodate heterogeneous bit-rates? How to react to network congestion? How to mitigate late or lost packets?

Streaming client

DSL

dial-up modem

Media Server

Internet

wireless

Page 19: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 19

Fine Granular Scalability (FGS)

~2dB gap

H.264 with/without FGS option

Foreman sequence (5fps)Base layer

20 kbps

Enhancement layervariable bit-rate

Efficiency gap

Page 20: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 20

Wavelet Video Coder

TemporalWavelet

Transform

TemporalWavelet

Transform

Spatial Wavelet

Transform

Spatial Wavelet

Transform

76

54

32

10

HH

LLL LLHLH

LH

Originalvideoframes

HHH

HHHH

HHHH

HHHH

H

EmbeddedQuantization &Entropy Coding

EmbeddedQuantization &Entropy Coding

[Taubman & Zakhor, 1994] [Ohm, 1994] [Choi & Woods, 1999] [Hsiang & Woods, VCIP ’99] . . . and others

Page 21: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 21

Lifting

P U

Even Frames

Synthesis:

Odd Frames

Low Band

High Band11G

10G

P U

Even Frames

Analysis:

Odd Frames

Low Band

High Band

0G

1G

Motion Compensation

[Secker & Taubman, 2001] [Popescu & Bottreau, 2001]

Page 22: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 22

MC Wavelet Coding vs. H.264/AVC

2.02.01.81.81.61.61.41.41.21.21.01.00.80.80.60.60.40.40.20.2

3636

3434

3232

3030

2828

2626

2424

2222

2020

3838L

umin

ance

PSN

R (

dB)

Lum

inan

ce P

SNR

(dB

)

bit-rate (Mbps)bit-rate (Mbps)

ScalableScalableMC 5/3 WaveletMC 5/3 Wavelet

Non-scalableNon-scalableH.264/AVCH.264/AVC

Sequence: Mobile CIF

H.264/AVC• high complexity RD control• CABAC• PBBPBBP . . . • 5 prev/3 future reference frames• data courtesy of M. Flierl

[Taubman & Secker, VCIP 2003]courtesy D. Taubman

Page 23: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 23

Wavelet Synthesis with Lossy Motion Vector

d

MC WaveletTransform

MC WaveletTransform

MotionEstimator

MotionEstimator

EmbeddedEncoding

EmbeddedEncoding

EmbeddedEncoding

EmbeddedEncoding

DecoderDecoder

DecoderDecoder

InverseWaveletTransform

InverseWaveletTransform

Videoin

Videoout

d

[Taubman & Secker, ICIP03]

MinimizeJ=D+R

MinimizeJ=D+R

Page 24: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 24

R-D Performance with Lossy Motion Vector

BitBit--Rate (kbps)Rate (kbps)

Vid

eo P

SN

R (

dB)

Vid

eo P

SN

R (

dB)

00 200200 400400 600600 800800 10001000 120012002424

2626

2828

3030

3232

3434

3636

3838

4040

Embedded wavelet coefficientsEmbedded wavelet coefficients

Lossless motionLossless motion

Non-embeddedNon-embedded

single-ratesingle-rate

Embedded wavelet coefficientsEmbedded wavelet coefficientsLossy motionLossy motion

CIF ForemanCIF Foreman

[Taubman & Secker, VCIP 2003]courtesy D. Taubman

Page 25: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 25

Outline

Video compression – state-of-the-art Beyond compression

– Rate-scalable video– Wavelet video coding– Error-resilient video transmission– Unequal error protection– Optimal scheduling for packet networks– Distributed video coding

Page 26: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 26

redundancy symbols

enhancement layerbase layer

Priority Encoding Transmission (PET)

information symbols

block of packets

Ree

d-S

olom

on c

odew

ord K

N-K

[Albanese, Blömer, Edmonds, Luby, Sudan, 1996] [Davis & Danskin, 1996]

[Horn, Stuhlmuller, Link, Girod, 1999] [Puri, Ramchandran, 1999]

[Mohr, Riskin, Ladner, 2000] [Stankovic, Hamzaoui, Xiong, 2002]

[Chou, Wang, Padmanabhan, 2003] . . . and many more . . .

packet network

Page 27: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 27

Packet Delay Jitter and Loss

delay

pdf

lead-time

lossprobability

lead-time

lossprobability

loss

Page 28: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 28

Smart Prefetching

Idea: Send more important packets earlier to allow for more retransmissions

Server Client

InternetInternet

Request stream

Request stream

Rate-distortionpreamble

Rate-distortionpreamblePacket

Schedule

PacketSchedule

Video packetsVideo packets

UpdatedPacketSchedule

UpdatedPacketSchedule

UpdatedPacketSchedule

UpdatedPacketSchedule

UpdatedPacketSchedule

UpdatedPacketSchedule

UpdatedPacketSchedule

UpdatedPacketSchedule

[Podolsky, McCanne, Vetterli 2000] [Miao, Ortega 2000] [Chou, Miao 2001]

Page 29: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 29

Rate-Distortion Preamble

Each media packet n is labeled by− Bn — size [in bits] of data unit n

− dn —distortion reduction if n is decoded

− tn — decoding deadline for n

P PI

I

B B B P P PI

I

B B B P …

Page 30: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 30

PB

Rate-Distortion Preamble

Each media packet n is labeled by− Bn — size [in bits] of data unit n

− dn —distortion reduction if n is decoded

− tn — decoding deadline for n

P PI

I

B B P PI

I

B B B P …

For video: dn must be made“state-dependent” to accurately capture concealment

For video: dn must be made“state-dependent” to accurately capture concealment

Page 31: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 31

Markov Decision Tree for One Packet

... N transmission opportunities before deadline

send: 1

ack: 1

0

0

0

send: 1

0

send: 1

0

ack: 1

01

01

0

0

1

1

1

0

0

0

0

tcurrent tcurrent+t tcurrent+2t

Action Observation

“Policy“ minimizing

J = D + R“Policy“ minimizing

J = D + R

Page 32: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 32

R-D Optimized Streaming Performance

40 60 80 100 120 14024

25

26

27

28

29

30

31R-D OptimizedPrioritized ARQ

Foreman 120 frames 10 fps, I-P-P-… H.263+ 2 Layer SNR

scalable 20 frame GOP Copy Concealment 20 % loss forward

and back Γ-distributed delay

– κ = 10 ms– μ = 50 ms– σ = 23 ms

Pre-roll 400ms

Foreman 120 frames 10 fps, I-P-P-… H.263+ 2 Layer SNR

scalable 20 frame GOP Copy Concealment 20 % loss forward

and back Γ-distributed delay

– κ = 10 ms– μ = 50 ms– σ = 23 ms

Pre-roll 400ms

PS

NR

[dB

]

Bit-Rate [kbps]

~50 %

Page 33: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 33

Naive Coding Questions

1. To achieve graceful degradation in case of channel error for a digitally encoded signal, is an embedded signal representation (aka layers, aka data partitioning) always needed?

2. Can one, in general, send refinement information for an analog (i.e. uncoded) signal transmission over a noisy channel?

Page 34: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 34

Digitally Enhanced Analog Transmission

Forward error protection of the signal waveform Information-theoretic bounds [Shamai, Verdu, Zamir,1998]

“Systematic lossy source-channel coding”

Wyner-Ziv

Encoder

Wyner-Ziv

Encoder

DigitalChannel

DigitalChannel

Wyner-Ziv

Decoder

Wyner-Ziv

Decoder

Sideinfo

AnalogChannel

(uncoded)

AnalogChannel

(uncoded)

Page 35: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 35

Forward Error Protection of Compressed Video

Any OldVideo

Encoder

Video Decoder with Error

Concealment

Err

or-P

rone

cha

nnel

S S’

Wyner-Ziv Decoder A S*

Wyner-Ziv Encoder A

Wyner-Ziv Decoder B S**Wyner-Ziv

Encoder B

Graceful degradation without a layered signal representation

Analog channel (uncoded)

[Aaron, Rane, Girod, ICIP 2003]

Page 36: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 36

Wyner-Ziv MPEG Codec

Cha

nnel

Slepian-WolfEncoder

Wyner-Ziv Encoder

ED T-1Q-1 +

MC

S*MPEGEncoder

main

S

Side information

MPEGEncoder

coarse

T-1q-1ED +

MC

S’

R-SDecoder

ReconstructedFrame atEncoder

MPEGEncoder

coarse

R-SEncoder

[Rane, Aaron, Girod, VCIP 2004]

Page 37: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 37

Graceful Degradation with Forward Error Protection

Main Stream @ 1.092 MbpsFEC (n,k) = (40,36) FEC bitrate = 120 KbpsTotal = 1.2 Mbps

WZ Stream @ 270 KbpsFEP (n,k) = (52,36)WZ bitrate = 120 KbpsTotal = 1.2 Mbps

Page 38: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 38

Visual Comparison of Degradation at Same PSNR

With FEC1 Mbps + 120 kbps

(38.32 db)

Foreman 50 CIF frames @ symbol error rate = 4 x 10-4

With FEP1 Mbps + 120 kbps

(38.78 db)

Page 39: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 39

Superior Robustness of FEP

With FEC1 Mbps + 120 kbps

(33.03 db)

Foreman 50 CIF frames @ symbol error rate = 10-3

With FEP1 Mbps + 120 kbps

(38.40 db)

Page 40: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 40

X

Lossy Compression with Side Information

'XSource Encoder Decoder

Y Y

X'X

Source Encoder Decoder

Y Y Y

[Wyner, Ziv, 1976] For mse distortion and Gaussian statistics, rate-distortion functions of the two systems are the same.

[Wyner, Ziv, 1976] For mse distortion and Gaussian statistics, rate-distortion functions of the two systems are the same.

Page 41: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 41

Ultra-Low-Complexity Video Coding

Interframe DecoderIntraframe Encoder

K’Interpolation

/ Extrapolatio

n

Key frames

KConventional

Intraframe coding

Conventional Intraframe decoding

X’Scalar Quantizer

Turbo Encoder

Buffer

WZ frames

X Turbo Decode

r

Request bits

Slepian-Wolf Codec

Reconstruction

Y

[Aaron, Zhang, Girod, Asilomar 2002][Aaron, Rane, Zhang, Girod, DCC 2003]

Page 42: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 42

R-D Performance Ultra-Low-Complexity Video Coder

8 dB

3 dB

Sequence: Foreman WZ frames - even frames Key frames - odd frames Side information - motion

compensated interpolation of key frames

Page 43: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 43

H263+ Intraframe Coding 330 kbps, 32.9 dB

Wyner-Ziv Codec 274 kbps, 39.0 dB

Ultra-Low-Complexity Video Coder

Page 44: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 44

H263+ I-B-I-B 276 kbps, 41.8 dB

Wyner-Ziv Codec 274 kbps, 39.0 dB

Ultra-Low-Complexity Video Coder

Page 45: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 45

Stanford Camera Array

Courtesy Marc Levoy, Stanford Computer Graphics Lab

Page 46: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 46

Stanford Camera Array

Courtesy Marc Levoy, Stanford Computer Graphics Lab

Page 47: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 47

Light Field Compression

Rate: 0.11 bppPSNR 39.9 dB

Rate: 0.11 bppPSNR 37.4 dB

Wyner-Ziv, Pixel-Domain JPEG-2000

Page 48: Barcelona keynote web

Bernd Girod: Video Coding for Compression and Beyond 48

Conclusions

Video compression is very important. . . but there is more to video coding than compression

Rate-scalable video representations: mc lifting break-through Robust video transmission

– Virtual priority mechanisms by packet scheduling– RD gains easily larger than from super-clever compression

Distributed video coding: radically different approach– Graceful degradation w/o layers– Ultra-low-complexity coders

Ubiquitous J=D+R

Page 49: Barcelona keynote web

AcknowledgmentsAcknowledgments

Anne M. AaronAnne M. AaronJacob Chakareski Jacob Chakareski

Philip A. ChouPhilip A. ChouJ=D+J=D+RR

Markus FlierlMarkus FlierlSang-eun HanSang-eun HanMark KalmanMark KalmanMarc LevoyMarc Levoy

Yi Liang Yi Liang Shantanu Rane Shantanu Rane

David Rebollo-MonederoDavid Rebollo-MonederoAndrew SeckerAndrew SeckerDavid TaubmanDavid Taubman

Thomas WiegandThomas WiegandXiaoqing ZhuXiaoqing ZhuRui Zhang Rui Zhang

Page 50: Barcelona keynote web

Progress is a wonderful thing,Progress is a wonderful thing,if only it would stop . . . if only it would stop . . .

Robert MusilRobert Musil

Page 51: Barcelona keynote web