Top Banner
Rohit Potla SC12B044 Atmospheric Flight Mechanics AE321 ____________________________________________________________________________________ Q.1 Derive the 2-DOF(Degree of Freedom) equations of motion for an earth entry vehicle. Ans. Equations of Motions expressed in an inertial coordinate system: Forces are resolved in instantaneous coordinates (i,j): By Equating and , we get To get the dynamic equations of motions , we need to solve for and
13

Atmospheric flight mechanics

Mar 28, 2023

Download

Documents

Aman Gupta
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Atmospheric flight mechanics

Rohit Potla

SC12B044

Atmospheric Flight Mechanics AE321

____________________________________________________________________________________

Q.1 Derive the 2-DOF(Degree of Freedom) equations of motion for an earth

entry vehicle.

Ans.

Equations of Motions expressed in an inertial coordinate system:

Forces are resolved in instantaneous coordinates (i,j):

By Equating and , we get

To get the dynamic equations of motions , we need to solve for

and

Page 2: Atmospheric flight mechanics

Kinematic Equations are given by:-

Q2.

Ans. Code:

clear all; clc;

%%inputs given by sir mass=3000; %% Mass of vehicle in kg fpangle(1)=-2*pi/180; %% Initial Flight Path Angle in degrees v(1)=7908; %%Initial Velocity in m/s phi(1)=0; %% Elevation angle in radians h(1)=100; %% Initial Altitude in km S=6; %% Reference Area in m^2 Re=6378; %% Mean Radius of Earth in km Cd=1.1; %% Coefficient of Drag L_D=0.2; %% Lift to drag ratio %%inputs end

Cl=Cd*L_D; %% Coefficient of lift g_i=9.81; %% Accleration due to gravity in m/s^2 at earth

surface rho_i=1.225; %% Air Density in kg/m^3 at sea level rho(1)=rho_i*exp(-g_i*h(1)*1000/(287.058*300)); g(1)=g_i*(Re/(h(1)+Re))^2; D(1)=0.5*rho(1)*v(1)*v(1)*S*Cd; L(1)=D(1)*L_D; dt=0.05;

Force(1)= ((-D(1)*sin(fpangle(1))+L(1)*cos(fpangle(1))-mass*g(1)) ^2+(-

D(1)*cos(fpangle(1)) -L(1)*sin(fpangle(1)))^2)^0.5; acc(1)=Force(1)/mass;

for i=1:60000 if(h(i)<0) break end h(i+1)= h(i) + (v(i)*sin(fpangle(i)))*dt/1000; g(i+1)=g_i*(Re/(h(i+1)+Re))^2; rho(i+1)=rho_i*exp(-g_i*(h(i+1))*1000 /(287.058*300)); phi(i+1)=phi(i)+(v(i)*cos(fpangle(i))*10^-3/(h(i)+Re))*dt; v(i+1)=v(i)+(-g(i) *sin(fpangle(i))-(D(i)/mass))*dt; L(i+1)=0.5*rho(i+1)*v(i+1)*v(i+1)*S*Cl; D(i+1)=0.5*rho(i+1)*v(i+1)*v(i+1)*S*Cd; fpangle(i+1)=fpangle(i)+(v(i)*cos(fpangle(i))*10^-

3/(h(i)+Re))*dt+(((L(i)/mass)-g(i)*cos(fpangle(i)))/v(i))*dt;

Page 3: Atmospheric flight mechanics

Force(i+1)= ((-D(i+1)*sin(fpangle(i+1))+L(i+1)*cos(fpangle(i+1))-

mass*g(i+1)) ^2+(-D(i+1)*cos(fpangle(i+1)) -L(i+1)*sin(fpangle(i+1)))^2)^0.5; acc(i+1)=Force(i+1)/mass; end t(1)=0; for j=1:60000 t(j+1)=t(j)+dt; j=j+1; if(j==i) break; end end

figure(1); plot(t,acc); xlabel('Time(s)'); ylabel('acce(m/sec^2)'); title('Variation of acce with Time'); hold on

figure(2); plot(t,v); xlabel('Time(s)'); ylabel('velocity(m/s)'); title('Variation of velocity with Time');

figure(3); plot(t,phi); xlabel('Time(s)'); ylabel('phi(radians)'); title('Variation of phi with Time');

figure(4); plot(t,h); xlabel('Time(s)'); ylabel('height(km)'); title('Variation of height with Time');

figure(5); plot(t,fpangle); xlabel('Time(s)'); ylabel('fpangle(radians)'); title('Variation of flight path angle with Time');

Page 4: Atmospheric flight mechanics
Page 5: Atmospheric flight mechanics
Page 6: Atmospheric flight mechanics

Q3. For a Ballistic Flight, prove that the maximum deceleration level remains

independent of the Ballistic Parameter.

Ans.

For a Ballistic Flight the conditions are:

From here,

Therefore, from Question 1

and by substituting the conditions of Ballistic Flight, we get

Page 7: Atmospheric flight mechanics

Now Substituting from above, we get

To get a maximum deceleration, differentiating the above

w.r.t. time and then

equating it to '0'.

Now, putting above two equations in

, we get

Therefore, from above result of

we get to know that maximum deceleration is

independent of Ballistic Parameter.

Q4.

Ans. I plotted the maximum value of acceleration by changing the parameter mass,

thus changing . Code:

clear all; clc;

%%inputs given by sir %mass=3000; %% Mass of vehicle in kg fpangle(1)=-2*pi/180; %% Initial Flight Path Angle in degrees v(1)=7908; %%Initial Velocity in m/s phi(1)=0; %% Elevation angle in radians h(1)=100; %% Initial Altitude in km S=6; %% Reference Area in m^2 Re=6378; %% Mean Radius of Earth in km Cd=1.1; %% Coefficient of Drag L_D=0; %% Lift to drag ratio

Page 8: Atmospheric flight mechanics

%%inputs end w=1; for mass=3000:200:4000 Cl=Cd*L_D; %% Coefficient of lift g_i=9.81; %% Accleration due to gravity in m/s^2 at earth

surface rho_i=1.225; %% Air Density in kg/m^3 at sea level rho(1)=rho_i*exp(-g_i*h(1)*1000/(287.058*300)); g(1)=g_i*(Re/(h(1)+Re))^2; D(1)=0.5*rho(1)*v(1)*v(1)*S*Cd; L(1)=D(1)*L_D; dt=0.05;

Force(1)= ((-D(1)*sin(fpangle(1))+L(1)*cos(fpangle(1))-mass*g(1)) ^2+(-

D(1)*cos(fpangle(1)) -L(1)*sin(fpangle(1)))^2)^0.5; acc(1)=Force(1)/mass;

for i=1:60000 if(h(i)<0) break end h(i+1)= h(i) + (v(i)*sin(fpangle(i)))*dt/1000; g(i+1)=g_i*(Re/(h(i+1)+Re))^2; rho(i+1)=rho_i*exp(-g_i*(h(i+1))*1000 /(287.058*300)); phi(i+1)=phi(i)+(v(i)*cos(fpangle(i))*10^-3/(h(i)+Re))*dt; v(i+1)=v(i)+(-g(i) *sin(fpangle(i))-(D(i)/mass))*dt; L(i+1)=0.5*rho(i+1)*v(i+1)*v(i+1)*S*Cl; D(i+1)=0.5*rho(i+1)*v(i+1)*v(i+1)*S*Cd; fpangle(i+1)=fpangle(i)+(v(i)*cos(fpangle(i))*10^-

3/(h(i)+Re))*dt+(((L(i)/mass)-g(i)*cos(fpangle(i)))/v(i))*dt; Force(i+1)= ((-D(i+1)*sin(fpangle(i+1))+L(i+1)*cos(fpangle(i+1))-

mass*g(i+1)) ^2+(-D(i+1)*cos(fpangle(i+1)) -L(i+1)*sin(fpangle(i+1)))^2)^0.5; acc(i+1)=Force(i+1)/mass; end maximum(w)=max(acc); beta(w)=mass/(Cd*S); w=w+1; end plot(beta,maximum); xlabel('beta(kg/m^2)'); ylabel('max acce(m/sec^2)');

Page 9: Atmospheric flight mechanics

Q5.

Ans. The code used was same as code used in Q2, only the value of L/D was set to

0. The blue curve is for L/D=0.2 and green is for L/D=0;

Page 10: Atmospheric flight mechanics
Page 11: Atmospheric flight mechanics
Page 12: Atmospheric flight mechanics

Q6.

Ans. For getting variation with beta, the parameter Cd and Cl were changed. Code:

clc; clear all

%%inputs given by sir color={'r','b','y','g','k'}; mass=3000; %% Mass of vehicle in kg fpangle1(1)=-2*pi/180; %% Initial Flight Path Angle in degrees v1(1)=7908; %%Initial Velocity in m/s phi1(1)=0; %% Elevation angle in radians h1(1)=100; %% Initial Altitude in km S=6; %% Reference Area in m^2 Re=6378; %% Mean Radius of Earth in km % Cd=1.1; %% Coefficient of Drag L_D=0.2; %% Lift to drag ratio %%inputs end g_i=9.81; %% Accleration due to gravity in m/s^2 at earth

surface rho_i=1.225; %% Air Density in kg/m^3 at sea level rho(1)=rho_i*exp(-g_i*h1(1)*1000/(287.058*300)); g(1)=g_i*(Re/(h1(1)+Re))^2; dt=0.05; w=1; for Cd=0.5:0.5:2.5 %%changing beta by changing Cd Cl=Cd*L_D; %% Coefficient of lift D(1)=0.5*rho(1)*v1(1)*v1(1)*S*Cd; L(1)=D(1)*L_D;

Force(1)= ((-D(1)*sin(fpangle1(1))+L(1)*cos(fpangle1(1))-mass*g(1)) ^2+(-

D(1)*cos(fpangle1(1)) -L(1)*sin(fpangle1(1)))^2)^0.5; acc1(1)=Force(1)/mass; for i=1:60000 if(h1(i)<0) break end h1(i+1)= h1(i) + (v1(i)*sin(fpangle1(i)))*dt/1000; g(i+1)=g_i*(Re/(h1(i+1)+Re))^2; rho(i+1)=rho_i*exp(-g_i*(h1(i+1))*1000 /(287.058*300)); phi1(i+1)=phi1(i)+(v1(i)*cos(fpangle1(i))*10^-3/(h1(i)+Re))*dt; v1(i+1)=v1(i)+(-g(i) *sin(fpangle1(i))-(D(i)/mass))*dt; L(i+1)=0.5*rho(i+1)*v1(i+1)*v1(i+1)*S*Cl; D(i+1)=0.5*rho(i+1)*v1(i+1)*v1(i+1)*S*Cd; fpangle1(i+1)=fpangle1(i)+(v1(i)*cos(fpangle1(i))*10^-

3/(h1(i)+Re))*dt+(((L(i)/mass)-g(i)*cos(fpangle1(i)))/v1(i))*dt; Force(i+1)= ((-D(i+1)*sin(fpangle1(i+1))+L(i+1)*cos(fpangle1(i+1))-

mass*g(i+1)) ^2+(-D(i+1)*cos(fpangle1(i+1)) -

L(i+1)*sin(fpangle1(i+1)))^2)^0.5; acc1(i+1)=Force(i+1)/mass; end t1(1)=0; for j=1:i t1(j)=dt*j;

Page 13: Atmospheric flight mechanics

end plot (t1,h1,color{w}); hold on w=w+1; end