Top Banner

of 111

Bai giang Toan roi rac

Jul 10, 2015

Download

Documents

Trân Lê
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript

B GIAO THNG VN TI TRNG I HC HNG HI B MN: KHOA HC MY TNH KHOA: CNG NGH THNG TIN BI GING TON RI RC TN HC PHN: TON RI RC M HC PHN: 17203 TRNH O TO: I HC CHNH QUY DNG CHO SV NGNH: CNG NGH THNG TIN

HI PHNG - 2010 MC LC NI DUNGTRANG Chng 1. i cng v logic1 1.1. Php tnh mnh 1 1.1.1. Khi nim v mnh v chn tr1 1.1.2. Cc php ton trn mnh 2 1.2. Biu thc logic5 1.2.1. nh ngha v bng chn tr ca biu thc logic5 1.2.2. S tng ng logic8 1.2.3. Gi tr ca biu thc logic8 1.3. Cc lut logic8 1.3.1. Cc lut logic8 1.3.2. Cc quy tc thay th10 1.3.3. V d p dng11 1.4. Cc dng chun tc12 1.4.1. Chun tc tuyn12 1.4.2. Chun tc hi13 1.5. Quy tc suy din14 1.5.1. i cng v quy tc suy din14 1.5.2. Kim tra mt quy tc suy din 16 1.5.3. Cc quy tc suy din c bn17 1.5.4. Cc v d p dng18 1.6. V t, lng t20 1.6.1. nh ngha v t v v d20 1.6.2. Cc php ton trn v t21 1.6.3. Lng t v mnh c lng t21 1.6.4. Quy tc ph nh mnh c lng t23 1.6.5. Mt s quy tc dng trong suy lun25 Chng 2. Cc phng php chng minh29 2.1. Cc phng php chng minh c bn29 2.1.1. Khi nim v chng minh29 2.1.2. Chng minh trc tip29 2.1.3. Chng minh phn chng31 2.1.4. Chng minh bng cch phn chia trng hp33 NI DUNGTRANG 2.1.5. Phn v d34 2.2. Nguyn l quy np35 2.2.1. i cng v quy np35 2.2.2. Cc nguyn l quy np thng dng36 2.2.3. Cc v d38 Chng 3. Phng php m41 3.1. Tp hp41 3.1.1. Khi nim tp hp41 3.1.2. Quan h bao hm trong v tp hp con 42 3.1.3. Cc php ton trn tp hp43 3.1.4. Tch Decartes ca cc tp hp45 3.2. Cc nguyn l m45 3.2.1. Php m45 3.2.2. Nguyn l cng46 3.2.3. Nguyn l nhn48 3.2.4. Nguyn l b tr52 3.2.5. Nguyn l Dirichlet53 Chng 4. Quan h56 4.1. Quan h hai ngi56 4.1.1. nh ngha quan h v v d56 4.1.2. Cc tnh cht ca quan h57 4.1.3. Biu din quan h58 4.2. Quan h tng ng59 4.2.1. Khi nim quan h tng ng59 4.2.2. Lp tng ng v tp hp tng ng59 4.3. Quan h th t60 4.3.1. Cc nh ngha60 4.3.2. Biu din quan h th t62 4.3.3. Tp hu hn c th t63 4.3.4. Sp xp topo63 4.4. Dn (lattice - tp b chn)65 Chng 5. i s Bool71 5.1. Cc php ton71 NI DUNGTRANG 5.1.1. Cc nh ngha71 5.1.2. Cc tnh cht ca php ton hai ngi73 5.2. i s Bool78 5.2.1. nh nghi v cc tnh cht82 5.2.2. i s Bool v dn80 5.3. Cc cng logic v t hp cc cng logic85 5.3.1. Cc cng logic 85 5.3.2. Mch logic86 5.4. Cc tiu ho cc mch logic91 5.4.1. Bn Karnaugh92 5.4.2. Phng php Quine-McCluskey94 Tn hc phn: Ton ri rc Loi hc phn: 1 B mn ph trch ging dy: Khoa hc my tnh Khoa ph trch: CNTT M hc phn: 17203Tng s TC:2 TS titL thuytThc hnh/XeminaT hcBi tp ln n mn hc 45450000 iu kin tin quyt: Mn hc c th b tr hc t hc k u tin. Mc tiu ca hc phn: Gip sinh vin nm c nhng kin thc c bn v l thuyt t hp, ton logic, h ton mnh . Phng php suy din v chng minh. i s Bool. Ni dung ch yu Gip sinh vin nm c nhng kin thc c bn v l thuyt t hp, h ton mnh , cc phng php m, khi nim quan h, i s Bool v lm c s cho cc mn hc chuyn ngnh khc. Ni dung chi tit ca hc phn: TN CHNG MC PHN PHI S TIT TSLTTH/XeminaBTKT Chng 1. i cng v logic1616000 1.1. Php tnh mnh 21.1.1. Khi nim v mnh v chn tr1.1.2. Cc php ton trn mnh 1.2. Biu thc logic 21.2.1. nh ngha v bng chn tr ca biu thc logic1.2.2. S tng ng logic1.2.4. Gi tr ca biu thc logic1.3. Cc lut logic 31.3.1. Cc lut logic1.3.2. Cc quy tc thay th1.3.3. V d p dng1.4. Cc dng chun tc 2 TN CHNG MC PHN PHI S TIT TSLTTH/XeminaBTKT 1.4.1. Chun tc tuyn1.4.2. Chun tc hi1.5. Quy tc suy din 31.5.1. i cng v quy tc suy din1.5.2. Kim tra mt quy tc suy din 1.5.3. Cc quy tc suy din c bn1.5.4. Cc v d p dng1.6. V t, lng t 41.6.1. nh ngha v t v v d1.6.2. Cc php ton trn v t1.6.3. Lng t v mnh c lng t1.6.4. Quy tc ph nh mnh c lng t1.6.5. Mt s quy tc dng trong suy lunChng 2. Cc phng php chng minh65001 2.1. Cc phng php chng minh c bn 22.1.1. Khi nim v chng minh2.1.2. Chng minh trc tip2.1.3. Chng minh phn chng2.1.4. Chng minh bng cch phn chia trng hp2.1.5. Phn v d2.2. Nguyn l quy np 32.2.1. i cng v quy np2.2.2. Cc nguyn l quy np thng dng2.2.3. Cc v d1 Chng 3. Phng php m553.1. Tp hp 23.1.1. Khi nim tp hp3.1.2. Quan h bao hm trong v tp hp con 3.1.3. Cc php ton trn tp hp3.1.4. Tch Decartes ca cc tp hp3.2. Cc nguyn l m 33.2.1. Php m TN CHNG MC PHN PHI S TIT TSLTTH/XeminaBTKT 3.2.2. Nguyn l cng3.2.3. Nguyn l nhn3.2.4. Nguyn l b tr3.2.5. Nguyn l Dirichlet1 Chng 4. Quan h774.1. Quan h hai ngi 14.1.1. nh ngha quan h v v d4.1.2. Cc tnh cht ca quan h4.1.3. Biu din quan h4.2. Quan h tng ng 24.2.1. Khi nim quan h tng ng4.2.2. Lp tng ng v tp hp tng ng4.3. Quan h th t 34.3.1. Cc nh ngha4.3.2. Biu din quan h th t4.3.3. Tp hu hn c th t4.3.4. Sp xp topo4.4. Dn (lattice - tp b chn) 1Chng 5. i s Bool1110001 5.1. Cc php ton 25.1.1. Cc nh ngha5.1.2. Cc tnh cht ca php ton hai ngi5.2. i s Bool 25.2.1. nh ngha v cc tnh cht5.2.2. i s Bool v dn5.3. Cc cng logic v t hp cc cng logic 25.4. Cc tiu ho cc mch logic 41 Nhim v ca sinh vin : Thamdccbuithuyttrnhcagiovin,thc,tlmbitpdogiovingiao, tham d cc bi kim tra nh k v cui k. Ti liu hc tp : -KennethRosen,Tonhcrircvngdngtrongtinhc,NXBKHKTHni, 1998. -NguynTThnhvNguyncNgha,Giotrnhtonhcrirc,HBKH ni, 1994. -Phan nh Diu, L thuyt tmt hu hn v thut ton, NXB HTHCN, 1977. -Vng Tt t, Lgic hc i cng, NXB i hc quc gia HN, 2002 Hnh thc v tiu chun nh gi sinh vin:-Hnh thc thi cui k : Thi vit. -Sinh vin phi m bo cc iu kin theo Quy ch ca Nh trng v ca B Thang im: Thang im ch A, B, C, D, F im nh gi hc phn: Z = 0,2X + 0,8Y. 1 CHNG 1 I CNG V LOGIC 1.1. Php tnh mnh 1.1.1. Khi nim v mnh v chn tr Cc i tngc bn m chng ta kho st ylcc pht biu hay cc mnh . Tuy nhin trong chng ny ta ch xt n cc mnh ton hc, v chng ta ni vn tt cc mnh ton hc l cc mnh . l nhng pht biu din t mt tng trn vn v tacthkhngnhmtcchkhchquanlnnghocsai.Tnhchtctyucamt mnh l n ng hoc sai, v khng th vang va sai. Gi trng hoc sai ca mt mnh c gi l chn tr ca mnh . V mt k hiu, ta thng dng cc mu t (nh p, q, r, ...) k hiu cho cc mnh , v chng cng c dng k hiu cho cc bin logic, tc l cc bin ly gi tr ng hoc sai. Chn tr "ng" thng c vit l 1, v chn tr "sai" c vit l 0. V d 1: Cc pht biu sau y l cc mnh (ton hc). 1. 6 l mt s nguyn t. 2. 5 l mt s nguyn t. 3. -3 < 2 4. Tam gic cn c hai gc bng nhau. 5. H2O l mt axt. Cc mnh 2, 3, v 4 trong v d trn l nhng mnh ng. Ni cch khc chn tr ca cc mnh ny l ng. Cc mnh 1, 5 l nhng mnh sai. V d 2 : Cc pht biu sau y khng phi l cc mnh (ton hc) v tnhng sai ca chng khng xc nh. 1. Ai ang c sch? (mt cu hi) 2. Hy ng ca li i! 3. Anh ta rt thng minh. 4. Cho x l mt s nguyn dng. 5. a l mt s chnh phng. 6. x + y = z. Trongvickhostccmnh,ngitacnphnralmhailoi:mnhscp (elementary), mnh phc hp (compound). Mnh s cp l cc "nguyn t" theo ngha l n khng th c phn tch thnh mt hay nhiu (t hai tr ln) mnh thnh phn n gin hn. Cn mnh phc hp l mnh c to thnh t mt hay nhiu mnh khc 2 bng cch s dng cc lin kt logic nh t "khng" dng trong vic ph nh mt mnh , cc t ni: "v", "hay", "hoc", "suy ra", v.v.... V d : Xt cc mnh sau y. p = "15 chia ht cho 3". q = "2 l mt s nguyn t v l mt s l". Ta c p l mt mnh s cp. Nhng q l mt mnh phc hp, v mnh q c to thnh t hai mnh "2 l mt s nguyn t" v"2 l mt s l" nh vo lin kt logic "v". 1.1.2. Cc php ton trn mnh iu m chng ta quan tm y khng phi l xc nh tnh ng hoc sai ca mt mnhscp.Bivnhngmnhnythnglnhngphtbiunilnmttng no trong mt phm vi chuyn mn nht nh. Vn m ta quan tm y l lm th no tnh ton chn tr ca cc mnh phc hp theo cc mnh s cp cu thnh mnh phc hp nh vo cc php ton logic. Cc php ton logic y l cc k hiu c dng thay cho cc t lin kt logic nh "khng","v", "hay", "hoc", "suy ra" hay"nu ... th ...", "nu v ch nu". Cc php ton logic c nh ngha bng bng chn tr (truth table). Bng chn tr ch ra r rng chn tr ca mnh phc hp theo tng trng hp ca cc chn tr ca cc mnh s cp to thnh mnh phc hp. Bng chn tr ca cc php ton logic tt nhin l phn nh ng ngha t nhincacc t lin kt tng ng. V mt t nhinca ngn ng, trong nhiu trng hp c ng mt t nhng c th c ngha khc nhau trong nhng ng cnh khc nhau. Do , bngchntr khngth din t mi ngha c th cca t tng ng vi k hiu php ton. iu ny cho thy rng i s logic l r rng hon chnh theo ngha l n cho tamththnglogicngtincy.islogiccncbitquantrngtrongvicthitk mch cho my tnh. Bng chn tr khng ch dng k ra s lin h chn tr gia mnh phc hp vi chn tr caccmnhscpcuthnhn,mbngchntrcncdngvimcchrng hn: lit k s lin h chn tr gia cc mnh vi cc mnh n gin hn cu thnh chng.1.1.2.1. Php ph nh Cho p l mt mnh , chng ta dng k hiu p ch mnh ph nh ca mnh p. "S ph nh" c nh ngha bi bng chn tr sau y: p p 01 10 3 K hiu c c l "khng" . Trong mt s sch khc, ngi ta cn dng cc k hiu sau y ch mnh ph nh ca mt mnh p: ~p,pTrong ct th nht ca bng chn tr, ta lit k y cc trng hp chn tr c th c ca mnh p. ct th hai k ra chn tr tng ng ca mnh p theo tng trng hp chn tr ca mnh p. nh ngha ny phhp vi ng ngha t nhin ca s ph nh : Mnh ph nh p c chn tr l ng (1) khi mnh p c chn tr sai (0), ngc li p c chn tr sai (0) khi p c chn tr ng (1). V d 1 :Nu ta k hiu p l mnh "5 < 3" th p l k hiu cho mnh "5 3". Trong trng hp ny p sai, p ng. Ta c th vit p = 0, p = 1. V d 2 : Ch ra rng ( p) v p lun c c ng chn tr. Gii. Lp bng chn tr ca mnh ( p): p p ( p) 010 101 Trn mi dnggi tr trong bng chn tr ta c chn tr ca p v ( p) u bng nhau (so snh ct 1 v ct 3 trong bng). Vy ( p) v p c c ng chn tr. Ta cng ni rng ( p) tng ng logic vi p. Mnh ( p) thng c vit l p, v iu ny khng c g gy ra s nhm ln. 1.1.2.2. Php hi Cho p v q l hai mnh . Ta k hiu mnh "p hi q" l p. q. Php "v", k hiu l . , c nh ngha bi bng chn tr sau y: pqp . q 000 010 100 111 Chn tr ca mnh p . q ph thuc vo cc chn tr ca 2 mnh p, q. Ta c 4 trng hp chn tr ca p . q ng vi 4 trng hp chn tr ca cp mnh (p,q) l (0,0), (0,1), (1,0), (1,1).Trong4trnghpchcmttrnghpmnhp.qng,ltrnghpp ng v q ng. Qua nh ngha trn ta nhn thy rng cc mnh p . q v q . p lun lun c c ng chn tr, hay tng ng logic. Tuy nhin, trong ngn ng thng thng cc mnh "p v q" v "q v p" i khi c ngha khc nhau theo ng cnh. V d: Cho cc mnh 4 p = "5 > -7",q = "2721 l mt s nguyn t",r = "mt tam gic u cng l mt tam gic cn".Khi ta c :p . q = 0 (p L q sai, tc l c chn tr bng 0, v p = 1 v q = 0), p . r = 1 (p L r ng, tc l c chn tr bng 1, v p = 1 v r = 1). Nhn xt: Bng cch lp bng chn tr, ta c: 1. Cc mnh p v p . p lun c c ng chn tr. 2. Mnh p . p lun c chn tr bng 0 (tc l mt mnh lun sai). Mtmnhphchplunluncchntrlsaitrongmitrnghpchntrcacc mnh s cp to thnh n s c gi l mt s mu thun. 1.1.2.3. Php tuyn Cho p v q l hai mnh . Ta k hiu mnh "p hay q" l p v q. Php "hay", k hiu l v , c nh ngha bi bng chn tr sau y: pqp vq 000 011 101 111 Chntrcamnhpvqphthucvoccchntrca2mnhp,q.Trong4trng hp ch c mt trng hp mnh p v q sai, l trng hp p sai v q sai. Qua nh ngha trn ta nhn thy rng cc mnh p v q v q v p lun lun c c ng chn tr, hay tng ng logic.V d : Cho cc mnh p = "5 > 7",q = "2721 l mt s nguyn t",r = "mt tam gic u cng l mt tam gic cn".Khi ta c :p v q = 0,p v r = 1.Nhn xt : 1. Cho p l mt mnh . Lp bng chn tr ca mnh p v pp ppv p 5 011 101 ta c mnh p v p lun lun ng. 2.Ngitacnsdngphp"hoc"trongviclinktccmnh.Chopvqlhai mnh.Takhiumnh"phocq"lpq.Php"hoc",khiul,cnh ngha bi bng chn tr sau y: pq pq 000 011 101 110 Php "hoc" cn c gi l "hay loi tr". Chn tr ca mnh pq ph thuc vo cc chn tr ca 2 mnh p, q : mnh pq ng khi trong 2 mnh p v q c mt mnh ng, mt mnh sai. 1.1.2.4. Php ko theo Php ko theo, k hiu bi , c a ra m hnh cho loi pht biu iu kin c dng : "nu . . . th . . .". Cho p v q l 2 mnh , ta s vit p q din t pht biu "nu p th q". Php ton ko theo c nh ngha bi bng chn tr sau y: pqp q 001 011 100 111 Mnh p q, c c l "nu p th q", cn c pht biu di cc dng khc sau y: "q nu p". "p ch nu q". "p la` iu kin cho q". "q la` iu kin cn cho p". 1.1.2.5. Php ko theo hai chiu 6 Php ko theo 2 chiu hay php tng ng, k hiu bi , c a ra m hnh cho loi pht biu iu kin hai chiu c dng : ". . . nu v ch nu . . .". Cho p v q l 2 mnh , ta vit p q din t pht biu "p nu v ch nu q". Php ton tng ng c nh ngha bi bng chn tr sau y: pqp q 001 010 100 111 Mnh p q, c c l "p nu v ch nu q", cn c pht biu di cc dng khc sau y: "p khi v ch khi q". "p la` iu kin cn va` cho q". Mnh p q c chn tr ng (=1) trong cc trng hp p v q c c ng chn tr. 1.1.2.6. u tin ca cc ton t logic. Tngtnhiviccphptonshc,trnhphidngnhiudungoctrongcc biu thc logic, ta a ra mt th t u tin trong vic tnh ton. trn ta c 5 ton t logic: (khng) , . (v), v (hay), (ko theo), (tng ng) u tin mc 1 (cao nht) ., vu tin mc 2 (thp hn) , u tin mc 3 (thp nht) trong , cc ton t lit k trn c ng dng c c ng u tin. V d : 1. p v q c ngha l (( p) v q). 2. p vq r . s c ngha l ((( p) v q) (r . s)). 3. p vq . r l nhp nhng. Cn phi dng cc du ngoc ch r ngha. 1.2. Biu thc logic 1.2.1. nh ngha v bng chn tr ca biu thc logic Trong i s ta c cc biu thc i s c xydng t cc hng s, cc bin v cc php ton. Khi thay thcc bin trong mt biu thc i s bi cc hng s th kt qu thc hin 7 cc php ton trong biu thc s l mt hng s. Trong php tnh mnh ta cng c cc biu thc logic c xy dng t : Cc mnh hay cc gi tr hng. Cc bin mnh . Cc php ton logic, v c cc du ngoc "( )" ch r th t thc hin ca cc php ton. Gi s E, F l 2 biu thc logic, khi y E, E . F, E F, E F cng l cc biu thc logic. V d: Biu din E(p, q, r) = ((( p) vq) (r . s)) l mt biu thc logic trong p, q, r l cc bin mnh . Bng chn tr Bng chn tr ca mt biu thc logic l bng lit k chn tr ca biu thc logic theo cc trng hp v chn tr ca tt c cc bin mnh trong biu thc logic hay theo cc b gi tr ca b bin mnh . Vi mt bin mnh , ta c 2 trng hp l 0 (sai) hoc 1 (ng). Vi 2 bin mnh p, q ta 4 trng hp chn tr ca b bin (p,q) l cc b gi tr (0,0), (0,1), (1,0), v (1,1). Trong trng hp tng qut, vi n bin mnh th ta c 2n trng hp chn tr cho b n bin . V d 1: Bng chn tr ca cc biu thc logic p qv p v q theo cc bin mnh p,q nh sau: pqp q p p v q 00111 01111 10000 11101 V d 2: Bng chn tr ca cc biu thc logic p v( q . r) theo cc bin mnh p, q, r nh sau: Th tpqrq . rp v( q . r) 100000 200100 301000 401111 510001 610101 711001 8 Th tpqrq . rp v( q . r) 811111 1.2.2. S tng ng logic Hai biu thc logic E v F theo cc bin mnh no c gi l tng ng logic khi E v F lun lun c c ng chn tr trong mi trng hp chn tr ca b bin mnh .Khi ta vit: E F c l "E tng ng vi F". Nh vy, theo nh ngha ta c th kim tra xem 2 biu thc logic c tng ng hay khng bng cch lp bng chn tr ca cc biu thc logic.V d: t bng chn tr ca cc biu thc logic p q v p v q theo cc bin mnh p, q ta c: ( p q ) ( p v q ) 1.2.3. Gi tr ca biu thc logic Mt biu thc logic c to thnh t cc bin logic kt hp vi php ton logic, bi vy nn gi tr biu thc logic cng ch nhn 1 trong 2 gi tr l ng (true hoc 1) hay sai (false hoc 0) t y thuc vo gi tr ca cc bin logic v quy lut ca cc php ton. V d: Xt biu thc logic ( p v q ), nu thay p = 1 v q = 0 ta c: 1 v0= 0 v0 = 0 1.3. Cc lut logic Cc lut logic l c s ta thc hin cc bin i trn mt biu thc logic c c mt biu thc logic mi tng ng logic vi biu thc logic c trc. Mi biu thc logic cho ta mt s khng nh v s tng ng ca 2 biu thc logic. Ta s s dng cc qui tc thay thvcclutlogicbitthchinccphpbinitngngtrnccbiuthc logic. Diy,chngtaslitkramtslutlogicthngcsdngtronglplunv chng minh. Cc lut ny c th c suy ra trc tip t cc bng chn tr ca cc biu thc logic. 1.3.1. Cc lut logic Cc lut v php ph nh p p (lut ph nh ca ph nh) 1 0 0 1 Lut giao hon 9 p . q q . p p v q q v p Lut kt hp p . (q . r) (p . q) . r p v (q v r) (p v q) v r Lut phn b p . (q v r) (p v q) . (p v r) p v (q . r) (p . q) v (p . r) Lut De Morgan (p . q) p v q (p v q) p . q Lut v phn t b p v p 1 p . p 0 Lut ko theo p q p v q Lut tng ng p q (p q) . (q p) Cc lut n gin ca php tuyn p v p p (tnh ly ng ca php tuyn) p v 1 1 (lut ny cn c gi l lut thng tr) p v 0 p (lut ny cn c gi l lut trung ha) p v (p . q) p (lut ny cn c gi l lut hp th) Cc lut n gin ca php hi p . p p (tnh ly ng ca php hi) p . 1 p (lut ny cn c gi l lut trung ha) 10 p . 0 0 (lut ny cn c gi l lut thng tr) p . (p v q) p (lut ny cn c gi l lut hp th) Mt s lut trong cc lut trnh by trn c th c suy ra t cc lut khc. Chng ta cthtmracmttphplutlogictithiumttacthsuyrattccclut logickhc,nhngiunykhngquantrnglmivichngta.Nhngluttrnc chn la lm c s cho chng ta thc hin cc bin i logic, suy lun v chng minh. Tt nhin l cn nhiu lut logic khc m ta khng lit k ra y. Cc lut kt hp trnh by trn cn c gi l tnh cht kt hp ca php ton hi v phptontuyn.Dotnhchtny,tacthvitccbiuthclogichivccbiuthc tuyn di cc dng sau: E1 . E2 . . Em E1 v E2 v v Em v vic tnh ton chn tr c th c thc hinda trn mt s phn b cc cp du ngoc vo biu thc mt cch t y xc nh mt trnh t thc hin cc php ton. V d: Biu thc E1 . E2 . E3 . E4 c th c tnh ton chn tr bi biu thc sau: (E1 . E2) . (E3 . E4) hay c th tnh ton theo biu thc: E1 . ((E2 . E3 ) . E4) 1.3.2. Cc quy tc thay th Di y l cc qui tc cho ta c th suy ra nhng biu thc logicmi hay tm ra cc biu thc logic tng ng vi mt biu thc logic cho trc. Qui tc 1 Trong mt biu thc logic E, nu ta thay th mt biu thc con bi mt biu thc logic tng ng vi biu thc con th ta s c mt biu thc mi E' tng ng vi biu thc E. V d: Cho biu thc logic E = qv p. Thay th q trong biu thc E bi biu thc q (tng ng vi q) ta c mt biu thc mi E' = q v p. Theo qui tc thay th 1 ta c:q v p q v p Qui tc 2 Gi s biu thc logic E l mt hng ng. Nu ta thay th mt bin mnh p bi mt biu thc logic tu th ta s c mt biu thc logic mi E' cng l mt hng ng. 11 V d: Ta c biu thc E(p,q) = (p q) ( p v q) l mt hng ng. Thay th bin q trong biu thc E bi biu thc q . r ta c biu thc logic mi: E'(p,q,r) = (p (q . r)) ( p v (q . r)) Theo qui tc thay th 2 ta c biu thc E'(p,q,r) cng l mt hng ng. 1.3.3. V d p dng V d 1: Chng minh rng (p q) ( q p). Chng minh : (p q) p v q (lut ko theo) q v p (lut giao hon) q v p (lut ph nh) q p (lut ko theo) V d 2: Chng minh rng biu thc ((p q) . p) q l mt hng ng. Chng minh. ((p q) . p) q ((p q) . p) v q (lut ko theo) ( (p q) v p) v q (lut De Morgan) (p q) v ( p v q) (lut kt hp) (p q) v (p q) (lut ko theo) 1 (lut v phn t b) Vy biu thc ((p q) . p) q l hng ng. V d 3: Chng minh rng biu thc p . q p l mt hng ng. Chng minh. 12 p . q p ( p . q) v p (lut ko theo) ( p v q) v p (lut De Morgan) ( q v p) v p (lut giao hon) q v ( p v p) (lut kt hp) q v 1 (lut v phn t b) 1 (lut n gin) Vy mnh p . q p l hng ng. V d 4: Chng minh rng biu thc p p v q l mt mnh hng ng. Chng minh. p p v q p v (pv q) (lut ko theo) ( p v p) v q (lut kt hp) 1 v q (lut v phn t b) 1 (lut n gin) Vy mnh p p v q l hng ng. Nhn xt: Cc v d trn cho ta thy mt quan h khc gia cc mnh phc hp hay cc mnh : quan h "suy ra". Khi mnh p q l hng ng, ta ni rng p suy ra q (v mt logic).Chngtasdngkhiuchquanh"suyra".Quanhsuyranyctnh truyn (hay bc cu), nhng khng c tnh cht i xng. 1.4. Cc dng chun tc Dngchuntc(chnhtc)ca1biuthclbiudinbiuthcvdngngin, ch bao gm cc php ton ph nh, hi tuyn ca cc mnh . 1.4.1. Chun tc tuyn Gi s p1, p2, , pn l cc bin mnh . Mt biu thc logic F theo cc bin mnh p1, p2, , pn c gi l mt biu thc hi c bn (hi s cp) nu n c dng sau: F = q1 . q2 . . qn vi qj = pj hoc qj = pj (j = 1, , n). 13 V d: Biu thc x . y . z l mt biu thc hi c bn theo 3 bin mnh x, y, z. BiuthclogicE(p1,p2,,pn)theoccbinmnhp1,p2,,pncnilcdng chnh tc tuyn khi E c dng:E = E1 v E2 v v Em Trong mi biu thc con Ei u c dng chnh tc tuyn theo cc bin p1, p2, , pn. V d: Cc biu thc sau y c dng chnh tc tuyn: E(x,y,z) = (x. y . z) v ( x . y . z) v (x . y . z) F(p1,p2,p3,p4) = (p1 . p2 . p3 . p4) v (p1 . p2 . p3. p4) nh l :MibiuthclogicE(p1,p2,,pn)ucthvitdidngchnhtctuyn(chuntc tuyn) duy nht, khng k s sai khc v th t trc sau ca cc biu thc hi c bn trong php tuyn). Ni mt cch khc, ta c duy nht mt tp hp cc biu thc hi c bn { E1, E2, , Em} sao cho biu thc E(p1, p2, , pn) tng ng logic vi biu thc E1 v E2 v v Em. 1.4.2. Chun tc hi Gi s p1, p2, , pn l cc bin mnh . Mt biu thc logic F theo cc bin mnh p1, p2, , pn c gi l mt biu thc tuyn c bn (tuyn s cp)nu n c dng sau: F = q1 v q2 v v qn vi qj = pj hoc qj = pj (j = 1, , n). V d: Biu thc x v y v z l mt biu thc tuyn c bn theo 3 bin mnh x, y, z. BiuthclogicE(p1,p2,,pn)theoccbinmnhp1,p2,,pncnilcdng chnh tc hi khi E c dng: E = E1 . E2 . . Em Trong mi biu thc con Ei u c dng chnh tc tuyn theo cc bin p1, p2, , pn. V d: Cc biu thc sau y c dng chun tc hi (chnh tc hi): E(x,y,z) = (x v y v z) . ( x v y v z) . (x v y v z) F(p1,p2,p3,p4) = (p1 v p2 v p3 v p4) . (p1 v p2 v p3 v p4) nh l : 14 Mi biu thc logic E(p1, p2, , pn) u c th vit di dng chnh tc hi duy nht, khng kssaikhcvthttrcsaucaccbiuthctuyncbntrongphphi).Nimt cch khc, ta c duy nht mt tp hp cc biu thc tuyn c bn{ E1, E2, , Em} sao cho biu thc E(p1, p2, , pn) tng ng logic vi biu thcE1 . E2 . . Em. 1.5. Quy tc suy din 1.5.1. i cng v quy tc suy din Mththngtonhcbaogmcctin,ccnhngha,vnhngkhinimkhng cnhngha.Cctincginhlng.Ccnhnghacsdngxy dng hay a ra nhng khi nim mi trn c s nhng khi nim c. Mt s thut ng, khinimskhngcnhngharrngnhngcngmnhnghabicctin. Trong mt h ton hc chng ta c th suy ra c cc nh l. Mt nh l l mt khng nh c chng minh l ng. Mt s loi nh l c xem l cc b , cc h qu. Mt lp lun (hay l lun) ch ra c tnh ng n ca mnh pht biu trong nh l cgilchngminh.Logiclmtcngcchovicphntchccchngminh.Trong phn ny chng ta s cp n vic xy dng mt chng minh ton hc. thc hin c mt lp lun hay mt chng minh chng ta cn hiu cc k thut v cc cng c c s dng xydngmtchngminh.Thngthngmtchngminhsbaogmnhiubcsuy lunmmibctain(haysuyra)mtskhngnhmitnhngkhngnh bit.V d v mt bc suy din: 1/NumtdanhschLlkhcrngthtacthlyraphntutrongdanhsch.V danh schL l rng nn theo s khng nh trn ta khng th lyra phn t u trong danh sch. 2/ Nu mt danh sch L l khc rng th ta c th ly ra phn t u trong danh sch.V ta khng th ly ra phn t u trong danh sch L nn danh sch L l danh sch rng. Trong2suydinvdtrnthsuydin2/lmtsuylunng,nhngsuydin1/l khng ng. Vy lm th no bit c mt suy din l ng hay sai ? Mt bc suy lun nhthphidatrnmtquitcsuydinhplnoncxemlmtsuylun ng. Cc qui tc suy din l c s tay bit c mt lp lun hay mt chng minh l ng hay sai. Trong cc mc tip theo chng ta s xem xt chi tit hn v cc qui tc suy din v giithiumtsquitcsuydncbnthngcdngtrongvicsuylunvchng minh. nh ngha qui tc suy din Tuy c nhiu k thut, nhiu phng php chng minh khc nhau, nhng trong chng minh trong ton hc ta thng thy nhng l lun dn xut c dng: 15 Nu p1 v p2 v . . . v pnth q. Dng l lun ny c xem l hp l (c chp nhn l ng) khi ta c biu thc(p1 . p2 . . . . . pn) ql hng ng. Ta gi dng l lun trn l mt lut suy din v ngi ta cng thng vit lut suy din trn theo cc cch sau y : Cch 1: Biu thc hng ng (p1 . p2 . . . . . pn) q 1 Cch 2: Dng suy din (p1 . p2 . . . . . pn) q Cch 3: M hnh suy din p1 . . . . pn ________ q Cc biu thc logic p1, p2, . . ., pn trong lut suydin trn c gi l gi thit (hay tin ), v biu thc q c gi l kt lun. y chng ta cng cn lu rng l lun trn ng khng c ngha l tacq ng v cng khng khng nhrng p1, p2, . . ., pn u ng.L lun ch mun khng nh rng nu nh ta c p1, p2, . . ., pn l ng th ta s c q cng phi ng. V d : Gi s p v q l cc bin logic. Xc nh xem m hnh sau y c phi l mt lut suy din hay khng? p q p --------- q Gii: Lp bng chn tr ta c: pqp q(p q). p((p q) . p) q 00101 01111 10001 16 11111 Bngchntrchothybiuthc((pq) .p)qlhngng.Do,mhnhsuylun trn ng l mt lut suy din. Tht ra, ta ch cn nhn vo cc ct chn tr ca p, q, v p q trong bng chn tr l ta c th kt lun c ri, v t bng chn tr trn ta thy rng nu cc gi thit p q v p ng (c gi tr bng 1) th kt lun q cng ng.Ta c th khng nh c m hnh suy lun trn l mt lut suy din m khng cn lp bng chn tr. Gi s p q v p ng. Khi q phi ng, bi v nu ngc li (q sai) th p cng phi sai (s mu thun vi gi thit). 1.5.2. Kim tra mt quy tc suy din kim tra mt suy lun c th l ng hay khng, tc l c "hp logic" hay khng, ta c th cn c vo cc qui tc suy din (lut suy din). Php suy lun c th c th c xem nh s suy din trn cc mnh phc hp. Cc mnh s cp c th (m chn tr c th ng hoc sai) trong php suy lun s c tru tng ha (thay th) bi cc bin logic. Nh th php suy lun c tru tng ha thnh mt qui tc suy din trn cc biu thc logic m ta c th kim tra xem qui tc suy din l ng hay khng. y chnh l bin php ta bit c mt suy lun c th l ng hay sai. V d 1: Xt s suy lun sau y: Nu mt danh sch L l khc rng th ta c th ly ra phn t u trong danh sch.V ta khng th ly ra phn t u trong danh sch L nn danh sch L l danh sch rng. Trong php suy lun, ta c cc mnh s cp "danh sch L l khc rng", "ta c th ly raphntu(tdanhschL)".Thaythccmnhscpnybiccbinlogicp,q tng ng th php suy lun c th trn s c tru tng ha thnh mt suy din trn cc biu thc logic nh sau: p q q p MhnhsuydinnychnhlquitcsuydinModusTollens,cbitlng. Vy php suy lun trn l suy lun ng. V d 2: Xt xem suy lun sau y c ng hay khng? Nul s hu t th phng trnh m2 = 2n2 c nghim nguyn dng m, n. Nu phng trnh m2 = 2n2 c nghim nguyn dng m v n th ta c mu thun. Vyl s v t. Tru tng ha cc mnh s cp "l s hu t", " phng trnh m2 = 2n2 c nghim nguyn dng m, n " thnh cc bin logic p, q tng ng th php suy lun trn c dng m hnh suy din 17 p q q 0 ----------- p Kim tra m hnh suy din ny ta s thy l ng. Nh th php suy lun trn l ng. 1.5.3. Cc quy tc suy din c bn Trong mc ny chng ta nu ln mt s qui tc suy din (ng) thng c s dng m ta c th kim tra chng bng cc phng php c trnh by trong mc trc. Qui tc Modus Ponens (p q) . p q hoc l vit di dng m hnh suy din p q p q Qui tc Modus Tollens (p q) . q p hoc l vit di dng m hnh suy din p q q p Tam on lun (p q) . (q r) . (p r) hoc l vit di dng m hnh suy din p q q r ------- p r Qui tc chng minh bng phn chng p q (p q) 0 Qui tc ny cho php ta chng minh (p q) 0 thay cho p q. Ni cch khc, nu ta thm gi thit ph vo tin p m chng minh c c s mu thun th ta c th kt lun q t tin p. Qui tc chng minh theo trng hp 18 (p1 q) . (p2 q) . . . . . (pn q) (p1 v p2 v . . . v pn) q hoc l vit di dng m hnh suy din p1 q p2 q . . . pn q -------------------- (p1 v p2 v . . . v pn) q 1.5.4. Cc v d p dng Di y ta trnh by chng minh ca mt s mnh m khng nu ln mt cch chi tit v cc qui tc suy din c p dng. Ngi c c th tm thy cc qui tc suy din c s dng trong chng minh mt cch d dng. Mnh 1: Vi mi s nguyn n, n3 + 2n chia ht cho 3. Suynghutinltathyrngkhngthtmthymtthas3trongbiuthcn3+2n. Nhng khi phn tch ra tha s th n3 + 2n = n(n2 + 2). Pht biu "n3 + 2n chia ht cho 3" s ngnunlbisca3.Cncctrnghpkhcthsao?.Tathphngphpphn chng. Chng minh:Ta c n3 + 2n = n(n2 + 2), v s t nhin n cmt trong 3 dng ng vi 3 trng hp di y: Trng hp 1: n = 3k, vi k l mt s nguyn. n3 + 2n = 3k(9k2 + 2) chia ht cho 3. Trng hp 2: n = 3k+1, vi k l mt s nguyn. n3 + 2n = (3k+1)((3k+1)2 + 2) = (3k+1)(9k2 +6k+3) = (3k+1)3(3k2 +2k+1) chia ht cho 3. Trng hp 3: n = 3k+2, vi k l mt s nguyn. n3 + 2n = (3k+2)((3k+2)2 + 2) = (3k+1)(9k2 +12k+6) = (3k+1)3(3k2 +4k+2) chia ht cho 3. Trong mi trng hp (c th c) ta u c n3 + 2n u chia ht cho 3.19 Vy ta kt lun n3 + 2n chia ht cho 3 i vi mi s nguyn n. Nhnxt: Chngminh trncthctrnhbyngngnhnbngcchsdngphp ng d modulo 3. Mnh 2:Nu n2 l mt s chn th n cng l mt s chn. Suy ngh: Gi s n2 = 2k (l s chn). Ta thy kh suy ra n l s chn. Nu bit thng tin g v n th suy ra iu g v n2 th d hn. Ta th phng php phn chng. Chng minh: Ta hy chng minh mnh "Nu n l th n2 l". Cho n l mt s l, ta c n = 2k+1 (k l mt s nguyn). Do n2 = (2k+1)2 = 4k2 + 4k + 1 l mt s l.Mnh trong cp nhy kp l ng nn mnh phn o ca n cng ng. Vy, nu n2 l mt s chn th n cng l mt s chn. Mnh 3:Nu p > 3 v p nguyn t th p2 -1 chia ht cho 3. Chng minh:Ta c (p-1), p, (p+1) l 3 s nguyn lin tip. Trong 3 s nguyn ny c mt s chia ht cho 3. Nhng s khng phi l p v p l s nguyn t ln hn 3. Do (p-1) chia ht cho 3 hoc (p+1) chia ht cho 3. Suy ra (p-1)(p+1) chia ht cho 3, tc l p2 -1 chia ht cho 3. Mnh 4:S lng cc s nguyn t l v hn. Chng minh: Gi s pht biu trong mnh l sai. Tc l ch c mt s hu hn, k, s nguyn t (dng). K hiu k s nguyn t l p1, p2, . . ., pk, y k l s nguyn dng.t n = p1p2 . . . pk + 1. S n ln hn tt c k s nguyn t nn n khng nguyn t.Do , t nh l c bn ca s hc , n phi c mt c s nguyn t p.p phi l mt trong k s nguyn t. Do p , ( p1p2 . . . pk). Suy ra p , (n - p1p2 . . . pk), hay p , 1.Nh th, ta c p l mt s nguyn t v p , 1. iu ny l khng th, hay ni cch khc, ta c mt mu thun. Vy, S lng cc s nguyn t l v hn. 20 1.6. V t, lng t 1.6.1. nh ngha v t v v d nh ngha:Mt v t l mt pht biu p(x, y, ) ph thuc theo cc bin x, y, ly gi tr trn cc min xcnh A, B, no . Khi thay th cc bin trong v t bi cc gi tr c th a, b, thuc cc min xc nh th ta c mt mnh p(a, b, ) c chn tr ng hoc sai. Gi B l tp hp gm c hai gi tr : Sai (k hiu bi 0), v ng (k hiu bi 1). Mt v t p(x, y, )V d1: P(n) "n l mt s nguyn t" l mt v t trn tp hp cc s t nhin (hoc trn tp hp cc s nguyn). Ta c th thy rng: P(1) = 0, tc l P(1) "1 l mt s nguyn t" l mt mnh sai. P(2) = 1, tc l P(2) "2 l mt s nguyn t" l mt mnh ng. P(12) = 0, tc l P(12) "12 l mt s nguyn t" l mt mnh sai. P(17) = 1, tc l P(17) "17 l mt s nguyn t" l mt mnh ng. V t "n l mt s nguyn t" c th c xem l mt nh x i t tp hp cc s t nhin N vo tp hp Boole B: P : N B V d2: p(m,n) "m l mt c s ca n", vi m v n l cc bin s t nhin, cho ta mt v t theo 2 bin m v n thuc tp hp cc s t nhin. Ta c:p(2,4) = 1, p(3,4) = 0. 1.6.2. Cc php ton trn v t Cho p(x, y, ) l mt v t theo cc bin x, y, . Ph nh ca p, k hiu l p, l mt v t m khi thay cc bin x, y, bi cc phn t c th a, b, tng ng th ta c mnh (p(a, b, )). Ni mt cch khc, v t p c nh ngha bi: ( p) (x, y, ) = (p(x, y, )) Cho p(x, y, ) v q(x, y, ) l cc v t theo cc bin x, y, . Php hi ca p v q, k hiu l p q, l mt v t m khi thay cc bin x, y, bi cc phn t c th a, b, tng ng 21 th ta c mnh p(a, b, ) q(a, b, ). Ni mt cch khc, v t p ?q c nh ngha bi:(p . q) (x, y, ) = p (x, y, ) . q (x, y, ) Mt cch tng t,ccphp ton tuyn, ko theo v tng ng ca 2v t p v q c th c nh ngha nh sau: (p v q) (x, y, )= p (x, y, )v q (x, y, ) (p q) (x, y, ) = p (x, y, ) q (x, y, ) (p q) (x, y, ) = p (x, y, ) q (x, y, ) 1.6.3. Lng t v mnh c lng t Ngoi vic thay th gi tr c th cho cc bin trong v t c mt mnh ta cn c mt cch quan trng khc chuyn t v t sang mnh . l cch s dng cc lng t "vi mi" v "tn ti" (hay "c t nht mt"). Lng t c s dng ni ln rng v t ng i vimigitrthucminxcnhhaychngvimtphnccgitrthucminxc nh. Cho P(n) l mt v t theo bin s t nhin n. Pht biu "vi mi n e N, P(n)" hay mt cch vn tt (hiu ngm min xc nh) l "vi mi n, P(n)" c ngha l P c gi tr ng trn ton b min xc nh. Ni cch khc, P l nh x hng c gi tr l 1. Ta s dng k hiu " " thay th cho lng t "vi mi".Pht biu "C (t nht) mt n e N, P(n)" hay mt cch vn tt (hiu ngm min xc nh) l "C (t nht) mt n , P(n)" c ngha l P c gi tr ng i vi mt hay mt s gi tr no thuc min xc nh. Ni cch khc, P khng phi l mt nh x hng 0. Ta sdng k hiu "- " thay th cho lng t "c t nht mt". Lng t ny cn c c mt cch khc l "tn ti". Trong trng hp tng qut, gi s P(x) l mt v t theo bin x (bin x ly gi tr thuc mt min xc nh bit no v min xc nh ny c th c hiu ngm, khng cn ghi r ra). Cc cch vit sau y: x : P(x) (1) - x : P(x)(2) ln lt c dng din t cho cc pht biu sau y: "Vi mi x (thuc min xc nh) ta c P(x) l ng" "C t nht m x (thuc min xc nh) sao cho P(x) l ng" 22 Cc pht biu (1) v (2) c chn tr hon ton xc nh. Ni cch khc chng l nhng mnh .Chntrcaccmnhnycxcnhmtcchtnhintheongnghathng thng ca cc lng t. Mnh (1) l ng khi v ch khi ng vi mi gi tr t y x thuc min xc nh ta u c mnh P(x) c chn tr ng. Mnh (2) l ng khi v ch khi c mt gi tr x no thuc min xc nh m ng vi gi tr x ta c P(x) c chn tr ng. Ghi ch:Pht biu " x : P(x)" v pht biu "- x : P(x)" khng phi l v t theo bin x na m l cc mnh c chn tr xc nh l ng hoc sai. Trong cc pht biu trn bin x c lng t ha v chn tr ca pht biu khng ph thuc theo bin x na. Ta cng ni rng bin x b buc bi lng t. i vi mt v t theo nhiu bin th ta c th lng t ha mt s bin no trong v t cmtvtmitheoccbincnli.Chnghn,nup(x,y,)lmtvttheocc bin x, y, th ta c biu thc q(y, ) x : p(x, y, ) s l mt v t theo cc bin y, . Nu tt c cc bin ca v t u c lng t ha th ta s c mt mnh .Chng hn, nu p(x, y) lmt v t theo 2 bin x, y th biu thc x, - y : p(x, y) s l mt mnh , tc l c chn tr xc nh v khng ph thuc vo cc bin x, y na. Trongnhiuphtbiungitacdngcmt"tntiduynht",khiubi$!,nhl mt s lng t ha c bit. V d 1: 1. Cho v t P(n) "n l mt s nguyn t". Mnh "Vi mi s t nhin n ta c n l nguyn t" c th c vit nh sau: n e N : P(n) v mnh ny c chn tr l 0 (sai). 2. Mnh "Vi mi s nguyn n ta c 2n-1 l mt s l" c th c vit di dng k hiu nh sau: n e Z : 2n-1 l 23 v mnh ny c chn tr l 1 (ng). 3. Mnh "Ta c x2 > 0, vi mi s thc x khc 0" c th c vit l x e R - { 0} : x2 > 0 v mnh ny c chn tr l 1 (ng). V d 2: Chng minh rng : Nu n l mt s chn th n2 l s chn. Mnh cn chng minh (l ng) c vit di dng n e Z : n chn n2 chn. T ta c th trnh by chng minh nh sau: Cho n l mt s nguyn t y . Ta c: n chn n = 2m, vi m l mt s nguyn no n2 = 4m2 n2 chn. Vy pht biu trn l ng. 1.6.4. Quy tc ph nh mnh c lng t Da vo cch xc nh chn tr ca cc mnh c lng t theo ng ngha t nhin ca cc pht biu, ta c cc qui tc ph nh mnh c lng t sau y: ( x : P(x)) - x : P(x)(1) (- x : P(x)) x : P(x)(2) V d 1: Tm ph nh ca mnh "tn ti mt s thc x sao cho x2 < 0". t P(x) "x2 < 0". Mnh cho c vit di dng k hiu nh sau:- x : P(x) p dng lut ph nh mnh c lng t, ta c mnh ph nh cn tm c dng : x : P(x).Vy mnh ph nh l: "Vi mi s thc x, x2 > 0". Ghi ch : T cc qui tc trn ta c th ni chung v qui tc ph nh mnh c lng t nh sau: Nutrongmtmnhclngttathaythlngtbilngt-,lngt-bi lng t , v biu thc v t c thay th bi ph nh ca n th ta s c mnh ph nh ca mnh c lng t ban u. Qui tc ny cng p dng c cho cc mnh vi nhiu lng t. V d 2:Cho p(x, y, z) l mt v t ph thuc vo bin b ba (x,y,z)e AxBxC. Min xc nh l tch -Cat ca 3 tp hp A, B, C. Trong trng hp ny ta ni v t p l mt v t theo 3 bin x, y, z. Min xc nh tng ng ca 3 bin ny l A, B, C. Hy tm ph nh ca mnh sau: 24 x e A, - y e B, - z e C : p(x,y,z) Theo qui tc chung ta c : ( x e A, - y e B, - z e C : p(x,y,z)) - x e A, y e B, z e C : p(x,y,z) Tht ra nu thc hin tng bc theo cc qui tc (1) v (2) ta cng t c mnh ph nh nh trn: ( x e A, - y e B, - z e C : p(x,y,z)) - x e A, (- y e B, - z e C : p(x,y,z)) - x e A, y e B, (- z e C : p(x,y,z)) - x e A, y e B, ze C : p(x,y,z) V d 3:Vi mt hm s f xc nh mt ln cn ca im a e R (a l mt s thc), ta c nh ngha s lin tc ca f ti a nh sau : f lin tc ti a nu v ch nu cho mt s dng c t y , ta c mt s dng o sao cho | x-a | < o | f(x) - f(a) | < c . Nh vy f lin tc ti a khi v ch khi mnh sau y ng: "cho s dng c t y , ta c mt s dng o sao cho vi mi x ta c| x-a | < o | f(x) - f(a) | < c ". Hy tm ph nh ca mnh trn. Mnh trn c vit l : c > 0, - o > 0 : ( x : | x-a | < o | f(x) - f(a) | < c ) Theo qui tc ph nh mnh c lng t, ph ca mnh trn l: - c > 0, o > 0 : ( x : | x-a | < o | f(x) - f(a) | < c ) - c > 0, o > 0 : (- x : (| x-a | < o | f(x) - f(a) | < c )) - c > 0, o > 0 : (- x : | x-a | < o . ( | f(x) - f(a) | < c )) - c > 0, o > 0 : (- x : | x-a | < o . | f(x) - f(a) | > c ) - c > 0, o > 0, - x : | x-a | < o . | f(x) - f(a) | > c Nh vy ta c th pht biu mnh ph nh nh sau:: "Tn ti mt s dng c sao cho ng vi s dng o t y c mt s thc x tho iu kin| x-a | < o v | f(x) - f(a) | > c ". Nh vy ta c th pht biu mnh ph nh nh sau: "Tn ti mt s dng c sao cho ng vi mi s dng o t y ta c mt s thc x tha iu kin | x-a | < o v | f(x) - f(a) |> c ". 1.6.5. Mt s quy tc dng trong suy lun Thay i th t lng t ha ca 2 bin 25 Cho mt v t p(x, y) theo 2 bin x, y. Nu lng t ha c 2 bin x, y trong ta lng t ha bin y trc v lng t ha bin x sau th s c 4 mnh sau y: x, y : p(x,y) - x, y : p(x,y) x, y : p(x,y) x, y : p(x,y) Tng t ta cng c 4 mnh lng t ha t v t p(x, y) trong ta lng t ha bin x trc v lng t ha bin y sau: y, x : p(x,y) - y, x : p(x,y) y, x : p(x,y) y, x : p(x,y) nhldiychotamtstnhchtlinquannthtcaviclngthacc bin trong cc mnh c lng t. nh l: Gi s p(x, y) l mt v t theo 2 bin x, y th cc mnh sau l ng ( x, y : p(x,y) ) ( y, x : p(x,y) ) (- x, - y : p(x,y) ) (- y, - x : p(x,y) ) (- x, y : p(x,y) ) ( y, - x : p(x,y) ) Qui tc c bit ha ph dng Qui tc:Gi s mt mnh c lng t trong bin x vi min xc nh l A, c lng t ha v b buc bi lng t ph dng , v mnh l ng. Khi nu thay th x bi a e A th ta s c mt mnh ng. V d1: Bit rng pht biu "mi s nguyn t ln hn 2 u l s l" l mt mnh ng. Cho a l mt s nguyn t ln hn 2 (c nh nhng t y ). Hy chng minh rng a l mt s l. Gii:t p(n) "n l s nguyn t ln hn 2", v q(n) "n l s l". Ta c p(n) v q(n) l cc v t theo bin s t nhin n, v ta c mnh ng sau y: n : p(n) q(n) Theo qui tc trn ta suy ra p(a) q(a) = 1. Theo gi thit ta cng c 26 p(a) = 1. Suy ra q(a) = 1 (qui tc suy din Modus Ponens). Vy ta c mnh "a l mt s l" l ng. V d 2: Trong cc nh l Ton hc ta thng thy cc khng nh l cc mnh lng t ha ph dng. V d nh cc trng hp bng nhau ca 2 tam gic bt k. Khi p dng ta s c bit ha cho 2 tam gic c th. Qui tc tng qut ha ph dng Qui tc: Nu ta thay th bin x trong v t P(x) bi mt phn t a c nh nhng t y thc min xc nh ca bin x m mnh nhn c c chn tr l ng, tc l P(a) = 1, th mnh lng t ha x : P(x) l mt mnh ng. Nhn xt: Nu xem v t P(x) nh l mt hm ly gi tr Bool trn min xc nh A ca bin x th ta c mnh lng t ha x : P(x) l mt mnh ng khi v ch khi P l hm hng 1. T cc qui tc trn ta c th chng minh c mt s tnh cht suydin c pht biu trong cc mnh sau y: Mnh 1: Cho p(x) v q(x) l cc v t theo bin x ly gi tr trong tp hp A (min xc nh ca bin x l tp hp A), v a l mt phn t c nh t y thuc A. Khi y ta c qui tc suy din sau y: x : p(x) q(x) p(a) q(a) Mnh 2: Cho p(x), q(x) v r(x) l cc v t theo bin x ly gi tr trong tp hp A (min xc nh ca bin x l tp hp A). Ta c qui tc suy din sau y: x : p(x) q(x) x : q(x) r(x) ------------------------- x : p(x) r(x) BI TP Cu1:Quitcsuydinlg?Chovdvmtquitcsuydinvpdngquitcsuy din trong mt suy lun c th. 27 Cu 2: Lit k nhng qui tc suy din thng dng v cho bit tn gi (nu c) ca mi qui tc suy din. Cu3:Nulnccphngphpkimtramtquitcsuydin.ngvimiphng php hy cho mt v d minh ha. Cu 4: V t l g? Cho v d. Cu 5: Pht biu qui tc ph nh mnh c lng t (hay mnh lng t ha) v cho v d c th. Cu 6: P(n) l v t "nu 4 , n th 2 , n". Cho bit chn tr ca cc mnh sau: a/ P(12)b/ P(10)c/ - n : P(n)d/ n : P(n) Cu7:Hychobitchntrcamimnhdiyvvitmnhphnhca mnh . a/ - x : x+3 = 5 b/ x : x+3 = 5 c/ - x, - y : x+y = 3 d/ - x, y : x+y = 3 e/ x, - y : x+y = 3 f/ x, y : x+y = 3 Trong cc mnh trn cc bin x v y l cc bin thc. Cu8:Hychobitchntrcamimnhdiyvvitmnhphnhca mnh . a/ - x, - y : (x2 = y2) (x = y) d/ - x, y : (x2 = y2) (x = y) e/ x, - y : (x2 = y2) (x = y) f/ x, y : (x2 = y2) (x = y) Cu 9: Hy s dng cc k hiu ton hc v logic vit li mnh sau y: 28 Vi mi s thc dng x, c mt s t nhin n sao cho x bng 2n hoc x nm gia 2n v 2n+1. Cho bit mnh ny ng hay sai, v vit ra mnh ph nh ca n. Cu 10: Trong bi tp ny k hiu n ch mt bin nguyn. Cho cc v t : P(n) "0 < n2 s 4" R(n) "0 < n3 s 8" S(n) "0 < n s 2" a/ngvimivttrnhychobittphpccgitrnlmchovtcchntrng (=1).b/ Trong cc v t trn, nhng v t no tng ng vi nhau. c/ Mnh " n : R(n) P(n)" l ng hay sai? 29 CHNG 2 CC PHNG PHP CHNG MINH 2.1. Cc phng php chng minh c bn 2.1.1. Khi nim v chng minh Mththngtonhcbaogmcctin,ccnhngha,vnhngkhinim khng c nh ngha. Cc tin c gi nhl ng. Cc nh ngha c s dng xydnghayaranhngkhinimmitrncsnhngkhinimc.Mtsthut ng, khi nim s khng c nh ngha r rng nhng c ngm nh ngha bi cc tin . Trong mt h ton hc chng ta c th suy ra c cc nh l. Mt nh l l mt mnh c chng minh l ng. Mt s loi nh l c xem l cc b , cc h qu.Mtlplun(hayllun)chractnhngncamnhphtbiu trongnhlcgilchngminh.Logiclcsthchinvicchngminh,c bitlcclutlogicvcclutsuydin.Trongphnnychngtascpnvicxy dngmtchngminhtonhc.Cccutrcchngminhthngcsdngl:chng minh trc tip, chng minh bng cch phn chia trng hp (phn chng), phn chng, phn v d, v chng minh qui np.2.1.2. Chng minh trc tip Chng minh trc tip lphng phpchng minh suydin trc tip dnt gi thit n kt lun thng qua vic p dng cc lut suy din (hay qui tc suy din), cc nh l, cc nguyn l v cc kt qu bit. y l mt kiu t duy gii bi ton rt t nhin v ngi ta thng xuyn s dng. Trong khi suy ngh tm ra cch chng minh theo phng php ny ngi ta thng phi t tr li cc cu hi sau y: Ta s dng lut suy din no? Cc nh l no, cc kt qua no c th s dngc ta suyra cmt iu g t nhng s kin, nhng yu t hin ang c? Vic p dng nh l c kh nng s dn n kt lun hay kt qu mong mun hay khng? Trong trng hp mt bc suy din no c nhiu nh l hay nhiu lut no c th pdngcvcngckkhnngsdnnktlunhayktqumongmunthtas chn ci no? n mtgiai on no , khi gp phi s b tc th ta s phi t hirng phi chng bi ton khng c li gii, hay v kin thc ca ta cha , hay ta phi s dng mt phng php chng minh no khc? Qu tht l khng th tr li c cc cu hi mt cch y v chnh xc. N ph thuc ch yu vo kin thc, kinh nghim ca ngi gii bi ton v c s nhy bn, tnh nng ng 30 sng to ca h. Tuy nhin Nhng cu hi trn cho ta mt s nh hng chung ca qu trnh suy ngh. Ngoi ra, cng cn ni thm rng chng l c s cho vic pht trin cc h chng trnh tr gip gii ton mt cch "thng minh" trn my tnh c thit k theo phng php chng minh ny.Di y, chng ta s xem xt mt 2 v d v phng php chng minh trc tip. V d 1: Gi s p, r, s, t, u l cc mnh sau cho ta c cc mnh sau y l ng: (1) p r (2) r s (3) t v s (4) t v u (5) u. Hy chng minh mnh p l sai, tc l chng minh mnh p l ng. Chng minh: p dng lut suy din tam on lun, t (1) v (2) ta suy ra: (6) p s p dng lut logic v php ton ko theo ta c th vit li (3) di dng: (7) s t p dng lut suy din tam on lun, t (6) v (7) ta suy ra: (8) p t p dng lut logic v php ton ko theo ta c th vit li (4) di dng: (9) t u p dng lut suy din tam on lun, t (8) v (9) ta suy ra: (10) p u p dng lut suy din Modus Tollens, t (10) v (5) ta suy ra: (11) p Vy mnh p l ng. 31 V d 2: Cho p(x), q(x) v r(x) l cc v t theo bin x (x e A), v a l mt phn t c nh nhng t y ca tp hp A. Gi s ta c cc mnh sau y l ng: (1) x e A : p(x) q(x) (2) x e A : q(x) r(x) (3) p(a) Chng minh rng mnh r(a) l ng. Chng minh: p dng kt qu trong mnh 2, Bi 2, mc 2.5, t (1) v (2) ta suy ra: (4) x e A : p(x) r(x) p dng kt qu trong mnh 1, Bi 2, mc 2.5, t (3) v (4) ta suy ra: (5) r(a) Vy mnh r(a) l ng. 2.1.3. Chng minh phn chng Phng php chng minh trc tip khng phi bao gi cng s dng c trong vic chng minh ngay c i vi nhng bi ton kh n gin nh bi ton sau y: Bi ton: Chng minh rng khng c hai s nguyn dng m v n sao cho Bng cch suy ngh tm mt cch chng minh trc tip ta s gp phi b tc: Vi q = m/n l mt s hu t cho trc (m v n l cc s nguyn dng) ta khng bit lm th no suy ra mt cch trc tip rng q2 = 2. bng phn chng mt khng nh hay mt mnh no , ta tm cch rt ra t mnh mtiurrnglvlhaymtsmuthun.Vmtkthuttathnggisrng mnh cn chng minh l sai ri t suy ra mt iu mu thun vi gi thit hay cc tin ca bi ton, t i n kt lun rng mnh l ng. Ngoi ra php chng minh phn chng cn c th c thc hin nh sau: ta gi s mnh cn chng minh l sai, kt hp vi gi thit cho suy ra c mt iu mu thun no ri t kt lun rng mnh l ng. C s cho phng php chng minh ny l qui tc chng minh phn chng: p q (p . q) 0 32 Tr li bi ton trn nh mt v d, chng ta c th thc hin vic chngminh mt cch d dng nh phng php chng minh phn chng. V d: Chng minh rng khng c hai s nguyn dng m v n sao cho Chng minh phn chng: Gi s ta c mnh ngc li ca iu cn phi chng minh, tc l gi s rng: C hai s nguyn dng m v n sao cho. V mt phn s c th vit di dng ti gin, nn ta c th gi thit thm rng cc s dng mvntrongmnh(1)nguyntc ngnhau,tcl:mvnkhngccschungln hn 1. Do m2 = 2n2, t (1) ta suy ra: C hai s nguyn dng m v n nguyn t c ng nhau sao cho m2 = 2n2. Vi m v n l hai s nguyn dng tha mn iu kin trong mnh (2) trn th ta d dng ln lt suy ra c cc khng nh sau y: m v n nguyn t c ng nhau. m2 = 2 n2. m l s chn. m l s chn, tc l m = 2k vi k l mt s nguyn dng. n2 = 2k2. n2 l s chn. n l s chn. 2 l mt c s chung ca m v n, v 2 > 1. S mu thun do (3) v (10). T lp lun trn ta i n kt lun: khng c hai s nguyn dng m v n sao cho. 33 Ghi ch: Ngoi cch chng minh phn chng ta cn c th thc hin php chng minh gin tip m v thc cht phng php ny l c ng loi vi phng php chng minh phn chng. Trong cch chng minh gin tip ngi ta thit lp s ng n ca mt mnh bng cch chng minh rng mnh ngc li (tc l mnh ph nh ca mnh ) l sai. 2.1.4. Chng minh bng cch phn chia trng hp Trong phng php chng minh bng cch phn chia trng hp, chng minh mt s khng nh no ta xem xt tt c cc trng hp cth xy ra i vi cc s kin hay cc yu t lin quan trong gi thit v chng minh rng trong mi trng hp ta ta u c mnh cn chng minh l ng, v t i n kt lun rng t gi thit ta c mnh cn chngminhlng.Cschophngphpchngminhnylquitcchngminhtheo trng hp: (p1 q) . (p2 q) . . . . . (pn q) (p1 v p2 v . . . v pn) q chng minh khng nh q (l ng), chng ta phn tch gi thit c c mt s khng nh ng di dng: p1 v p2 v . . . v pn ri tm cch chng minh rng t mnh pk suy ra c mnh q, ng vi mi i t 1 ti n. Chng ta hy tr li mt bi ton v s nguyn c trnh by trong phn trc v cc v d p dng ca logic trong vic lp lun v chng minh. V d: Cho mt s nguyn n, hy chng minh rng n3 + 2n chia ht cho 3. Tm tt chng minh: Vi mt s nguyn n, gi r l d s trong php chia n cho 3, ta c 3 trng hp: Trng hp 1: r = 0 Trng hp 1: r = 1 Trng hp 1: r = 2 Ni cch khc ta c: (r = 0) v (r = 1) v (r = 2). Trong mi trng hp ta u suy ra c n3 + 2n chia ht cho 3. y khng trnh by li chi tit vic tnh ton suy din trong mi trng hp. T i n kt lun: n3 + 2n chia ht cho 3. 34 2.1.5. Phn v d Ni mt cch tng qut, phn v d l vic ch ra mt tnh hung hay trng hp sai ca mt khng nh ph qut chng t rng khng nh ph qut l sai. Chng hn nh chng minh mnh x e A : P(x) l sai ta ch cn a ra mt phn t a c th thuc tp hp A m P(a) l sai. Tht ra lm nh vy tc l ta chng minh mnh - x e A : P(x) (c c ng chn tr vi mnh [ x e A : P(x)] ) l ng. Chng ta c th nu ln mt bi ton khc m i vi n ta phidng phn v d. l bi ton chng minh mt php suy din t p1, p2, , pn suy ra q l sai. chng minh php suy din l sai ta phi chng minh rng p1 . p2 . . . . . pn q khng phi l hng ng. lm iu ny chng ta ch cn tm v ch ra mt trng hp c th ca cc bin mnh m ng vi chng ta c cc tin p1, p2, , pn u ng nhng kt lun q l sai. V d: Hy kim tra suy lun sau y p r p r q ----------- q Sdngccphngphpkimtramtphpsuyluntacththycsuylun trn l khng ng. tm mt phn v d ta ch cnch ra mt trng hp v chn trca cc bin mnh sao cho cc tin trong php suy lun l ng cn kt lun l sai. V mt k thut ta s tm p, q, v r tha mn cc ng thc sau y: p r = 1 p = 1 r q = 1 35 q = 0 D dng tm thy mt trng hp phn v d l: p = 1, q = 0, r = 1. Vy suy lun cho l khng ng. 2.2. Nguyn l quy np 2.2.1. i cng v quy np 2.2.1.1. Tp hp s t nhin Tp hp gm tt c cc s t nhin (hay cc s m) c k hiu l N: N = { 0, 1, 2, . . . } Cc php ton: Trn tp hp s t nhin N ta c php ton cng (k hiu l +), v php ton nhn (k hiu l .).Phptoncng2stnhinavbchotatngscnglmtstnhincvitl a+b; cn php ton nhn 2 s t nhin a v b cho ta tch s cng l mt s t nhin c vit l a.b. Php ton cng v nhn cc s t nhin c cc tnh cht sau y: Php cng (+) v php nhn (.) c tnh giao hon v kt hp, ngha l vi mi s t nhin a, b, c ta c: a + b = b + a (a + b) + c = a + (b + c) a.b = b.a (a . b) . c = a . (b . c) Php nhn (.) phn phi i vi php cng (+), ngha l vi mi s t nhin a, b, c ta c: a . (b + c) = a . b + a . c y, php ton nhn c u tin cao hn php ton cng. Php cng v php nhn ln lt nhn 0 v 1 l phn t trung ha, ngha l ta c: a e N : a + 0 = 0 + a = a a e N : a . 1 = 1 . a = a Th t trn N: 36 Ngoi cc php ton, trn N cn c mt quan h th t ? c nh ngha nh sau: a s b - c e N : a + c = b y l mt quan h th t ton phn trn N, v theo quan h th t ny ta c: 0 < 1 < 2 < . . . < n < n+1 < . . . 0 l phn t nh nht ca tp N, nhng tp N khng c phn t ln nht. ThtstrntphpNcmttnhchtrtquantrngcphtbiutrongmnhsau y: Mnh:ChoAlmttphpccstnhinkhcrng.KhiAcphntnh nht, ngha l tn ti a e A sao cho: x e A, a s x Ghich:Phntatrongmnhtrnlduynhtvckhiulmin(A).Tnhcht c pht biu trong mnh l c s cho tnh ng n ca cc qui tc chng minh qui np s c trnh by trong mc sau. 2.2.2. Cc nguyn l quy np thng dng Cho n0 l mt s t nhin, v P(n) l mt v t theo bin t nhin n ? n0. Vn c t ra l chng minh tnh ng ng ca mnh sau y: n > n0 : P(n) Phng php chng minh qui np thng c s dng chng minh khng nh trn. Php chng minh qui np c thc hin da vo cc nguyn l qui np. Chng ta s nu ln hai dngnguynlquinpthngcsdng.Trongccpdngnguynlquinp,n0 thng l 0 hoc 1. Hai dng nguyn l qui np, c gi l dng qui np yu v dng qui np mnh s c vit di dng m hnh ca cc lut suy din. Nguyn l qui np dng yu: (c s)P(n0) (qui np) k > n0 : P(k) > P(k+1) ----------------------------------- n >n0 : P(n) Chng minh tnh ng n ca nguyn l qui np trn: 37 t A l tp hp cc s t nhin n > n0 m P(n) sai. Ta ch cn chng minh rng A = C (tp hprng)vigithitrngtachaikhngnhtrongphncsvphnquinptrong nguyn l trn. Ta s chng minh iu ny bng phng php phn chng. Gi s A = C . Theo tnh cht ca th t trn tp s t nhin N (xem mnh mc trn), A c phn t nh nht. Gi a l phn t nh nht ca tp hp A. V P(n0) ng nn a > n0+1, hay a-1>n0.Doa=min(A),nna-1eAvdoP(a-1)ng.VP(a-1)ngnntacngc P(a) ng theo khng nh phn qui np, ngha l ta cng c a e A. iu ny cho ta mt s mu thun (v a = min(A)). Vy A = C . Ta c iu cn chng minh. Nguyn l qui np dng mnh: (c s)P(n0) (qui np) k > n0 : P(n0) . P(n0+1) .. . . . P(k) P(k+1) ------------------------------------------------------------ n > n0 : P(n) Theo cc nguyn l trn, chng minh qui np bao gm 2 bc : bc c s v bc qui np. bc c s, ta phi kim chng khng nh P(n0) l ng. bc qui np, ng vi mt s t nhin k t y , ta phi chng minh mt mnh ko theo. Gi thit trong mnh ko theo bc 2 c gi l gi thit qui np. Gi thit qui np dng qui np yu l P(k), v dng mnh l P(n0) . P(n0+1) .. . . . P(k). Nguyn l qui np c rt nhiu bin th trong vic vn dng. Chng hn, t hai nguyn l trn ta c th rt ra mt nguyn l qui np c dng sau y: (c s)P(0) . P(1) (qui np) k > 1 : P(k-1) .P(k) . P(k+1) ------------------------------------------------------------ n > 0 : P(n) Trong chng minh mnh sau y, ta s dng dng qui np bin th ny. Mnh : Cho dy sx0, x1, . . ., xn, . . . c nh ngha bi : 38 x0 = 0; x1 = 1; v xn = 3xn-1 - 2xn-2 vi mi n > 2. Khi ta c: xn = 2n - 1, vi mi n > 0. Chng minh: t P(n) "xn = 2n - 1". D thy rng P(0) v P(1) l ng. By gi, ta ch cn thc hin bc qui np hon thnh php chng minh qui np. Gi s P(k-1) v P(k) ng vi mt s t nhin (t y ) k > 1. Th th xk-1 = 2k-1 - 1 v xk = 2k - 1. Do xk+1 = 3xk - 2xk-1

= 3(2k - 1) - 2(2k-1 - 1) = 3*2k - 3 - 2k - 2 = 2*2k - 1 = 2k+1 - 1 Suy ra P(k+1) ng. Vytheonguynlquinp(dngbinthcphbiu trn)taktlun:P(n)ngvi mi n > 0.2.2.3. Cc v d V d 1: Chng minh rng vi mi n > 1 (n e N) ta c: 12 + 22 + . . . + n2 = n(n+1)(2n+1) / 6 Chng minh: Vi mi s t nhin n > 1 (n e N), t P(n) "12 + 22 + . . . + n2 = n(n+1)(2n+1) / 6" Ta s chng minh mnh n > 1 : P(n) bngphngphpquinp(dngyu),nghalthchin2bcchngminhtrongphp chng minh qui np. 39 Bc c s: Khi n = 1 th P(1) l mnh "1 = 1.(1+1).(2.1+1) /6". V phi ca ng thc trong mnh tnh ra bng 1, nn ta c P(1) ng. Bc qui np: Cho n l mt s t nhin ty ln hn 0, ngha l n > 1, v gi s rng P(n) ng, tc l ta c: 12 + 22 + . . . + n2 = n(n+1)(2n+1) / 6 (GTQN) By gi ta s chng minh P(n+1) cng ng, tc l chng minh rng 12 + 22 + . . . + n2 + (n+1)2 = (n+1)(n+2)(2n+3) / 6 Tht vy, t (GTQN) ta suy ra 12 + 22 + . . . + n2 + (n+1)2 = n(n+1)(2n+1) / 6 + (n+1)2 = [(n+1) / 6] . [n(2n+1) + 6(n+1)] = [(n+1) / 6] . [2n2 + 7n + 6] = [(n+1) / 6] . (n+2) (2n+3) = n(n+1)(2n+1) / 6 Tc l ta suy ra c P(n+1) cng ng. Hai phn (phn c s v phn qui np) trong php chng minh qui np c chng minh. Vy theo nguyn l qui np ta kt lun rng vi mi n > 1 (n e N) ta c: 12 + 22 + . . . + n2 = n(n+1)(2n+1) / 6 V d 2: Chng minh nh l sau y: Cho a v b l 2 s nguyn t nhin, vi b > 0. Khi , c duy nht 2 s t nhin q v r tha 2 iu kin sau y: + a = q.b + r + 0 s r < b Chng minh: Tnhduynhtcaqvrtrongnhltrncthkimchngddng.ytaschng minh s tn ti ca q v r. Cho b l mt s t nhin khc 0 t y nhng c dnh. t P(a) "Tn ti cc s t nhin q v r tha mn 2 iu kin (1) v (2)" Ta s chng minh mnh sau y l ng: a e N : P(a) bng cch s dng nguyn l qui np dng mnh. 40 Bccs:Xttrnghpa=0,tathyviq=0vr=0thcciukin(1)v(2) c tha mn. Vy ta c P(0) ng. Bc qui np: Cho a l mt s t nhin t y v gi s rng cc mnh P(0), P(1), . . . , P(a) u ng (GTQN). Ta s chng minh P(a+1) cng ng bng cch xt 2 trng hp. + Trng hp 1: a+1 < b. Ta chn q = 0 v r = a+1 th ta c q v r tha cc iu kin a+1 = q.b + r 0 s r < b Vy trong trng hp 1 ny th P(a+1) ng. + Trng hp 2: a+1 > b. t a' = a+1-b, ta c 0 s a' s a. T (GTQN) ta suy ra P(a') ng, tc l c cc s tnhin q' v r' sao cho a' = q'.b + r', v0 s r' < b Suy ra cc s t nhin q = q'+1 v r = r' s tha mn 2 iu kin (1) a+1 = q.b + r (2) 0 s r < b Vy ta cng c P(a+1) ng. Tm li, ta chng minh phn c s v phn qui np trong nguyn l qui np. T c th kt lun rng: a e N : P(a) Ghich:nhltrnlcschovicnhnghaphptondiv(chialythngs)v php ton mod (chia ly d s). nh l ny cn c gi l thut chia Euclide. Xem xt vic chng minh ca nh l trn theo phng php qui np, chng ta c th rt ra mt thut ton (khi nim thut ton s c trnh by trong chng 3). Dng tng qut ca nh l, cho cc s nguyn, c pht biu trong bi tp 6. 41 CHNG 3 PHNG PHP M 3.1. Tp hp 3.1.1. Khi nim tp hp Khi nim tp hp c dng ch mt su tp hay mt nhm cc i tng no m ta ang quan tm xem xt, v su tp ny phi c xc nh tt. Cc i tng trong su tp hay trong nhm ny s c gi l cc phn t hay cc thnh vin ca tp hp. Tnh xc nhtt(haynivnttltnhxcnh)catphpchiutheonghalvimti tng no m ta ang quan tm th ta c th xc nh c ch xc rng trng hp no l ng trong hai trng hp sau y: Trng hp 1: i tng l mt phn t ca tp hp. Trong trng hp ny ta ni i tng thuc v tp hp. Trng hp 2: i tng khng phi l mt phn t ca tp hp. Trong trng hp ny ta ni i tng khng thuc v tp hp. thun tin cho vic cp n tp hp v sau, mi tp hp thng c t cho mt tn, chng hn nh A, B, C . Ta cng dng k hiu e din t quan h "thuc v" ca mt phn t i vi mt tp hp. Khi x l mt phn t thuc v tp hp A, th ta vit x e A vcl"xthucA",haycl"Achaphntx".Ngcli,nuxkhngphilmt phn t ca tp hp A th ta vit x e A v c l "x khng thuc A", hay c l "A khng cha phn t x". Tp hp bng nhau: Hai tp hp A v B s c xem la bng nhau khi chng c c ng cc phn t, tc l mi phn t thuc A u l phn t thuc B v ngc li. Khi y, ta vit l A = B. Tp hp rng: Tp hp khng c phn t no c gi l tp hp rng, v c k hiu l C . Cch xc nh mt tp hp: xc nh mt tp hp ta c th dng cc cch sau y: Cch lit k: Ta lit k tt c cc phn t ca tp hp gia 2 k hiu ngoc { v } . V d:A = { a, b, c } . B = { 0, 1 } . 42 Cc nu c trng ca phn t:Theocchny,xcnhmttphpAtasnuln"tnhcht"dngxcnhxem phn t trong mt khng gian U c thuc v tp hp A hay khng: phn t x ca U s thuc Akhixtha"tnhcht",vxkhngthucAkhixkhngtha"tnhcht".T"tnhcht" thng c th hin di dng mt v t p(x) theo bin xe U. Khi y, tp hp A s c vit nh sau: A = { x e U : p(x) }hay vn tt (hiu ngm tp U) l A = { x : p(x) }V d: A = { n e N : n l s nguyn t } (khi nim s nguyn t c nh ngha trong mc III) B = { n e N : c mt s t nhin m sao cho n = m2 }Cch xc nh tp hp di dng nh ca mt tp hp khc A' qua mt php tng ng f m ng vi mi x e A' ta c mt phn t tng ng f(x) duy nht trong U. Khi y ta vit A = { f(x) : x e A' }Ghi ch: Php tng ng f c ni trn y chnh l mt nh x. Khi nim nh x s c nh ngha trong mc II. V d: B = { n2 : n e N }C = { (2n+1)2 : n e N }3.1.2. Quan h bao hm trong v tp hp con nh ngha:Cho A v B l hai tp hp m cc phn t ca chng u thuc mt tp hp ln U (hay cn gi l tp v tr). Ta ni tp A bao hm trong (hay cha trong) tp B nu mi phn t ca tp hp A u thuc tp hp B. Ta cng ni rng B bao hm A (hay B cha A), v vit l: A c B (hay BA). Khi A c B ta ni A l mt tp hp con ca tp hp B. 43 V d: { 0, 1, 2} c { n e N : n < 10}N c Z c Q c R c C, trong N #9; l tp hp cc s t nhin, Z l tp hp cc s nguyn, Q #9; l tp hp cc s hu t, R #9; l tp hp cc s thc, C #9; l tp hp cc s phc. Cho X l mt tp hp. Su tp tt c cc tp hp con ca X c k hiu lP(X). Ni mt cch khc, P(X) l mt tp hp m mi phn t ca n l mt tp hp con ca X. Tnh cht: C c A v A c A, vi mi tp hp A. (A c B) . (B c A) (A = B) (A c B) . (B c C) (A c C) X c Y P(X) c P(Y) Nu tp hp X c n phn t (n e N) th tp hp P(X) c 2n phn t. 3.1.3. Cc php ton trn tp hp Trong mc ny chng ta s nu ln nh ngha cc php ton tp hp trn cc tp hp con ca mt tp hp v tr U cho trc, v pht biu mt s tnh cht lin quan n cc php ton. nh ngha cc php ton: Giaoca2tphpAvB,khiubiAB,ltphpgmttccc phn t ca U m va thuc tp A va thuc tp B. A B = { x : (x e A) . (x e B) }Hi ca 2 tp hp A v B, k hiu bi AB, l tp hp gm tt c cc phn t ca U sao cho n thuc tp A hay thuc tp B. AB = { x : (x e A) v (x e B) }Hiu ca 2 tp hp A v B, k hiu bi A \ B (hay A - B), l tp hp gm tt c cc phn t ca U sao cho n thuc tp A v khng thuc tp B. 44 A - B = { x : (x e A) . (x e B) }PhnbcatpA(trongU),khiubiAc,ltphpttcccphnt ca U m khng thuc A. Ni cch khc, Ac = U - A Cc tnh cht ca cc php ton: Tnh giao hon: A B = B A AB = BA Tnh kt hp: A (B C) = (A B) C A(BC) = (AB)C Tnh phn b: A (BC) = (A B)(A C) A(B C) = (AB) (AC) Lut De Morgan: (A B)c = AcBc (AB)c = Ac Bc Phn t trung ha: AC = A A U = A Phn b: AAc = U A Ac = CTnh thng tr: AU = U A C = C45 3.1.4. Tch Decartes ca cc tp hp Tch Descartes ca 2 tp hp: Cho 2 tp hp A v B. Tch Descartes ca tp hp A v tp hp B, c k hiu bi AxB, l tp hp gm tt c cc cp (a,b) sao cho a e A v b e B. AxB = { (a,b) : a e A . b e B }Trong trng hp B = A, ta k hiu AxB l A2. Tch Descartes ca nhiu tp hp: ChontphpA1,A2,,An(n>1).TchDescartescantphpA1,A2,,An, c k hiu bi A1xA2x xAn, l tp hp gm tt c cc b n phn t (a1, a2, , an) vi ai e Ai vi mi i = 1, , n. Trong trng hp A1 = A2 = . . . = An = A th tp hp tch A1xA2x xAn s c vit l An. 3.2. Cc nguyn l m T lu, ngi ta nghin cu vic lit k, m cc phn t hay cc i tng c nhng tnh cht no gii quyt mt s vn cn thit c t ra. Chng hn, php m c s dng trong vic phn tch v nh gi phc tp ca thut ton. K thut m cn c s dng trong vic tnh ton xc sut ca cc s kin. Trong mc ny chng ta s trnh by cc qui tc c bn ca php m. Chng s gip ch rt nhiu cho vic gii nhiu vn lin quan n vic lit k, sp xp v m. 3.2.1. Php m Cho A l mt tp hp khc rng, xc nh s phn t ca tp hp A ta thng thc hin vic m bng cch ln lt gn cho cc phn t ca A cc s t nhin k tip nhau, v s t nhin u tin (c dng gn cho phn t u tin c xem xt) l 1. Nu qu trnh ny kt thc vi s t nhin n (c gn cho phn t cui c ng) th ta ni A l mt tp hp hu hn v c n phn t. Tht ra khi thc hin vic m nh th chnh l thit lp mt song nh t A vo tp hp { 1, 2, . . ., n} . T ta c th nh ngha php m nh sau: nh ngha:Cho A l mt tp hp khc rng. Nu tn ti mt s nguyn dng n v mt song nh f t A vo { 1, 2, . . ., n} th ta ni A l mt tp hp hu hn v A c n phn t. Khi song nhf : A { 1, 2, . . ., n}l s c xem l mt php m tp hp A. Tphprngcsphntl0,vcngcxemltphuhn.Sphntca mt tp hp hu hn A c k hiu l | A |. 46 Nu tp hp A khng hu hn, ta ni A l mt tp v hn v vit | A | = Ghich:khiquthakhinimsphntivicctphpt yvso snh lc lng ca cc tp hp ngi ta a ra nh ngha v quan h ng lc lng, v cc quan h so snh lc lng khc da vo khi nim nh x. Chng hn, hai tp hp A v B c ni l ng lc lng khi tn ti mt song nh f t A vo B. Tnh cht:Cho A v B l cc tp hp hu hn. Gi s tn ti n nh t A vo B. Khi y ta c: | A | s | B |. 3.2.2. Nguyn l cng C s ca nguyn l cng l mi lin h gia s phn t ca mt tp hp vi s phn t ca cc tp hp con to thnh phn hoch ca tp hp cho, c pht biu trong mnh sau y: Mnh : Cho A v B l 2 tp hp hu hn ri nhau, ngha l A B = C . Khi y ta c: | AB | = | A | + | B | Mt cch tng qut: Nu A1, A2, ..., An l cc tp hp hu hn ri nhau, ngha l phn giao ca hai tp hp bt k trong n tp hp l rng, th s phn t ca phn hi ca cc tp hp trn bng tng ca cc s lng phn t trong mi tp hp: | A1A2. . .An | = | A1 | + | A2 | + . . . + | An | chng minh mnh trn cho trng hp 2 tp hp A v B ta c th gi m l s phn t ca tp hp A v n l s phn t ca tp hp B. Sau , t vic gi s c cc song nh f : A { 1, 2, . . ., m} v g : B { 1, 2, . . ., n} , ta c th lp d dng mt song nh h : AB { 1, 2, . . ., m+n} i n kt lun | AB | = m+n. Trong trng hp tng qut ta c th s dng nguyn l qui np, vi bc c s l vic chng minh cho trng hp 2 tp hp va trnh by trn. Ghi ch: Trong trng hp i vi hai tp hp hu hn A v B t y th ta c: | AB | = | A | + | B | - | A B | 47 Tnh cht ny c th m rng cho trng hp i vi n tp hp t y A1, A2, ..., An nh sau: | A1A2. . .An | = E 1s rs n | Ar | - E 1s r< ss n | Ar As |+ E 1s r< s< t s n | Ar As At | - . . . + (-1)n | A1 A2 . . . An | Nguyn l cng : Gi s ta phi thc hin cng vic v thc hin cng vic ny tacthchnmttronghaibinphpkhcnhautheonghalcchthchinbin php th nht lun lun khc cch thc hin bin php th hai. Bin php th nht c n cch thc hin, v i vi bin php th hai ta c m cch thc hin. Vy ta c n+m cch thc hin cng vic. V d 1: Chng ta cn chn mt sinh vin ton nm th 3 hay nm th 4 i dmthingh.Hicbaonhiucchchnlamtsinhvinnhthbit rng c 100 sinh vin ton hc nm th 3 v 85 sinh vin ton hc nm th t ? Ligii:Tacththchinmttrong2vicchnlakhcnhau: chnmtsinhvintonnm3,hocchnmtsinhvintonnm4. thchincngvicthnhttac100cch,vthchincng vic th 2 ta c 85 cch. Vy chn mt sinh vin ton theo yu cu ta c 100+85 = 185 cch. Chng ta c th m rng nguyn l cng cho trng hp nhiu s chn la hn nh sau: Gi staphithchinmtcngvicbngcchchnmttrongmschnlaccbinphp khc nhau T1, T2, ..., Tm. thc hin Ti, 1 s i s m, ta c ni cch. Vy ta s cch thc hin cngvictrnln1+n2+...+nm.Nguynlcngdngtngqutnycthcchng minh bng qui np.V d 2: Mt sinh vin c th chn mt ti t mt trong 3 danh sch cc ti. S ti trong cc danh sch ti ln lt l 23, 15, 19. Hi sinh vin c bao nhiu cch chn mt ti. Li gii: Sinh vin c th chn mt ti trong danh sch th th nht theo 23 cch, trong danh sch th hai theo 15 cch, v trong danh sch th ba theo 19 cch. Do s cch chn ti l 23+15+19 = 57. V d 3: Xc nh gi tr ca k sau khi on chng trnh sau y c thc hin xong k := 0 for i1 := 1 to n1 do k := k + 1; for i2 := 1 to n2 do k := k + 1; . 48 . . for im := 1 to nm do k := k + 1; Ligii.Gitrcakbanul0.Saulmvnglpkhcnhau. Mi thao tc lp trong mt vng lp l cng thm 1 vo k. Vng lp th icnithaotc,vttcmvnglpkhngththchin2vnglp nomtcchngthi.Dosthaotcthchinxongon chngtrnhtrnln1+n2+...+nm.ycngchnhlgitrcui c ng ca k. 3.2.3. Nguyn l nhn Cscanguynlnhnlmilinhgiasphntcamttphptch Descartes vi s phn t ca cc tp hp thnh phn to nn tp hp tch, c pht biu trong mnh sau y: Mnh : Cho A v B l 2 tp hp hu hn ri nhau. Khi y ta c: | A x B | = | A | . | B | Mt cch tng qut: Nu A1, A2, ..., An l cc tp hp hu hn th s phn t ca tch Descartescacctphptrnbngtchcaccslngphntcacctphp trn: | A1 x A2 x . . . x An | = | A1 | . | A2 | . . . . . | An | chng minh mnh trn cho trng hp 2 tp hp A v B ta c th gi m l s phn t ca tp hp A v n l s phn t ca tp hp B. Sau , t vic gi s c cc song nh f : A { 1, 2, . . ., m} v g : B { 1, 2, . . ., n} , ta c th lp d dng mt song nh h : A x B { 1, 2, . . ., mn} i n kt lun | A x B | = mn. Trong trng hp tng qut ta c th s dng nguyn l qui np, vi bc c s l vic chng minh cho trng hp 2 tp hp va trnh by trn. Nguynlnhn:Gistaphithchinmtthtcbaogmhaicngvick tipnhau.thchincngvicthnhttacn1cch,vngvimicchchn thchincngvicthnhttacn2cchthchincngvicthhai.Vytacs cch thc hin th tc l n1 x n2. 49 Nguyn l nhn trn c th c m rng v c dng tng qut nh sau: Gi s mt th tc bao gm m cng vic k tip nhau T1, T2, . . ., Tm. Nu cng vic T1 c th c thc hin theo n1 cch, v sau khi chn cch thc hin cho T1 ta c n2 cch thc hin T2, v.v cho n cuic ng,saukhichncchthchincccngvicT1,T2,...,Tm-1 tacnmcchthc hin Tm. Vy ta c n1.n2. ... .nm cch thc hin th tc. Nguyn l nhn dng tng qut ny c th c chng minh bng qui np t qui tc nhn cho trng hp th tc gm 2 cng vic. V d 1: Cc gh ngi trong mt hi trng s c ghi nhn gm mt mu t v mt s nguyn dng khng ln hn 100. Hi s gh ti a c th c ghi nhn khc nhau l bao nhiu? Li gii. Th tc ghi nhn cho mt gh gm 2 vic : ghi mt trong 26 mu t v k tip l ghi mt trong 100 s nguyn dng. Qui tc nhn cho thy c 26 x 100 = 2600 cch khc nhau ghi nhn cho mt gh ngi. Do s gh ln nht c th c ghi nhn khc nhau l 2600. V d 2: Gi s ta phi i t mt a im A n mt a im C, ngang qua mt a im B. i t A n B ta c 8 cch i khc nhau, v c 6 cch i t B n C. Hi c bao nhiu cch i t A n C ? Li gii. Mt cch i t A n C gm 2 vic: i t A n B, ri i t B n C. Vic th nht (i t A n B) c 8 cch thc hin, vic th hai c 6 cch thc hin. vy, theo nguyn l nhn, s cch i t A n C l 8 x 6 = 48. V d 3: Hi c bao nhiu chui bit khc nhau c di 8 (tc l gm 8 bits) ? Li gii. Mi bit c th c chn theo 2 cch, v mi bit l 0 hoc 1. Do , qui tc nhn cho php ta kt lun rng c 28 = 256 chui bit c di 8. Vd4:Mtmbaogm6kt,tronggm3mutrin3ks thp phn. Hi c bao nhiu m khc nhau?Li gii. C 26 cch chn cho mi mu t v c 10 cch chn cho mi k s thp phn. Do , theo qui tc nhn, c tt c 26.26.26.10.10.10 = 17 576 000 m khc nhau. V d 5: C bao nhiu nh x i t mt tp hp gm m phn t vo mt tp hp gm n phn t ? Li gii. Mt nh x i t tp A gm m phn t vo mt tp hp B gm n phn t tng ng vi vic chn la mt trong n phn t ca B cho mi phn t ca A. Do , theo qui tc nhn, c n.n. ... .n = nm nh x t A vo B. V d 6: C bao nhiu n nh i t mt tp hp gm m phn t vo mt tp hp gm n phn t ? Ligii.Trchttanhnxtrngkhim>nthkhngcmtn nh no i t mt tp hp gm m phn t vo mt tp hp gm n phn 50 t. Vy, cho m s n. Gi s cc phn t trong min xc nh ca nh x l a1, a2, . . ., am. C n cch chn nh qua nh x cho phn t a1. V nh x l n nh nn i vi phn t a2 ta ch c n-1 cch chn nh tng ng (do gi tr nh c chn cho a1 khng th c chn li cho a2). Tng qut, gi tr nh ca phn t ak ch c th c chn theo n-k+1 cch. Theo qui tc nhn, c n.(n-1). ... .(n-m+1) n nh i t mt tp hp gm m phn t vo mt tp hp gm n phn t. V d 7: Phng n nh s in thoi. Gi s mt s in thoi gm 10 k s c chia thnh 3 nhm: 2 nhm gm 3 ksvmtnhm4ks.Domtsldono,cmtshnchtrn cc k s ca s in thoi. xc nh dng hp l ca mt s in thoi. ta dng k hiu X ch mt k s c th ly gi tr t 0 n 9, N ch mt k st2n9,vYchmtksl0hoc1.Chngtac2phngn nh s in thoi : mt phng n c v mt phng n mi. Theo phng n c,sinthoicdngNYXNNXXXXX;vtheophngnmiths in thoi c dng NXX NXX XXXX. Hi s lng s in thoi khc nhau ca mi phng n l bao nhiu? Li gii. Do qui tc nhn, i vi phng n nh s in thoi c, s trnghpkhcnhaucaminhmkstrong3nhmlnltl : 8.2.10 = 160 (ng vi dng NYX), 8.8.10 = 640 (ng vi dng NNX), v 10.10.10.10 = 10000 (ng vi dng XXXX). Vy, trong phng n nh s in thoi c, s lng s in thoi l 160. 640.10000 = 1 024 000 000. Tng t S lng s in thoi trong phng n nh s mi l : (8.10.10).(8.10.10).(10.10.10.10) = 800.800.10000 = 6 400 000 000. V d 8: Cng theo qui tc nhn ta thy rng sau khi thc hin on chng trnh di y th gi tr ca bin k s l n1.n2. ... .nm. k := 0 for i1 = 1 to n1 do for i1 = 1 to n2 do . . . for i1 = 1 to nm do k := k + 1 V d 9: S dng qui tc nhn chng minh rng mt tp hp S hu hn c tt c 2|S| tp hp con khc nhau. Li gii. Cho S l mt tp hp hu hn, |S| = n. Lit k cc phn t ca S theo mt th t bt k. Ta c th thy rng c s tng ng mt-mt trn(songnh)giacctphpconcaSvtphpccchuibit gm n bits. Mt tp con ca S c cho tng ng vi mt chui bits c bit th i l 1 nu phn t th i trong danh sch lit k thuc tp hp 51 con, v bit th i l 0 trong trng hp ngc li. Bi qui tc nhn, c 2n chui bit gm n bits. Do , S c 2n tp hp con. Di y chng ta s xem xt mt s bi ton v php m phc tp hn. N i hi chng ta phi s dng c nguyn l cng ln nguyn l nhn. Vd10:TrongmtversioncangnngBASICtncamtbinl mt chuigm1hoc2kt,miktlmuthocksthplcphnv khngphnbitgiachinhoavchthng.Hnna,mttnbinphi bt u bi mt mu t v tn bin phi khc vi 5 chui gm 2 k t c dnhringchongnng.Hicbaonhiutnbinkhcnhautrongversion ny ca BASIC. Li gii. t V l s tn bin khc nhau trong version ny ca BASIC, V1 l s bin gm mt k t, v V2 l s bin gm hai k t. Theo qui tc cng ta cV = V1 + V2. V bin gm mt k t phi l mt mu t nn V1 = 26. Ngoi ra, theo qui tc nhn tac 26.36 chuic di 2 vi k t i u l mu t v k t k l mu t hoc k s thp phn. Tuy nhin, c 5 chui b loi ra nnV2 = 26.36 - 5 = 931. Vy c V = V1 + V2 = 26 + 931 = 957 tn khc nhau cho cc bin ca version ny ca BASIC. V d 11: Mi ngi s dng trn mt h thng my tnh c mt "password" di t 6 n 8 k t, trong mi k t l mt ch in hoa hoc l mt k s thpphn.Mi"password"phictnhtmtks.Hicbaonhiu password khc nhau ? Li gii. t P l s lng tt c cc "password", v P6, P7, P8 ln lt l s cc "password" c di 6, 7, 8. Do qui tc cng ta c P = P6 + P7 + P8. Chng ta s tnh P6, P7, v P8. Tnh trc tip P6 tng i kh. tnh P6 cho d, ta tnh s chui c di 6 gm cc ch in hoa hay k s thp phn, k c cc chui khng c k s thp phn, v tr cho s chui(vidi6)khngcksthpphn.Theoquitcnhn,s chui gm 6 k t l 366 v s chui khng c k s l 266. Suy ra P6 = 366 - 266 = 2 176 782 336 - 308 915 776= 1 867 866 560. Tng t, ta c th tnh ra c : P7 = 367 - 267 = 78 364 164 096 - 8 031 810 176 = 70 332 353 920. v P8 = 368 - 268 = 2 821 109 907 456 - 208 827 064 57652 = 2 612 282 842 880. T ta tnh c : P = P6 + P7 + P8 = 2 684 483 063 360. 3.2.4. Nguyn l b tr Khi hai cng vic c th c lm ng thi, ta khng th dng quy tc cng tnh s cch thc hin nhim v gm c hai vic. tnh ng s cch thc hin nhim v ny ta cng s cch lm mi mt trong hai vic ri tr i s cch lm ng thi c hai vic. Ta c th pht biu nguyn l m ny bng ngn ng tp hp. Cho A1, A2 l hai tp hu hn, khi |A1 A2| = |A1| + |A2| |A1 A2|. T vi ba tp hp hu hn A1, A2, A3, ta c: |A1 A2A3| = |A1| + |A2| + |A3| |A1 A2| |A2 A3| |A3 A1| + |A1 A2 A3|, v bng quy np, vi k tp hu hn A1, A2, ..., Ak ta c: | A1 A2...Ak| = N1 N2 + N3 ... + (1)k-1Nk, trong Nm (1 s m s k) l tng phn t ca tt c cc giao m tp ly t k tp cho, ngha l Nm =| ... |... 12 12 1 mmik i i ii iA A A s < < < s By gi ta ng nht tp Am (1 s m s k) vi tnh cht Am cho trn tp v tr hu hn U no v m xem c bao nhiu phn t ca U sao cho khng tha mn bt k mt tnh cht Am no. GiNl s cn m, N l s phn t ca U. Ta c: N= N | A1 A2...Ak| = N N1 + N2 ... + (1)kNk, trong Nm l tng cc phn t ca U tha mn m tnh cht ly t k tnh cht cho. Cng thcnycgilnguynlbtr.NchophptnhN quaccNmtrongtrnghp cc s ny d tnh ton hn. Th d 3: C n l th v n phong b ghi sn a ch. B ngu nhin cc l th vo cc phong b. Hi xc sut xy ra khng mt l th no ng a ch. Mi phong b c n cch b th vo, nn c tt c n! cch b th. Vn cn li l m s cch b th sao cho khng l th no ng a ch. Gi U l tp hp cc cch b th v Am l tnh cht l th th m b ng a ch. Khi theo cng thc v nguyn l b tr ta c: N= n! N1 + N2 ... + (1)nNn, trong Nm (1 s m s n) l s tt c cc cch b th sao cho c m l th ng a ch. Nhn xt rng, Nm l tng theo mi cch ly m l th t n l, vi mi cch ly m l th, c (n-m)! cch b m l th ny ng a ch, ta nhn c: Nm = mnC (n - m)! = nk!!vN= n!(1 11! + 12! ... + (1)n 1n!), 53 trong mnC= )! ( !!m n mn l t hp chp m ca tp n phn t (s cchchn mi tng trong n i tng ccho). T xc sut cn tm l:1 11! + 12! ... + (1)n 1n!. Mt iu l th l xc sut ny dn n e-1 (ngha l cn > 13) khi n kh ln. S Ntrong bi ton ny c gi l s mt th t v c k hiu l Dn. Di y l mt vi gi tr ca Dn, cho ta thy Dn tng nhanh nh th no so vi n: n234567891011 Dn 12944265185414833133496133496114684570 3.2.5. Nguyn l Dirichlet 3.2.5.1. M u Giscmtnchimbcubayvochung.Nuschimnhiuhnsngn chung th t nht trong mt ngn c nhiu hn mt con chim. Nguyn l ny d nhin l c th p dng cho cc i tng khng phi l chim b cu v chung chim. Mnh (Nguyn l): Nu c k+1 (hoc nhiu hn) vt c t vo trong k hp th tn ti mt hp c t nht hai vt. Chng minh: Gi s khng c hp no trong k hp cha nhiu hn mt vt. Khi tng s vt ccha trong cchp nhiu nht l bng k. iu nytrigi thit l c t nht k + 1 vt. Nguyn l ny thng c gi l nguyn l Dirichlet, mang tn nh ton hc ngi c th k 19. ng thng xuyn s dng nguyn l ny trong cng vic ca mnh. Th d 4: 1) Trong bt k mt nhm 367 ngi th no cng c t nht hai ngi c ngy sinh nht ging nhau bi v ch c tt c 366 ngy sinh nht khc nhau. 2) Trong k thi hc sinh gii, im bi thi c nh gi bi mt s nguyn trong khong t 0 n 100. Hi rng t nht c bao nhiu hc sinh d thi cho chc chn tm c hai hc sinh c kt qu thi nh nhau?TheonguynlDirichlet,shcsinhcntml102,vtac101ktquimthi khc nhau. 3)Trongsnhngngicmttrntrit,phitmchaingichmrngging nhau. Nu xem mi hm rng gm 32 ci nh l mt xu nh phn c chiu di 32, trong rng cn ng vi bit 1 v rng mt ng vi bit 0, th c tt c 232 = 4.294.967.296 hm rng khcnhau.Trongkhisngitrnhnhtinhnylvtqu5t,nntheonguynl Dirichlet ta c iu cn tm. 54 3.2.5.2. Nguyn l Dirichlet tng qut Mnh : Nu c N vt c t vo trongk hp th s tn ti mt hp cha t nht ]N/k[ vt. ( y, ]x[ l gi tr ca hm trn ti s thc x, l s nguyn nh nht c gi tr ln hn hoc bng x. Khi nim ny i ngu vi [x] gi tr ca hm sn hay hm phn nguyn ti x l s nguyn ln nht c gi tr nh hn hoc bng x.) Chng minh: Gi s mi hp u cha t hn ]N/k[ vt. Khi tng s vt l s k (] Nk[ 1) < k Nk = N. iu ny mu thun vi gi thit l c N vt cn xp. Th d 5: 1) Trong 100 ngi, c t nht 9 ngi sinh c ng mt thng. Xpnhngngisinhc ngthngvomtnhm.C12thngttc.Vytheo nguyn l Dirichlet, tn ti mt nhmc t nht ]100/12[= 9 ngi. 2) C nm loi hc bng khc nhau. Hi rng phi c t nht bao nhiu sinh vin chc chn rng c t ra l 6 ngi c ng nhn hc bng nh nhau. Gi N l s sinh vin, khi ]N/5[ = 6 khi v ch khi 5 < N/5 s 6 hay 25 < N s 30. Vy s N cn tm l 26. 3) S m v ng cn thit nh nht phi l bao nhiu m bo 25 triu my in thoi trong nccsinthoikhcnhau,misc9chs(gissinthoicdng0XX- 8XXXXX vi X nhn cc gi tr t 0 n 9). C 107 = 10.000.000 s in thoi khc nhau cdng 0XX- 8XXXXX.V vy theo nguynlDirichlettngqut,trongs25triumyinthoitnhtc ]25.000.000/10.000.000[ = 3 c c ng mt s. m bo mi my c mt s cn c t nht 3 m v ng. 3.2.5.3. Mt s ng dng ca nguyn l Dirichlet. TrongnhiungdngthvcanguynlDirichlet,khinimvtvhpcn phi c la chn mt cch khn kho. Trong phn nay c vi th d nh vy. Thd6:1)Trongmtphnghpcnngi,baogicngtmc2ngicsngi quen trong s nhng ngi d hp l nh nhau. S ngi quen ca mi ngi trong phng hp nhn cc gi tr t 0 n n 1. R rng trong phng khng th ng thi c ngi c s ngi quen l 0 (tc l khng quen ai) v c ngi c s ngi quen l n 1 (tc l quen tt c). V vy theo s lng ngi quen, ta ch c th phn n ngi ra thnh n 1 nhm. Vy theo nguyn l Dirichlet tn tai mt nhm c t nht 2 ngi, tc l lun tm c t nht 2 ngi c s ngi quen l nh nhau. 55 2) Trong mt thng gm 30 ngy, mt i bng chuyn thi u mi ngy t nht 1 trn nhng chi khng qu 45 trn. Chng minh rng tm c mt giai on gm mt s ngy lin tc no trong thng sao cho trong giai on i chi ng 14 trn. Gi aj l s trn m i chi t ngy u thng n ht ngy j. Khi 1 s a1 < a2 < ... < a30 < 45 15 s a1+14 < a2+14 < ... < a30+14 < 59. Su mi s nguyn a1, a2, ..., a30, a1+ 14, a2 + 14, ..., a30+14 nm gia 1 v 59. Do theo nguyn l Dirichlet c t nht 2 trong 60 s ny bng nhau. V vy tn ti i v j sao cho ai = aj + 14 (j < i). iu ny c ngha l t ngy j + 1 n ht ngy i i chi ng 14 trn. 3) Chng t rng trong n + 1 s nguyn dng khng vt qu 2n, tn ti t nht mt s chia ht cho s khc. Tavitmisnguyna1,a2,...,an+1didngaj= jk2 qjtrongkjlsnguyn khng m cn qj l s dng l nh hn 2n. V ch c n s nguyn dng l nh hn 2n nn theo nguyn l Dirichlet tn ti i v j sao cho qi = qj = q. Khi ai= ik2 q v aj = jk2 q. V vy, nu ki s kj th aj chia ht cho ai cn trong trng hp ngc li ta c ai chia ht cho aj. Thdcuic ngtrnhbycchpdngnguynlDirichletvolthuytthpmvn quen gi l l thuyt Ramsey, tn ca nh ton hc ngi Anh. Ni chung, l thuyt Ramsey gii quyt nhng bi ton phn chia cc tp con ca mt tp cc phn t.Th d 7. Gi s trong mt nhm 6 ngi mi cp hai hoc l bn hoc l th . Chng t rng trong nhm c ba ngi l bn ln nhau hoc c ba ngi l k thln nhau. Gi A l mt trong 6 ngi. Trong s 5 ngi ca nhm hoc l c t nht ba ngi l bncaAhocctnhtbangilkth caA,iunysuyratnguynlDirichlet tngqut,v]5/2[=3.TrongtrnghputagiB,C,DlbncaA.nutrongba nginychaingilbnthhc ngviAlpthnhmtbbangibnlnnhau, ngc li, tc l nu trong ba ngi B, C, D khng c ai l bn ai c th chng t h l b ba ngi thln nhau. Tng t c th chng minh trong trng hp c t nht ba ngi l k thca A. 56 CHNG 4 QUAN H 4.1. Quan h hai ngi 4.1.1. nh ngha quan h v v d Giaccphnttrongmttphpnomchngtaangquantmthngc nhng mi lin h hay nhng quan h. V d: quan h ln hn gia cc s thc, quan h "anh em"giangivingi,quanhngdnggiacctamgic,v.v....Miquanhtrong mt tp hp c c trng bng mt hay mt s tiu chun no thhin ng nghaca quan h. y chng ta ch cp n nhng quan h, c gi l nhng quan h 2 ngi, ni ln s lin h gia mi phn t vi cc phn t khc trong tp hp. Khi ta ang xem xt mt quan h nh th, th vi hai phn t x, y t y trong tp hp chng s c : hoc l x c quan h vi y, hoc l x khng c quan h vi y. Ni nh vy cng c ngha l tp hp cc cp (x, y) gm 2 phn t c quan h c th xc nh c quan h ang xt trn tp hp. V mt ton hc, mt quan h 2 ngi c nh ngha nh sau: nh ngha :Cho mt tp hp X khc rng. Mt quan h 2 ngi trn X l mt tp hp con R ca X2. Cho 2 phn t x v y ca X, ta ni x c quan h R vi y khi v ch khi (x,y)e R, v vit l x R y. Nh vy: x R y (x,y) e R Khi x khng c quan h R vi y, ta vit: xy. V d: 1. Trn tp hp X = { 1,2,3,4} , xt quan h 2 ngi R c nh ngha bi: R = { (1,1), (1,3), (2,2), (2,4), (3,1), (3,3), (4,2), (4,4)}Vi quan h ny ta c: 2 R 4, nhng 23. 2. Trn tp hp cc s nguyn Z ta nh ngha mt quan h 2 ngi R nh sau: x R y nu v ch nu x-y l s chn. hay ni cch khc: R = { (x,y) e Z2 | x-y = 2k vi k e Z }Quan h R ny chnh l quan h ng d modulo 2. 57 3. Cho n l mt s nguyn dng. Nhc li rng quan h ng d modulo n trn tp hp cc s nguyn Z, k hiu bi (mod n), c nh ngha nh sau: a b (mod n) - k e Z : (a - b) = k.n Quan h ny l mt quan h 2 ngi trn Z. 4. Quan h s trn tp hp cc s thc R cng l mt quan h 2 ngi. 5. Cho E l mt tp hp, t X = P(E). Mi phn t thuc X l mt tp hp con ca E. Trn E c cc quan h quen thuc sau y: - quan h bao hm, k hiu bi c- quan h cha, k hiu bi - quan h bng nhau, k hiu bi =Ghi ch :Ngi ta cn nh ngha mt quan h (2 ngi) gia mt tp hp A v mt tp hp B l mt tp hp con ca AxB. V d: A = { 1, 2, 3, 4, 5} , B = { 0, 1} . Ta c R = { (1,1), (2,0), (3,1), (4,0), (5,0)} l mt quan h gia A v B. Tng qut hn, ta c th nh ngha mt quan h gia cc tp hp A1, A2, . . ., An l mt tp hp con ca A1 x A2 x . . . x An (tch Descartes ca cc tp hp A1, A2, . . ., An). Nh vy, khi R l mt quan h gia cc tp A1, A2, . . ., An th mi phn t ca R l t b n (a1, a2, . . ., an) vi ai e Ai (i=1, , n). Cch xc nh mt quan h: Da vo cc phng php xc nh mt tp hp, ta c th xc nh mt quan h bng cc phng php sau y: Lit k: lit k tt c cc cp hay b phn t c quan h R (tc l thuc R). Trong v d 1 trn, quan h R c cho theo cch lit k. Nu tnh cht c trng cho quan h R, tc l tnh cht hay tiu chun xc nh cc phn t thuc R hay khng. Trong cc v d 2 v 3 trn, quan h R c cho bng cch nu ln tnh cht xc nh quan h. 4.1.2. Cc tnh cht ca quan h Mtquanh2ngitrnmttphpcthcmtstnhchtnolmchotphpc mt cu trc nht nh. Di y l nh ngha mt s tnh cht thng c xt i vi mt quan h 2 ngi. nh ngha : Gi s R l mt quan h 2 ngi trn mt tp hp X. Ta ni quan h R c tnh phn x (reflexive) nu v ch nu58 x R x vi mi x e X. Ta ni quan h R c tnh i xng (symmetric) nu v ch nux R y y R x vi mi x,y e X. Ta ni quan h R c tnh phn xng (antisymmetric) nu v ch nu(x R y v y R x) x = y vi mi x,y e X. Ta ni quan h R c tnh truyn hay bc cu (transitive) nu v ch nu(x R y v y R z) x R z vi mi x,y,z e X. V d: Trong v d ny chng ta cp n mt s quan h c nu ln trong cc v d ca mc 1.1 trn, v pht biu cc tnh chtca chng. Vic kim chng cc tnh cht ny kh d dng. 1. Quan h ng d modulo n trn Z c 3 tnh cht: phn x, i xng, truyn. 2. Quan h s trn tp hp cc s thc c 3 tnh cht: phn x, phn xng, truyn. 3. Cho E l mt tp hp. Quan h _ trn P(E) c 3 tnh cht: phn x, phn xng, truyn. 4.1.3. Biu din quan h Ngoi phng php biu din mt quan h 2 ngi di dng tp hp cc cp phn t ngi ta cn c th s dng ma trn biu din cho quan h trong trng hp cc tp hp l hu hn. Khi nim ma trn s c nh ngha v kho st chi tit hn trong phn "i s Tuyn tnh". y chng ta ch cn hiu ma trn mt cch n gin l mt bng lit k cc phn t thnh cc dng v cc ct. V d, bng lit k 6 s nguyn thnh 2 dng v 3 ct sau y l mt ma trn: Mt ma trn M gm m dng, n ct s c gi l mt ma trn c cp mxn. Nu m = n th ta ni M l mt ma trn vung cp n. Gi s R l mt quan h 2 ngi gia mt tp hp hu hn A = { a1, a2, ... , am } v mt tp hu hn B = {b1, b2, ... , bm} . Quan h R c th c biu din bi ma trn MR = [mij] gm m dng v n ct (tc l ma trn cp mxn), trong mij = 1 nu (ai , bj) e R mij = 0 nu (ai , bj) e R 59 Ta gi ma trn MR l ma trn biu din ca quan h R. V d: Vi A = { 1,2,3} v B = { a, b, c} , th cc quan h sau y: R = { (1,a), (1,b), (1,c)}S = { (1,a), (1,b), (1,c), (2,b), (2,c), (3,c)}c cc ma trn biu din l MR = MS = Trong trng hp R l mt quan h 2 ngi trn mt tp X hu hn v c n phn t th ma trn biu din ca R l mt ma trn c n dng v n ct (tc l ma trn vung cp n). Ghi ch: Ngoi cch biu din quan h di dng ma trn ta cn biu (dng th) biudinquanh.Cchbiudinnyscxtntrongphnsau,khinivbiu Hasse ca mt cu trc th t. 4.2. Quan h tng ng 4.2.1. Khi nim quan h tng ng nh ngha:Mt quan h 2 ngi R trn mt tp hp X c gi l mtquan h tng ng nu v ch nu n tha 3 tnh cht: phn x, i xng, truyn.V d:Mtvdquantrngvquanhtngnglquanhngdmodulon trn Z. Ta bit quan h ny c 3 tnh cht phn x, i xng, truyn. Quan h s trn Z khng phi l mt quan h tng ng v n khng c tnh cht i xng. 4.2.2. Lp tng ng v tp hp tng ng nh ngha:Vi mi phn t xe X, ta nh ngha lp tng ng cha x, k hiu, l tp hp tt c nhng phn t (thuc x) c quan h R vi x: 60 = { y e X : y R x }NhvymilptngnglmttphpconcaX.Ngitachngminhrngtp hp cc lp tng ng ca quan h tng ng R trn X to thnh mt "phn hoch" ca tp hp X, tc l su tp cc lp tng ng khc nhau cho ta mt h cc tp con ca X ri nhau i mt v c phn hi bng X. TphpcclptngngcaquanhtngngRtrnXny(lmttpconca P(X))cgiltphpthng(caquanhtngngRtrnX).Quanhngd modulo n trn Z c tp hp thng tng ng, c k hiu l Zn, gm n phn t : Zn = {}trong (ke Z) l tp hp tt c nhng s nguyn ng d vi k modulo n. Ngi ta cn chng minh c rng vic xc nh mt quan h tng ng trn mt tp hp X tng ng vi vic xc nh mt phn hoch ca tp hp X, tc l c mt song nh gia tp hp tt c cc quan h tng ng trn X v tp hp tt c cc phn hoch ca tp X. 4.3. Quan h th t 4.3.1. Cc nh ngha inh ngha 1:Mt quan h 2 ngi R trn mt tp hp X (khc rng) c gi l mt quan h th t (hayvntt,lmttht)nuvchnunc3tnhcht:phnx,phnxng, truyn. Khi ta cng ni tp hp X l mt tp c th t. Nu c thm tnh cht: vi mi x, y e X ta c xRy hay yRx th ta ni R l mt quan h th t ton phn trn X. Ghi ch :Trong trng hp trn X c nhiu quan h th t th khi xt n th t trn X ta phi nirthtno,vtathngvittphpXcthtdidngmtcp(X,R); trong R l quan h th t ang xt trn X. Vi 2 tp hp c th t X v Y ta c th nh ra mt th t trn tch Descartes XxY da vo cc th t trn X v trn Y. T ta XxY tr thnh mt tp hp th t (xem phn bi tp). V d: 1.QuanhstrntphpccsthcRlmtquanhthtton phn. 2.ChoElmttphp.QuanhctrnP(E)lmtquanhtht. Nu E c nhiu hn 2 phn t th th t ny khng phi l th t ton phn. Vic kim chng iu ny c dnh cho ngi c. 3.TrntphpccsnguynZ,xtqnah"chiaht"hay"cs ca", k hiu l | , c nh ngha nh sau: 61 a| b - ke Z : a = k.b Ddngkimchngrngquanh|c3tnhcht:phnx,phn xng, truyn. T ta c (Z,| ) l mt tp hp c th t. Ta c 2 s nguyn 2 v 3, khng c quan h vi nhau theo quan h | . Do | khng phi l th t ton phn trn Z. Nhn xt: Nu (X,R) l mt tp hp c th t v A c X th quan h th R thu hp trn tp A,cngckhiulR(nukhnggyranhmln),lmtquanhthttrnA.Ni mt cch khc, ta c: (X,R) th t v A c X (A,R) th t ivimttphpcthtthviccpncckhinimnh"phntnhnht", "phn t ln nht", ... l iu rt t nhin. Di y, chng ta s gii thiu mt s khi nim quan trng khi xt mt tp hp c th t. nh ngha 2: Cho (X, s ) l mt tp hp c th t, v A c X. Tagi mt phn t aeA l mt phn t nh nht ca tp hp A nu v ch nu vi mi x e A ta c : a s x. TagimtphntaeAlmtphntlnnhtcatphpAnuvch nu vi mi x e A ta c : x s a. Ta gi mt phn t a e A l mt phn t ti tiu ca tp hp A nu v ch nu khng tn ti x e A sao cho x = a v x s a. Ta gi mt phn t a e A l mt phn t ti i ca tp hp A nu v ch nu khng tn ti x e A sao cho x = a v a s x. 9;Nhn xt:(1) Phn t nh nht (ln nht) ca mt tp hp, nu c, l duy nht.Ta k hiu phn t nh nht ca mt tp hp A l min A hay min (A), v k hiu phn t ln nht ca A l max A hay max (A). (2) Phn t ti tiu (ti i) ca mt tp hp c th t khng nht thit l duy nht. V d: xt tp hp X = { 1,2,3} vi quan h 2 ngi c chobi={(1,1),(2,2),(3,3),(1,2),(3,2)}.Chngtacthkim chng rng (X, ) l mt tp hp c th t. Vi th t ny, X c 2 phn t ti tiu l 1 v 3. (3) Phn t ln nht (nh nht) ca mt tp hp, nu c, l phn t ti i (ti tiu) duy nht ca tp hp . V d:62 1. Trong tp hp c th t (Z, s ), tp hp A = { me Z| m2 < 100} c phn t nh nht l -9, v phn t ln nht l 9. Ta c th vit: min(A) = -9; max(A) = 9. 2.Trongtphpctht(R,s),tphpA={xeR|x2 (xA y) V (xA z) x V (y A z) s (xVy) A (xVz) 2. (x s z) (xV(y A z) s (xVy) A z) 71 CHNG 5 I S BOOL 5.1. Cc php ton 5.1.1. Cc nh ngha Rtnhiutphpquenthucucnhngphptontrn.Trntphpccs nguyn c php ton cng, php ton nhn. Trn tp hp cc s thc khc khng c php ton nhnvcnccphplynghcho.Miphptontrnmttphpchotamtquitc nhm to ra mt phn t t mt hay nhiu phn t no . Php cng thc hin trn 2 s 5 v 7 cho ra s 12; php ly nghch o ca s 2 cho kt qu l s 0.5. Khi php ton thc hin trn 2 phn t ta ni l php ton 2 ngi, php ton thc hin trn mt phn t th c gi l php ton mt ngi. Di y ta s nu ln nh ngha ton hc ca cc php ton. nh ngha 1. (php ton 2 ngi) Cho X l mt tp hp khc rng. Mt php ton hai ngi trn tp hp X l mt nh x T i t XxX vo X. K hiu ca nh x c gi l k hiu ca php ton hay l mt ton t. nh ca cp(a,b)quanhxTcgilktquthchinphptonTtrn2phntavb,v thng c vit l a T b. Nh vy, nu T l mt php ton 2 ngi trn X th ta c nh x: T : XxX X (a,b)T(a,b) = a T b nh ngha 2. (php ton 1 ngi) Cho X l mt tp hp khc rng. Mt php ton 1 ngi trn tp hp X l mt nh x T i t X vo X. K hiu ca nh x c gi l k hiu ca php ton hay l mt ton t. nh ca a qua nh x T c gi l kt qu thc hin php ton T trn phn t a. V d:1.TrncctphpsN,Z,Q,R,Ccccphpton+(cng)v* (nhn). 2.Trntphpccmatrnsthcvungcpncccphpton:+ (cng matrn) v * (nhn ma trn). 3. Cho E l mt tp hp. t X = P(E). Trn X c cc php ton tp hp thng thng : 72 php giao hai tp hp, c k hiu l . php hi hai tp hp, c k hiu l U . phplybcamttphp,ckhiul c.Theokhiu ny, phn b ca tp A X l Ac. Php ton v U l cc php ton 2 ngi, php ton c l php ton 1 ngi. 4. Cho E l mt tp hp khc rng. t X l tp hp cc nh x i t E vo E. Trn X c mt php ton nh x thng thng; l php hp ninhx.Phptonnyckhiulo.ylmtphpton2 ngi trn X. 5. t X l tp hp tt c cc chui k t. Php ni 2 chui p t l mt php ton 2 ngi trn X.6.TphpB={0,1}gm2phntidincho2chntrsaiv "ng.TabittrntphpBcccphptonlogic:v(hay),. (v), (ph nh), (ko theo). Trong cc php ton trn ch c php ton(phnh)lphpton1ngi,cnccphptonkhcul cc php ton 2 ngi. 7. Cho (L, ) l mt dn. Khi vi mi cp (a,b) gm cc phn t ca L ta c hai phn t tng ng l inf(a,b) v sup(a,b), c k hiu ln lt l a b v ab. Nh vy trn mi dn ta c hai php ton 2 ngi l v v . . Php ton v thc hin trn cc phn t a, b s cho kt qu l chn trn nh nht ca a v b. Php ton . thc hin trn cc phn t a, b s cho kt qu l chn di ln nht ca a v b. Ghi ch : 1. Mt cch tng qut, ta c th nh ngha php ton n-ngi trn mt tp hp X l mt nh x i t Xn vo X.ng vi mi b n phn t (a1, ... , an) php ton s cho ta mt phn t kt qu thuc X. 2. Trong trng hp tp hp X l hu hn th ngi ta cth nh ngha hay xcnhphptonbngcchlitkktquthchinphptonchomi trng hp c th c. V d X = { a1, ... , an } gm n phn t. Gi s * l mt phpton2ngitrnX.Khi,phpton*cthcxcnhbibng sau y: *a1 aj an a1: :: ai ai* aj : an73 Bng trn c gi l bng Cayley ca php ton 2 ngi. Nh vy ng vi mi php ton 2 ngi trn X ta c mt ma trn c cp n vi phn t dng i ct j bng ai* aj. V sau, nhiu tnh cht ca php ton s c xem xt thng qua ma trn ny. Chng ta tng thy nhng php ton 2 ngi c nh ngha bng bng nh th; l cc php ton logic v (hay), . (v), (ko theo). V d: Cho n l mt s nguyn ln hn 1. Trn tp hp Zn = { } , tp hp thng theo quan h ng d modulo n trn tp hp cc s nguyn Z, ta nh ngha 2 php ton + v * nh sau: , " a,b Z , " a,b Z nh ngha trn da vo phn t i din ca lp tng ng. Tuy nhin ta c th kim chng d dng rng nh ngha trn l hp l. Trng hp n = 3, php + trn Z3 c bng Cayley nh sau : +012 0012 1120 2201 trong ta vit a thay chovi mi a = 0, 1, 2. 5.1.2. Cc tnh cht ca php ton hai ngi Trongmcnychngtanulnmtstnhchtisthngcxemxtivicc php ton 2 ngi. nh ngha 3. 1. Ta ni mt php ton 2 ngi T trn mt tp hp X c tnh giao hon nu" x,y e X : x T y = y T x 2. Ta ni mt php ton 2 ngi T trn mt tp hp X c tnh kt hp nu" x,y,z e X : x T (y T z) = (x T y) T z V d: 1. Cc php ton + v * trn cc tp hp s u c tnh cht kt hp v giao hon. 2. Php ton + (cng) trn tp hp cc ma trn thc vung cp n, k hiu Mn(R), c tnh cht giao hon v kt hp. Nhng php ton * (nhn ma trn) c tnh kt hp nhng khng c tnh 74 giao hon. Php nhn trn Mn(R) ch c tnh giao hon khi n = 1. (nh ngha ca cc php ton ma trn c th c tham kho phn i s tuyn tnh) 3. Php chia trn tp hp cc s hu t khc 0 khng c tnh kt hp vcng khng c tnh giao hon. Bi v 1 / 2 2 / 1, v (8/4) / 2 = 1 4 = 8/(4/2).4. t X l tp hp tt c cc nh x i t mt tt hp E vo chnh n. Php ton o (hp ni nh x) trn X c tnh kt hp. Bi v vi 3 nh x f, g, h t E vo E, theo tnh cht v nh x hp, ta c fo(goh) = (fog)oh. Nichungphptonokhngctnhgiaohon;phptonchctnhgiaohontrong trng hp E c mt phn t. Tht vy, nu E c nhiu hn 1 phn t th ta c th chn ra 2 phn t khc nhau a, b trong E. Xt 2 nh x f v g nh sau: f(x) = a vi mi x e E, v g(x) = b vi mi x e E. Ta c fog(x) = a vi mi xe E, v gof(x) = b vi mi xe E; nn fog gof. 5. Trn mt dn L, cc php ton 2 ngi v c tnh cht giao hon v kt hpCho * l mt php ton 2 ngi trn mt tp hp X = { a1, ... , an} . By gi chng ta s xem xt cc tnh cht giao hon v kt hp ca php ton * c lin quan nh th no n cc tnh cht ca ma trn M = (mij) e Mn(X) lin kt vi php ton. Nhc li l mij = ai* aj.Phpton*giaohonkhivchkhiai*aj=aj*aivimi i,j.iunytngngvi iu kin : mij = mj i vi mi i, j. Vy php ton giao hon khi v ch khi ma trn lin kt vi php ton l i xng. i vi tnh cht kt hp chng ta c th gi s rng X = { 1, 2, ... , n} ,v ta s xy dng mt hm ly gi tr Bool ASSOC vi i l mt ma trn M c cp n thuc Mn(X) sao cho ASSOC(M) = 1 (True) php ton 2 ngi c linkt vi ma trn M c tnh kt hp NhnxtrngviMeMn(X),M[i,j] X={1,2,...,n},hmASSOCcthcvit di dng m gi nh sau: Function ASSOC (M) : Boole begin T 1 for i=1 to n do for j=1 to n do for k=1 to n do if M[M[i,k],j] M[i, M[k,j]] then begin 75 T 0 goto OUT end OUT: return T end nh ngha 4. Cho X l mt tp hp khc rng, * l mt php ton 2 ngi trn X. 1. php ton * c gi l ly ng khi v ch khix * x = x , vi mi xe X 2. Mt phn t ee X c gi l phn t trung ha ca php ton * trn X khi v ch khi x * e = e * x = x , vi mi xe X 3. Gi s php ton * c phn t trung ha l e. Ta ni mt phn t xe X l kh nghch (hay c nghch o) khi v ch khi $ xe X : x * x = e = x * x Nhn xt :Nu php ton c tnh kt hp th phn t trung ha (nu c) l duynht, v trong trng hp tng qut ngi ta cn gi l "phn t n v". Khi php ton c tnh kt hp v c phn t trung ha, vi mi phn t x kh nghch,phntxtrongnhnghatrnlduynht.Tagixlphnt nghch o ca x, v k hiu l x-1. Ghi ch :1. Trong trng hp php ton c k hiu l . (du nhn) th phn t trung ha ca php ton thng c k hiu 1, v c gi l "n v".2. Khi php ton c k hiu l + (du cng) th phn t trung ha ca php ton thng c k hiu 0, v c gi l "zero". Trong trng hp ny, mi phntxthaiukinkhnghchscgil"ci,vphntx trong nh ngha c gi l phn t i ca x. Ta k hiu phn t i ca x l -x. V d: 1. Trn tp B = { 0,1} (gm 2 gi tr Boole), c cc php ton v . Php ton V c cc tnh cht : giao hon, kt hp, c trung ha l 0, ly ng. Phn t 1 khng kh nghch i vi php v 1 x = 1 0 vi mi xe B. Php ton c cc tnh cht : giao hon, kt hp, c trung 76 ha l 1, ly ng. Phn t 0 khng kh nghch i vi php v 0 x = 0 1 vi mi xe B. 2. Php ton + (cng) trn cc tp hp s N, Z, Q, R, C c cc tnh cht : giao hon, kt hp, c trung ha (hay phn t zero) l 0. Trong cc tp hp Z, Q, R, C mi s u c i. Php ton * (nhn) trn cc tp hp sN,Z,Q,R,Cccctnhcht:giaohon,kthp,ctrungha (hay phn t n v) l 1. Trong cc tp hp Q, R, C mi s khc 0 u kh nghch. 3. Cho (L, ) l mt dn, chng ta bit rng trn L c hai php ton 2 ngi c k hiu l v . Cc php ton ny ngoi tnh cht giao hon v kt hp cn c tnh cht ly ng na.4.ChoEl mttphp.CcphptonUvtrnP(E)uctnh cht ly ng. Php ton U c phn t trung ha l . Php ton c phn t trung ha l E.5. t X = Mn(R), tp hp cc ma trn thc vung cp n. K hiu php nhn ma trn l *, ta c php ton * c tnh kt hp v c phn t trung ha l ma trn n v 9; 9; 9; Php ton + trn X c tnh giao hon, kt hp, c trung hal ma trn 0, mi ma trn u c ma trn i tng ng. Chng ta bit rng trn mt cu trc dn ta c mt cu trc i s vi 2 php ton v ; ccphptonnyccctnhcht:kthp,giaohon,lyng.Ngcli,trongmts trng hp, trn cc cu trc i s ta c th xy mt cu trc th t nh trong nh l di y. nh l 1.Cho * l mt php ton 2 ngi giao hon, kt hp v ly ng trn mt tp hp X. Khi , nu R l quan h 2 ngi trn X c nh ngha bi (a R b) (a * b = b) th ta c : 1. R l mt quan h th t. 2. " a,b e X : sup(a,b) = a * b. Chng minh: 77 1. Quan h R phn x do tnh ly ng ca php ton *. Nu a R b v b R a th ta c : b = a * b = b * a = a