Top Banner
65

Artificial Intelligence and Speech Technology - Taylor & Francis

Feb 09, 2023

Download

Documents

Khang Minh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Artificial Intelligence and Speech Technology - Taylor & Francis
Page 2: Artificial Intelligence and Speech Technology - Taylor & Francis

Artificial Intelligence and Speech Technology

The 2nd International Conference on Artificial Intelligence and Speech Technology (AIST2020) was organized by Indira Gandhi Delhi Technical University for Women, Delhi, India on November 1920, 2020. AIST2020 is dedicated to cutting-edge research that addresses the scientific needs of academic researchers and industrial professionals to explore new horizons of knowledge related to Artificial Intelligence and Speech Technologies. AIST2020 includes high-quality paper presentation sessions revealing the latest research findings, and engaging participant discussions. The main focus is on novel contributions which would open new opportunities for providing better and low-cost solutions for the betterment of society. These include the use of new AI-based approaches like Deep Learning, CNN, RNN, GAN, and others in various speech related issues like speech synthesis, speech recognition, etc.

Editors

Amita Dev, Vice-Chancellor, Indira Gandhi Delhi Technical University for Women, Delhi

Arun Sharma, Professor – IT, Indira Gandhi Delhi Technical University for Women, Delhi

S. S. Agrawal, Emeritus Scientist, CSIR

Page 3: Artificial Intelligence and Speech Technology - Taylor & Francis
Page 4: Artificial Intelligence and Speech Technology - Taylor & Francis

Artificial Intelligence and Speech TechnologyProceedings of 2nd International Conference on Artificial Intelligence and Speech Technology, (AIST2020), November 19–20, 2020, Delhi, India

Edited by

Amita Dev, Arun Sharma, and S. S. Agrawal

Page 5: Artificial Intelligence and Speech Technology - Taylor & Francis

First edition published 2021 by CRC Press2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

and by CRC Press6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

© 2021 selection and editorial matter, Amita Dev, Arun Sharma, S. S. Agrawal; individual chapters, the contributors

CRC Press is an imprint of Informa UK Limited

The right of Amita Dev, Arun Sharma and S. S. Agrawal to be identified as the author of the editorial material, and of the authors for their individual chapters, has been asserted in accordance with sections 77 and 78 of the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact [email protected]

Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

British Library Cataloguing-in-Publication DataA catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication DataA catalogue record has been requested

ISBN: 9781003150664 (eISBN)DOI: 10.1201/9781003150664

Typeset in Minion proTypeset by Ozone Publishing Services., Puducherry, India

Page 6: Artificial Intelligence and Speech Technology - Taylor & Francis

v

Contents

Organisation xiPreface xiii

1 Classification approaches for automatic speech recognition system 1 Amritpreet Kaur, Rohit Sachdeva, Amitoj Singh

2 Early detection of PCOD using machine learning techniques 9 Pratik Wagh, Megha Panjwani, and Amrutha S.

3 Application of real-time object detection techniques for bird detection 21 Neha Sharma, Reetvik Chatterjee, Akhil Bisht, and Harit Yadav

4 Machine learning algorithms used for detection of prostate cancer 27 Rajesh M. N. and Chandrasekar B. S.

5 How training of sigmoidal FFANN affected by weight initialization 37 Veenu

6 Machine learning for web development: A fusion 45 Parita Jain, Anupam, Puneet Kumar Aggarwal, Kshirja Makar, Vineet Shrivastava,

and Seema Maitrey

7 Bot attack detection using various machine learning algorithms 53 Sanjay Madan, Shivani Arya, Divya Bansal, and Sanjeev Sofat

8 Present scenario of emotionally intelligent voice-based Conversational Agents in India 63

Surbhi Khurana and Amita Dev

9 Blockchain-based secured data transmission of IoT sensors using thingspeak 77

Monika Parmar, Harsimran Jit Kaur, and Rinku

Page 7: Artificial Intelligence and Speech Technology - Taylor & Francis

vi

CONTENTS

10 Impact of energy storage device on the performance of AGC using ALO tuned PID controller 87

Choudhary R., Rai J. N., and Arya Y.

11 The instrument to measure happiness at workplace 97 Shweta Singh, Nupur Pandey, and Arun Kumar Tripathi

12 IoT based smart cyber sealing system 105 Tanishqa Chaudhary, Kshitija Patil, Abhishek Katore, Mohandas Pawar, and Sagar Jaikar

13 A novel approach for summarizing legal judgements using graph 113 Vanyaa Gupta, Neha Bansal, Arun Sharma, and Kaustubh Mani

14 Deep CNN architectures for learning image classification: A systematic review, taxonomy and open challenges 121

Nagaraju M. and Priyanka Chawla

15 The quest for crop improvement in the era of artificial intelligence, machine learning, and other cognitive sciences 129

Pushpikka Udawat, Jogendra Singh, and Ameta G. S.

16 A run-through: Text independent speaker identification using deep learning 139

Pooja Gambhir and Amita Dev

17 Summarization of video lectures 149 Ashwin Siddharth S., Yogesh B. R., Rutvik B., and Jayashree R.

18 Artificial intelligence approach in video summarization 159 Mudit Saxena and Gangadharappa M.

19 Extractive summarization of recorded Odia spoken feedback 171 Basanta Kumar Swain, Sanghamitra Mohanty, and Dillip Ranjan Nayak

20 Frame change detection in videos – challenges and research directions 179

Alina Banerjee, Ravinder M., and Ela Kumar

21 Speech impairment recognition using XGBoost classifier 187 Renuka Arora and Sunny Arora

22 Research insight of Indian tonal languages: A review 195 Jaspreet Kaur Sandhu and Amitoj Singh

23 Advances in speech vocoding for text-to-speech with continuous parameters 203

Mohammed Salah Al-Radhi, Tamás Gábor Csapó, and Géza Németh

Page 8: Artificial Intelligence and Speech Technology - Taylor & Francis

vii

CONTENTS

24 Applying entity recognition and verb role labelling for information extraction of Tamil biomedicine 211

Betina Antony J., Rejin Paul N. R., and Mahalakshmi G. S.

25 Identification of two tribal languages of India: An experimental study 221 Joyanta Basu, Theodore Raphael Hrangkhawl, Tapan Kumar Basu,

and Swanirbhar Majumder

26 Mental illness diagnosis from social network data using effective machine learning technique 231

Shivani Singh and Sandhya Tarar

27 Hybrid classifier for brain tumor detection and classification 239 Ritu Garg and Om Prakash Sangwan

28 Parametric study of through transmission laser welding with teaching learning based optimization 247

Rituparna Ghosh

29 Research landscape of artificial intelligence in human resource management: A bibliometric overview 255

Mandeep Kaur, Rekha A. G., and Resmi A. G.

30 An efficient Class-F PA with SSL/SIL based matching network for body centric wireless transceiver 263

Puja Priya, Gurjit kaur, and Rajesh Kumar

31 Envisaging the future homes with ‘human-building interaction’ 271 Harsha Deivalakshmi Thirunavukkarasu, Vriti Sachdeva, and Kshitij Kumar Sinha Ar.

32 Comparative analysis of first-order optimization algorithms 279 Nitin Yadav, Satinder Bal Gupta, and Raj Kumar Yadav

33 A review on application of artificial intelligence techniques in control of industrial processes 291

Pradeep Kumar Juneja, Neha Belwal, Sandeep Kumar Sunori, Farha Khan, Abhinav Sharma, and Gaurav Pundir

34 Crop monitoring system for effective prediction of agricultural analytics in Indian agriculture using WSN 297

B. Balaji Bhanu, Mohammed Ali Hussain, and Mahmood Ali Mirza

35 Trend analysis of meteorological index SPI using statistical and machine learning models over the region of Marathwada 315

Rashmi Kumaria Nitwane, Bhagile V. D., and Deshmukh R. R.

Page 9: Artificial Intelligence and Speech Technology - Taylor & Francis

viii

CONTENTS

36 An insight into reconfigurable antenna design 329 Pramod Singh and Rekha Aggarwal

37 Optimized XGBoost algorithm using agglomerative clustering for effective user context identification 339

Sunita Kumari Chauraisa, and Reddy S. R. N.

38 1D CNN based approach for speech emotion recognition using MFCC features 347

Youddha Beer Singh and Shivani Goel

39 Review on text detection and recognition in images 355 Mahima Kataria, Prashansa Gupta, Shivani Singh, Vani Bansal, and Ravinder M.

40 Comparative analysis of machine learning algorithms on gender classification using Hindi speech data 363

Kanika Gupta, Arun Sharma, and Mohapatra A. K.

41 COVID-19 detection through Mamdani-based fuzzy inference system 371

Usha Mittal, Sayantan Kar, and Priyanka Chawla

42 Assistive technology is a boon or bane: A case of persons with disabilities 379

Shalini Garg, Aarti Sehgal, and Snehlata Sangwan

43 Sensor data fusion using machine learning techniques in indoor occupancy detection 387

Pushpanjali Kumari, Reddy S. R. N., and Richa Yadav

44 Covid’19 virus life progress span by using machine learning algorithms and time series methods 399

Neelam Rawat, Prashant Agrawal, Arun Kumar Tripathi, and Yashpal Singh

45 Sustainable development through adoption of digitization towards functioning of self help groups 411

Archana Singh and Sarika sharma

46 Security and vulnerability issues in NoSQL 421 Laxmi Ahuja, Ajay Rana, and Prina Todi

47 Artificial intelligence applications and techniques in interactive and adaptive smart learning environments 427

Divanshi Priyadarshni Wangoo and Reddy S. R. N.

Page 10: Artificial Intelligence and Speech Technology - Taylor & Francis

ix

CONTENTS

48 SIM-BERT: Speech intelligence model using NLP-BERT with improved accuracy 439

Pankaj Kumar and Sanjib Kumar Sahu

49 A literature review on virtual assistant for visually impaired 447 Lavisha Malik, Lavanya Gaur, Disha Goyal, Manisha Yadav, and Ravinder M.

50 Congestion control mechanisms to avoid congestion in VANET: A comparative review 453

Rajni Sharma, Lamba C. S., and Rathore V. S.

51 Comparative Study of various Stable and Unstable sorting Algorithms 463

Ravi Yadav, Rajkumar Yadav, and Satinder Bal Gupta

52 Prediction analysis of forecasting applications with concept drifting distributions 479

Kanu Goel and Shalini Batra

53 A hybrid cardiovascular disease prediction system using machine learning algorithms 487

Muneer, V. K., Ramseena, N., Rizwana Kallooravi Thandil, and Mohamed Basheer, K. P.

54 Financial inclusion via Fintech: A conceptual framework for digitalizing the banking landscape of rural India 497

Shreya Virani, Sonica Rautela, and Sarika Sharma

Page 11: Artificial Intelligence and Speech Technology - Taylor & Francis
Page 12: Artificial Intelligence and Speech Technology - Taylor & Francis

xi

Organisation

General Chair: Dr. Amita Dev, Vice-Chancellor-IGDTUW

Technical Program Chair: Dr. S S Agrawal, Former Emeritus Scientist-CSIR

Conference Secretary: Dr. Arun Sharma, Prof., and Head, Dept. of IT - IGDTUW

Technical Program Committee

Dr. S. Nakamura, Nara Institute of Science and Technology, JapanDr. Nemeth Geza, Budapest University of Technology and Economics, HungaryDr. Milan Stehlik, Johannes Keplar University, AustriaDr. Barbara Zitova, Czech RepublicDr. Chai Wutiwiwatchai, NECTEC, ThailandDr. Hsin-Min Wang, IIS, TaiwanDr. Steven Bird, CDU, AustraliaDr. Ashish Seth, Inha Univ., TashkentDr. Ayu Purwarianti, ITB, IndonesiaDr. Danill Kocharov, HKUST, ChinaDr. Dirk Van Compernolle, KU, BelgiumDr. E. Dupoux, EHESS-ENS, FranceProf. Anand Nayyar, Duy Tan University, Da Nang, VietnamDr. Eric Castelli, MICA, VietnamDr. Etienne Barnard, NWU, South AfricaDr. Gerard Bailly, CNRS, France

Dr. Gilles Adda, CNRS, FranceDr. Brian Mak, HKUST, ChinaDr. Charl Van Heerden, SPbSU, RussiaDr. Claudia Soria, ILC-CNR, ItalyDr. Tan Tien Ping, USM, MalaysiaDr. Tanja Schultz, Uni-Bremen, GermanyDr. Thang Vu, Uni-Stuttgart, GermanyDr. Win Pa Pa, UCS Yangon MyanmarDr. Xavier Anguera, Telefonica, SpainDr. Y. Sagisaka, Waseda UniversityDr. Yuri Matveev, ITMO Univesity, RussiaDr. Zuraida Mohd Don, UPSI IndonesiaDr. Joseph Mariani, CNRS, FranceDr. Laurent Besacier, LIG, FranceDr. Lori Lamel, LIMSI, FranceDr. Luong Chi Mai, IOIT, VietnamDr. Mariko Kondo, Waseda Univ., JapanDr. Marelie Davel, (NWU), South AfricaDr. Mirna Adriani, Univ. of Indonesia,

Page 13: Artificial Intelligence and Speech Technology - Taylor & Francis

xiixii

ORGANISATION

Dr. Pascal Nocera, LIA, FranceDr. Pavel Skrelin, SPbSU, RussiaDr. Pedro Moreno, Google, USADr. Alexey Karpov, SPIIRAS, RussiaDr. Sakriani Sakti, NAIST, JapanDr. Sebastian Stüker, KIT, GermanyDr. Sin Horng Chen, NCTU, TaiwanDr. Nick Campbell, Trinity College Dublin, Dr. P.C. Ching, Chinese Univ. of H.K.,Dr. Hiroya Fujisaki, Tokyo UniversityMs. Mona Bharadwaj, IBM (I) Pvt. Ltd.Dr. Mani Madhukar, IBM (I) ndia Pvt. Ltd, Mr. Khundmir Syed, IBM (I) Pvt. Ltd.Mr. Kranti Athalye, IBM (I) Pvt. Ltd.Ms. Shikha Maheshwari, IBM (I) Pvt. Ltd.Ms. Ruchika Gupta, IBM (I) Pvt. Ltd.Ms. Anu Khosla, SAG DRDO, India

Dr. S. K. Shrivastava, DRDO, IndiaDr. S. K. Jain, CFSL, IndiaDr. Vipin Tyagi, JUIT, Guna, IndiaDr. Arun Kumar, IIIT-Delhi, IndiaDr. P. K. Saxena, PSA, PMO, IndiaDr. Anupam Shukla, IIIT-Pune, IndiaDr. Karunesh Arora, CDAC, Noida, IndiaDr. Somnath Chandra, DEITY, Delhi,Dr. Sudip Sanyal, BML Munjal University, Dr. Poonam Bansal, MSIT, Delhi, IndiaDr. Swaran Lata, DEITY, IndiaDr. Sunita Arora, CDAC, Noida, IndiaDr. Kamini Malhotra, SAG, DRDO, IndiaDr. Samudra Vijaya K, IIT-Guwahati, Dr. P. K. Das, IIT Guwahati, IndiaDr. Omar Farooq, AMU, IndiaDr. Shweta Sinha, KIIT, Gurgaon, India

Page 14: Artificial Intelligence and Speech Technology - Taylor & Francis

xiii

Preface

It gives us immense pleasure to present the Proceedings of the Second International Conference on “Artificial Intelligence and Speech Technology” AIST-2020 organized by Indira Gandhi Delhi Technical University for Women, Kashmere Gate, Delhi, India on November 19–20, 2020. We hope that you will find it useful, exciting, and inspiring.

The first version of the Conference was a great success with the participation of experts from Japan, Hungary, Czech Republic, Myanmar, and almost all corners of India. The 2nd version of AIST has scaled up with more quality papers from a wider reach of academicians, professionals, and researchers all over the world. The technology giant IBM has agreed to provide technical support for the Conference. Due to the pandemic situation all around the world, the Conference is organized in an online mode which has provided us the opportunity to interact with more International Keynote Speakers and to learn from these experts.

The conference aims to serve as a forum for discussions on the state-of-the-art research, development, and implementations of Artificial Intelligence and Speech Technology. AIST-2020 is dedicated to cutting-edge research that addresses the scientific needs of academic researchers and industrial professionals to explore new horizons of knowledge related to Artificial Intelligence and Speech Technology. Researchers from across the world are presenting their research revealing the latest and relevant research findings on almost all the aspects of Artificial Intelligence and Speech Technology.

As academicians, the responsibility to nurture complete professionals lies with us. This necessitates the knowledge of the latest trends in fast-changing technology. Conferences bring together people from all different geographical areas who share a common discipline or field and are found effective to extend one’s knowledge.

We would like to express our sincere thanks and appreciation to the world-renowned Professors and prominent Researchers for having agreed to deliver the keynote session and share their knowledge during the Conference. We are thankful to Taylor and Francis for agreeing to publish the Conference Proceedings as an eBook for a wider reach of the research work presented during the Conference to other researchers and Practitioners.

Page 15: Artificial Intelligence and Speech Technology - Taylor & Francis

xiv

PREFACE

We are sure that this colloquy of researchers and experts from academia and industry would greatly benefit researchers, students, and faculty. Young scientists and researchers will find the contents of the proceedings helpful to set roadmaps for their future endeavors.

Amita DevArun Sharma

S S Agrawal

Page 16: Artificial Intelligence and Speech Technology - Taylor & Francis

Chief Guest (Inauguration Function)

Prof. V. Ramgopal Rao - Director, IIT Delhi 

Key Note Speakers

Dr. S. NakamuraNAIST, Japan

Dr. Nemeth GezaBudapest Univ.,

Hungary

Dr. Amita DevVice-Chancellor,

IGDTUW

Dr. Win Pa PaUCSY, Myanmar

Dr. Manish BhideChief Architect,

IBM

Dr. Milan Stehlik,Johannes Kepler

University, Austria

Dr. S. UmeshIndian Institute of

Technology - Madras

Dr. S. S. AgrawalEmeritus

Scientist, CSIR

Page 17: Artificial Intelligence and Speech Technology - Taylor & Francis

Session Chairs

Dr. Samudra Vijaya, IIT Guwahati

Dr. Ashish SethInha University,

Tashkent

Dr. Anand Nayyar, Duy Tan Univ.

Viet Nam

Dr. Karunesh Arora, CDAC, Noida

Dr. Swaran Lata Head-TDIL

(Retd) MeitY, GoI

Dr. P. K. SaxenaPr.

Scientific Advisor – Fellow, GoI

Dr. S. K. JainDirector cum Chief Forensic Scientist

MHA, GoI

Dr. Priyanka Chawla, LPU

Dr. Ihtram Raza Khan Jamia

Hamdard, Delhi

Page 18: Artificial Intelligence and Speech Technology - Taylor & Francis

1

CHAPTER 1

Classification approaches for automatic speech recognition systemAmritpreet Kaur a, Rohit Sachdevab, Amitoj Singhc

a,bM.M. Modi College, Patiala cMRS PTU, [email protected]

Abstract: Recognition of Speech is now becoming more widespread. Different applications that are knowledgeable of interactive expression are present on the market. For those devices in which handwriting is complicated, speaking recognition systems are sensible options. With growing specifications for embedded devices and modern embedded technologies, the Speech Recognition Systems (SRS) must also be available. Mainly the latest expressions use Hidden Markov Models (HMMs) methods to decide how well every condition of each HMM fit in with a picture or effective allocation of coefficient frames that reflect acoustical inputs, to interact with the spatial uncertainty of language and Gaussian Mixture Models (GMMs). Alternatively, the use of a neural feed method that uses many structures of coefficients as inputs and creates later chances as output in relation to HMM states. Deep Neural Networks (DNN) with many input layer which are equipped with modern techniques have already shown that GMMs are more successful on a range of voice recognition criteria, with many input nodes. DNNs have been equipped with new techniques to surpass GMMs on a number of speech recognition criteria, often by a significant margin. This study offers an analysis of development and reflects the common perspectives of four study groups who have recently found excellence in the use of deep neural networks in speech recognition for acoustic modeling.

Keywords: DNN, GMM, HMM, RASTA

Page 19: Artificial Intelligence and Speech Technology - Taylor & Francis

2

ARTIFICIAL INTELLIGENCE AND SPEECH TECHNOLOGY

1.1 Introduction

The only way in which humans can exchange their information with each other is speech (Allen, 1995). Speech processing is one of the methods to provide this interaction between human and machine. Speech Recognition (or) more popularly known as Automatic Speech Recognition (ASR) has gained lots of popularity since last few years (Abdel-Hamid et al., 2014; Amodei et al., 2016; O’Shaughnessy, 2008). Acknowledgment of expression is a part of deep learning with computers that aid human beings to interact more easily and closely to the machines. Speech Recognition has become an essential part of every application whether it’s your smartphone to a well-established web application. The voice search feature is now gaining great popularity nowadays. Voice recognition has been included by everyone as the important part of their lives. Speech has arisen as one of the simplest modes for man to machine and machine to man interaction thanks to recent research in technology (Cyran, Kozielski, Peters, Stanczyk, & Wakulicz-Deja, 2009).

1.2 Methods

There are different ways to perform the speech recognition functions. Notable research has been done to make a zero-loss information speech system.

• A leading encoding strategy was used in the mathematical context for HMM. This is an inter-related method, generated by two processes, a Markov chain which is rooted in a limited variety of states, and a particular function of probabilities is correlated with each of these states, to determine the odds of the acoustic properties. State probabilities can be modeled through continuous likelihood function, semi-continuous production of probability, or constant production of probability. Mixture distributions consisting of a linear combination of Gaussian or Laplacian density functions are the typical models for the constant probability distribution.

• ANN is a computer device driven by the arrangement of cell types in the living person’s mind. The most commonly used category of ANN in speech recognition (Masmoudi, Frikha, Chtourou & Hamida 2011) is Multi-Layer Perceptron (MLP). A potential substitute to substitute or assist HMM in classification style was digital NN & and more precisely MLP. Some ANN methods to develop state-of-the-art ASR structures were suggested (Fauziya & Nijhawan, 2014; Renjith & Manju, 2017).

• Deep learning methods are proposed as an advancement of ANN in order to get significant improvement in the performance of the acoustic models. Restricted Boltzmann machine, Deep Belief Networks (DBN) (A.-R. Mohamed, Dahl, & Hinton, 2009; A. R. Mohamed, Dahl, & Hinton, 2012), Deep Neural Networks (DNN) (Hinton et al., 2012; Senior, Heigold, Bacchiani, & Liao, 2014), Convolutional Neural Networks (CNN) (Abdel-Hamid et al., 2014; Passricha & Aggarwal, 2019a), Capsule Network are popular variants of deep learning technique that is successfully adopted speech recognition tasks. Evolutionary Techniques search approaches focused on the theory of natural evolution are adaptive methods such as Genetic Algorithms (GAs), Particle Swarm Optimization (PSO), etc. These strategies have the potential to produce a simple community of potential responses and a really strong capacity to identify the best approaches of all those reasonable solutions (Dua, Aggarwal, & Biswas, 2018; Passricha & Aggarwal, 2019b).

Page 20: Artificial Intelligence and Speech Technology - Taylor & Francis

3

ClassifiCation approaChes for automatiC speeCh reCognition system

1.3 Architecture of Speech Recognition

The architecture of ASR system which has two main components is broadly divided into 5 components as shown in Figure 1.1.

Feat

ures

Training

Speech Transcription

Testing

Corpus

Speech Signal

Speech Text

Acoustic Model

Language Model

Model Generation

Para

met

ric

DecoderPreprocessing/ Feature Extraction

Figure 1.1 The architecture of automatic speech recognition system

1.3.1 Preprocessing and Feature Extraction

The key aim of extraction is to project the speech signal in a compact parameter space by merely extracting data associated with spoken language. Certain standard techniques of extraction are:

1.3.1.1 LPC: A sufficient number of past samples will estimate the speaking sample. LPC is determined to reduce predictive error. The human pronunciation vessels are represented by signal detection techniques during this procedure.

1.3.1.2 MFCC: The voice signal first is evaluated in the form of STFT and then the DFT principles are integrated into essential groups and weighed by triangular measurement method. This approach is based on the auditory function of humans. PLP: In PLP, the LPC and MFCC characteristics are combined to achieve improved performance. Instead of trapezoidal filters, the triangular philter has been used here (Hermansky, 1990).

Along with above mentioned techniques number of the other techniques like RASTA, PLDA, LPCC etc. are modeled by signal processing techniques (Hermansky & Morgan, 1994; Makhoul, 1975).

1.4 Models of Speech Recognition

There are different types of models that are needed for Automatic Speech Recognition. Figure 1.2 shows the major speech recognition components. The models are mentioned as below:

1.4.1 Acoustic Modeling: To recognize an unknown utterance, the extracted features have to be compared with some reference models. This reference model is called acoustic model. The

Page 21: Artificial Intelligence and Speech Technology - Taylor & Francis

4

ARTIFICIAL INTELLIGENCE AND SPEECH TECHNOLOGY

acoustic model processes the feature vectors either directly or by using a phoneme-based model are the two categories of the acoustic model (Hinton et al., 2012).

1.4.2 Pronunciation Modeling: The pronunciation model or lexicon model grants the explanation of lexicons in phrase of basic sub-lexicon components (phoneme) that are present in system vocabulary. It is developed to impart the accent of each word available in the vocabulary. A pronunciation model in an ASR system is used to provide the mapping between the vocabulary and the training model. Different phone combinations are used to represent the word in the lexicon model. The Lexicon model typically uses normal expression in a normal dictionary (Liu & Fung, 2004).

1.4.3 Language Modeling: The importance of the language model for ASR systems can be understood from the fact that many of the state-of-the-art speech recognition applications would have been impossible to implement without an effective language model and constrained grammars (Chen, Liu, Gales, & Woodland, 2015; Jozefowicz, Vinyals, Schuster, Shazeer, & Wu, 2016).

Training Data

Representation Search

Recognized Words

Speech Signal

Applying Constraints

Language Models

Lexical Models

Acoustic Models

Figure 1.2 Given below shows the major components for speech recognition

1.5 Comparative Analysis of SR Models

After going through the vast literature available till yet in the field of speech recognition different techniques were studied. The table given below highlights these techniques along with their advantages and disadvantages.

Table 1.1 Comparative study of speech recognition modeling technique

Sr. No.

SRS Techniques Advantages Disadvantages

1. Confirmation of Acoustic phonology (Siniscalchi & Lee, 2009)

1. Decreases the linked terms processing time

1. Unused for commercial purposes due to the long-running of each single word

Page 22: Artificial Intelligence and Speech Technology - Taylor & Francis

5

ClassifiCation approaChes for automatiC speeCh reCognition system

2. Wrapping with Dynamic Time (Müller, 2007)

1. Because of missing details, it can fit process. The continuity is less important.

2. Reliable time alignment

1. It coincides with some constraints between two specified sequences.

2. Intensive programming work takes full time.

3. Pattern Recognition Approach (Fukunaga, 1993)

1. Just because word to word matching occurs it recognize pattern quickly and easily.

1. It is effective for adjusting word to word.

2. The primary concern is the prototype and sluggish operation.

4. Strategy to the Digital Network (Yegnanarayana, 2009)

1. Can be successful in addressing complicated requests in a less time span.

2. The capability to develop data automatically and instructed the device to adapt without mistake from the original model.

1. Offer the broad vocabulary an inefficient outcome

2. It is costly because it needs a lot of preparation on a wide volume.

3. No complete understanding is yet made of the full existence of the neural network.

4. It takes more time to practice.

5. Statistical Based Approach (HiddenMarkov method) (Baggenstoss, 2001; Gales & Young, 2008; Jiang, Li, & Liu, 2006)

1. HMM has a very strong language so that it can develop a lot of info.

2. The mathematical structure work is detailed.

3. The qualified algorithms can be found easily.

4. Can be easily applied, and everyone can simply modify these models’ scale, form and design into a special term.

1. The sophistication of the machine has risen considerably.

2. A lot of data is necessary.

1.6 Discussion and Future Scope

In the field of speech recognition, an immense number of directions can be explored to carry out further research as the proposed techniques being used for extracting the features of the speech samples can be extended further by combining different techniques to improve the speech recognition rate and WER. The researchers should develop standard databases for languages. The LVCSR database systems should be focused more. The databases should be made accessible to the

Page 23: Artificial Intelligence and Speech Technology - Taylor & Francis

6

ARTIFICIAL INTELLIGENCE AND SPEECH TECHNOLOGY

researchers so that future research can nurture. Many languages have not been employed efficient feature extraction techniques. Researchers have only focused baseline MFCC features as studied in the prevalent literature. Hybrid features like MFCC+LDA+MLLT, MFCC+BFCC+GFCC, LDA+MFCC, MF+PLP, RASTA-PLP etc. may be implemented. Researchers in the studied literature have reported their results of recognition accuracy in clean i.e. noise-free environments.

1.7 Conclusion

The Speech Recognition System (SRS) has limitless implementations and expands with each day. The research presented a description of the method of language processing, its underlying model and implementations. The author suggests that efficient feature extraction techniques are implemented on the English language. This is because the research area of speech is tremendously wide. Also, not many accurate ASR systems have been developed yet which can be efficient for continuous speech. Furthermore, LVCSR systems should be explored more by the researchers in order to improve accuracy of recognizing speech for such systems so that applications for real-time use can be developed. In this comparative analysis, the hidden Markov model is the best solution to SRS as it is powerful, resilient and decreases time and diverse.

References

Abdel-Hamid, O., Mohamed, A. R., Jiang, H., Deng, L., Penn, G., & Yu, D. (2014). Convolutional Neural Networks for Speech Recognition. IEEE-ACM Transactions on Audio Speech and Language Processing, 22(10), 1533–1545. doi:10.1109/Taslp.2014.2339736

Allen, J. B. (1995). How do humans process and recognize speech? In Modern methods of speech processing (pp. 251–275): Springer.

Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J., Battenberg, E., Case, C., . . . Chen, G. (2016). Deep speech 2: End-to-end speech recognition in English and Mandarin. Paper presented at the International Conference on Machine Learning.

Baggenstoss, P. M. (2001). A modified Baum-Welch algorithm for hidden Markov models with multiple observation spaces. IEEE transactions on speech and audio processing, 9(4), 411–416. Chen, X., Liu, X., Gales, M. J., & Woodland, P. C. (2015). Recurrent neural network language model training with noise contrastive estimation for speech recognition. Cyran, K. A., Kozielski, S., Peters, J. F., Stanczyk, U., & Wakulicz-Deja, A. (2009). Man-Machine Interactions (Vol. 59): Springer Science & Business Media.

Dua, M., Aggarwal, R. K., & Biswas, M. (2018). GFCC based discriminatively trained noise robust continuous ASR system for Hindi language. Journal of Ambient Intelligence and Humanized Computing, 1–14. Fauziya, F., & Nijhawan, G. (2014). A Comparative study of phoneme recognition using GMM-HMM and ANN based acoustic modeling. International Journal of Computer Applications, 98(6). Fukunaga, K. (1993). Statistical pattern recognition. In Handbook of pattern recognition and computer vision (pp. 33–60): World Scientific.

Gales, M., & Young, S. (2008). The application of hidden Markov models in speech recognition. Foundations and Trends® in Signal Processing, 1(3), 195–304. Hermansky, H. (1990). Perceptual linear predictive (PLP) analysis of speech. The Journal of the Acoustical Society of America, 87(4), 1738–1752. Hermansky, H., & Morgan, N. (1994). RASTA processing of speech. IEEE transactions on speech and audio processing, 2(4), 578–589. Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-R., Jaitly, N., . . . Sainath, T. N. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal processing magazine, 29(6), 82–97. Jiang, H., Li, X., & Liu, C. (2006).

Page 24: Artificial Intelligence and Speech Technology - Taylor & Francis

7

ClassifiCation approaChes for automatiC speeCh reCognition system

Large margin hidden Markov models for speech recognition. IEEE transactions on audio, speech, and language processing, 14(5), 1584–1595. Jozefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., & Wu, Y. (2016). Exploring the limits of language modeling. arXiv preprint arXiv:1602.02410. Liu, Y., & Fung, P. (2004). State-dependent phonetic tied mixtures with pronunciation modeling for spontaneous speech recognition. IEEE transactions on speech and audio processing, 12(4), 351–364. Makhoul, J. (1975). Linear prediction: A tutorial review. Proceedings of the IEEE, 63(4), 561–580. Masmoudi, S., Frikha, M., Chtourou, M., & Hamida, A. B. (2011). Efficient MLP constructive training algorithm using a neuron recruiting approach for isolated word recognition system. International Journal of Speech Technology, 14(1), 1–10. Mohamed, A.-R., Dahl, G., & Hinton, G. (2009). Deep belief networks for phone recognition. Paper presented at the Nips workshop on deep learning for speech recognition and related applications.

Mohamed, A. R., Dahl, G. E., & Hinton, G. (2012). Acoustic Modeling Using Deep Belief Networks. IEEE Transactions on Audio Speech and Language Processing, 20(1), 14–22. doi:10.1109/Tasl.2011.2109382

Müller, M. (2007). Dynamic time warping. Information retrieval for music and motion, 69–84. O’Shaughnessy, D. (2008). Automatic speech recognition: History, methods and challenges. Pattern Recognition, 41(10), 2965–2979. Passricha, V., & Aggarwal, R. K. (2019a). End-to-End Acoustic Modeling Using Convolutional Neural Networks. In Intelligent Speech Signal Processing (pp. 5–37): Elsevier.

Passricha, V., & Aggarwal, R. K. (2019b). PSO-based optimized CNN for Hindi ASR. International Journal of Speech Technology, 22(4), 1123–1133. Renjith, S., & Manju, K. G. (2017, 20–21 April 2017). Speech based emotion recognition in Tamil and Telugu using LPCC and hurst parameters—A comparitive study using KNN and ANN classifiers. Paper presented at the 2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT).

Senior, A., Heigold, G., Bacchiani, M., & Liao, H. (2014). GMM-free DNN acoustic model training. Paper presented at the Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on.

Siniscalchi, S. M., & Lee, C.-H. (2009). A study on integrating acoustic-phonetic information into lattice rescoring for automatic speech recognition. Speech communication, 51(11), 1139–1153. Yegnanarayana, B. (2009). Artificial neural networks: PHI Learning Pvt. Ltd.

Page 25: Artificial Intelligence and Speech Technology - Taylor & Francis

Classification approaches for automatic speech recognition system Abdel-Hamid, O. , Mohamed, A. R. , Jiang, H. , Deng, L. , Penn, G. , & Yu, D. (2014). Convolutional NeuralNetworks for Speech Recognition. IEEE-ACM Transactions on Audio Speech and Language Processing,22(10), 1533–1545. doi:10.1109/Taslp.2014.2339736 Allen, J. B. (1995). How do humans process and recognize speech? In Modern methods of speechprocessing (pp. 251–275): Springer. Amodei, D. , Ananthanarayanan, S. , Anubhai, R. , Bai, J. , Battenberg, E. , Case, C. , … Chen, G. (2016).Deep speech 2: End-to-end speech recognition in English and Mandarin. Paper presented at theInternational Conference on Machine Learning. Baggenstoss, P. M. (2001). A modified Baum-Welch algorithm for hidden Markov models with multipleobservation spaces. IEEE transactions on speech and audio processing, 9(4), 411–416. Chen, X. , Liu, X. , Gales, M. J. , & Woodland, P. C. (2015). Recurrent neural network language modeltraining with noise contrastive estimation for speech recognition. Cyran, K. A. , Kozielski, S. , Peters, J. F. , Stanczyk, U. , & Wakulicz-Deja, A. (2009). Man-MachineInteractions (Vol. 59): Springer Science & Business Media. Dua, M. , Aggarwal, R. K. , & Biswas, M. (2018). GFCC based discriminatively trained noise robustcontinuous ASR system for Hindi language. Journal of Ambient Intelligence and Humanized Computing,1–14. Fauziya, F. , & Nijhawan, G. (2014). A Comparative study of phoneme recognition using GMM-HMM andANN based acoustic modeling. International Journal of Computer Applications, 98(6). Fukunaga, K. (1993). Statistical pattern recognition. In Handbook of pattern recognition and computer vision(pp. 33–60): World Scientific. Gales, M. , & Young, S. (2008). The application of hidden Markov models in speech recognition.Foundations and Trends® in Signal Processing, 1(3), 195–304. Hermansky, H. (1990). Perceptual linear predictive (PLP) analysis of speech. The Journal of the AcousticalSociety of America, 87(4), 1738–1752. Hermansky, H. , & Morgan, N. (1994). RASTA processing of speech. IEEE transactions on speech andaudio processing, 2(4), 578–589. Hinton, G. , Deng, L. , Yu, D. , Dahl, G. E. , Mohamed, A.-R. , Jaitly, N. , … Sainath, T. N. (2012). Deepneural networks for acoustic modeling in speech recognition: The shared views of four research groups.IEEE Signal processing magazine, 29(6), 82–97. Jiang, H. , Li, X. , & Liu, C. (2006). Large margin hidden Markov models for speech recognition. IEEEtransactions on audio, speech, and language processing, 14(5), 1584–1595. Jozefowicz, R. , Vinyals, O. , Schuster, M. , Shazeer, N. , & Wu, Y. (2016). Exploring the limits of languagemodeling. arXiv preprint arXiv:1602.02410. Liu, Y. , & Fung, P. (2004). State-dependent phonetic tied mixtures with pronunciation modeling forspontaneous speech recognition. IEEE transactions on speech and audio processing, 12(4), 351–364. Makhoul, J. (1975). Linear prediction: A tutorial review. Proceedings of the IEEE, 63(4), 561–580. Masmoudi, S. , Frikha, M. , Chtourou, M. , & Hamida, A. B. (2011). Efficient MLP constructive trainingalgorithm using a neuron recruiting approach for isolated word recognition system. International Journal ofSpeech Technology, 14(1), 1–10. Mohamed, A.-R. , Dahl, G. , & Hinton, G. (2009). Deep belief networks for phone recognition. Paperpresented at the Nips workshop on deep learning for speech recognition and related applications. Mohamed, A. R. , Dahl, G. E. , & Hinton, G. (2012). Acoustic Modeling Using Deep Belief Networks. IEEETransactions on Audio Speech and Language Processing, 20(1), 14–22. doi:10.1109/Tasl.2011.2109382 Müller, M. (2007). Dynamic time warping. Information retrieval for music and motion, 69–84. O’Shaughnessy, D. (2008). Automatic speech recognition: History, methods and challenges. PatternRecognition, 41(10), 2965–2979. Passricha, V. , & Aggarwal, R. K. (2019a). End-to-End Acoustic Modeling Using Convolutional NeuralNetworks. In Intelligent Speech Signal Processing (pp. 5–37): Elsevier. Passricha, V. , & Aggarwal, R. K. (2019b). PSO-based optimized CNN for Hindi ASR. International Journal ofSpeech Technology, 22(4), 1123–1133. Renjith, S. , & Manju, K. G. (2017, 20–21 April 2017). Speech based emotion recognition in Tamil andTelugu using LPCC and hurst parameters—A comparitive study using KNN and ANN classifiers. Paperpresented at the 2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT). Senior, A. , Heigold, G. , Bacchiani, M. , & Liao, H. (2014). GMM-free DNN acoustic model training. Paperpresented at the Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conferenceon. Siniscalchi, S. M. , & Lee, C.-H. (2009). A study on integrating acoustic-phonetic information into latticerescoring for automatic speech recognition. Speech communication, 51(11), 1139–1153.

Page 26: Artificial Intelligence and Speech Technology - Taylor & Francis

Yegnanarayana, B. (2009). Artificial neural networks: PHI Learning Pvt. Ltd.

Early detection of PCOD using machine learning techniques Anghel, Andreea et al . (2018). “Benchmarking and Optimization of Gradient Boosting Decision TreeAlgorithms”. In: arXiv preprint arXiv:1809.04559. Chen, Tianqi , and Carlos Guestrin (2016). “Xgboost: A scalable tree boosting system”. In: Proceedings ofthe 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp. 785–794. Deng, J. et al . (2009). “ImageNet: A Large-Scale Hierarchical Image Database”. In: CVPR09. Deng, Yinhui , Yuanyuan Wang , and Ping Chen (2008). “Automated detection of polycystic ovary syndromefrom ultrasound images”. In: 2008 30th Annual International Conference of the IEEE Engineering in Medicineand Biology Society. IEEE, pp. 4772–4775. Dorogush, Veronika , Ershov , and Gulin (2018). “CatBoost: gradient boosting with categorical featuressupport”. In: arXiv preprint arXiv:1810.11363. Google (2017). Google Colab. URL: https://colab.research.google.com (visited on 2017). Ke, Guolin , et al . (2017). “Lightgbm: A highly efficient gradient boosting decision tree”. In: Advances inneural information processing systems, pp. 3146–3154. Long, A. (2018). Understanding Data Science Classification Metrics in ScikitLearn in Python. URL:https://towardsdatascience.com/understandingdata-science-classification-metrics-in-scikit-learn-in-python3bc336865019 (visited on 2018). Mehrotra, Palak , et al . (2011). “Automated screening of polycystic ovary syndrome using machine learningtechniques”. In: 2011 Annual IEEE India Conference. IEEE, pp. 1–5. Purnama, Bedy , et al . (2015). “A classification of polycystic Ovary Syndrome based on follicle detection ofultrasound images”. In: 2015 3rd International Conference on Information and Communication Technology(ICoICT). IEEE, pp. 396–401. Qiu, Shi , (2017). BBox-Label-Tool. URL: https://github.com/puzzledqs/BBox-Label-Tool (visited on 2017). Redmon, Joseph and Farhadi, Ali (2017). “YOLO9000: better, faster, stronger”. In: Proceedings of the IEEEconference on computer vision and pattern recognition, pp. 7263–7271. Redmon, Joseph and Farhadi, Ali (2018). “Yolov3: An incremental improvement”. In: arXiv preprintarXiv:1804.02767. Sirmans, Susan M and Kristen A Pate (2014). “Epidemiology, diagnosis, and management of polycysticovary syndrome”. In: Clinical epidemiology 6, p. 1. Wagh, Pratik , Das, Debanjan , Damani, Om , et al . (2019). “Well detection in satellite images usingconvolutional neural networks”. In: Xu, Lei , and Veeramachaneni, Kalyan (2018). “Synthesizing TabularData using Generative Adversarial Networks”. In: arXiv preprint arXiv:1811.11264.

Application of real-time object detection techniques for bird detection Girshick, R. (2015). Fast R-CNN. In: Proceedings of the IEEE international conference on computer vision(pp. 1440–1448). Goswami, S. (2017). How can we bring disappearing sparrows back to our cities? [Online] Available at:https://www.downtoearth.org.in/news/wildlife-biodiversity/how-can-we-bring-disappearing-sparrows-back-to-our-cities--57396 (Accessed: 14 August 2020 ). He, K. , Gkioxari, G. , Dollár, P. , and Girshick, R. (2017). Mask R-CNN. In: Proceedings of the IEEEinternational conference on computer vision (pp. 2961–2969). Huang, R. , Pedoeem, J. , and Chen, C. (2018). December. YOLO-LITE: a real-time object detectionalgorithm optimized for non-GPU computers. In: 2018 IEEE International Conference on Big Data (Big Data)(pp. 2503–2510). IEEE. Hong, S. J. , Han, Y. , Kim, S. Y. , Lee, A. Y. , and Kim, G. (2019). Application of deep-learning methods tobird detection using unmanned aerial vehicle imagery. Sensors, 19(7), p. 1651. Lin, T. Y. , Maire, M. , Belongie, S. , Hays, J. , Perona, P. , Ramanan, D. , Dollár, P. , and Zitnick, C. L.(2014). September. Microsoft coco: Common objects in context. In European conference on computer vision(pp. 740–755). Springer, Cham. Lin, T. Y. , Dollár, P. , Girshick, R. , He, K. , Hariharan, B. , and Belongie, S. (2017). Feature pyramidnetworks for object detection. In Proceedings of the IEEE conference on computer vision and patternrecognition (pp. 2117–2125).

Page 27: Artificial Intelligence and Speech Technology - Taylor & Francis

Ren, S. , He, K. , Girshick, R. , and Sun, J. (2015). Faster R-CNN: Towards real-time object detection withregion proposal networks. In Advances in neural information processing systems (pp. 91–99). Redmon, J. , Divvala, S. , Girshick, R. , and Farhadi, A. (2016). You only look once: Unified, real-time objectdetection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779–788). Redmon, J. (2016). Darknet: Open source neural networks in C [Online]. Available at:http://pjreddie.com/darknet/2013–2016 (Accessed: 19 May 2020 ). Redmon, J. and Farhadi, A. (2017). YOLO9000: better, faster, stronger. In: Proceedings of the IEEEconference on computer vision and pattern recognition (pp. 7263–7271). Redmon, J. , and Farhadi, A. (2018). YOLOv3: An incremental improvement. arXiv. arXiv preprintarXiv:1804.02767. Sandeep, B. V. (2016). Bird lovers for initiative to attract house sparrows [Online]. Available at:https://www.thehindu.com/news/national/andhra-pradesh/bird-lovers-for-initiative-to-attract-house-sparrows/article8376012.ece (Accessed 14 August 2020).

Machine learning algorithms used for detection of prostate cancer Abbasi, A. , et al . (2020). ‘Detecting prostate cancer using deep learning convolution neural network withtransfer learning approach’, Cognitive Neurodynamics, 14. doi: 10.1007/s11571020095875. Ali, H. M. (2018). ‘MRI Medical Image Denoising by Fundamental Filters’, High-Resolution Neuroimaging –Basic Physical Principles and Clinical Applications 2018, Chapter 7 (pp 111–124). doi:10.5772/intechopen.72427. Manju ,, Meenakshy, K. , and Gopikakumari, R. (2015). ‘Prostate disease diagnosis from CT images usingGA optimized SMRT based texture features’, Procedia Computer Science, 46. doi:10.1016/j.procs.2015.02.111. Bhattacharjee, S. , et al . (2019). ‘MultiFeatures Classification of Prostate Carcinoma Observed inHistological Sections: Analysis of WaveletBased Texture and Colour Features’, Cancers, 11(12). doi:10.3390/cancers11121937. Huang , and Kalaw, E. M. (2016). ‘Automated classification for pathological prostate images using AdaBoost-based Ensemble Learning’, In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens.doi: 10.1109/SSCI.2016.7849887. Castillo, T. J. M. , et al . (2019). ‘Classification of prostate cancer: High grade versus low grade using aradiomics approach’, In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). doi:10.1109/ISBI.2019.8759217. Culp, M. B. , et al . (2020). ‘Recent Global Patterns in Prostate Cancer Incidence and Mortality Rates’,European Urology, 77(1). doi: 10.1016/j.eururo.2019.08.005. Niaf , et al . (2014). ‘Kernel-based learning from both qualitative and quantitative labels: Application toprostate cancer diagnosis based on multiparametric MR imaging’, IEEE Transactions on Image Processing,23(3). doi: 10.1109/TIP.2013.2295759. Feng, Y. , et al . (2019). ‘A Deep Learning Approach for Targeted Contrast-Enhanced Ultrasound BasedProstate Cancer Detection’, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 16(6).doi: 10.1109/tcbb.2018.2835444. Ghose, S. , et al . (2012). ‘A survey of prostate segmentation methodologies in ultrasound, magneticresonance and computed tomography images’, Computer methods and programs in biomedicine, 108. doi:10.1016/j.cmpb.2012.04.006. Gurav, S. , Kulhalli, K. , and Desai, V. (2019). ‘Prostate Cancer Detection Using Histopathology Images andClassification Using Improved Ridenn’, Biomedical Engineering: Applications, Basis and Communications,31(6). doi: 10.4015/S101623721950042X. Hassanzadeh, T. , Hamey, L. , and Ho-Shon, K. (2019). ‘Convolutional Neural Networks for ProstateMagnetic Resonance Image Segmentation’, IEEE Access, 7(8666973). doi: 10.1109/access.2019.2903284. Huang, X. , Chen, M. and Liu, P. (2019). ‘Recognition of Transrectal Ultrasound Prostate Image Based onHOGLBP’, in. IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification (ASID).doi: 10.1109/ICASID.2019.8925236. Jia, H. , et al . (2019). ‘3D APA-Net: 3D Adversarial Pyramid Anisotropic Convolutional Network for ProstateSegmentation in MR Images’, IEEE Transactions on Medical Imaging, 39(2). doi: 10.1109/tmi.2019.2928056. Källén, H. , et al . (2016). ‘Towards grading gleason score using generically trained deep convolutionalneural networks’, In: IEEE 13th International Symposium on Biomedical Imaging (ISBI). doi:10.1109/ISBI.2016.7493473. Karimi, D. , et al . (2019). ‘Deep Learning-Based Gleason Grading of Prostate Cancer from HistopathologyImages – Role of Multiscale Decision Aggregation and Data Augmentation’, IEEE Journal of Biomedical and

Page 28: Artificial Intelligence and Speech Technology - Taylor & Francis

Health Informatics, 24. doi: 10.1109/jbhi.2019.2944643. Li, W. , et al . (2019). ‘Path R-CNN for prostate cancer diagnosis and gleason grading of histological images’,IEEE Transactions on Medical Imaging, 38(4). doi: 10.1109/TMI.2018.2875868. Liu, Z. , et al . (2019). ‘A Two-Stage Approach for Automated Prostate Lesion Detection and Classificationwith Mask R-CNN and Weakly Supervised Deep Neural Network’, in. Artificial Intelligence in RadiationTherapy, Springer International Publishing. Lucas, M. , et al . (2019). ‘Deep learning for automatic Gleason pattern classification for grade groupdetermination of prostate biopsies’, Virchows Archiv, 475(1). doi: 10.1007/s00428-019-02577-x. Mesrabadi, H. A. , and Faez, K. (2018). ‘Improving early prostate cancer diagnosis by using Artificial NeuralNetworks and Deep Learning’, in. 4th Iranian Conference on Signal Processing and Intelligent Systems(ICSPIS). doi: 10.1109/ICSPIS.2018.8700542. Morris, D. C. , et al . (2019). ‘Multiparametric Ultrasound for the Targeting of Prostate Cancer using ARFI,SWEI, Bmode, and QUS’, In: IEEE International Ultrasonics Symposium (IUS). doi:10.1109/ULTSYM.2019.8926035. Poojitha, U. P. , and Sharma, S. L. (2019). ‘Hybrid Unified Deep Learning Network for Highly PreciseGleason Grading of Prostate Cancer’, In: 2019 41st Annual International Conference of the IEEEEngineering in Medicine and Biology Society (EMBC). doi: 10.1109/EMBC.2019.8856912. Reda, I. , et al . (2018). ‘A novel ADCs-Based CNN classification system for precise diagnosis of prostatecancer’, In: 2018 24th International Conference on Pattern Recognition (ICPR). doi:10.1109/ICPR.2018.8546029. Wang, S. , et al . (2014). ‘Computer Aided-Diagnosis of Prostate Cancer on Multiparametric MRI: ATechnical Review of Current Research’, BioMed Research International, 2014(789561). doi:10.1155/2014/789561. Shao et al . (2020). ‘Improving prostate cancer (PCa) classification performance by using three-playerminimax game to reduce data source heterogeneity’, IEEE Transactions on Medical Imaging, 39(10). doi:10.1109/TMI.2020.2988198. Zhang, G. , et al . (2019). ‘A Bi-Attention Adversarial Network for Prostate Cancer Segmentation’, IEEEAccess, 7. doi: 10.1109/access.2019.2939389. Zhu, Q. , et al . (2017). Deeplysupervised CNN for prostate segmentation. International Joint Conference onNeural Networks (IJCNN), 2017. doi: 10.1109/IJCNN.2017.7965852.

How training of sigmoidal FFANN affected by weight initialization Barron, A. R. (1993). Universal approximation bounds for superposition of a sigmoidal function, IEEE Trans.Inform. Theory, vol. 39, pp. 930–945. Bhatia, M. P. S. and Veenu , Chandra, P. (2018). A New Weight Initialization Method for Sigmoidal FFANN,International Conference on Signals, Machines and Automation, SIGMA-2018, Journal of Intelligent andFuzzy Systems, IOS Press, Netherlands, vol. 35, no. 5, pp. 5193–5201. Bhatia, M. P. S. and Veenu , Chandra, P. (2016). Empirical Study of various Weight Initialization Techniquesfor FFANN, IEEE Ist India International Conference on Information Processing, IICIP-2016, available atIEEExplore. Bhatia, M. P. S. and Veenu , Chandra, P. (2019). Effect of Weight Initialization on Training of SigmoidalFFANN for Back Propagation Algorithms, International Conference on Emerging Trends in InformationTechnology, Proceedings of ICETIT 2019, springer. Chandra, P. , and Singh, Y. (2003). Fault tolerance of feedforward artificial neural networks – a framework ofstudy, IJCNN, pp. 489–494. Cherkassky, V. , Gehring, D. , and Mulier, F. (1996). Comparison of adaptive methods for function estimationfrom samples, IEEE Transaction on Neural Networks, vol. 7(4), pp. 969–984. Haykin, S. (1999). Neural Networks – A Comprehensive Foundation, Prentice-Hall. International Inc., NewJersey, 2nd edition. Haykin, S. (2011). Neural Networks and Learning Machines, PHI learning Private limited, 3rd edition. Lecun, Y. , Bottou, L. , Orr, G. , and Muller, K. (1998). Efficient BackProp, Neural Networks: Tricks of thetrade, Springer. Nguyen, D. and Widrow, B. (1993). Improving the learning speed of 2-layer neural networks by choosinginitial values of the adaptive weights, pp. 21–26. Rojas, R. (1996). Neural Networks, Springer-Verlag, Berlin. Sodi, S. S. and Chandra, P. (2014). Interval-based weight initialization method for sigmoidal FeedforwardArtificial Neural networks, 2nd AASRI Conference on Computational Intelligence and Bioinformatics, pp.19–25.

Page 29: Artificial Intelligence and Speech Technology - Taylor & Francis

Machine learning for web development: A fusion Abadi, M. , Barham, P. , Chen, J. , Chen, Z. , Davis, A. , Dean, J. , Devin, M. , Ghemawat, S. , Irving, G. ,Isard, M. , et al . (2016). Tensorflow: a system for large-scale machine learning. In OSDI, vol. 16, pp.265–283. Abelson, H. , and Lao, N. (2018). Deep Learning Practicum. URL: https://goo.gl/tp7Xut. Carter, S. , and Nielsen, M. (2017). Using Artificial Intelligence to Augment Human Intelligence. Distill, 2(12):ed9, December 2017. ISSN 2476–0757. doi: 10.23915/distill.00009. URL: https://distill.pub/2017/aia. Davis, A. (2018). Data Wrangling with JavaScript. Manning Shelter Island, NY, 2018. Farza (2018). DeepOverwatch combining TensorFlow.js, Overwatch, Computer Vision, and Music. Medium,May 2018. URL: https://bit.ly/2zAvo1e. Haas, A. , Rossberg, A. , Schuff, D. L. , Titzer, B. L. , Holman, M. , Gohman, D. , Wagner, L. , Zakai, A. , andBastien, J. (2017). Bringing the web up to speed with web assembly. In ACM SIGPLAN Notices, vol. 52, pp.185–200. ACM. Howard, A. G. , Zhu, M. , Chen, B. , Kalenichenko, D. , Wang, W. , Weyand, T. , Andreetto, M. , andAdam, H. (2017). Mobilenets. Efficient convolutional neural networks for mobile vision applications. Jackson, D. (2017). Next-generation 3D Graphics on the Web. https://webkit.org/blog/7380/next-generation-3d-graphics-on-the-web/. Olah, C. (2014). Neural networks, manifolds, and topology. URL: http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/. Sharma, R. (2020). The Best AI & Machine Learning Frameworks to Learn for Web Development. URL:https://www.freecodecamp.org/news/best-ai-machine-learning-frameworks-for-web-development/ Smilkov, D. , Carter, S. , Sculley, D. , Viegas, F. , and Wattenberg, M. (2016). Direct-manipulationvisualization of deep networks. ICML Workshop on Visualization in Deep Learning. Paszke, A. , Gross, S. , Chintala, S. , Chanan, G. , Yang, E. , DeVito, Z. , Lin, Z. , Desmaison, A. , Antiga, L., and Lerer, A. (2017). Automatic differentiation in pytorch.

Bot attack detection using various machine learning algorithms Alieyan, K. , Almomani, A. , Anbar, M. , Alauthman, M. , Abdullah, R. and Gupta, B. B. (2019). DNS rule-based schema to botnet detection. Enterprise Information Systems, pp. 1–20. Almutairi, S. , Mahfoudh, S. , Almutairi, S. , and Alowibdi, J. S. (2020). Hybrid Botnet Detection Based onHost and Network Analysis. Journal of Computer Networks and Communications, 2020. Ertoz, L. , Eilertson, E. , Lazarevic, A. , Tan, P. N. , Kumar, V. , Srivastava, J. , and Dokas, P. (2004). Minds-Minnesota intrusion detection system. Next generation data mining, pp. 199–218. Garcia, S. , and Pechoucek, M. (2016). August. Detecting the behavioral relationships of malwareconnections. In: Proceedings of the 1st International Workshop on AI for Privacy and Security (pp. 1–5). Garcia, S. , and Uhlir, Voitech (2016). Malware Capture Facility Project. Available at:http://mcfp.weebly.com/mcfp-dataset.html (Accessed: 22 February 2020 ). Hung, C. , and Sun, H. (2018). A botnet detection system based on machine-learning using flow-basedfeatures. In: Proceedings of the SECURWARE 2018: Twelfth International Conference on Emerging SecurityInformation. Joshi, H. P. , Bennison, M. , and Dutta, R. (2017). September. Collaborative botnet detection with partialcommunication graph information. In 2017 IEEE 38th Sarnoff Symposium (pp. 1–6). IEEE. Koroniotis, N. , Moustafa, N. , Sitnikova, E. , and Turnbull, B. (2019). Towards the development of realisticbotnet dataset in the internet of things for network forensic analytics: Bot-IoT dataset. Future GenerationComputer Systems, 100, pp. 779–796. Meidan, Y. , Bohadana, M. , Mathov, Y. , Mirsky, Y. , Shabtai, A. , Breitenbacher, D. , and Elovici, Y. (2018).N-BaIoT—network-based detection of IoT botnet attacks using deep autoencoders. IEEE PervasiveComputing, 17(3), pp.12–22. Miller, Jayne (2016). ‘The Dyn DDoS Attack, Explained’. TeleGeography Blog, 25 October. Available at:https://blog.telegeography.com/the-dyn-ddos-attack-explained (Accessed: 19 October 2020 ). Soe, Y. N. , Feng, Y. , Santosa, P. I. , Hartanto, R. , and Sakurai, K. (2020). Machine Learning-Based IoT-Botnet Attack Detection with Sequential Architecture. Sensors, 20(16), p. 4372. Verizon (2015). Data Breach Investigations Report. Available at: https://cybersecurity.idaho.gov/wp-content/uploads/sites/87/2019/04/data-breach-investigation-report_2015.pdf (Accessed: 19 October 2020 ). Wang, W. , Shang, Y. , He, Y. , Li, Y. , and Liu, J. (2020). BotMark: Automated botnet detection with hybridanalysis of flow-based and graph-based traffic behaviors. Information Sciences, 511, pp. 284–296.

Page 30: Artificial Intelligence and Speech Technology - Taylor & Francis

Present scenario of emotionally intelligent voice-based Conversational Agents inIndia Adiwardana, D. et al . (2019). Towards a Human-like Open-Domain Chatbot. Agrawal, S. S. (2011). Emotions in Hindi speech-Analysis, perception and recognition, 2011 InternationalConference on Speech Database and Assessments, Oriental COCOSDA 2011 – Proceedings. IEEE, (iii),pp. 7–13. doi: 10.1109/ICSDA.2011.6085972. Ajibola Alim, S. , and Khair Alang Rashid, N. (2018). Some Commonly Used Speech Feature ExtractionAlgorithms, From Natural to Artificial Intelligence – Algorithms and Applications, pp. 3–20. doi:10.5772/intechopen.80419. Anagnostopoulos, C. N. , Iliou, T. , and Giannoukos, I. (2012). Features and classifiers for emotionrecognition from speech: a survey from 2000 to 2011, Artificial Intelligence Review, 43(2), pp. 155–177. doi:10.1007/s10462-012-9368-5. Arias, J. P. , Busso, C. , and Yoma, N. B. (2014). Shape-based modeling of the fundamental frequencycontour for emotion detection in speech, Computer Speech and Language, 28(1), pp. 278–294. doi:10.1016/j.csl.2013.07.002. Bansal, S. , and Dev, A. (2013). Emotional Hindi speech database. In: 2013 International ConferenceOriental COCOSDA Held Jointly with 2013 Conference on Asian Spoken Language Research andEvaluation, O-COCOSDA/CASLRE 2013. IEEE, pp. 5–8. doi: 10.1109/ICSDA.2013.6709867. Bhargava, M. , and Polzehl, T. (2013). Improving Automatic Emotion Recognition from speech using Rhythmand Temporal feature, pp. 139–147. Available at: http://arxiv.org/abs/1303.1761. Chuenwattanapranithi, S. , et al . (2008). Encoding emotions in speech with the size code — A perceptualinvestigation, Phonetica, pp. 210–230. Deshmukh, R. R. et al . (2015). Emotion Recognition for Instantaneous Marathi Spoken Words, Advances inIntelligent Systems and Computing, 328(November). doi: 10.1007/978-3-319-12012-6. Frant, I. , et al . (2017). Voice Based Emotion Recognition with Convolutional Neural Networks forCompanion Robots, Romanian Journal of Information Science and Technology, 20(3), pp. 222–240. Hakim, F. Z. M. , Indrayani, L. M. , and Amalia, R. M. (2019). A Dialogic Analysis of Compliment StrategiesEmployed by Replika Chatbot, (January). doi: 10.2991/icalc-18.2019.38. Ian, D. (2018). First insights on a passive major depressive disorder prediction system with incorporatedconversational chatbot Author (s) First Insights on a Passive Major Depressive Disorder Prediction Systemwith Incorporated Conversational Chatbot Paper presented. Jacewicz, E. , Fox, R. A. , and Wei, L. (2010). Between-speaker and within-speaker variation in speechtempo of American English, The Journal of the Acoustical Society of America, 128(2), pp. 839–850. doi:10.1121/1.3459842. Kakodkar, Sujay G. , and Borkar, S. (2018). Speech Emotion Recognition of Sanskrit Language usingMachine Learning, International Journal of Computer Applications, 179(51), pp. 23–28. doi:10.5120/ijca2018917326. Kerkeni, L. et al . (2018). Speech emotion recognition: Methods and cases study, In: ICAART 2018 –Proceedings of the 10th International Conference on Agents and Artificial Intelligence, pp. 175–182. doi:10.5220/0006611601750182. Khulageand, A. A. , and Pathak., B. V. (2012). Analysis of Speech Under Stress Using Linear Techniquesand Non-Linear Techniques for Emotion Recognition System, in, pp. 285–294. doi: 10.5121/csit.2012.2328. Kim, J. W. , and Saurous, R. A. (2018). Emotion recognition from human speech using temporal informationand deep learning, Proceedings of the Annual Conference of the International Speech CommunicationAssociation, Interspeech, 2018-September (September), pp. 937–940. doi: 10.21437/Interspeech.2018-1132. Koduru, A. , Valiveti, H. B. , and Budati, A. K. (2020). Feature extraction algorithms to improve the speechemotion recognition rate, International Journal of Speech Technology. Springer US, 23(1), pp. 45–55. doi:10.1007/s10772-020-09672-4. Kolita, S. , and Acharjee, P. B. (2020). On the Differences in Prosodic Features of Assamese Speech Basedon Types of Emotions, 1(4), pp. 2057–2061. doi: 10.35940/ijitee.D1208.029420. Koolagudi, S. G. et al . (2011). IITKGP-SEHSC : Hindi speech corpus for emotion analysis, In: 2011International Conference on Devices and Communications, ICDeCom 2011 – Proceedings. IEEE, pp. 1–5.doi: 10.1109/ICDECOM.2011.5738540. Koolagudi, S. G. , and Rao, K. S. (2012). Emotion recognition from speech using source, system, andprosodic features, International Journal of Speech Technology, 15(2), pp. 265–289. doi: 10.1007/s10772-012-9139-3. Kossaifi, J. et al . (no date). SEWA DB : A Rich Database for Audio-Visual Emotion and Sentiment Researchin the Wild, pp. 1–20. Kulshreshtha, G. N. P. , and Gayen, S. (2016). Emotion state detection via speech in spoken Hindi, (15), pp.1–12.

Page 31: Artificial Intelligence and Speech Technology - Taylor & Francis

Lee, C. M. , Narayanan, S. , and Pieraccini, R. (2001). Recognition of negative emotions from the speechsignal, 2001 IEEE Workshop on Automatic Speech Recognition and Understanding, ASRU 2001 –Conference Proceedings, pp. 240–243. doi: 10.1109/ASRU.2001.1034632. Liu, G. K. (2018). Evaluating Gammatone Frequency Cepstral Coefficients with Neural Networks for EmotionRecognition from Speech, pp. 2–6. Available at: http://arxiv.org/abs/1806.09010. Lugger, M. (2007). Speaker Independent Emotion Recognition Chair of System Theory and SignalProcessing, University of Stuttgart, Germany IEmoioni Ibored IcnutralI I DT 9S, Emotion, pp. 2007–2010. Mehta, D. , Siddiqui, M. F. H. , and Javaid, A. Y. (2019). Recognition of emotion intensities using machinelearning algorithms: A comparative study, Sensors (Switzerland), 19(8), pp. 1–24. doi: 10.3390/s19081897. Murray, I. R. , and Arnott, J. L. (1996). Synthesizing emotions in speech: Is it time to get excited?International Conference on Spoken Language Processing, ICSLP, Proceedings, 3, pp. 1816–1819. doi:10.1109/icslp.1996.607983. Paliwal, K. K. (1998). Spectral subband centroid features for speech recognition, In: ICASSP, IEEEInternational Conference on Acoustics, Speech and Signal Processing – Proceedings, pp. 617–620. doi:10.1109/ICASSP.1998.675340. Palo, H. K. , and Mohanty, M. N. (2018). Wavelet based feature combination for recognition of emotions, AinShams Engineering Journal. Ain Shams University, 9(4), pp. 1799–1806. doi: 10.1016/j.asej.2016.11.001. Palo, H. K. , Mohanty, M. N. , and Mahesh Chandra (2015). Use of Different Features for EmotionRecognition Using MLP Network, Advances in Intelligent Systems and Computing, 332(January), pp. v–vi.doi: 10.1007/978-81-322-2196-8. Pao, T. et al . (2005). Detecting Emotions in Mandarin Speech, Computational Linguistics and ChineseLanguage Processing, 10(3), pp. 347–362. Rao, K. S. , and Koolagudi, S. G. (2011). Identification of Hindi Dialects and Emotions using Spectral andProsodic features of Speech, IJSCI: International Journal of Systemics, Cybernetics and Informatics, 9(4),pp. 24–33. Spyrou, E. et al . (2019). Emotion Recognition from Speech Using the Bag-of-Visual Words on AudioSegment Spectrograms, Technologies, 7(1), p. 20. doi: 10.3390/technologies7010020. Sreenivas, N. (2012). Emotiphons: Emotion markers in Conversational Speech-Comparison across IndianLanguages. In: 24th International Conference on Computational …, pp. 73–80. Available at:http://www.aclweb.org/anthology-new/W/W12/W12-53.pdf#page=85. Wu, S. , Falk, T. H. , and Chan, W. Y. (2011). Automatic speech emotion recognition using modulationspectral features, Speech Communication. Elsevier B.V., 53(5), pp. 768–785. doi:10.1016/j.specom.2010.08.013. Zhao, X. , and Wang, D. (2013). Analyzing noise robustness of MFCC and GFCC features in speakeridentification, ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing -Proceedings, pp. 7204–7208. doi: 10.1109/ICASSP.2013.6639061. Zharif, A. (2015). LPCC Features. doi: 10.1007/978-3-319-17163-0.

Blockchain-based secured data transmission of IoT sensors using thingspeak Ahad, A. , Tahir, M. , and Yau, K. L. A. (2019). 5G-based smart healthcare network: Architecture, taxonomy,challenges and future research directions, IEEE Access, 7, pp. 100747–100762, doi:10.1109/ACCESS.2019.2930628. Alphand, O. , et al . (2018). IoTChain: A blockchain security architecture for the Internet of Things, IEEEWirel. Commun. Netw. Conf. WCNC, 2018-April, pp. 1–6, doi: 10.1109/WCNC.2018.8377385. Bouscaren, E. (1989). Elementary pairs of models, Ann. Pure Appl. Log., 45(2), PART 1, pp. 129–137, doi:10.1016/0168-0072(89)90057-2. Buccafurri, F. , Lax, G. , Musarella, L. , and Russo, A. (2019). Ethereum transactions and smart contractsamong secure identities, CEUR Workshop Proc., 2334, pp. 5–16. Dorri, A. , Kanhere, S. S. , and Jurdak, R. (2017). Towards an optimized blockchain for IoT, Proc. – 2017IEEE/ACM 2nd Int. Conf. Internet-of-Things Des. Implementation, IoTDI 2017 (part CPS Week), pp.173–178, doi: 10.1145/3054977.3055003. Elisa, N. , Yang, L. , Chao, F. , and Cao, Y. (2018). A framework of blockchain-based secure and privacy-preserving E-government system, Wirel. Networks, 0, doi: 10.1007/s11276-018-1883-0. Ferrag, M. A. , Derdour, M. , Mukherjee, M. , Derhab, A. , Maglaras, L. , and Janicke, H. (2019). Blockchaintechnologies for the internet of things: Research issues and challenges, IEEE Internet Things J., 6(2), pp.2188–2204, doi: 10.1109/JIOT.2018.2882794. Gupta, R. , Kumari, A. , and Tanwar, S. (2020). A taxonomy of blockchain envisioned edge-as-a-connectedautonomous vehicles, Trans. Emerg. Telecommun. Technol., March, pp. 1–24, doi: 10.1002/ett.4009.

Page 32: Artificial Intelligence and Speech Technology - Taylor & Francis

Huh, S. , Cho, S. , and Kim, S. (2017). Managing IoT devices using blockchain platform, Int. Conf. Adv.Commun. Technol. ICACT, pp. 464–467, doi: 10.23919/ICACT.2017.7890132. Kouzinopoulos, C. S. , et al . (2018). Security in Computer and Information Sciences, 821. SpringerInternational Publishing. Kumar, N. M. , and Mallick, P. K. (2018). Blockchain technology for security issues and challenges in IoT,Procedia Comput. Sci., 132, pp. 1815–1823, doi: 10.1016/j.procs.2018.05.140. Kumari, A. , Tanwar, S. , Tyagi, S. , and Kumar, N. (2020). Blockchain-Based Massive Data DisseminationHandling in IIoT Environment, IEEE Netw., pp. 1–8, doi: 10.1109/MNET.011.2000355. Parihar, Y. S. (2019). Internet of Things and Nodemcu: A review of use of Nodemcu ESP8266 in IoTproducts, J. Emerg. Technol. Innov. Res., 6(6), pp. 1085–1086, [Online]. Available:https://www.researchgate.net/publication/337656615_Internet_of_Things_and_Nodemcu_A_review_of_use_of_Nodemcu_ESP8266_in_IoT_products. Sicari, S. , Rizzardi, A. , Grieco, L. A. , and Coen-Porisini, A. (2015). Security, privacy and trust in Internet ofthings: The road ahead, Comput. Networks, 76, pp. 146–164, doi: 10.1016/j.comnet.2014.11.008. Tanwar, S. , Bhatia, Q. , Patel, P. , Kumari, A. , Singh, P. K. , and Hong, W. C. (2020). Machine LearningAdoption in Blockchain-Based Smart Applications: The Challenges, and a Way Forward, IEEE Access, 8, pp.474–448, doi: 10.1109/ACCESS.2019.2961372. Vo, H. T. , Kundu, A. , and Mohania, M. (2018). Research directions in blockchain data management andanalytics, Adv. Database Technol. – EDBT, 2018-March, pp. 445–448, doi: 10.5441/002/edbt.2018.43. Wang, S. et al . (2018). Forkbase, Proc. VLDB Endow., 11(10), pp. 1137–1150, doi:10.14778/3231751.3231762.

Impact of energy storage device on the performance of AGC using ALO tunedPID controller Abraham, R. J. , Das, D. , and Patra, A. (2010). Automatic Generation Control of an Interconnected PowerSystem with Capacitive Energy Storage, International Journal of Electrical and Electronics Engineering, 4(3),pp. 351–357. Ali, E. S. , and Abd-Elazim, S. M. (2011). Bacteria foraging optimization algorithm based load frequencycontroller for interconnected power system, Int. J. Electric. Power Energ. Syst., 33(3), pp. 633–638.. Chandrakala, K. V. , Balamurugan, S. , Sankaranarayanan, K ,(2013). Variable structure fuzzy gainscheduling based load frequency controller for multi-source multi area hydro thermal system. Int. J. Electr.Power Energy Syst., 53, pp. 375–381. Choudhary, R. , Rai, J. N. , Arya, Y. (2020). Automatic generation control for single area power system usingGNA tuned PID controller, Journal of Physics, conference series IOP Science. Daneshfar, F. , and Bevrani, H. (2012). Multiobjective design of load frequency control using geneticalgorithms, Int. J. Electric. Power Energ. Syst., 42(1), pp. 257–263. Dorigo, M. , Maniezzo, V. , and Colorni, A. (1996). The ant system: Optimization by a colony of cooperatingagents, IEEE Trans Systems Man Cybernet, 26(1), 29–41. Gozde, G. H. , and Taplamacioglu, M. C. (2011). Automatic Generation Control Application with Crazinessbased Particle Swarm Optimization in Thermal Power System, Electrical Power and Energy Systems, 33(1),pp. 8–16. Ibraheem , Kumar, P. , and Kothari, D. P. (2005). Recent Philosophies of Automatic Generation ControlStrategies in Power Systems, IEEE Transactions on Power Systems, 20(1), pp. 346–357. Kennedy, J. , and Eberhart, R. (1995). Particle swarm optimization, IEEE International Conference on NeuralNetworks Perth, Australia, pp. 1942–1948. Kothari, M. L. , Satsangi, P. S. , and Nanda, J. (1981). Sampled-data automatic generation control ofinterconnected reheat thermal systems considering generation rate constraints, IEEE Trans. PowerApparatus Syst., PAS-100(5), pp. 2334–2342. Kothari , et al . (1989). Discrete-mode automatic generation control of a two-area reheat thermal system withnew area control error, IEEE Trans. Power Syst., 4(2), pp. 730–738. Mirjalili, S. (2013). The Ant Lion Optimizer, Advances in Engineering Software., 83, pp. 80–98. Mosaad, M. I. , Salem, F. (2014). LFC based adaptive PID controller using ANN and ANFIS techniques.Journal. Electrical System Information Technology, 1(3), pp. 212–222. Obi, P. I. , Chidolue, G. C. , and Okonkwo, I. I. (2014). Protection and control of power system-a review,” Int.J. Advanc. Res. Technol., 3(5), pp. 158–166. Pradhan, D. G. , and Majhi, S. (2013). A new control scheme for PID load frequency controller of single areaand multi-area power systems, ISA Trans., 53(2) 2, pp. 242–251.

Page 33: Artificial Intelligence and Speech Technology - Taylor & Francis

Sahu, B. K. , Pati, S. , Mohanty, P. K. , and Panda, S. (2015). Teaching-learning based optimizationalgorithm based fuzzy-PID controller for automatic generation control of multi-area power system. Appl. SoftComput., 27, pp. 240–249. Tasnin, W. , and Sakia, L. C. (2018). Performance comparison of several energy storage devices inderegulated AGC of a multi-area system incorporating geothermal power plant, IET, Renewable PowerGeneration, 12(7), pp. 761–772. Zanakis, S. H. , Evans, J. R. , and Vazacopoulos, A. A. (1989). Heuristic methods and applications: acategorized survey, European Journal of Operational Research, 43, pp. 88–110.

The instrument to measure happiness at workplace Costello, Anna B. , and Osborne, Jason (2005). Best practices in exploratory factor analysis: Fourrecommendations for getting the most from your analysis, Practical assessment, research, and evaluation. Etchegaray, Jason M. , Fischer, Wayne G. (2011). Understanding evidence-based research methods: Pilottesting surveys, HERD: Health Environments Research & Design Journal. Galgalikar, M. M. (2010). Real-time automization of agricultural environment for social modernization ofIndian agricultural system, Computer and Automation Engineering. George, Darren , and Mallery, Paul . (2016). IBM SPSS statistics 26 step by step: A simple guide andreference. E-library [online] Available at:https://books.google.co.in/books?hl=en&lr=&id=4zj3DwAAQBAJ&oi=fnd&pg=PP1&dq=ibm+spss+statistics+software&ots=VtRheXZkSa&sig=Foic2TDipjwK3Yme7-Z5lt8Lmv0#v=onepage&q&f=false. Nunnally, Jum C. , and Bernstein, Ira H. (1994). Psychological theory. E-library [online] Available at:https://bok.asia/book/1251471/8b561d?regionChanged=&redirect=25026346. Singh, Shweta , Kumar, Anjan , Saroha, Surbhi , Tripathi, Arun Kumar (2017). Green Technologies andSustainable Environment, A Need to Sustain in Near Future, International Conference on Frontiers ofScience & Technology. Tavakol, Mohsen , and Dennick, Reg (2011). Making sense of Cronbach’s alpha, International journal ofmedical education. Williams, Brett , Onsman, Andrys , and Brown, Ted (2010). Exploratory factor analysis: A five-step guide fornovices, Australasian Journal of Paramedicine.

IoT based smart cyber sealing system Abdullah, Sura (2016). Design Secured Smart Door Lock Based on Jaro Winkler Algorithm. Tikrit Journal ofPure Science. 21. pp. 154–159. de Camargo Silva, L. , Samaniego, M. , and Deters, R. (2019). IoT and Blockchain for Smart Locks, IEEE10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON),Vancouver, BC, Canada, pp. 0262–0269. Deepty, R. R. , Alam, A. and Islam, M. E. (2019). IoT and Wi-Fi Based Door Access Control System usingMobile Application, IEEE International Conference on Robotics, Automation, Artificial-intelligence andInternet-of-Things (RAAICON), Dhaka, Bangladesh, pp. 21–24, doi: 10.1109/RAAICON48939.2019.09. Gajendran, E. (2018). Wireless Sensor Based Reliable Communication over Disrupted Terrains (2018).Asian Journal of Applied Science and Technology (AJAST), 2(1), pp. 406–415. Hadis, M. S. , Palantei, E. , Ilham, A. A. and Hendra, A. (2018). Design of smart lock system for doors withspecial features using Bluetooth technology, International Conference on Information and CommunicationsTechnology (ICOIACT), Yogyakarta, pp. 396–400, doi: 10.1109/ICOIACT.2018.8350767. Han D. , Kim H. , and Jang J. (2017). Blockchain based smart door lock system, International Conference onInformation and Communication Technology Convergence (ICTC), Jeju, pp. 1165–1167. Jamjoom, L. , Al Shamrani, A. , Qaisar, S. M. , and Akbar, M. (2018). A wireless controlled digital car lock forsmart transportation, 15th Learning and Technology Conference (LT), Jeddah, pp. 46–51. Kassem, Abdallah Murr , Jamous, Sami , Saad, Georges , Geagea, Elie , and Marybelle (2016). A SmartLock System Using Wi-Fi Security. pp. 222–225. 10.1109/ACTEA.2016.7560143 Prabhu, S. R. Boselin , Antony, A. , and Balakumar, N. (2017). A Research on Smart Transportation UsingSensors and Embedded Systems, International Journal of Innovative Research in Computer ScienceTechnology (IJIRCST), ISSN: 2347-5552, 5(1), January 2017. Seigneur, Jean-Marc , Jensen, Christian Damsgaard , Farrell, Stephen , Gray, Elizabeth , Chen, Yong ,(2003). Towards Security Auto-Configuration for Smart Appliances.

Page 34: Artificial Intelligence and Speech Technology - Taylor & Francis

Verma, Gyanendra , and Pawan, Tripathi (2010). A Digital Security System with Door Lock System UsingRFID Technology. International Journal of Computer Applications. 5. 10.5120/957-1334.

A novel approach for summarizing legal judgements using graph Abinaya, M. (2014). Text Summarization Using Deep Belief Networks (master’s thesis in informationtechnology), International Institute of Information Technology, Bangalore, India. Agrawal, K. (2020). Legal Case Summarization: An Application for Text Summarization, In: 2020International Conference on Computer Communication and Informatics (ICCCI). (pp. 1–6). Bansal, N. , Sharma, A. , and Singh, R. K. (2019). Fuzzy AHP approach for legal judgement summarization,Journal of Management Analytics, 6(3), pp. 323–340. Biswas, S. K. , Bordoloi, M. , and Shreya, J. (2018). A graph based keyword extraction model usingcollective node weight, Expert Systems with Applications, 97, pp. 51–59. El-Kassas, W. S. , Salama, C. R. , Rafea, A. A. , and Mohamed, H. K. (2020). Automatic TextSummarization: A Comprehensive Survey, Expert Systems with Applications, p.113679. Farzindar, A. , and Lapalme, G. (2004). Legal text summarization by exploration of the thematic structureand argumentative roles, In: Text Summarization Branches Out, pp. 27–34. Gupta, V. , and Lehal, G. S. (2010). A survey of text summarization extractive techniques, Journal ofemerging technologies in web intelligence, 2(3), pp. 258–268. Gupta, V. , Bansal, N. , and Sharma, A. (2019). Text summarization for big data: A comprehensive survey,In: International Conference on Innovative Computing and Communications, pp. 503–516. Huang, Y. , Yu, Z. , Guo, J. , Yu, Z. , and Xian, Y. (2020). Legal public opinion news abstractivesummarization by incorporating topic information, International Journal of Machine Learning andCybernetics, pp. 1–12. Indian Kanoon – Search engine for Indian Law [Internet] . Article 15(4) in The Constitution of India 1949.[cited 2018 June 8]. Available from: https://indiankanoon.org/ Jakhotiya, P. Y. R. , and Chandak, M. (2015). Algorithm for Text to Graph Conversion and SummarizingUsing NLP: A New Approach for Business Solutions. Kamada, T. , and Kawai, S. (1989). An algorithm for drawing general undirected graphs, Informationprocessing letters, 31(1), pp. 7–15. Khan, A. , and Salim, N. (2014). A review on abstractive summarization methods, Journal of Theoretical andApplied Information Technology, 59(1), pp. 64–72. Kore, R. C. , Ray, P. , Lade, P. , and Nerurkar, A. (2020). Legal Document Summarization Using Nlp and MlTechniques, International Journal of Engineering and Computer Science, 9(05), pp. 25039–25046. M Viswanathan, D. , and Rajesh, R. (2020). Automatic Legal Judgment Summarization Using Graph. Saravanan, M. , and Ravindran, B. (2010). Identification of rhetorical roles for segmentation andsummarization of a legal judgment, Artificial Intelligence and Law, 18(1), pp. 45–76. Thakkar, K. S. , Dharaskar, R. V. , and Chandak, M. B. (2010). Graph-based algorithms for textsummarization, In: 2010 3rd International Conference on Emerging Trends in Engineering and Technology,(pp. 516–519). Thangaraj, M. , and Amutha, S. (2018). Mgephi: Modified Gephi for Effective Social Network Analysis,International Journal of Scientific Research in Computer Science, Engineering and Information Technology.

Deep CNN architectures for learning image classification: A systematic review,taxonomy and open challenges Abbas ,, Ibrahim ,, and Jaffar , (2019). A comprehensive review of recent advances on deep vision systems.Artificial. Intell. Rev., 52(1), pp. 39–76. Christian, Alexander Toshev . (2014). Deep Pose: Human Pose Estimation via Deep Neural [email protected] [email protected]. Farabet, Clement , Couprie, Camille , Najman, Laurent , and LeCun, Yann (2013). Learning hierarchicalfeatures for scene labeling. IEEE transactions on pattern analysis and machine intelligence 35(8), pp.1915–1929. Fukushima, Kunihiko (1980). Neocognitron: A self-organizing neural network model for a mechanism ofpattern recognition unaffected by shift in position. Biological cybernetics, pp. 193–202.

Page 35: Artificial Intelligence and Speech Technology - Taylor & Francis

Grün ,, Rupprecht, C. , Navab, N. , and Tombari, F. (2016). A Taxonomy and Library for Visualizing LearnedFeatures in Convolutional Neural Networks. 48. He, K. , Zhang, X. , Ren, S. , and Sun, J. (2015). Deep Residual Learning for Image Recognition.Multimedia. Tools Appl., 77(9), pp. 10437–10453. Huang, G. , Liu, Z. , Van Der Maaten, L. , and Weinberger, K. Q. (2017). Densely connected convolutionalnetworks. Proc. – 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, 2017 January, pp.2261–2269. Hubel, David H. , and Wiesel, Torsten N. (1962). Receptive fields, binocular interaction and functionalarchitecture in the cat’s visual cortex. The Journal of physiology 160(1), pp. 106–154. Jain, Arjun , Tompson, Jonathan , LeCun, Yann , and Bregler, Christoph . (2014). MoDeep: A Deep LearningFramework Using Motion Features for Human Pose Estimation. New York University arXiv:1409.7963v1[cs.CV]. Karpathy, A. , Johnson, J. , and Fei-Fei, L. (2015). Visualizing and Understanding Recurrent Networks. pp.1–12. Le Cun, Y. , Boser, B. , Denker, J. S. , Henderson, D. , Howard, R. E. , Hubbard, W. and Jackel, L. D.(1990). Handwritten digit recognition with a backpropagation network. Advances in neural informationprocessing systems. LeCun, Y. , Boser, B. , Denker, J. S. , Henderson, D. , Howard, R. E. , Hubbard, W. , and Jackel, L. D.(1989). Backpropagation applied to handwritten zip code recognition. Neural Comput., 1(4), pp. 541–551. LeCun, Y. , Jackel, L. D. , Buttou, Leon , Cortes, Corrina , Denker, John S. , Drucker, Harris , Guyon,Isabelle , Muller, Urs A. , Sackinder, Eduard , Simard, Patrice , and Vapnik, Vladimir . (1995). Learningalgorithms for classification: A comparison on handwritten digit recognition. Neural networks Stat. Mech.Perspect., 261, p. 276. Nagaraju, M. , and Chawla, P. (2020). Systematic review of deep learning techniques in plant diseasedetection. Int Journal of System Assurance Engineering and Management. https://doi.org/10.1007/s13198-020-00972-1.

The quest for crop improvement in the era of artificial intelligence, machinelearning, and other cognitive sciences Ahmed, H. , Juraimi, A.S. , and Hamdani, S.M. (2016). Introduction to robotics agriculture in pest control: areview. Pertanika Journal of Scholarly Research Reviews, 2 (2), pp. 80–93. Albornoz, C. , and Giraldo, L.F. (2017). Trajectory design for efficient crop irrigation with a UAV. InProceedings of the 2017 IEEE 3rd Colombian Conference on Automatic Control (CCAC), Cartagena,Colombia, 18–20; pp. 1–6. Bannerjee, G. , Sarkar, U. , Das, S. , and Ghosh, I. (2018). Artificial intelligence in agriculture: a literaturesurvey. International Journal of Scientific Research in Computer Science Applications and ManagementStudies, 7 (3), pp. 1–6. FAO (2017). The Future of Food and Agriculture Trends and Challenges. Food and Agriculture Organizationof the United Nations, pp. 1–180. Ferentinos, K.P. (2018). Deep learning models for plant disease detection and diagnosis. Compute. Electron.Agric. 145, pp. 311–318. Gardner, D. (2010). The Appliance of New Science and Frontier Technologies to Transform UK Agricultureand UK Agri-Food, Farm Management Conference, 9, pp. 89–92. Garre, P. , and Harish, A. (2018). Autonomous Agricultural Pesticide Spraying UAV. In IOP ConferenceSeries: Materials Science and Engineering; IOP Publishing: Bristol, UK, 455, p. 012030 Garvey, A. , and Lesser, V. (1994). A survey of research in deliberative real-time artificial intelligence. Real-Time Systems, 6, pp. 317–347. Hughes, J. (2004). Citizen Cyborg: Why democratic societies must respond to the redesigned human of thefuture. Boulder: Westview Press. Krizova, K. , Kroulik, M. , Haberle, J. , Lukas, J. , and Kumhalova, J. (2018). Assessment of soil electricalconductivity using remotely sensed thermal data. Agron. Res., 16, pp. 784–793. Kakkad, V. , Patel, M. , and Shah, M. (2019). Biometric authentication and image encryption for imagesecurity in cloud framework. Multiscale and Multidiscipline Model Exp. Des., pp. 1–16. Kalkuhl, M. , Von Braun, J. , and Torero, M. (2016). Volatile and Extreme Food Prices, Food Security andPolicy: An Overview. In: Kalkuhl M. , Von Braun J. , Torero M. (eds) Food Price Volatility and its Implicationsfor Food Security and Policy. Springer, Cham. http://doi.org/10.1007/978-3-319-28201-51 Kerkech, M. , Hafiane, A. , and Canals, R. (2018). Deep learning approach with colorimetric spaces andvegetation indices for vine diseases detection in UAV images. Compute. Electron. Agric., 155, pp. 237–243.

Page 36: Artificial Intelligence and Speech Technology - Taylor & Francis

Khanna, A. , and Kaur, S. (2019). Evolution of internet of things (IoT) and its significant impact in the field ofprecision agriculture. Compute. Electron. Agric., 157, pp. 218–231. Khirade, S.D. , and Patil, A.B. (2015). Plant disease detection using image processing. 2015 InternationalConference on Computing Communication Control and Automation. IEEE Computer Society, pp. 768–771. Kulbacki, M. , Segen, J. , Kniec, W. , Klempous, R. , Kluwak, K. , Nikodem, J. , Kulbacka, J. , and Serester,A. (2018). Survey of Drones for Agriculture Automation from Planting to Harvest. In Proceedings of the 2018IEEE 22nd International Conference on Intelligent Engineering Systems (INES), Las Palmas de GranCanaria, Spain, 21–23 June 2018; pp. 000353–000358. Kumar, S. , Tiwari, P. , and Zymbler, M. (2019). Internet of things is a revolutionary approach for futuretechnology enhancement: a review. J. Big Data, 6, pp. 111. Kundalia, K. , Patel, Y. , and Shah, M. (2020). Multi-label movie genre detection from a movie poster usingknowledge transfer learning. Augment. Hum. Res., 5, 11. Latif, M.A. , Cheema, M.J.M. , Saleem, M.F. , and Maqsood, M. (2018). Mapping wheat response tovariations in N, P, Zn, and irrigation using an unmanned aerial vehicle. Int. J. Remote Sens., 39, pp.7172–7188. Mehra, T. , Kumar, V. , and Gupta, P. (2016). Maturity and disease detection in tomato using computervision. 2016 Fourth International Conference on Parallel, Distributed and Grid Computing (PDGC).https://doi.org/10.1109/pdgc.2016.7913228. Moshou, D. , Bravo, C. , West, J. , Wahlen, S. , McCartney, A. , and Ramon, H. (2004). Automatic detectionof ‘yellow rust’ in wheat using reflectance measurements and neural networks. Compute. Electron. Agric.,44, pp. 173–188. Panchiwala, S. , and Shah, M. (2020). A comprehensive study on critical security issues and challenges ofthe IoT world. J. Data, Inf., and Manag. https://doi.org/10.1007/s42488-020-00030-2. Patel, H. , Prajapati, D. , Mahida, D. , and Shah, M. (2020). Transforming petroleum downstream sectorthrough big data: a holistic review. J Petrol Explor Prod Technol, 2020. https://doi.org/10.1007/s13202-020-00889-2. Pathan, M. , Patel, N. , Yagnik, H. , and Shah, M. (2020). Artificial cognition for applications in smartagriculture: A comprehensive review. Artificial Intelligence in Agriculture, 4, pp. 81–95. Patil, J.K. , and Kumar, R. (2011). Advances in image processing for detection of plant diseases. J. Adv.Bioinforma. Appl. Res., 2 (2), pp. 135–141. Patrício, D.I. , and Rieder, R. (2018). Computer vision and artificial intelligence in precision agriculture forgrain crops: a systematic review. Compute. Electron. Agric., 153, pp. 69–81 Pivoto, D. , Waquil, P.D. , Talamini, E. , Finocchio, C.P.S. , Dalla Corte, V.F. , and de Vargas Mores, G.(2018). Scientific development of smart farming technologies and their application in Brazil. InformationProcessing in Agriculture, 5(1), pp. 21–32. Prabhakar, M. , Prasad, Y.G. , Thirupathi, M. , Sreedevi, G. , Dharajothi, B. , and Venkateswarlu, B. (2011).Use of ground based hyperspectral remote sensing for detection of stress in cotton caused by leafhopper(Hemiptera: Cicadellidae). Compute. Electron. Agric., 79 (2), pp. 189–198. Quebrajo, L. , Perez-Ruiz, M. , Perez-Urrestarazu, L. , Martinez, G. , and Egea, G. (2018). Linking thermalimaging and soil remote sensing to enhance irrigation management of sugar beet. Biosyst. Eng., 165, pp.77–87. Sankaran, S. , Mishra, A. , Ehsani, R. , and Davis, C. (2010). A review of advanced techniques for detectingplant diseases. Compute. Electron. Agric., 72 (1), pp. 1–13. Schor, N. , Bechar, A. , Ignat, T. , Dombrovsky, A. , Elad, Y. , and Berman, S. (2016). Robotic diseasedetection in greenhouses: combined detection of powdery mildew and tomato spotted wilt virus. IEEERobotics and Automation Letters, 1 (1), pp. 354–360. Shah, G. , Shah, A. , and Shah, M. (2019). Panacea of challenges in real-world application of big dataanalytics in healthcare sector. Data, Inf. Manag., pp. 1–10 https://doi.org/10.1007/s42488-019-00010-1. Shah, K. , Patel, H. , Sanghvi, D. , and Shah, M. (2020). A comparative analysis of logistic regression,random Forest and KNN models for the text classification. Augment Hum. Res., 5, pp. 12. Shah, M. , Sircar, A. , Shaikh, N. , Patel, K. , Thakar, V. , Sharma, D. , Sarkar, P. , and Vaidya, D. (2018).Groundwater analysis of cholera geothermal field, Gujarat, India for suitable applications. GroundwaterSustain. Dev., 7, pp. 143–156. Shearear, S.A. , Pitla, S.K. , and Luck, J.D. (2010). Trends in the Automation of Agricultural Field Machinery,Biosystems and Agricultural Engineering, University of Kentucky, Lexington, USA, pp. 10. Spalding, E.P. , and Miller, N.D. (2013). Image analysis is driving a renaissance in growth measurement.Curr. Opin. Plant Biol., 16, pp. 100–104. Sukhadia, A. , Upadhyay, K. , Gundeti, M. , Shah, S. , and Shah, M. (2020). Optimization of smart trafficgovernance system using artificial intelligence. Augment Hum. Res., 5, pp. 13. Talaviya, T. , Shah, D. , Patel, N. , Yagnik, H. , and Shah, M. (2020). Implementation of artificial intelligencein agriculture for optimization of irrigation and application of pesticides and herbicides. Artificial Intelligence in

Page 37: Artificial Intelligence and Speech Technology - Taylor & Francis

Agriculture. https://doi.org/10.1016/j.aiia.2020.04.002 Tsouros, D.C. , Bibi, S. , and Sarigiannidis, P.G. (2019b). A Review on UAV-Based Applications for PrecisionAgriculture. Information, 10, pp. 349. Tsouros, D.C. , Triantafyllou, A. , Bibi, S. , and Sarigannidis, P.G. (2019a) Data acquisition and analysismethods in UAV-based applications for Precision Agriculture. In Proceedings of the 2019 IEEE 15thInternational Conference on Distributed Computing in Sensor Systems (DCOSS), Santorini Island, Greece,29–31 May 2019; pp. 377–384. Wahab, I. , Hall, O. , and Jirstrom, M. (2018). Remote Sensing of Yields: Application of UAV Imagery-Derived NDVI for Estimating Maize Vigor and Yields in Complex Farming Systems in Sub-Saharan Africa.Drones, 2, pp. 28. Waheed, T. , Bonnell, R.B. , Prasher, S.O. , and Paulet, E. (2006). Measuring performance in precisionagriculture: CART—A decision tree approach. Agriculture Water Management, 84, pp. 173–185. Wei, F. , Yan, Z. , Yongchao, T. , Weixing, C. , Xia, Y. , and Yingxue, L. (2008). Monitoring leaf nitrogenaccumulation in wheat with hyper-spectral remote sensing. Acta Ecol. Sin., 28 (1), pp. 23–32. Xiong, Y. , Ge, Y. , Grimstad, L. , and From, P.J. (2020). An autonomous strawberry-harvesting robot:design, development, integration, and field evaluation. Journal Field Robotics, 37 (2). Xue, X. , Lan, Y. , Sun, Z. , Chang, C. , and Hoffmann, W.C. (2016). Develop an unmanned aerial vehiclebased automatic aerial spraying system. Compute. Electron. Agric., 128, pp. 58–66. Yang, S. , Yang, X. , and Mo, J. (2018). The application of unmanned aircraft systems to plant protection inChina. Precis. Agric., 19, pp. 278–292.

A run-through: Text independent speaker identification using deep learning Bansal, P. , Dev, A. , and Jain, S. B. (2007). 2007 Automatic Speaker Identification Using VectorQuantization. Asian Journal of Information Technology, 6(9), pp. 938–942. Bai, Z. , Zhang, X. L. , and Chen, J. (2020). Speaker recognition based on deep learning: An overview.ArXiv. Dev, A. (2011). A Novel Feature Extraction Technique for Speaker Identification. International Journal ofComputer Applications, 16(6), pp. 25–28. https://doi.org/10.5120/2016-2720 El-Moneim, S. A. , Nassar, M. A. , Dessouky, M. I. , Ismail, N. A. , El-Fishawy, A. S. , and Abd El-Samie, F.E. (2020). Text-independent speaker recognition using LSTM-RNN and speech enhancement. MultimediaTools and Applications, 79(33–34), pp. 24013–24028. https://doi.org/10.1007/s11042-019-08293-7 Ibrahim, N. S. , and Ramli, D. A. (2018). I-vector Extraction for Speaker Recognition Based onDimensionality Reduction. Procedia Computer Science, 126, 1534–1540.https://doi.org/10.1016/j.procS.2018.08.126 Liu, J. C. , Leu, F. Y. , Lin, G. L. , and Susanto, H. (2018). An MFCC-based text-independent speakeridentification system for access control. Concurrency Computation, 30(2), pp. 1–16.https://doi.org/10.1002/cpe.4255 Panda, A. K. , and Sahoo, A. K. (2011). Study of Speaker Recognition Systems. pp. 1–60. Praveen Kumar, P. S. , Thimmaraja Yadava, G. , and Jayanna, H. S. (2018). Text Independent SpeakerIdentification: A Review. 2017 2nd International Conference On Emerging Computation and InformationTechnologies, ICECIT 2017. https://doi.org/10.1109/ICECIT.2017.8453360 Ravanelli, M. , and Bengio, Y. (2018). Speaker recognition from raw waveform with SincNet. ArXiv,1021–1028. Sagaya Mary, M. N. J. , Katta, S. V. , and Umesh, S. (2020). S-vectors: Speaker Embeddings based onTransformer’s Encoder for Text-Independent Speaker Verification. ArXiv, pp. 2–6. Samudre, N. A. (2013). Text-Independent Speaker Identification using Vector Quantization. 2(8), pp.1787–1792. Saon, G. , and Chien, J. T. (2012). Large-vocabulary continuous speech recognition systems: A look atsome recent advances. IEEE Signal Processing Magazine, 29(6), 18–33.https://doi.org/10.1109/MSP.2012.2197156 Sarkar, A. K. , Sarma, H. , Dwivedi, P. , and Tan, Z. H. (2020). Data augmentation enhanced speakerenrollment for text-dependent speaker verification. ArXiv. Shi, Y. , Chen, M. , Huang, Q. , and Hain, T. (2020). T-vectors: Weakly Supervised Speaker IdentificationUsing Hierarchical Transformer Model. Retrieved from http://arxiv.org/abs/2010.16071 Shi, Y. , Huang, Q. , and Hain, T. (2020). H-Vectors: Utterance-Level Speaker Embedding Using aHierarchical Attention Model. ICASSP, IEEE International Conference on Acoustics, Speech and SignalProcessing -Proceedings, 2020-May, 7579–7583. https://doi.org/10.1109/ICASSP40776.2020.9054448

Page 38: Artificial Intelligence and Speech Technology - Taylor & Francis

Snyder, D. , Garcia-Romero, D. , Sell, G. , Povey, D. , and Khudanpur, S. (2018). X-Vectors: Robust DNNEmbeddings for Speaker Recognition. ICASSP, IEEE International Conference on Acoustics, Speech andSignal Processing – Proceedings, 2018-April, 5329–5333. https://doi.org/10.1109/ICASSP.2018.8461375 Sumithra, M. G. , and Devika, A. K. (2012). A study on feature extraction techniques for text independentspeaker identification. 2012 International Conference on Computer Communication and Informatics, ICCCI2012, pp. 9–13. https://doi.org/10.1109/ICCCI.2012.6158791 Sztahó, D. , Szaszák, G. , and Beke, A. (2019). Deep learning methods in speaker recognition: a review. pp.1–12. Retrieved from http://arxiv.org/abs/1911.06615 Tirumala, S. S. , and Shahamiri, S. R. (2016). A review on deep learning approaches in speakeridentification. ACM International Conference Proceeding Series, (November), pp. 142–147.https://doi.org/10.1145/3015166.3015210 Tirumala, S. S. , Shahamiri, S. R. , Garhwal, A. S. , and Wang, R. (2017). Speaker identification featuresextraction methods: A systematic review. Expert Systems with Applications, 90, pp. 250–271.https://doi.org/10.1016/j.eswa.2017.08.015 Vijayasenan, D. (n.d.). From i-vectors to end to end systems. Yaman, S. , Pelecanos, J. , and Sarikaya, R. (2012). Bottleneck features for speaker recognition. Odyssey2012 – Speaker and Language Recognition Workshop, (June), pp. 105–108. Zhao, X. , and Wang, D. (2013). Analyzing noise robustness of MFCC and GFCC features in speakeridentification. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing, pp.7204–7208. https://doi.org/10.1109/ICASSP.2013.6639061.

Summarization of video lectures Choudary, Chekuri , and Tiecheng Liu , Nov. 2003. “Video summarization and scene detection by graphmodeling.” In: 9.7, pp. 1443–1455. Choudary, Chekuri and Tiecheng Liu (n.d.). “Summarization of Visual Content in Academic Videos”. In: (). Cuneyt, M. Taskiran , Arnon Amir , and Dulce Ponceleon (n.d.). “Automated Video Summarization UsingSpeech Transcripts.” In: (). Gong, You Yihong and Xin Liu (2000). “Video summarization using singular value decomposition.” In: 2, pp.174–180. Mavers, Diane (n.d.). “Transcribing video.” In: (). Ngo, Chong-Wah , Yu-Fei Ma , and Hong-Jiang Zhang (2003). “Video summarization and scene detection bygraph modeling.” In: 1, pp. 104–109. Ngo, Chong-Wah , Yu-Fei Ma , and Hong-Jiang Zhang (Feb. 2005). “Video summarization and scenedetection by graph modeling.” In: 15.2, pp. 296–305.

Artificial intelligence approach in video summarization Santini, S. (2007). Who needs video summarization anyway? In: Proc. IEEE Int. Conf. Semantic Computer(ICSC), Irvine, CA, USA, pp. 177–184. Huang, C.-R. , Chung, P. -C. J. , Yang, D.-K. , Chen, H.-C. , and Huang, G.-J. , (2014). Maximum aposteriori probability estimation for online surveillance video synopsis, IEEE Trans. Circuits Syst. VideoTechnol., vol. 24, no. 8, pp. 1417–1429. Zhang, L. , Sun, L. , Wang, W. , and Tian, Y. (2016). KaaS: A standard framework proposal on videoskimming, IEEE Internet Computer, vol. 20, no. 4, pp. 54–59. Zhang, Y. , Tao, R. , and Wang, Y. (2017). Motion-state-adaptive videos summarization via spatiotemporalanalysis, IEEE Trans. Circuits Syst. Video Technology, vol. 27, no. 6, pp. 1340–1352. Fei, M. , Jiang, W. , and Mao, W. (2017). Memorable and rich video summarization, Journal of VisualCommunication Image Representation, vol. 42, pp. 207–217. Badre, S. R. and Thepade, S. D. (2016). Summarization with key frame extraction using thepade’s sorted n-ary block truncation coding applied on Haar wavelet of video frame, in Proc. Conf. Adv. Signal Process.(CASP), Pune, India, pp. 332–336. Mehmood, I. , Sajjad, M. , Rho, S. , and Baik, S. W. (2016). Divide-and-conquer based summarizationframework for extracting affective video content, Neuro-computing, vol. 174, pp. 393–403. Wu, J. , Zhong, S.-H. , Jiang, J. , and Yang, Y. (2017). A novel clustering method for static videosummarization, Multimedia Tools Appl., vol. 76, no. 7, pp. 9625–9641.

Page 39: Artificial Intelligence and Speech Technology - Taylor & Francis

Gharbi, H. , Bahroun, S. , Massaoudi, M. , and Zagrouba, E. (2017). Key frames extraction using graphmodularity clustering for efficient video summarization, In: Proc. IEEE Int. Conf. Acoust., Speech SignalProcess. (ICASSP), New Orleans, LA, USA, pp. 1502–1506. Mishra, D. K. , and Singh, N. (2017). Parameter free clustering approach for event summarization in videos,in Proc. Int. Conf. Comput. Vis. Image Process., Uttar Pradesh, India, pp. 389–397. Ejaz, N. , Mehmood, I. , and Baik, S. W. (2013). Efficient visual attention based framework for extracting keyframes from videos, Signal Process., Image Commun., vol. 28, no. 1, pp. 34–44. Ejaz, N. , Mehmood, I. , and Baik, S. W. (2014). Feature aggregation based visual attention model for videosummarization, Comput. Elect. Eng., vol. 40, no. 3, pp. 993–1005. Lai, J.-L. and Yi, Y. (2012). Key frame extraction based on visual attention model, Journal of VisualCommunication of Image Representation, vol. 23, no. 1, pp. 114–125. Ma, M. , Met, S. , Hou, J. , Wan, S. , and Wang, Z. (2017). Video summarization via temporal collaborativerepresentation of adjacent frames, in Proceedings IEEE Conference Intelligence Signal ProcessingCommunication System (ISPACS), Xiamen, China, pp. 164–169. Li, Y. , Tan, B. , Ding, S. , Paik, I. , and Kanemura, A. (2017). Key frame extraction from video based ondeterminant-type of sparse measure and DC programming, in Proc. IEEE Int. Symp. EmbeddedMulticore/Many-Core Syst.-Chip (MCSoC), Seoul, South Korea, pp. 174–180. Mademlis, I. , Tefas, A. , and Pitas, I. (2018). A salient dictionary learning framework for activity videosummarization via key-frame extraction,” Inf. Sci., vol. 432, pp. 319–331. Cai, S. , Zuo, W. , Davis, L. S. , and Zhang, L. (2018). Weakly-supervised video summarization usingvariational encoder-decoder and Web prior, in Proc. Eur. Conf. Comput. Vis. (ECCV), Munich, Germany, pp.184–200. Ji, Z. , Xiong, K. , Pang, Y. , and Li, X. (2017). Video summarization with attention-based encoder-decodernetworks, [Online]. Available: https://arxiv.org/abs/1708.09545. Ji, S. , Xu, W. , Yang, M. , and Yu, K. (2013). 3D convolutional neural networks for human action recognition,IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 1, pp. 221–231. Kanehira, A. , Van Gool, L. , Ushiku, Y. , and Harada, T. . (2018). “Viewpoint-aware video summarization.”[Online]. Available: https://arxiv.org/abs/1804.02843. Simonyan, K. and Zisserman, A. (2014). Two-stream convolutional networks for action recognition in videos,In: Proc. Adv. Neural Inf. Process. Syst., pp. 568–576. Feichtenhofer, C. , Pinz, A. , and Zisserman, A. (2016). Convolutional two-stream network fusion for videoaction recognition, In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Las Vegas, NV, USA, pp.1933–1941. Jiao, Y. , Li, Z. , Huang, S. , Yang, X. , Liu, B. , and Zhang, T. (2018). Three-dimensional attention-baseddeep ranking model for video highlight detection, IEEE Trans. Multimedia, vol. 20, no. 10, pp. 2693–2705,Oct. 2018. Peng, J. and Xiao-Lin, Q. , (2009) Key frame-based video summary using visual attention clues, IEEEMultimedia Mag., vol. 17, no. 2, pp. 64–73. Jacob, H. , Pádua, F. L. C. , Lacerda, A. , and Pereira, A. C. M. (2017). A video summarization approachbased on the emulation of bottom-up mechanisms of visual attention, J. Intell. Inf. Syst., vol. 49, no. 2, pp.193–211. Bahdanau, D. , Cho, K. , and Bengio, Y. (2014). Neural machine translation by jointly learning to align andtranslate [Online]. Available: https://arxiv.org/abs/1409.0473. Yang, Z. , Yang, D. , Dyer, C. , He, X. , Smola, A. , and Hovy, E. (2016). Hierarchical attention networks fordocument classification, in Proc. Conf. North Amer. Chapter Assoc. Comput. Linguistics (NAACL-HLT), SanDiego, CA, USA, pp. 1480–1489. Lin, Z. et al ., (2017). A structured self-attentive sentence embedding, [Online]. Available:https://arxiv.org/abs/1703.03130. Huang, Cheng , Wang, Hongmei (2020). A Novel Key-Frames Selection Framework For ComprehensiveVideo Summarization, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 30, Issue 2,577–589. Salehin, M. M. , and Paul, M. (2017). Affective Video Events Summarization using EMD Decomposed EEGSignals (EDES), 7th International Conference on Digital Image Computing: Techniques and Applications(DICTA). Tejero-de-Pablos, A. , Nakashima, Y. , Sato, T. , Yokoya, N. , Linna, M. and Rahtu, E. (2018).Summarization of User-Generated Sports Video by Using Deep Action Recognition Features , IEEETransactions on Multimedia. Kumar, K. and Shrimankar, D. D. (2018). F-DES: Fast and Deep Event Summarization, IEEE Transactionson Multimedia, 20(2), 323–334.

Page 40: Artificial Intelligence and Speech Technology - Taylor & Francis

Extractive summarization of recorded Odia spoken feedback Banerjee, S. , and Rudnicky, A. (2009). Detecting the noteworthiness of utterances in human meetings,Proc. of Sigdial. Fung, P. , Chan, R. H. Y. , and Zhang, J. J. (2008). Rhetorical-State Hidden Markov Models for Extractivespeech summarization, ICASSP. Furui, S. , Shinnaka, Y. , and Hori, C. (2004). Speech-to-Text and Speech-to-Speech summarization ofspontaneous Speech, IEEE Transactions on Speech and Audio Processing, 12(4), July. Furui, S. (2006). Recent Advances in Automatic Speech, IEEE SLT. Jurafsky, D. , and Martin, J. H. (2000). Speech and language processing: an introduction to natural languageprocessing, computational linguistics, and speech recognition, 3rd edn. Pearson Education Asia. Kleinbauer, T. , Becker, S. , and Becker, T. (2007). Indicative abstractive summaries of meetings. 4th JointWorkshop on Multimodal Interaction and Related Machine Learning Algorithms (MLMI), poster. Manning, C. D. , and Schutze, H. (2000). Foundations of statistical natural language processing, 2nd edn.MIT Press. Maskey, S. (2008). Automatic broadcast news speech summarization. Ph.D. Thesis, Columbia University. Murray, G. , Carenini, G. , and Ng, R. (2010). Interpretation and transformation for abstracting conversations.Proc. of NAACLHLT. Praat software , Available at: https://praat.en.uptodown.com/windows. (Accessed: 24 September 2018). Quatieri, T. F. (2007). Discrete-time speech signal processing principles and practice, 3rd ed. PearsonEducation. ROUGE Tool, Available at https://rxnlp.com/rouge-2-0/. (Accessed 11 October 2019). Swain, B. K. , and Mohanty, S. (2019). Speech-Based Biometric Using Odia Phonetics. Chowdhary, C. H.(ed.), Intelligent Systems: Advances in Biometric Systems, Apple Academic Press. Zhu, X. , Penn, G. , and Rudzicz, F. (2009). Summarizing multiple spoken documents: finding evidence fromuntranscribed audio. Proc. of ACL.

Frame change detection in videos – challenges and research directions Baraldi, L. , Grana, C. , and Cucchiara, R. (2015). Shot and Scene Detection via Hierarchical Clustering forReusing Broadcast Video. In: Azzopardi G. , Petkov N. (eds), Computer Analysis of Images and Patterns.CAIP 2015. Lecture Notes in Computer Science, vol. 9256. Springer, Cham. https://doi.org/10.1007/978-3-319-23192-1_67 Bendraou, Y. , Essannouni, F. , Aboutajdine, D. , and Salam, A. (2014). Video shot boundary detectionmethod using histogram differences and local image descriptor, 2014 Second World Conference onComplex Systems (WCCS), Agadir, pp. 665–670, doi: 10.1109/ICoCS.2014.7060883. Chen, Y. , Ouyang, X. , and Agam, G. (2018). MFCNET: End-to-End Approach for Change Detection inImages, 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, pp. 4008–4012. Cho, S. I. , and Kang, S. (2019). Histogram Shape-Based Scene-Change Detection Algorithm, In: IEEEAccess, vol. 7, pp. 27662–27667. Han, S. , and Kim, J. (2017). Video scene change detection using convolution neural network, In:Proceedings of the International Conference on Information Technology. Han, X. , Leung, T. , Jia, Y. , Sukthankar, R. , and Berg, A. (2015). MatchNet: Unifying feature and metriclearning for patch-based matching, In: Proc. CVPR. IEEE, pp. 3279–3286. Hong, S. , Cho, B. , and Choe, Y. (2013). Adaptive thresholding for scene change detection, 2013, 2013IEEE Third International Conference on Consumer Electronics, Berlin (ICCE-Berlin), Berlin, pp. 75–78,doi:10.1109/ICCE-Berlin.2013.6698056 Jiang, D. , Kim, J. (2019). A Scene Change Detection Framework Based on Deep Learning and ImageMatching. In: Park, J. , Loia, V. , Choo, K.K. , Yi, G. (eds). Advanced Multimedia and Ubiquitous Engineering.MUE 2018, FutureTech 2018. Lecture Notes in Electrical Engineering, vol. 518. Springer, Singapore. Kang, S. (2012). Positional analysis-based scene-change detection algorithm, 2015. 2015 IEEE InternationalConference on Consumer Electronics (ICCE), Las Vegas, NV, pp. 11–12, doi: 10.1109/ICCE.2015.7066299. Kumar, G. S. , and Reddy, V. S. K. (2020). Detection of shot boundaries and extraction of key Frames forvideo retrieval. International Journal of Knowledge-based and Intelligent Engineering Systems. 24. 11–17.10.3233/KES-200024. Lankinen, J. , and Kamarainen, J. -K. (2013). Video shot boundary detection using visual bag-of-words, InInternational Conference on Computer Vision Theory and Applications (VISAPP), Barcelona, Spain. Liang, R. , Zhu, Q. , Wei, H. , and Liao, S. (2017). A video shot boundary detection approach based on CNNfeature, In: Proc. IEEE Int. Symp. Multimedia (ISM), pp. 489–494.

Page 41: Artificial Intelligence and Speech Technology - Taylor & Francis

Liu, T. , and Chan, S. (2014). Automatic shot boundary detection algorithm using structure-aware histogrammetric, 2014 19th International Conference on Digital Signal Processing, Hong Kong, pp. 541–546,doi:10.1109/ICDSP.2014.6900724.. Vendrig, J. and Worring, M. (2002). Systematic evaluation of logical story unit segmentation. IEEE Trans.Multimedia, 4(4), 492–499. Wang, Y. , Jodoin, P. , Porikli, F. , Konrad J. , Benezeth, Y. , and Ishwar, P. (2014). CDnet 2014: Anexpanded change detection benchmark dataset,” In: Proc. CVPR Workshop. IEEE, pp. 393–400. Wu, L. , Zhang, S. , Jian, M. , Lu, Z. , and Wang, D. (2019). Two Stage Shot Boundary Detection via FeatureFusion and Spatial-Temporal Convolutional Neural Networks, IEEE Access, vol. 7, pp. 77268–77276. Zajić, G. J. (2015). Shot-change detection based on multifractal analysis, 2015, 2015 23rdTelecommunications Forum Telfor (TELFOR), Belgrade, pp. 724–731, doi: 10.1109/TELFOR.2015.7377569. Zajić, G. , Gavrovska, A. , and Reljin, I. (2019). A video hard cut detection using multifractal features.Multimed Tools Appl, 78, pp. 6233–6252.

Speech impairment recognition using XGBoost classifier Bahnsen, A. C. , Aouada, D. , and Ottersten, B. (2015). Example dependent cost-sensitive decision trees,Expert Systems with Applications, 42, pp. 6609–6619. Blanco, F. , Ávila, J. C. , Jiménez, G. R. , Carvalho, A. , Díaz, A. O. , and Bueno, R. M. (2016). Onlineadaptive decision trees based on concentration inequalities, Knowledge-Based Systems, 104, pp. 179–194. Chen, T. , Li, H. , Yang, Q. , and Yu, Y. (2013). General functional matrix factorization using gradientboosting. In: Proceeding of 30th International Conference on Machine Learning (ICML’13), 1, pages436–444. Crockett , Latham, A. , and Whitton, N. (2017). On predicting learning styles in conversational intelligenttutoring systems using fuzzy decision trees, International Journal of Human-Computer Studies, 97, pp.98–115. Gohiya, Himalaya , Lohiya, Harsh , and Patidar, Kailash (2018). A Survey of XGBoost System inInternational Journal of Advanced Technology & Engineering Research (IJATER), 8(3). Jain, Aaditya (2016). Text Classification by Combining Text Classifiers to Improve the Efficiency ofClassification, International Journal of Computer Application, ISSN:2250-1797, 6. Joseph, Femi (2015). Text Categorization Using Improved K-Nearest Neighbor Algorithm, InternationalJournal For Trends In Engineering & Technology, 4, ISSN: 2349–9303. Jothikumar, R. , and Sivabalan, R. V. (2016). Analysis of Classification Algorithms for Heart DiseasePrediction and its Accuracies, Middle-East Journal of Scientific Research 24 (Recent Innovations inEngineering, Technology, Management & Applications): pp. 200–206. Lertworaprachaya, Y. , Yang, Y. , and John, R. (2014). Interval-valued fuzzy decision trees with optimalneighbourhood perimeter, Applied Soft Computing, 24, pp. 851–866. Mandal, I. , and Sairam, N. (2011) Enhanced classification performance using computational intelligence,Communications in Computer and Information Science, 204CCIS, pp. 384–391. DOI: 10.1007/978-3-642-24043-0_39 Mandal, I. , and Sairam, N. (2012). Accurate Prediction of Coronary Artery Disease Using Reliable DiagnosisSystem Journal of Medical Systems, 36(5), Pages 3353–3373. DOI: 10.1007/s10916-012-9828-0 Mandal, I. , and Sairam, N. (2014). New machine learning algorithms for prediction of Parkinson’s disease,International Journal of Systems Science, 45(3), pp. 647–666. Pan, X. , Luo, Y. , and Xu, Y. (2015). K-nearest neighbour based structural twin support vector machine,Knowledge Based Systems, 88, pp. 34–44. Patil , Kupwade, Harsh , and Seshadri, Ravi . (2014) Big data security and privacy issues in healthcare. In:2014 IEEE international congress on big data, pp. 762–765. Sharma, T. , Sharma, A. , Mansotra, V. (2016). Performance Analysis of Data Mining ClassificationTechniques on Public Health Care Data, International Journal of Innovative Research in Computer andCommunication Engineering, 4(6). UCI Machine Learning Repository : http://archive.ics.uci.edu/ml/datasets.html. Yu, Zhiwen , Luo, Peinan , You, Jane , Wong, Hau-San , Leung, Hareton , Wu, Si , Zhang, Jun , and Han,Guoqiang (2015). Incremental semi-supervised clustering ensemble for high dimensional data clustering.IEEE Transactions on Knowledge and Data Engineering 28(3), 701–714.

Page 42: Artificial Intelligence and Speech Technology - Taylor & Francis

Research insight of Indian tonal languages: A review Arora, A. , Kadyan, V. , and Singh, A. (2019). Effect of tonal features on various dialectal variations ofPunjabi language. In: Advances in Signal Processing and Communication (pp. 467–475). Springer,Singapore. Dey, A. , Lalhminghlui, W. , Sarmah, P. , Samudravijaya, K. , Prasarma, S. M. , Sinha, R. , and Nirrnala, S.R. (2017, December). Mizo Phone Recognition System. In: 2017 14th IEEE India Council InternationalConference (INDICON) (pp. 1–5). IEEE. Dua, M. , Aggarwal, R. K. , Kadyan, V. , and Dua, S. (2012). Punjabi Automatic Speech Recognition usingHTK. International Journal of Computer Science Issues (IJCSI), 9(4), p. 359. Dua, M. , Aggarwal, R. K. , Kadyan, V. , and Dua, S. (2012a). Punjabi Automatic Speech Recognition usingHTK. International Journal of Computer Science Issues (IJCSI), 9(4), p. 359. Dua, M. , Aggarwal, R. K. , Kadyan, V. , and Dua, S. (2012b). Punjabi Speech to Text System for ConnectedWords. In: 4th International Conference on Advances in Recent Technologies in Communication andComputing, 206–209. Ghai, W. , and Singh, N. (2012). Analysis of Automatic Speech Recognition Systems for Indo-AryanLanguages: Punjabi A Case Study. International Journal of Soft Computing and Engineering (IJSCE), 2(1),pp. 379–385. Ghai, W. , and Singh, N. (2013b). Phone Based Acoustic modeling for Automatic Speech Recognition forPunjabi Language. Journal of Speech Sciences, 1(3), pp. 69–83 Ghai, W. , and Singh, N. (2013a). Continuous Speech Recognition for Punjabi Language. InternationalJournal of Computer Applications, 72(14). Govind, D. , Sarmah, P. , and Prasanna, S. M. (2012). Role of Pitch Slope and Duration in Synthesized MizoTones. In Speech Prosody 2012. Guglani, J. , and Mishra, A. N. (2018). Continuous Punjabi Speech Recognition Model based on Kaldi ASRToolkit. International Journal of Speech Technology, 21(2), pp. 211–216. Kadyan, V. , Mantri, A. , and Aggarwal, R. K. (2017a). A Heterogeneous Speech Feature Vectors GenerationApproach with Hybrid HMM Classifiers. International Journal of Speech Technology, 20(4), pp. 761–769. Kadyan, V. , Mantri, A. , and Aggarwal, R. K. (2017b). Refinement of HMM Model Parameters for PunjabiAutomatic Speech Recognition (PASR) System. IETE Journal of Research, 64(5), pp. 673–688. Kadyan, V. , Mantri, A. , Aggarwal, R. K. , and Singh, A. (2019). A Comparative Study of Deep NeuralNetwork based Punjabi-ASR System. International Journal of Speech Technology, 22(1), pp. 111–119. Kaur, A. , and Singh, A. (2016a, July). Power-Normalized Cepstral Coefficients (PNCC) for PunjabiAutomatic Speech Recognition using Phone based Modelling in HTK. In: 2016 2nd International Conferenceon Applied and Theoretical Computing and Communication Technology (iCATccT) (pp. 372–375). IEEE. Kaur, A. , and Singh, A. (2016b, September). Optimizing Feature Extraction Techniques Constituting Phonebased Modelling on Connected Words for Punjabi Automatic Speech Recognition. In: 2016 InternationalConference on Advances in Computing, Communications and Informatics (ICACCI) (pp. 2104–2108). IEEE. Kumar, Y. , and Singh, N. (2016a). Automatic Spontaneous Speech Recognition for Punjabi LanguageInterview Speech Corpus. International Journal of Education and Management Engineering (IJEME), 6(6),pp. 64–73.. Kumar, Y. , and Singh, N. (2016b). Automatic Spontaneous Speech Recognition for Punjabi LanguageInterview Speech Corpus. International Journal of Education and Management Engineering (IJEME), 6(6),pp. 64–73. Kumar, Y. , and Singh, N. (2017). An Automatic Speech Recognition System for Spontaneous PunjabiSpeech Corpus. International Journal of Speech Technology, 20(2), pp. 297–303. Lata, S. , and Arora, S. (2012, May). Exploratory Analysis of Punjabi Tones in Relation to OrthographicCharacters: A Case Study. In: Workshop on Indian Language and Data: Resources and EvaluationWorkshop Programme (p. 76). Lata, S. , and Arora, S. (2013, August). Laryngeal Tonal Characteristics of Punjabi—An Experimental Study.In: 2013 International Conference on Human Computer Interactions (ICHCI) (pp. 1–6). IEEE. Ravinder, K. (2010, November). Comparison of HMM and DTW for Isolated Word Recognition System ofPunjabi Language. In: Iberoamerican Congress on Pattern Recognition (pp. 244–252). Springer, Berlin,Heidelberg. Sarma, B. D. , Sarmah, P. , Lalhminghlui, W. , and Prasanna, S. M. (2015). Detection of Mizo Tones. In:Sixteenth Annual Conference of the International Speech Communication Association. Thakuria, L. K. , Acharjee, P. , Das, A. , and Talukdar, P. H. (2013). BODO Speech Recognition Based onHidden Markov Model Toolkit (HTK). International Journal of Scientific and Engineering Research, 4(12), pp.

Page 43: Artificial Intelligence and Speech Technology - Taylor & Francis

2309–2313.

Advances in speech vocoding for text-to-speech with continuous parameters Al-Radhi, M.S. , Csapó, T. G. , and Németh, G. (2017a). Deep Recurrent Neural Networks in SpeechSynthesis Using a Continuous Vocoder. In: Karpov A. , Potapova R. , Mporas I. (eds) Speech and Computer.SPECOM, Lecture Notes in Computer Science, Volume 10458, pp. 282–291. Al-Radhi, M. S. , Csapó, T. G. , and Németh, G. (2017b). Time-domain envelope modulating the noisecomponent of excitation in a continuous residual-based vocoder for statistical parametric speech synthesis.In: Proceedings of the Interspeech 2017. Stockholm: s.n., pp. 434–438. Arik, S. O. , Chrzanowski, M. , Coates, A. , Diamos, G. , Gibiansky, A. , Kang, Y. , Li, X. , Miller, J. , Ng, A. ,Raiman, J. , Sengupta, S. , and Shoeybi, M. (2017). Deep Voice: Real-time Neural Text-to-Speech. In:Proceedings of the 34th International conference on machine learning (ICML), Stockholm, Sweden, pp.195–204. Degottex, G. and Erro, D. (2014). A uniform phase representation for the harmonic model in speechsynthesis applications. Journal on Audio, Speech, and Music Processing, 38(1), pp. 1–16. Fan, Y. , Qian, Y. , Xie, F. , and Soong, F. K. (2014). TTS synthesis with bidirectional LSTM based recurrentneural networks. in Proceedings of the Interspeech, Singapore, pp. 1964–1968. Degottex, G. , Lanchantin, P. , and Gales, M. (2018). A Log Domain Pulse Model for Parametric SpeechSynthesis. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 26(1), pp. 57–70. ITU-R Recommendation BS.1534 (2001). Method for the subjective assessment of intermediate audioquality, s.l. Karaiskos, V. , King, S. , Clark, R. , and Mayo, C. (2008). The Blizzard Challenge. In: Proc. BlizzardChallenge Workshop. Kawahara, H. , Masuda-Katsuse, I. , de Cheveigne, A. (1999). Restructuring speech representations using apitch-adaptive time–frequency smoothing and an instantaneous-frequency-based F0 extraction: Possiblerole of a repetitive structure in sounds. Speech Communication, 27(3), pp. 187–207. Kominek, J. , Black, A. W. (2003). CMU ARCTIC databases for speech synthesis, s.l.: Carnegie MellonUniversity. Oord, A. V. et al . (2016). WaveNet: A generative model for raw audio. In: Proceedings of the ISCA SpeechSynthesis Workshop, Sunnyvale, CA, USA. Schuster, M. , Paliwal, K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on SignalProcessing, 45(11), pp. 2673–2681. Waterman, M. S. , Whiteman, D. E. (1978). Estimation of probability densities by empirical density functions.International Journal of Mathematical Education in Science and Technology, 9(2), pp. 127–137.

Applying entity recognition and verb role labelling for information extraction ofTamil biomedicine Antony, J. B. , and Mahalakshmi, G. S. (2013). Patti vaithiyam—an information extraction system fortraditional Tamil medicines, In: 12th Tamil Internet Conference. Antony, J. B. , and Mahalakshmi, G. S. (2015). Content-based information retrieval by named entityrecognition and verb semantic role labelling, Journal of universal computer science, 21(13), p. 1830. Cowie, J. , and Lehnert, W. (1996). Information extraction. Communications of the ACM, 39(1), pp. 80–91. Feilmayr, C. (2011 August). Text mining-supported information extraction: an extended methodology fordeveloping information extraction systems, In: 2011 22nd International Workshop on Database and ExpertSystems Applications (pp. 217–221), IEEE. Finn, A. , and Kushmerick, N. (2004). Information extraction by convergent boundary classification, In:Proceedings of the AAAI Workshop on Adaptive Text Extraction and Mining. Grover, C. , Haddow, B. , Klein, E. , Matthews, M. , Nielsen, L. A. , Tobin, R. , and Wang, X. (2007, May).Adapting a relation extraction pipeline for the BioCreAtIvE II task, In: Proceedings of the BioCreAtIvE IIWorkshop (2). Hobbs, J. R. (2002). Information extraction from biomedical text, Journal of biomedical informatics, 35(4), pp.260–264. Kulick, S. , Bies, A. , Liberman, M. , Mandel, M. , McDonald, R. , Palmer, M. , Schein, A. , Ungar, L. ,Winters, S. , and White, P. (2004). Integrated annotation for biomedical information extraction, In: HLT-

Page 44: Artificial Intelligence and Speech Technology - Taylor & Francis

NAACL 2004 Workshop: Linking Biological Literature, Ontologies and Databases, pp. 61–68. Maedche, A. , Neumann, G. , and Staab, S. (2003). Bootstrapping an ontology-based information extractionsystem, In: Intelligent exploration of the web, pp. 345–359, Physica, Heidelberg. Rebholz-Schuhmann, D. , Oellrich, A. , and Hoehndorf, R. (2012). Text-mining solutions for biomedicalresearch: enabling integrative biology, Nature Reviews Genetics, 13(12), pp. 829–839. Riloff, E. , and Jones, R. (1999, July). Learning dictionaries for information extraction by multi-levelbootstrapping, In: AAAI/IAAI, pp. 474–479. Soderland, S. (1999). Learning information extraction rules for semi-structured and free text, Machinelearning, 34(1–3), pp. 233–272. Song, Y. , Yi, E. , Kim, E. , Lee, G. G. , and Park, S. J. (2004). POSBIOTM-NER: a machine learningapproach for bio-named entity recognition, Korea, 305, p.350. Spasić, I. , Sarafraz, F. , Keane, J. A. , and Nenadić, G. (2010). Medication information extraction withlinguistic pattern matching and semantic rules, Journal of the American Medical Informatics Association,17(5), pp. 532–535. Uzuner, Ö. , Solti, I. , and Cadag, E. (2010). Extracting medication information from clinical text, Journal ofthe American Medical Informatics Association, 17(5), pp. 514–518. Xu, H. , Stenner, SP , Doan, S. , Johnson, KB , Waitman, L. R. , and Denny, J. C. (2010). MedEx: amedication information extraction system for clinical narratives, Journal of the American Medical InformaticsAssociation, 17(1), pp. 19–24. Yakushiji, A. , Miyao, Y. , Tateisi, Y. , and Tsujii, J. (2005). April, Biomedical information extraction withpredicate-argument structure patterns, In: Proceedings of the first International Symposium on SemanticMining in Biomedicine (SMBM), Hinxton, Cambridgeshire, UK, April pp. 93–96.

Identification of two tribal languages of India: An experimental study Basu, J. et al . (2017). Acoustic analysis of vowels in five low resource north East Indian languages ofNagaland, In: 2017 20th Conference of the Oriental Chapter of the International Coordinating Committee onSpeech Databases and Speech I/O Systems and Assessment (O-COCOSDA). IEEE, pp. 1–6. doi:10.1109/ICSDA.2017.8384460. Basu, J. , and Majumder, S. (2020). Identification of Seven Low-Resource North-Eastern Languages: AnExperimental Study, In: Bhattacharyya, D. P. , and Mitra, S. , (ed.) Intelligence Enabled Research. Advancesin Intelligent Systems and Computing, vol 1109. Kolkata: Springer, Singapore, pp. 71–81. doi: 10.1007/978-981-15-2021-1_9. Campbell, W. , et al. (2004). Language recognition with support vector machines, Proc. Odyssey: TheSpeaker and Language Recognition Workshop, 1, pp. 41–44. Debbarma, S. (2015). Numerals in Hrangkhawl, Language in India, 15(1), pp. 95–100. Dehak, N. et al . (2011). Front-End Factor Analysis for Speaker Verification, IEEE Transactions on Audio,Speech, and Language Processing, 19(4), pp. 788–798. doi: 10.1109/TASL.2010.2064307. Hermansky, H. , Hanson, B. , and Wakita, H. (1985). Perceptually based linear predictive analysis of speech,In: ICASSP ’85. IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 509–512.doi: 10.1109/ICASSP.1985.1168384. Imseng, D. , Magimai-Doss, M. , and Bourlard, H. (2010). Hierarchical Multilayer Perceptron basedLanguage Identification, Proceedings of the 11th Annual Conference of the International SpeechCommunication Association, INTERSPEECH 2010. Kshirod Sarmah, U. B. (2014). GMM based Language Identification using MFCC and SDC Features,International Journal of Computer Applications, 85(5), pp. 36–42. Linde, Y. , Buzo, A. , and Gray, R. (1980). An Algorithm for Vector Quantizer Design, IEEE Transactions onCommunications, 28(1), pp. 84–95. doi: 10.1109/TCOM.1980.1094577. Mahalanobis, P. C. (1936). On the generalised distance in statistics, Proceedings of the National Institute ofSciences of India, 2(1), pp. 49–55. Mansour, E. et al . (2013). LPC and MFCC Performance Evaluation with Artificial Neural Network for SpokenLanguage Identification, International Journal of Signal Processing, Image Processing and PatternRecognition, 6(3), pp. 55–66. doi: 10.1.1.360.2692. Murmu, B. M. (2011). Ol Chiki (Ol Cemet’, Ol, Santali). Available at: https://scriptsource.org. Pavel Matejka,Pavel , Schwarz, Petr , and Cernock, Jan , Pavel, Chytil (2005). Phonotactic language identification usinghigh quality phoneme recognition, In: Interspeech 2005, pp. 2237–2240. Peterson, G. E. , and Barney, H. L. (1952). Control Methods used in Study of Vowels, Journal of theAcoustical Society of America, 24(2), pp. 175–184.

Page 45: Artificial Intelligence and Speech Technology - Taylor & Francis

Reynolds, D. (2015). Gaussian Mixture Models, In: Li, S. Z. , and Jain, A. K. (eds) Encyclopedia ofBiometrics. Boston, MA: Springer US, pp. 827–832. doi: 10.1007/978-1-4899-7488-4_196. Richardson, F. , Reynolds, D. , and Dehak, N. (2015). Deep Neural Network Approaches to Speaker andLanguage Recognition, IEEE Signal Processing Letters, 22(10), pp. 1671–1675. doi:10.1109/LSP.2015.2420092. Santali Localization (2015). Available at: http://Andovar.com. VanBik, K. (2006). Spoken L1 Language: Hrangkhol. Available at:https://glottolog.org/resource/languoid/id/hran1239. Vempada, R. , Maity, S. , and Rao, K. (2013). Identification of Indian languages using multi-level spectraland prosodic features, International Journal of Speech Technology, 16. doi: 10.1007/s10772-013-9198-0.Waikato, U. of (no date) WEKA: The workbench for machine learning. Available at:https://www.cs.waikato.ac.nz/ml/weka/. Wang, N. J.C. , Tsai, W.H. , Lee, L. S. (2001). Eigen-MLLR Coefficients as New Feature Parameters forSpeaker Identification, In: Euro speech, pp. 1385–1388. Weenink, P. B. , and D. (2016). Praat Website, http://www.fon.hum.uva.nl/praat/. Zewang Zhang , Zheng Sun , Jiaqi Liu , Jingwen Chen , Zhao Huo, X. Z. (2016). Deep RecurrentConvolutional Neural Network: Improving Performance For Speech Recognition, arXiv:1611.07174v2, pp.1–11.

Mental illness diagnosis from social network data using effective machinelearning technique Serrat, O. (2017). Social network analysis. Springer: Singapore. pp. 39–43. Rafiqual Islam, Md ., Ashad Kabir , Murammad, Ahmed , Ashir, M. Kamal , Abu Raihan , Wang, Hua ., andUlhaaq, Anwaar (2018). Depression detection from social network data using machine learning techniques,Islam et al. Health Inf Sci Syst. Rafiqul Islam, Md , M. Kamal , Abu Raihan , Sultana , Naznin , Islam , Robiul , Ali Moni , Mohammad, Ulhaq ,Anwaar , (2018). Detecting Depression Using k-Nearest Neighbors (KNN) Classification Technique,Conference: 2018 International Conference on Computer, Communication, Chemical, Material andElectronic Material and Electronic Engineering (IC4ME2). Tausczik, Yla R. , and Pennebaker, James W. (2010). The Psychological Meaning of Words: LIWC andComputerized Text Analysis Methods, Journal of Language and Social Psychology, 29(1), pp. 24–54 © 2010SAGE Publications. Bazeley, P. , and Jackson, K. (2015). Qualitative data analysis with NVivo. Qualitative Research inPsychology, London: Sage. pp. 492–494. Pennebaker, J. W. , Francis, M. E. , Booth, R. J. (2001). Linguisticenquiry and word count: LIWC 2001, vol. 71. Mahway: Lawrence Erlbaum Associates. p. 2001. Pennebaker ,, Boyd ,, Jordan, K. , and Blackburn, K. (2015). The development and psychometric propertiesof liwc2015, Tech. Rep. Adawadkar, Kalyani (2017). Python Programming-Applications and Future. Head of Department, Departmentof Information Technology, Sigma Institute of Engineering, April 2017. Gilbert, E. , Karahalios, K. (2009). Predicting tie strength with social media. In: Proceedings of the SIGCHIconference on human factors in computing systems. New York: ACM. Coppersmith, G. , Dredze, M. , Harman, C. , and Hollingshead, K. 2015. From ADHD to SAD: Analyzing thelanguage of mental health on Twitter through self-reported diagnoses. In: Proceedings of the 2nd Workshopon Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality, 2015. Wu, P. , and Zhao, H. (2011). Some Analysis and Research of the AdaBoost Algorithm. In: Chen, R. (eds).Intelligent Computing and Information Science. ICICIS 2011. Communications in Computer and InformationScience, vol. 134. Springer, Berlin, Heidelberg. Goutte, Cyril , and Gaussier, Eric (2005). A Probabilistic Interpretation of Precision, Recall and F-Score, withImplication for Evaluation. Lecture Notes in Computer Science. 3408. 345–359. 10.1007/978-3-540-31865-1_25. Shen, G. , et al. (2017). Depression detection via harvesting social media: A multimodal dictionary learningsolution. In: Proceeding of the twenty-sixth international joint conference on artifcial intelligence (IJCAI-17).2017. pp. 3838–3844. Pretorius, Arnu , and Bierman, Surette , and Steel, Sarel . (2016). A meta-analysis of research in randomforests for classification. pp. 1–6. doi: 10.1109/RoboMech.2016.7813171. Geurts, P. , Ernst, D. , and Wehenkel, L. (2006). Extremely randomized trees. Mach Learn 63, 3–42. Natekin, Alexey , and Knoll, Alois (2013). Gradient Boosting Machines, A Tutorial. Frontiers in neurorobotics.p. 7. 21. 10.3389/fnbot.2013.00021.

Page 46: Artificial Intelligence and Speech Technology - Taylor & Francis

Berrar, Daniel (2018). Cross-validation; Encyclopedia of Bioinformatics and Computational Biology, vol. 1,Elsevier, pp. 542–545. Serrano-Puche, Javier (2016). Internet and emotions: New Trends in an Emerging Field of Research,Comunicar.

Hybrid classifier for brain tumor detection and classification Abd-Ellah, M. K. , Awad, A. I. , Khalaf, A. A. , and Hamed, H. F. (2019). A review on brain tumor diagnosisfrom MRI images: Practical implications, key achievements, and lessons learned. Magnetic resonanceimaging, 61, pp. 300–318. Abdi, H. , and Williams, L. J. (2010). Principal component analysis. Wiley interdisciplinary reviews:computational statistics, 2(4), pp. 433–459. Haralick, R. M. , Shanmugam, K. , and Dinstein, I. H. (1973). Textural features for image classification. IEEETransactions on systems, man, and cybernetics, (6), pp. 610–621. Othman, M. F. B. , Abdullah, N. B. , and Kamal, N. F. B. (2011), April. MRI brain classification using supportvector machine. In 2011 Fourth International Conference on Modeling, Simulation and Applied Optimization(pp. 1–4). IEEE. Sezgin, M. , and Sankur, B. (2004). Survey over image thresholding techniques and quantitativeperformance evaluation. Journal of Electronic imaging, 13(1), pp. 146–166. Shensa, M. J. (1992). The discrete wavelet transform: wedding the a trous and Mallat algorithms. IEEETransactions on signal processing, 40(10), pp. 2464–2482. Velazquez, E. R. , Meier, R. , Dunn Jr, W. D. , Alexander, B. , Wiest, R. , Bauer, S. , Gutman, D. A. , Reyes,M. , and Aerts, H. J. (2015). Fully automatic GBM segmentation in the TCGA GBM dataset: Prognosis andcorrelation with VASARI features. Scientific reports, 5(1), pp. 1–10.https://wiki.cancerimagingarchive.net/display/Public/TCGA-GBM Wadhwa, A. , Bhardwaj, A. , and Verma, V. S. (2019). A review on brain tumor segmentation of MRI images.Magnetic resonance imaging, 61, pp. 247–259.

Parametric study of through transmission laser welding with teaching learningbased optimization Acherjee, B. , Kaur, A. S. , Mitra, S. , and Misra, D. (2012). Modeling of laser transmission contour weldingprocess using FEA and DoE. Optics & Laser Technology, 44(2012), pp. 1281–1289. Acherjee, B. , Kaur, A. S. , Mitra, S. , and Misra, D. (2015). Empirical Modeling and Multi-ResponseOptimization of Laser Transmission Welding of Polycarbonate to ABS. Lasers Manuf. Mater. Process, (2015)2, 103–123. Behera, A. (2020). Optimization of process parameters in laser welding of dissimilar materials. MaterialsToday, Proceedings, https://doi.org/10.1016/j.matpr.2020.07.148. Bouchekaraa, H. R. E. H. , Abido, M. A. , and Boucherma, M. (2014). Optimal power flow using Teaching-Learning-Based Optimization technique. Electric Power System, 114 (2014), pp. 49–59. Ghosh, R. (2016). A study of Pulsed Laser Welding of dissimilar transparent thermoplastics without fillermaterial in lap joint configuration. M. Tech Thesis, Jadavpur University, India. Kumar, D. , Ghosh, S. , and Kaur, A. S. (2019). Laser transmission welding of thermoplastic with beamwobbling technique using particle swarm optimization. Materials Today, Proceedings,https://doi.org/10.1016/j.matpr.2019.12.422 Rajasree, N. , and Reddy, M. D. (2015). Simultaneous placement of TCSC and UPFC in TransmissionSystem using Teaching-Learning Based Optimization Technique.” Discovery, 47(216), pp. 1–7.

Research landscape of artificial intelligence in human resource management: Abibliometric overview Heric, M. (2018). HR’s New Digital Mandate. Bain & Company. available athttps://www.bain.com/insights/hrs-new-digital-mandate/ (Accessed: August 5, 2020 )

Page 47: Artificial Intelligence and Speech Technology - Taylor & Francis

Jia, Q. , Guo, Y. , Li, R. , Li, Y. , and Chen, Y. (2018). A conceptual artificial intelligence applicationframework in human resource management. In: Proceedings of the International Conference on ElectronicBusiness, pp. 106–114 Manuti, A. , and De Palma, D. (2018). Digital HR. London: Palgrave Macmillan, available athttps://link.springer.com/content/pdf/10.1007%2F978-3-319-60210-3.pdf (Accessed: August 2, 2020 ). Nicastro, D. (2020). Ways Artificial Intelligence is Reinventing Human Resources. available athttps://www.cmswire.com/digital-workplace/7-ways-artificial-intelligence-is-reinventing-human-resources.(Accessed: September 4, 2020 ) Oliveira , Otavio Jose de , Francisco da Silva , Fabio , Juliani , Fernando , Motta Barbosa , Luis CesarFerreira , and Nunhes , Thaís Vieira (2019). Bibliometric Method for Mapping the State-of-the-Art andIdentifying Research Gaps and Trends in Literature: An Essential Instrument to Support the Development ofScientific Projects. In: Scientometrics Recent Advances, Suad Kunosic and Enver Zerem, IntechOpen, doi:10.5772/intechopen.85856. Park, W. (2018). Artificial intelligence and human resource management: new perspectives and challenges,Japan Institute for Labour Policy and Training, Tokyo, available athttps://www.jil.go.jp/profile/documents/w.park.pdf (Accessed: August 10, 2020 ). Rogers, A. (2018). How is AI Humanizing People Management, Workforce Solutions Review, pp. 25–26. Tambe, P. , Cappelli, P. , and Yakubovich, V. (2019). Artificial intelligence in human resources management:Challenges and a path forward. California Management Review, 61(4), pp. 15–42. Van Eck, N. J. , and Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometricmapping. Scientometrics, 84(2), pp. 523–538. Zehir, C. , Karaboğa, T. , and Başar, D. (2020). The Transformation of Human Resource Management andIts Impact on Overall Business Performance: Big Data Analytics and AI Technologies in Strategic HRM. In:Digital Business Strategies in Blockchain Ecosystems, pp. 265–279. Springer, Cham. Zupic, I. , and Čater, T. (2015). Bibliometric methods in management and organization. OrganizationalResearch Methods, 18(3), pp. 429–472.

An efficient Class-F PA with SSL/SIL based matching network for body centricwireless transceiver Ali Khan, R. , et al. (2012). Wireless Sensor Networks: A Solution for Smart Transportation, Journal ofEmerging Trends in Computing and Information Sciences Wireless Sensor Networks: A Solution for SmartTransportation, 3(4) pp. 566–571. Available at: http://www.cisjournal.org. Bekri, Y. , et al. (2012). Analysisand Design of Shielded Suspended and Inverted Microstrip Lines for Microwave Applications, the ComputingScience and Technology International Journal, 2(1), pp. 33–38. Available at:http://www.researchpub.org/journal/cstij. Cheng, Z. , et al. (2017). Power Amplifier with Parasitic Compensation Circuit, 2017(2). Garbhapu, V. V. and Gopalan, S. (2017). IoT Based Low Cost Single Sensor Node Remote HealthMonitoring System, Procedia Computer Science. Elsevier B.V. , 113, pp. 408–415. doi:10.1016/j.procs.2017.08.357. Girnale, P. V. S. and Patil, P. H. B. (2017). Review on Power Amplifier for WSN Applications, InternationalResearch Journal of Engineering and Technology (IRJET), 4(1), pp. 1649–1651. Available at:https://irjet.net/archives/V4/i1/IRJET-V4I1326.pdf. Hayati, M. , Sheikhi, A. and Grebennikov, A. (2014). Class-F Power Ampli fi er With High Power HarmonicControl Circuit, 25(2), pp. 1–3. Lin, J. , et al. (2016). A linearity enhanced broadband Class-F power amplifier with high harmonicsuppressed matching circuits for S-band applications, 9th International Conference on Microwave andMillimeter Wave Technology, ICMMT 2016 – Proceedings, 1, pp. 270–273. doi:10.1109/ICMMT.2016.7761745. Liu, C. (2020). Analysis of class-F power amplifiers with a second-harmonic input voltage manipulation, IEEETransactions on Circuits and Systems II: Express Briefs. IEEE, 67(2), pp. 225–229. doi:10.1109/TCSII.2019.2912654. Liu, H. , Meng, Z. and Cui, S. (2007). A wireless sensor network prototype for environmental monitoring ingreenhouses, 2007 International Conference on Wireless Communications, Networking and MobileComputing, WiCOM 2007, pp. 2344–2347. doi: 10.1109/WICOM.2007.584. Products, F. and Highlights, P. (2017). Class-F RF Power Amplifier with a New Load Network Configuration,(March). Saad, P. , et al. (2010). Design of a highly efficient 2–4-GHz octave bandwidth GaN-HEMT power amplifier,IEEE Transactions on Microwave Theory and Techniques, 58(7 PART 1), pp. 1677–1685. doi:

Page 48: Artificial Intelligence and Speech Technology - Taylor & Francis

10.1109/TMTT.2010.2049770. Sharma, T. , et al. (2016). Generalized Continuous Class-F Harmonic Tuned Power Amplifiers, IEEEMicrowave and Wireless Components Letters. IEEE, 26(3), pp. 213–215. doi:10.1109/LMWC.2016.2524989. Wang, N. , Zhang, N. and Wang, M. (2006). Wireless sensors in agriculture and food industry — Recentdevelopment and future perspective, 50, pp. 1–14. doi: 10.1016/j.compag.2005.09.003. Zheng, S. Y. , et al. (2018). Design of Ultrawideband High-Efficiency Extended Continuous Class-F PowerAmplifier, IEEE Transactions on Industrial Electronics, 65(6), pp. 4661–4669. doi:10.1109/TIE.2017.2772163.

Envisaging the future homes with ‘human-building interaction’ Denis, Lalanne , and Julien, Nembrini . (2017). Human-Building Interaction: When the Machine Becomes aBuilding. Available at: https://www.researchgate.net/publication/319917687_Human-Building_Interaction_When_the_Machine_Becomes_a_Building [Accessed 21 October 2020 ]. Hamed, Alavi (2016). Future Of Human-Building Interaction. CHI Conference Extended Abstracts, Availableat: https://www.researchgate.net/publication/302074317_Future_of_HumanBuilding_Interaction. [Accessed21 October 2020 . Klepeis, N. , Nelson, W. , Ott, W. , and Robinson, J. (2001). The National Human Activity Pattern Survey(NHAPS): A Resource For Assessing Exposure To Environmental Pollutants. Human Activity Patterns.Available at: https://pubmed.ncbi.nlm.nih.gov/11477521/[Accessed 23 October 2020 ] Kodali, R. , Jain, V. , Bose, S. , and Boppana, L. (2016). IoT Based Smart Security And Home AutomationSystem. [ebook] International Conference on Computing, Communication and Automation (ICCCA).Available at:https://www.researchgate.net/publication/312559421_IoT_based_smart_security_and_home_automation_system [Accessed 18 October 2020 ]. Offer, S. (2013). Family Time Activities And Adolescents’ Emotional WellBeing. [ebook] Journal of Marriageand Family. Available at:https://www.researchgate.net/publication/263227023_Family_Time_Activities_and_Adolescents’_Emotional_Well-being [Accessed 21 October 2020 ]. Verma, H. , Alavi, H. , and Lalanne, D. (2020). Rethinking Wearables In The Realm Of Architecture. [ebook]Global Thoughts, Local Designs. Available at:https://www.researchgate.net/publication/325431346_Rethinking_Wearables_in_the_Realm_of_Architecture[Accessed 24 October 2020 ]. Yang, H. , Lee, H. , and Zo, H. (2017). User Acceptance Of Smart Home Services: An Extension Of TheTheory Of Planned Behavior’. [ebook] Available at:https://www.emerald.com/insight/content/doi/10.1108/IMDS-01-2016-0017/full/html [Accessed 22 October2020 ].

Comparative analysis of first-order optimization algorithms Aly ,, Guadagni, G. and Dugan , (2019). Derivative-Free Optimization of Neural Networks using LocalSearch,” IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference(UEMCON), New York City, NY, USA, pp. 0293–0299. Rikhtegar, A. , Pooyan, M. , and Manzuri-Shalmani , (2016). “Genetic algorithm-optimised structure ofconvolutional neural network for face recognition applications,”- IEEE IET Computer Vision (Volume: 10) pp.559–566, 20. Shanno, D.F. 1970. Conditioning of quasi-Newton methods for function minimization”, vol-24, pp. 647–656. Kingma , and Ba, Jimmy Lei (2017). ADAM: a method for stochastic optimization” Published as a conferencepaper at ICLR 2015. Dogo ,, Afolabi ,, Nwulu ,, Twala, B. , and Aigbavboa, C.O. (2019). A Comparative Analysis of GradientDescent-Based Optimization Algorithms on Convolutional Neural Networks” – IEEE. Nargesian , Fatemeh , Samulowitz , Horst , Khurana , Udayan , Khalil , Elias B. , Turaga , and Deepak(2017). Learning Feature Engineering for Classification” Proceedings of the Twenty-Sixth International JointConference on Artificial Intelligence (IJCAI) Mittal , Harshal , Pandey , Kartikey , and Kant, Yash (2019). PADAM: Closing the generalization gap ofadaptive gradient methods in training deep neural networks” ICLR Reproducibility Challenge

Page 49: Artificial Intelligence and Speech Technology - Taylor & Francis

Sutskever , Ilya , Martens , James , Dahl , George , and Hinton, Geoffrey (2013). “On the importance ofinitialization and momentum in deep learning” Proceedings of the 30th International Conference on MachineLearning, PMLR 28(3), pp. 1139–1147. Vol. 28, pp. III-1139–III-1147. Duchi , John , Hazan , Elad , and Singer, Yoram (2011). “Adaptive Subgradient Methods for Online Learningand Stochastic Optimization.” Journal of Machine Learning Research. pp. 2121–2159. Kramer, O. , Ciaurri, D.E. , and Koziel, S. (2011). “Derivative-Free Optimization.” In: Koziel, S. , Yang, X. S.(eds). Computational Optimization, Methods and Algorithms. Studies in Computational Intelligence, vol. 356.Springer, Berlin, Heidelberg. LeCun, Y. , Bengio, Y. , and Hinton, G. (2015). Deep learning. Nature, 521(7553), pp. 436–444. Mukkamala , Mahesh Chandra and Hein, Matthias (2017). “Variants of RMSProp and Adagrad withLogarithmic Regret Bounds”. Yaqub , Muhammad , Feng , Jinchao , Sultan Zia, M. , Arshid , Kaleem , Jia , Kebin , Rehman , Zaka Ur .,and Mehmood, Atif (2020). “State-of-the-Art CNN Optimizer for Brain Tumor Segmentation in MagneticResonance Images”. Brain Sci. 2020, 10, 427. Baldi , (1995). “Gradient descent learning algorithm overview: a general dynamical systems perspective” –IEEE Transactions on Neural Networks (vol. 6, no. 1, January 1995), p. 182. Li, Piji (2017). “Optimization Algorithms for Deep Learning.” Khirirat, Sarit , Feyzmahdavian, Hamid Reza ., and Johansson, Mikael (2018). “Mini-batch gradient descent:Faster convergence under data sparsity” – IEEE (2017 IEEE 56th Annual Conference on Decision andControl (CDC)). Reddi ,, Kale, Satyen ., and Kumar, Sanjiv (2018). “On The Convergence of Adam and Beyond,” Publishedas a conference paper at ICLR 2018. Ruder, Sebastian (2017). “An overview of gradient descent optimization algorithms.” Sun , Shiliang , Cao ,Zehui , Zhu , Han , and Zhao, Jing (2019). “A Survey of Optimization Methods from a Machine LearningPerspective,” IEEE – Transactions on Cybernetics (vol. 50, no. 8, Aug. 2020), pp. 3668–3681. Tieleman, Tijmen and Hinton, Geoffrey (2012). Lecture 6.5-RMSprop: Divide the gradient by a runningaverage of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4. Dozat, Timothy (2016). “Incorporating Nesterov momentum into adam,” Workshop track – ICLR. Hinz, Tobias , Navarro-Guerrero, Nicolas , Magg, Sven and Wermter, Stefan (2018). “Speeding up theHyperparameter Optimization of Deep Convolutional Neural Networks,” International Journal ofComputational Intelligence and Applications, vol. 17, no. 2, 1850008 (p. 15). Chen, Xiong-Hui , and Yu, Yang (2019). Reinforcement Learning with Derivative-Free Exploration. In: Proc.of the 18th International Conference on Autonomous Agents and Multiagent Systems. Bengio , (2012). Practical Recommendations for Gradient-Based Training of Deep Architectures.” Berlin,Heidelberg: Springer Berlin Heidelberg, pp. 437–478. Nesterov , Yu E. (1983). A Method Of Solving a Convex Programming problem With Convergence rateO(1/k^2). Soviet Math. Dokl, vol. 27 (1983) no. 2. Yu, Yunlong and Liu, Fuxian (2019). “Effective Neural Network Training With a New Weighting Mechanism-Based Optimization Algorithm,” IEEE. You, Zhao and Xu, Bo (2014). “Improving training time of deep neural network with asynchronous averagedstochastic gradient descent”. IEEE – The 9th International Symposium on Chinese Spoken LanguageProcessing, Electronic ISBN: 978-1-4799-4219-0. INSPEC Accession Number: 14700712.

A review on application of artificial intelligence techniques in control of industrialprocesses Andre, M. Shaw, Doyle III , Francis J. and Schwaber, James S. (1997). A dynamic neural network approachto nonlinear process modeling, Journal of computer chem. Engg., 21(4), pp. 371–385. Brdys, Mietek A. (1999). Dynamic Neural Controllers for Induction Motor, IEEE Transactions on NeuralNetworks, 10(2). Culliere, T. , Titli, A. , and Corrieu, J. M. (1995), Neuro-fuzzy modeling of nonlinear systems for controlpurposes, Proceedings of 1995 IEEE International Conference on Fuzzy Systems, Yokohama, Japan, pp.2009–2016, 4, 10.1109/FUZZY.1995.409954. Denai, M. , and Attia, S. (2002). Fuzzy and neural control of an induction motor, Int. J. Appl. Math. Comput.Sci., 12 (2), pp. 221–233. Gornik, M. , Novak, G. , and Govekar (1997), Modeling coated paper properties: application of neuralnetworks, International journal of system science, 28(9), pp. 865–870. Hagan, M. T. (2002), An Introduction to the Use of Neural Networks in Control Systems, Int. J. RobustNonlinear Control, 12, pp. 959–985.

Page 50: Artificial Intelligence and Speech Technology - Taylor & Francis

Hajjar, Z. , Tayyebi, S. , and Ahmadi, H. E. (2018), Applications of AI in Chemical Engineering, ArtificialIntelligence-Emerging Trends and Applications Irwin, G. , Brown, M. , Hogg, B. , and Swidenbank, E. (1995), Neural network modeling of a 200 MW boilersystem, IEE Proceedings on control theory application, 142(6), pp. 529–535. Jaffer, M. , Ravikiran, G. , and Sasidhar, K. (2015), Design of Boiler flow Control using PSO technique withOptimal Stabilizing Controller (IJIET), Volume 6, Issue (2). Nagaraj, B. , and Vijayakumar, R. (2012). Evolutionary Computation Based Controller Tuning A ComparativeApproach, IPPTA Journal, Volume 24(2). Nagaraj, B. , Muthusamy P. , Murali B. , Shahulhammed M. , and Murugananth, R. (2010), Optimum TuningAlgorithms for PID Controller A Soft Computing Approach, IPPTA Journal, 22 (02). Rudd, John B. (1997). Using a neural network system for advanced control, TAPPI Journal, pp-153–159. Rumelhart, D. E. , Hilton, G. E. , and Williams, R. J. (1986). Learning internal representations by errorpropagation, Parallel distributed processing. 1. Cambridge: MIT Press, pp. 318–362. Sandhu, G. S. , and Kuldip, R. 1997, Design of a neuro fuzzy controller, Systems, Man, and Cybernetics,IEEE International Conference on Computational Cybernetics and Simulation, volume 4. Scott, G. M. , and Ray W. H. 1993, Experiences with model-based controllers based on neural networkprocess models, Journal of process control, 3(3), pp. 179–196. Shao, S. (1988), Fuzzy self organizing controller and its application for dynamic processes, Fuzzy sets andsystems, volume 26, issue (2), pages pp. 151–164. Stojanovski, G. (2011). Advanced Industrial Control Using Fuzzy-Model Predictive Control on a Tunnel KlinBrick Production, 18th IFAC World Congress, Milano, Italy. Sunori, S. and Juneja, P. K. (2015),. ANN controller design for lime kiln process, Bulletin of ElectricalEngineering and Informatics, 4(4), pp. 304–313. Woschanket, M. , Rauch, E. , and Zsifkovits, H. (2020). A Review of Further Directions for ArtificialIntelligence, Machine Learning and Deep Learning in Smart Logistics, Sustainability, 12(9), p. 3760.

Crop monitoring system for effective prediction of agricultural analytics in Indianagriculture using WSN Abellannot, J. V. , Subirón, F. R. (2010). A review of machining monitoring systems based on artificialintelligence process models, International Journal of Advanced Manufacturing Technology, 47, pp. 237–257. Balaji Bhanu, B. , Hussain , Mohammed Ali , Prasad, Ande , Mirza, Mahmood Ali (2020). Exploration of CropProduction Improvement through Various Agricultural Monitoring Systems, IJITEE 8 (11), pp. 3747–3750. Bousdekis, Alexandros , Lepenioti, Katerina , Apostolou, Dimitris , Mentzas, Gregoris (2019). DecisionMaking in Predictive Maintenance: Literature Review and Research Agenda for Industry 4.0, IFAC-PapersOn Line 52 (13), pp. 607–612. das Chagas Moura, M. , Zio, E. , Lins, I. D. , Droguett, E. (2011). Failure and reliability prediction by supportvector machines regression of time series data, Reliability Engineering & System Safety, 96(11), pp.1527–1534. Efthymiou, K. , Papakostas, N. , Mourtzis, D. , Chryssolouris, G. (2012). On a Predictive MaintenancePlatform for Production Systems, Procedia CIRP, 3, pp. 221–226. Janssens, O. , Slavkovikj, V. , Vervisch, B. , Stockman, K. , Loccufier, M. , et al. (2016). Convolutional NeuralNetwork Based Fault Detection for Rotating Machinery, Journal of Sound & Vibration, 377, pp. 331–345. Kaiser, K. A. , Gebraeel, N. Z. (2009). Predictive maintenance management using sensor-based degradationmodels, IEEE Trans Systems, Man, Cybernetics-Part A Systems & Humans, 39(4), pp. 840–849. Kang, H. S. , Lee, J. Y. , Choi, S. , Kim, H. , Park, J. H. , et al. (2016). Smart manufacturing: Past research,present findings, and future directions, International Journal of Precise Engineering & Manufacturing – GreenTechnology, 3, pp. 111–128. Li, Z. , Zhou, S. , Choubey, S. , Sievenpiper, C. (2007). Failure event prediction using the cox proportionalhazard model driven by frequent failure signatures, IIE transactions, 39(3), pp. 303–315. Mobley, R. K. (2002). An Introduction to Predictive Maintenance, Elsevier. Moyne, J. , Iskandar, J. (2017). Big Data Analytics for Smart Manufacturing: Case Studies in SemiconductorManufacturing. MDPI Journal of Processes, 5(3), pp. 1–20. Okoh, C. , Roy, R. , Mehnen, J. (2017). Predictive Maintenance Modelling for Through-Life EngineeringServices, Procedia CIRP., 59, pp. 196–201. Pedregal, Diego J. , Carnero, M. Carmen (2006). State-space models for condition monitoring: a case study,Reliability Engineering & System Safety, 91(2), pp. 171–180.

Page 51: Artificial Intelligence and Speech Technology - Taylor & Francis

Ruiz-Sarmiento, Jose-Raul , Monroy, Javier , Moreno, Francisco-Angel , Galindo, Cipriano , Bonelo, Jose-Maria , Gonzalez-Jimenez, Javier (2020). A predictive model for the maintenance of industrial machinery inthe context of industry 4.0, Engineering Applications of Artificial Intelligence, 87, 103289. Thoben, K.-D. , Wiesner, S. , Wuest, T. (2017). Industrie 4.0” and Smart Manufacturing – A Review ofResearch Issues and Application Examples. International Journal of Automation Technology, 11, pp. 4–19. Thyago, P. Carvalho , Fabrízzio, A. A. M. N. Soares , Roberto Vita , et al. (2019). A systematic literaturereview of machine learning methods applied to predictive maintenance. Computers & Industrial Engineering,137, 106024. Wuest, T. , Weimer, D. , Irgens, C. , Thoben, K.-D. (2016). Machine learning in manufacturing: Advantages,Challenges, and Applications. Production and Manufacturing Research, 4(1), pp. 23–45.

Trend analysis of meteorological index SPI using statistical and machine learningmodels over the region of Marathwada McKee, T. B. , N. J. Doesken , and J. Kleist , 1995: Drought monitoring with multiple time scales. NinthConference on Applied Climatology, American Meteorological Society, Jan 15–20, 1995, Dallas TX.,pp.233–236. McKee, T. B. , N. J. Doesken , and J. Kleist , 1993: The relationship of drought frequency and duration oftime scales. Eighth Conference on Applied Climatology, American Meteorological Society, Jan 17–23, 1993,Anaheim CA, pp.179–186. Rahmat, S. , Jayasuriya, N. , Adnan, M and Bhuiyan, M 2016, ‘Analysis of spatio-temporal trends usingStandardised Precipitation Index (SPI)’, Journal of Engineering and Applied Sciences, vol. 11, no. 4,pp.2387–2392. Abarghouei, Hossein & AsadiZarch, Mohammad Amin & Dastorani, Mohammad T. & Kousari, Mohammad &Zarch, Mehdi . (2011). The survey of climatic drought trend in Iran. Stochastic Environmental Research andRisk Assessment. 25. 851–863. 10.1007/s00477-011-0491-7. Chapter II Physiography of Marathwada Region. http://shodganga.inflibnet.ac.in Sub divisional rainfall datafrom http://Data.gov.in Yue S. , Wang, C. , 2004. The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend inSerially Correlated Hydrological Series. Water Resources Management 18, 201–218. Onoz, B. , Bayazit, M. , 2012. The Power of Statistical Tests for Trend Detection. Turkish Journal ofEngineering & Environmental Sciences 27 (2003), 247–251 A., Anshuka & Van Ogtrop, Floris & Vervoort, Rutger Willem . (2019). Drought forecasting through statisticalmodels using standardised precipitation index: a systematic review and meta-regression analysis. NaturalHazards. 97. 10.1007/s11069-019-03665-6. Di Giuseppe, E. ; Pasqui, M. ; Magno, R. ; Quaresima, S. A Counting Process Approach for TrendAssessment of Drought Condition. Hydrology 2019, 6, 84. Belayneh, Anteneh & Adamowski , Jan. (2013). Drought forecasting using new machine learning methods.Journal of Water and Land Development. 18. 3–12. 10.2478/jwld-2013. Abbas, S.A. , Xuan, Y. & Song, X. Quantile Regression Based Methods for Investigating Rainfall TrendsAssociated with Flooding and Drought Conditions. Water Resource Management 33, 4249–4264 (2019)https://doi.org/10.1007/s11269-019-02362-0 Pawar, Dnyaneshwar . (2012). Agriculture Problems and Prospects of Drought Prone Region in SangaliDistrict of Maharashtra. Mahajan, D. & Dodamani, B.M. . (2015). Trend Analysis of Drought Events Over Upper Krishna Basin inMaharashtra. Aquatic Procedia. 4. 1250–1257. 10.1016/j.aqpro.2015.02.163. Zhang, Yuhu & Cai, Wanyuan & Chen, Qiuhua & Yao, Yunjun & Liu, Kaili . (2015). Analysis of Changes inPrecipitation and Drought in Aksu River Basin, Northwest China. Advances in Meteorology. 2015. 1–15.10.1155/2015/215840. Vijay Kumar, Sharad K. Jain & Yatveer Singh (2010) Analysis of long-term rainfall trends in India,Hydrological Sciences Journal, 55:4, 484–496 DOI: 10.1080/02626667.2010.481373 Guttman, N.B. (1999). ACCEPTING THE STANDARDIZED PRECIPITATION INDEX: ACALCULATIONALGORITHM1 Holloway J. , Mengersen K. Statistical Machine Learning Methods and Remote Sensing for SustainableDevelopment Goals: A Review. Remote Sensing. 2018;10(9):1365. Pettitt, A. (1979). A Non-Parametric Approach to the Change-Point Problem. Journal of the Royal StatisticalSociety. Series C Formulas and equations from http://Rstudio.com tutorial

Page 52: Artificial Intelligence and Speech Technology - Taylor & Francis

Sen, P.K.J.J.o.t.A.s.a . Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc.1968, 63, 1379–1389 Wood SN (2016). “Just Another Gibbs Additive Modeler: Interfacing JAGS and mgcv.” Journal of StatisticalSoftware, 75(7), 1–15. doi:10.18637/jss.v075.i07. Wood, S. (2017). Generalized Additive Models. New York: Chapman and Hall/CRC,https://doi.org/10.1201/9781315370279 R Core Team (2018). R: A Language and Environment for Statistical Computing. R Foundation for StatisticalComputing, Vienna, Austria. URL https://www.R-project.org/.

An insight into reconfigurable antenna design Corey, Larry , Jaska, Esko, Consultant , Guerci, Joseph (2003). Phased-Array Development at Darpa, IEEEInternational Symp. on Phased Array Systems and Technology. Jusoh, M. , Jamlos, M. F. , Kamarudin, M. R. , Malek, M. F. , Romli, M. A. , Ahmad, Z. A. , Mat, M. H. , andZulkifli, M. S. (2012). A Reconfigurable Ultrawideband (UWB) Compact Tree-Design Antenna System,Progress In Electromagnetics Research C., 30, pp. 131–145. Peroulis, Dimitrios , Sarabandi, Kamal , and Katehi, Linda P. B. (2005, February). Design of ReconfigurableSlot Antennas, IEEE Transactions On Antennas And Propagation, 53(2). Antonino-Daviu, E. , Cabedo-Fabrés, M. , Ferrando-Bataller, M. and Vila-Jimenez , Active UWB antenna withtunable band-notched behavior, Electronics Letters, 31st August 2007, 43(18). Boudaghi, Hamid , Azarmanesh, Mohammadnaghi , and Mehranpour, Mehdi (2012). A Frequency-Reconfigurable Monopole Antenna Using Switchable Slotted Ground Structure, IEEE Antennas and WirelessPropagation Letters, 11. Liu, Qiang , Wang, Naizhi , Wu, Changying , Wei, Gao , Smolders, A. B. Frequency Reconfigurable AntennaControlled by Multi Reed Switches”, IEEE Antennas and Wireless Propagation Letters, 14. Mansoul, A. , Ghanem, F. , Hamid, Mohamad Rijal , Trabelsi, Mohamed . (2014). A Selective Frequency-Reconfigurable Antenna for Cognitive Radio Applications, IEEE Antennas And Wireless Propagation Letters,13. Raza, A. , Khan, Muhammad U. , and Tahir, Farooq A. (2017). A Frequency Reconfigurable MIMO AntennaSystem for Cognitive Radio Applications”, Frequenz. Simsek, Murat and Aoad, Ashrf (2016). “Efficient Reconfigurable Microstrip Patch Antenna ModelingExploiting Knowledge Based Artificial Neural Networks”, Springer Proceedings in Mathematics & Statistics,153. Lai, Ming-Iu , Wu, Tjung-Yu , Hsieh, Jung-Chin , Wang, Chun-Hsiung ., and Jeng, Shyh-Kang (2007). ACompact Pattern Reconfigurable Antenna Design For Handheld Wireless Devices, IEEE Antennas andPropagation International Symposium. Zhang, Guang-Min , Hong, Jin-Song , Wang, Bing-Zhong , Song, Gangbing , and Li, Peng (2011). “Designand Time-Domain Analysis for a Novel Pattern Reconfigurable Antenna”, IEEE Antennas And WirelessPropagation Letters, 10. Zhang, Tao , Yao, Su-Ying , Wang, Yong (2015). Design of Radiation-Pattern-Reconfigurable Antenna WithFour Beams, IEEE Antennas and Wireless Prop. Letters, 14. Shoaib, Sultan , Shoaib, Nosherwan , Shoaib, Imran , and Chen, Xiaodong (2017, January). Design andPerformance Analysis Of Pattern Reconfigurable MIMO Antennas For Mobile Smartphones”, Microwave AndOptical Technology Letters, 59(1). Skaik, Talal and Abujalambo, Mahmoud (2018). Design of Microstrip Circular UWB Antenna withReconfigurable Frequency and Radiation Pattern”, IEEE 2018 International Conference on PromisingElectronic Technologies. Mahouti, Peyman (2019). Yıldız Technical University, “Design optimization of a pattern reconfigurablemicrostrip antenna using differential evolution and 3D EM simulation-based neural network model”,International Journal of RF and Microwave Computer Aided Engineering. Row, Jeen-Sheen , Liu, Wang-Lin , Chen, Tsair-Rong (2012). Circular Polarization and PolarizationReconfigurable Designs for Annular Slot Antennas, IEEE Transactions on Antennas and Propagation, 2012,60. Hu, Jun , Hao, Zhang-Cheng , and Miao, Zhuo-Wei (2017). Design and Implementation of A PlanarPolarization Reconfigurable Antenna, IEEE Antennas and Wireless Propagation Letters, 2017. Schaubert, D. (1983, January). Frequency-agile polarization diversity microstrip antennas and frequencyscanned array, U.S. Patent 4, pp. 367–474. Haupt, Randy L. , and Lanagan, Michael (2013, February). Reconfigurable Antennas, IEEE Antennas andPropagation Magazine, 55(1).

Page 53: Artificial Intelligence and Speech Technology - Taylor & Francis

Zhu, H. L. , Cheung, S. W. , Liu, X. H. (2014, June). Design of Polarization Reconfigurable Antenna usingMetasurface, IEEE Transc On Antennas And Prop., 62(6). Sun, Hucheng and Sun, Sheng (2016, January). A Novel Reconfigurable Feeding Network for Quad-Polarization-Agile Antenna Design, IEEE Transactions On Antennas And Propagation, 64(1). Sharma, Sonia , and Tripathi, Chandra Charu (2016, August). “Wideband to concurrent tri-band frequencyreconfigurable microstrip patch antenna for wireless communication”, International Journal of Microwave andWireless Technologies. Ali, Tanweer and Biradar, Rajashekhar C. (2017, April). A Compact Hexagonal Slot Dual Band FrequencyReconfigurable Antenna for WLAN Applications, Microwave And Optical Technology Letters, 59(4). Nemati, Nasrin and Bemani, Mohammad (2019, August). A novel reconfigurable microstrip fractal UWBantenna with six variable rejection frequency bands”, International Journal of Microwave and WirelessTechnologies.

Optimized XGBoost algorithm using agglomerative clustering for effective usercontext identification Abidine, M. B. , Fergani, B. , and Seth, S. (2019). Human Activity Recognition in Smart Home EnvironmentUsing OS-WSVM Model, 1, pp. 113–119. Anguita, D. , et al. (2013). A Public Domain Dataset for Human Activity Recognition Using Smartphones’, In:European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, pp.437–442. Available at: http://www.i6doc.com/en/livre/?GCOI=28001100131010. Babiker, M. , et al. (2018). Automated daily human activity recognition for video surveillance using neuralnetwork, 2017 IEEE International Conference on Smart Instrumentation, Measurement and Applications,ICSIMA 2017, 2017-November, pp. 1–5. doi: 10.1109/ICSIMA.2017.8312024. Casale, P. , Pujol, O. , and Radeva, P. (2011). Human Activity Recognition from Accelerometer Data Using aWearable Device, In: Pattern Recognition and Image Analysis IbPRIA., LNCS 6669, pp. 289–296. doi:https://doi.org/10.1007/978-3-642-21257-4_36. Chaurasia, S. K. , and Reddy, S. R. N. (2017). Context Based Computing : A Survey with Wearable Devices,In: International Conference on Emerging Trends in Engineering, Technology and Management, pp. 1–10. Chaurasia, S. K. , and Reddy, S. R. N. (2018). Design and Implementation of Data Collection & AnalysisTool for Healthcare Parameter Monitoring using Inverse Low Pass Filter, EAI Endorsed Transactions onPervasive Health and Technology, 4(16), pp. 1–12. Chen, T. Y. et al. (2015). Designing a Context-Sensitive Context Detection Service for Mobile Devices. Chernbumroong, S. et al. (2013). Elderly activities recognition and classification for applications in assistedliving’, Expert Systems with Applications. Elsevier Ltd, 40(5), pp. 1662–1674. doi:10.1016/j.eswa.2012.09.004. Chetty, G. , White, M. , and Akther, F. (2015). Smart phone based data mining for human activity recognition,Procedia Computer Science. Elsevier Masson SAS., 46(Icict 2014), pp. 1181–1187. doi:10.1016/j.procs.2015.01.031. Dey, A. K. , and Abowd, G. D. (1999). Towards a Better Understanding of Context and Context-Awareness,Computing Systems, 40(3), pp. 304–307. doi: 10.1007/3-540-48157-5_29. Fan, S. , Jia, Y. , and Jia, C. (2019). A feature selection and classification method for activity recognitionbased on an inertial sensing unit, Information (Switzerland), 10(10). doi: 10.3390/info10100290. Jothi, R. (2020). Clustering Time-Series Data Generated by Smart Devices for Human Activity Recognition,In: Advances in Intelligent Systems and Computing. Springer Nature, pp. 708–716. doi:https://doi.org/10.1007/978-3-030-16657-1_66. Kwapisz, J. R. , Weiss, G. M. , and Samuel, A. (2010). Activity Recognition using Cell PhoneAccelerometers, In: Acm Sigkdd Explorations Newsletter, pp. 74–82. doi: 10.1145/1964897.1964918. Lee, W. P. , et al. (2017). A smartphone-based activity-aware system for music streaming recommendation,Knowledge-Based Systems. Elsevier B.V., 131, pp. 70–82. doi: 10.1016/j.knosys.2017.06.002. Lima, W. S. et al. (2019). Human Activity Recognition Using Inertial Sensors in a Smartphone : An Overview,Sensors, pp. 1–28. doi: 10.3390/s19143213. Minarno, A. E. , Kusuma, W. A. , and Wibowo, H. (2020). Performance Comparison Activity Recognitionusing Logistic Regression and Support Vector Machine, 2020 3rd International Conference on IntelligentAutonomous Systems, ICoIAS 2020, IEEE, pp. 19–24. doi: 10.1109/ICoIAS49312.2020.9081858. Nie, Q. , Jin, L. , and Fei, S. (2014). Probability estimation for multi-class classification using AdaBoost,Pattern Recognition, 47(12), pp. 3931–3940. doi: 10.1016/j.patcog.2014.06.008. Ogbuabor, G. , and La, R. (2018). Human activity recognition for healthcare using smartphones, In: ACMInternational Conference Proceeding Series, pp. 41–46. doi: 10.1145/3195106.3195157.

Page 54: Artificial Intelligence and Speech Technology - Taylor & Francis

Wannenburg, J. , and Malekian, R. (2016). Physical Activity Recognition From Smartphone AccelerometerData for User Context Awareness Sensing, IEEE Transactions on System, Man, and Cybernetics: System,pp. 1–8.

1D CNN based approach for speech emotion recognition using MFCC features Dave, N. (2013). Feature extraction methods LPC, PLP and MFCC in speech recognition. Internationaljournal for advance research in engineering and technology, 1(6), pp. 1–4. Fahad, M. , Yadav, J. , Pradhan, G. , and Deepak, A. (2018). DNN-HMM based Speaker Adaptive EmotionRecognition using Proposed Epoch and MFCC Features. arXiv preprint arXiv:1806.00984. George, D. , Shen, H. , and Huerta, E. A. (2017). Deep Transfer Learning: A new deep learning glitchclassification method for advanced LIGO. arXiv preprint arXiv:1706.07446. Hajarolasvadi, N. , and Demirel, H. (2019). 3D CNN-Based Speech Emotion Recognition Using K-MeansClustering and Spectrograms. Entropy, 21(5), p. 479. Han, K. , Yu, D. , and Tashev, I. (2014). Speech emotion recognition using deep neural network and extremelearning machine. In: Fifteenth annual conference of the international speech communication association. Jin, Q. , Li, C. , Chen, S. , and Wu, H. (2015), April. Speech emotion recognition with acoustic and lexicalfeatures. In: 2015 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp.4749–4753). IEEE. Kang, S. , Kim, D. , and Kim, Y. (2019). A visual-physiology multimodal system for detecting outlier behaviorof participants in a reality TV show. International Journal of Distributed Sensor Networks, 15(7), p.1550147719864886. Kim, Y. , Lee, H. , and Provost, E. M. (2013), May. Deep learning for robust feature generation in audiovisualemotion recognition. In: 2013 IEEE international conference on acoustics, speech and signal processing (pp.3687–3691). IEEE. Kwon, S. (2020). A CNN-assisted enhanced audio signal processing for speech emotion recognition.Sensors, 20(1), p. 183. Li, Y. , Baidoo, C. , Cai, T. , and Kusi, G. A. (2019). Speech Emotion Recognition Using 1D CNN with NoAttention. In: 2019 23rd International Computer Science and Engineering Conference (ICSEC) (pp.351–356). IEEE. Liu, G. K. (2018). Evaluating Gammatone frequency cepstral coefficients with neural networks for emotionrecognition from speech. arXiv preprint arXiv:1806.09010. Liu, Z. T. , Wu, M. , Cao, W. H. , Mao, J. W. , Xu, J. P. , and Tan, G. Z. (2018). Speech emotion recognitionbased on feature selection and extreme learning machine decision tree. Neurocomputing, 273, pp. 271–280. Livingstone, S. R. , and Russo, F. A. (2018). The Ryerson Audio-Visual Database of Emotional Speech andSong (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North American English.PLoS One, 13(5), p.e0196391. Sahu, S. , Gupta, R. , Sivaraman, G. , AbdAlmageed, W. , and Espy-Wilson, C. (2018). Adversarial auto-encoders for speech based emotion recognition. arXiv preprint arXiv:1806.02146. Sajjad, M. , and Kwon, S. (2020). Clustering-Based Speech Emotion Recognition by Incorporating LearnedFeatures and Deep BiLSTM. IEEE Access, 8, pp. 79861–79875. Tao, F. , and Liu, G. (2018), April. Advanced LSTM: A study about better time dependency modeling inemotion recognition. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP) (pp. 2906–2910). IEEE. Wei, B. , Hu, W. , Yang, M. , and Chou, C. T. (2019). From real to complex: Enhancing radio-based activityrecognition using complex-valued CSI. ACM Transactions on Sensor Networks (TOSN), 15(3), pp. 1–32. Wen, G. , Li, H. , Huang, J. , Li, D. , and Xun, E. (2017). Random deep belief networks for recognizingemotions from speech signals. Computational intelligence and neuroscience, 2017. Wu, C. H. , Liang, W. B. , (2010, December 23). Emotion recognition of affective speech based on multipleclassifiers using acoustic-prosodic information and semantic labels. IEEE Transactions on AffectiveComputing. 2(1), pp. 10–21. Zhang, S. , Zhang, S. , Huang, T. , and Gao, W. (2017). Speech emotion recognition using deepconvolutional neural network and discriminant temporal pyramid matching. IEEE Transactions onMultimedia, 20(6), pp. 1576–1590. Zheng, W. L. , Zhu, J. Y. , Peng, Y. , and Lu, B. L. (2014, July). EEG-based emotion classification usingdeep belief networks. In: 2014 IEEE International Conference on Multimedia and Expo (ICME) (pp. 1–6).IEEE. Zheng, W. Q. , Yu, J. S. , and Zou, Y. X. (2015, September). An experimental study of speech emotionrecognition based on deep convolutional neural networks. In: 2015 international conference on affective

Page 55: Artificial Intelligence and Speech Technology - Taylor & Francis

computing and intelligent interaction (ASCI) (pp. 827–831). IEEE.

Review on text detection and recognition in images Brisinello, Matteo , Grbi, Ratko , Vranješ, Mario , Vranješ, Denis (2019). Review on text detection methodson scene images IEEE 2019. Lin, Han , Yang, Peng , Zhang, Fanlong . (2019). Review of Scene Text Detection and Recognition.,published by Springer, 8 January 2019. Liu, Xiyan , Meng, Gaofeng , Pan, Chunhong . (2019). Scene text detection and recognition with advances indeep learning: a survey, published by Springer, 6 March 2019. Long, Shangbang , He, Xin , Yao, Cong , 2020. Scene Text Detection and Recognition: The Deep LearningEra, published by Springer, 9 August 2020. Maske, Minakshi , Thakare, Shubhada (2019). A Review on Detection and Recognition of Text, IEEE 2019.Ong, Yi Ling , Chai, Almon , Lau, Bee Theng , McCarthy, Chris (2020). A Deep Learning Framework forRecognizing Vertical Texts in the Natural Scene, IEEE 2020. Rakadetyo A. P. , Farica Perdana, Maria Irmina . A combined Edge Detection Analysis and Clustering basedApproach for Real Time Text Detection by, IEEE 2019. Ranjitha, P. , Shamjith , Rajashekar, K. (2020). Multi Oriented Text Recognition and Classification in NaturalImages using MSER., IEEE June 2020. Su, Min , Peng, Hsing-Wei , Huang, Ko-Wei ., and Yang, Chu-Sing (2019). Image processing technology fortext recognition by, IEEE 2019. Zhan, Fangneng and Lu, Shijian (2019). ESIR: End-to-end Scene Text Recognition via Iterative ImageRectification, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Zhong, Zhuoyao , Sun, Lei , Huo, Qiang (2019). Improved localization accuracy by LocNet for Faster R-CNNbased text detection in natural scene images, published by Elsevier, 2019.

Comparative analysis of machine learning algorithms on gender classificationusing Hindi speech data Ahmad, J. , Sajjad, M. , Rho, S. , Kwon, S. I. , Lee, M. Y. , and Baik, S. W. (2018). Determining speakerattributes from stress-affected speech in emergency situations with hybrid SVM-DNN architecture.Multimedia Tools and Applications, 77(4), pp. 4883–4907. Alkhawaldeh, R. S. (2019). DGR: Gender Recognition of Human Speech Using One-DimensionalConventional Neural Network. Scientific Programming, 2019. Amlathe, P. (2018). Standard machine learning techniques in audio beehive monitoring: Classification ofaudio samples with logistic regression, K-nearest neighbor, Random forest and support vector machine. Bahari, M. H. , McLaren, M. , and van Leeuwen, D. A. (2014). Speaker age estimation using i-vectors.Engineering Applications of Artificial Intelligence, 34, pp. 99–108. Barkana, B. D. , and Zhou, J. (2015). A new pitch-range based feature set for a speaker’s age and genderclassification. Applied Acoustics, 98, pp. 52–61. Li, M. , Jung, C. S. , and Han, K. J. (2010). Combining five acoustic level modeling methods for automaticspeaker age and gender recognition. In Eleventh Annual Conference of the International SpeechCommunication Association. Livieris, I. E. , Pintelas, E. , and Pintelas, P. (2019). Gender Recognition by Voice Using an Improved Self-Labeled Algorithm. Machine Learning and Knowledge Extraction, 1(1), pp. 492–503. Metze, F. , Ajmera, J. , Englert, R. , Bub, U. , Burkhardt, F. , Stegmann, J. , Muller, C. , Huber, R. , Andrassy,B. , Bauer, J. G. , and Littel, B. (2007). April. Comparison of four approaches to age and gender recognitionfor telephone applications. In 2007 IEEE International Conference on Acoustics, Speech and SignalProcessing-ICASSP’07 (Vol. 4, pp. IV-1089). IEEE. Přibil, J. , Přibilová, A. , and Matoušek, J. (2017). GMM-based speaker age and gender classification inCzech and Slovak. Journal of Electrical Engineering, 68(1), pp. 3–12. Raahul, A. , Sapthagiri, R. , Pankaj, K. , and Vijayarajan, V. (2017). November. Voice based genderclassification using machine learning. In IOP Conference Series: Materials Science and Engineering (Vol.263, No. 4). Rao, K. P. , Rao, M. C. S. , and Chowdary, N. H. (2019). An integrated approach to emotion recognition andgender classification. Journal of Visual Communication and Image Representation, 60, pp. 339–345.

Page 56: Artificial Intelligence and Speech Technology - Taylor & Francis

Safavi, S. , Russell, M. , and Jančovič, P. (2018). Automatic speaker, age-group and gender identificationfrom children’s speech. Computer Speech & Language, 50, pp. 141–156. Shah, K. , Patel, H. , Sanghvi, D. , and Shah, M. (2020). A comparative analysis of logistic regression,random Forest and KNN models for the text classifications. Augmented Human Research, 5(1), pp. 1–16. Yücesoy, E. , and Nabiyev, V. V. (2016). A new approach with score-level fusion for the classification of aspeaker age and gender. Computers & Electrical Engineering, 53, pp. 29–39. Zvarevashe, K. , and Olugbara, O. O. (2018). August. Gender voice recognition using random forestrecursive feature elimination with gradient boosting machines. In 2018 International Conference onAdvances in Big Data, Computing and Data Communication Systems (icABCD) (pp. 1–6). IEEE.

COVID-19 detection through Mamdani-based fuzzy inference system Allahverdi, N. (2014). Design of Fuzzy Expert Systems and Its Applications in Some Medical Areas,International Journal of Applied Mathematics, Electronics and Computers, 2(1), p. 1. doi:10.18100/ijamec.59578. Dhiman, N. , and Sharma, M. K. (2019). Mediative Sugeno’s-TSK Fuzzy Logic Based Screening Analysis toDiagnosis of Heart Disease, Applied Mathematics, 10(6), pp. 448–467. doi: 10.4236/am.2019.106032. Dhiman, N. , and Sharma, M. K. (2019). Diabetes Diagnostic Model Based on Truth-value RestrictionsMethod using Inference of Intuitionistic Conditional and Qualified Fuzzy Propositions. International Journal ofEngineering and Advanced Technology, 9(2), pp. 5015–5021. doi: 10.35940/ijeat.B2923.129219. Dhiman, N. , and Sharma, M. K. (2020). Fuzzy Logic Inference System for Identification and Prevention ofCoronavirus (COVID-19). International Journal of Innovative Technology and Exploring Engineering, 9(4),pp. 1575–1580. doi: 10.35940/ijitee.F4642.049620. Dhiman, N. , and Sharma, M. K. (2020). Fuzzy Rule Based System to predict COVID19 – A Deadly Virus,International Journal of Management and Humanities, 4(8), pp. 78–82. doi: 10.35940/ijmh.H0781.044820. Kampf, G. , et al. (2020). Persistence of coronaviruses on inanimate surfaces and their inactivation withbiocidal agents, Journal of Hospital Infection, 104(3), pp. 246–251. doi: 10.1016/j.jhin.2020.01.022. Dhiman, N. , and Sharma, M. K. (2019). Mediative Multi-Criteria Decision Support System for VariousAlternatives Based on Fuzzy Logic. International Journal of Recent Technology and Engineering, 8(4), pp.7940–7946. doi: 10.35940/ijrte.D4207.118419. Rahmani Katigari, M. et al. (2017). Fuzzy expert system for diagnosing diabetic neuropathy, World Journal ofDiabetes, 8(2), p. 80. doi: 10.4239/wjd.v8.i2.80. Thukral, S. , and Bal, J. S. (2019). Medical Applications on Fuzzy Logic Inference System: A Review,International Journal of Advanced Networking and Applications, 10(4), pp. 3944–3950. doi:10.35444/IJANA.2019.10046.

Assistive technology is a boon or bane: A case of persons with disabilities Abdallah, E. E. and Fayyoumi, E. , 2016. Assistive technology for deaf people based on android platform.Procedia Computer Science, 94, pp. 295–301. Arrigo, M. , 2005. E-learning accessibility for blind students. Recent Research Developments in LearningTechnologies. Berger, A. , Vokalova, A. , Maly, F. and Poulova, P. , 2017, August. Google glass used as assistivetechnology its utilization for blind and visually impaired people. In International Conference on Mobile Weband Information Systems (pp. 70–82). Springer, Cham. Devpriya Dey , Dr. R Prakash Babu (2020) “Inclusion of Individuals with Disabilities through AssistiveTechnology at Workplace”, International Journal of Advanced Science and Technology, 29(7s), pp.1564–1570. George, M. (2011). What is AT? Retrieved from https://www.atia.org/:https://www.atia.org/at-resources/what-is-at/ Golden, D. , 1999. Assistive technology policy and practice: What is the right thing to do? What is thereasonable thing to do? What is required and must be done. Special Education Technology Practice, 1(1),pp. 12–14. India, P. , 2011. Census of India 2011 Provisional Population Totals. New Delhi: Office of the RegistrarGeneral and Census Commissioner. Lancioni, G. E. , Singh, N. N. , O’Reilly, M. F. , Sigafoos, J. and Oliva, D. , 2014. Assistive technology forpeople with severe/profound intellectual and multiple disabilities. In Assistive technologies for people with

Page 57: Artificial Intelligence and Speech Technology - Taylor & Francis

diverse abilities (pp. 277–313). Springer, New York, NY. Senjam, S. S. , 2020. Assistive Technology for People with Visual Loss. The Official Scientific Journal ofDelhi Ophthalmological Society, 30(2), pp. 7–12. Smith, R. O. , Scherer, M. J. , Cooper, R. , Bell, D. , Hobbs, D. A. , Pettersson, C. , Seymour, N. , Borg, J. ,Johnson, M. J. , Lane, J. P. and Sujatha, S. , 2018. Assistive technology products: a position paper from thefirst global research, innovation, and education on assistive technology (GREAT) summit. Disability andRehabilitation: Assistive Technology, 13(5), pp. 473–485. Zhang, Y. , 2000. Technology and the writing skills of students with learning disabilities. Journal of Researchon Computing in Education, 32(4), pp. 467–478. Rehabilitation 2030: A Call for Action [Internet]. [cited 2018 Aug 9]. Available from:http://www.who.int/disabilities/care/Rehab2030MeetingReport_plain_text_version.pdf Health Organization W. Global Research, Innovation and Education in Assistive Technology – GREATSummit 2017. World Health Organization . Priority assistive products list. 2017. JAWS for windows, Nanopak. Inc. , [online], http://www.nanopac.com/jaws.htm https://www.financialexpress.com/industry/technology/assistive-technology-for-persons-with-disabilities/1759947/ https://apps.who.int/iris/bitstream/handle/10665/199544/9789241509619_eng.pdf;jsessionid=ACB4B6B8EE57E35BCEB559A25FEB14D2?sequence=1

Sensor data fusion using machine learning techniques in indoor occupancydetection Abade, B. , Perez Abreu, D. , and Curado, M. (2018). A non-intrusive approach for indoor occupancydetection in smart environments. Sensors, 18(11), p. 3953. Assante, D. , and Fornaro, C. (2019), April. An educational IoT-based indoor environment monitoringsystem. In 2019 IEEE Global Engineering Education Conference (EDUCON) (pp. 1475–1479). IEEE. Aygün, S. , Güneş, E. O. , Subaşı, M. A. , and Alkan, S. (2019), July. Sensor Fusion for IoT-based IntelligentAgriculture System. In 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics) (pp.1–5). IEEE. Barsocchi, P. , Crivello, A. , Girolami, M. , Mavilia, F. , and Palumbo, F. (2017), September. Occupancydetection by multi-power bluetooth low energy beaconing. In 2017 International Conference on IndoorPositioning and Indoor Navigation (IPIN) (pp. 1–6). IEEE. Candanedo, L. M. , and Feldheim, V. (2016). Accurate occupancy detection of an office room from light,temperature, humidity and CO2 measurements using statistical learning models. Energy and Buildings, 112,pp. 28–39. Chen, Z. , Masood, M. K. , and Soh, Y. C. (2016). A fusion framework for occupancy estimation in officebuildings based on environmental sensor data. Energy and Buildings, 133, pp. 790–798. Elkhoukhi, H. , Nait Malek, Y. , Berouine, A. , Bakhouya, M. , Elouadghiri, D. , and Essaaidi, M. (2018).Towards a real-time occupancy detection approach for smart buildings. Procedia computer science, 134, pp.114–120. Feng, L. , Kortoçi, P. , and Liu, Y. (2017), October. A multi-tier data reduction mechanism for IoT sensors. InProceedings of the Seventh International Conference on the Internet of Things (pp. 1–8). Fleury, A. , Vacher, M. , and Noury, N. (2009). SVM-based multimodal classification of activities of dailyliving in health smart homes: sensors, algorithms, and first experimental results. IEEE transactions oninformation technology in biomedicine, 14(2), pp. 274–283. Hobson, B. W. , Lowcay, D. , Gunay, H. B. , Ashouri, A. , and Newsham, G. R. (2019). Opportunisticoccupancy-count estimation using sensor fusion: A case study. Building and environment, 159, p. 106154. https://waikato.github.io/weka-wiki/downloading_weka/. James, G. , Witten, D. , Hastie, T. , and Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112,p. 18). New York: springer. Lau, B. P. L., Wijerathne, N. , Ng, B. K. K. , and Yuen, C. (2017). Sensor fusion for public space utilizationmonitoring in a smart city. IEEE Internet of Things Journal, 5(2), pp. 473–481. Lopez Medina, M. A. , Espinilla, M. , Paggeti, C. , and Medina Quero, J. (2019). Activity Recognition for IoTDevices Using Fuzzy Spatio-Temporal Features as Environmental Sensor Fusion. Sensors, 19(16), p. 3512. Nesa, N. , and Banerjee, I. (2017). IoT-based sensor data fusion for occupancy sensing usingDempster–Shafer evidence theory for smart buildings. IEEE Internet of Things Journal, 4(5), pp. 1563–1570.

Page 58: Artificial Intelligence and Speech Technology - Taylor & Francis

Nweke, H. F. , Teh, Y. W. , Alo, U. R. , and Mujtaba, G. (2018), May. Analysis of multi-sensor fusion formobile and wearable sensor based human activity recognition. In Proceedings of the internationalconference on data processing and applications (pp. 22–26). Salhi, L. , Silverston, T. , Yamazaki, T. , and Miyoshi, T. (2019), January. Early Detection System for GasLeakage and Fire in Smart Home Using Machine Learning. In 2019 IEEE International Conference onConsumer Electronics (ICCE) (pp. 1–6). IEEE. Vafeiadis, T. , Zikos, S. , Stavropoulos, G. , Ioannidis, D. , Krinidis, S. , Tzovaras, D. , and Moustakas, K.(2017), October. Machine learning based occupancy detection via the use of smart meters. In 2017International Symposium on Computer Science and Intelligent Controls (ISCSIC) (pp. 6–12). IEEE. Wu, J. , Feng, Y. , and Sun, P. (2018). Sensor fusion for recognition of activities of daily living. Sensors,18(11), p. 4029. Zhongguo, Y. , Hongqi, L. , Ali, S. , and Yile, A. (2017). Choosing Classification Algorithms and Its OptimumParameters based on Data Set Characteristics. Journal of Computers, 28(5), pp. 26–38. Zimmermann, L. , Weigel, R. , and Fischer, G. (2017). Fusion of nonintrusive environmental sensors foroccupancy detection in smart homes. IEEE Internet of Things Journal, 5(4), pp. 2343–2352.

Covid'19 virus life progress span by using machine learning algorithms and timeseries methods Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian journal ofstatistics, pp. 171–178. Azzalini, A. (2005). The skewnormal distribution and related multivariate families. Scandinavian Journal ofStatistics, 32(2), pp. 159–188. Bai, Z. , Gong, Y. , Tian, X. , Cao, Y. , Liu, W. , & Li, J. (2020). The Rapid Assessment and Early WarningModels for COVID-19. Virologica Sinica, 1. Chauhan, P. , Kumar, A. , and Jamdagni, P. (2020). Regression Analysis of COVID-19 Spread in India andits Different States. medRxiv. Choi, B. C. K. , and Pak, A. W. P. (2003). A simple approximate mathematical model to predict the numberof severe acute respiratory syndrome cases and deaths. Journal of Epidemiology & Community Health,57(10), pp. 831–835. Dey, J. K. , and Dey, S. K. (2020). SARS-CoV-2 Pandemic, COVID-19 Case Fatality Rates and Deaths perMillion Population in India. Journal of Bioinformatics, Computational and Systems Biology, 2(1), p. 110. Friston, K. J. , Parr, T. , Zeidman, P. , Razi, A. , Flandin, G. , Daunizeau, J. , … and Price, C. J. (2020).Dynamic causal modelling of COVID-19. arXiv preprint arXiv:2004.04463. Gupta, R. , Pandey, G. , Chaudhary, P. , and Pal, S. K. (2020). SEIR and Regression Model based COVID-19 outbreak predictions in India. medRxiv. Indrayan, A. , and Shukla, S. (2020). COVID-19 Epidemic in India and Projections: Is Relief in Sight?.medRxiv. Kang, H. , Xia, L. , Yan, F. , Wan, Z. , Shi, F. , Yuan, H. , & Shen, D. (2020). Diagnosis of coronavirusdisease 2019 (COVID-19) with structured latent multi-view representation learning. IEEE transactions onmedical imaging. Kim, D. , Hong, S. , Choi, S. , and Yoon, T. (2016). Analysis of transmission route of MERS coronavirususing decision tree and Apriori algorithm, 2016 18th International Conference on Advanced CommunicationTechnology (ICACT), Pyeongchang, 2016, p. 1, doi: 10.1109/ICACT.2016.7423471. Kundu, D. (2014). Geometric skew normal distribution. Sankhya B. , 76(2), pp. 167–189. Pandey, G. , Chaudhary, P. , Gupta, R. , and Pal, S. (2020). SEIR and Regression Model based COVID-19outbreak predictions in India. arXiv preprint arXiv:2004.00958. Qin, L. , Sun, Q. , Wang, Y. , Wu, K. F. , Chen, M. , Shia, B. C. , and Wu, S. Y. (2020). Prediction of numberof cases of 2019 novel coronavirus (COVID-19) using social media search index. International journal ofenvironmental research and public health, 17(7), p. 2365. Tandon, H. , Ranjan, P. , Chakraborty, T. , and Suhag, V. (2020). Coronavirus (COVID-19): ARIMA basedtime-series analysis to forecast near future. arXiv preprint arXiv:2004.07859. Wibisono, T. , Aleman, D. M. , and Schwartz, B. (2008, December). A non-homogeneous approach tosimulating the spread of disease in a pandemic outbreak. In: 2008 Winter Simulation Conference (pp.2941–2941). IEEE.

Page 59: Artificial Intelligence and Speech Technology - Taylor & Francis

Sustainable development through adoption of digitization towards functioning ofself help groups Das, S. K. (2012). Ground realities of self help group–bank linkage programme: An empirical analysis,International Journal of Research in Social Sciences, 2(2), pp. 465–479. Devaki, K. , Mathialagan, P. , and Sabarathnam, V. E. (2015). Developing a cumulative scale for measuringthe performance of self-help groups in rural areas, International Journal of Applied Research, 1(10), pp.8–14. Goyal, D. M. (2016). Performance analysis of self help groups in Southern Haryana, EPRA InternationalJournal of Economic and Business Review, 4(8), pp. 51–60. Gupta, M. L. , and Kapila, M. (2014). Performance of Self Help Groups in Ludhiana District of Punjab,International Journal of Scientific Research, 3(6), pp. 81–83. Kishore, P. , and Rao, T. U. (2019). A review on Digitization of SHG with mobile usage in India, InternationalJournal of Advance Research, Ideas and Innovations in Technology, 5(3), pp. 1798–1802. RBI (2020), https://www.rbi.org.in/Scripts/BS_SpeechesView.aspx?Id=1018 Accessed on 26th Feb 2020 . Saxena, A. (2019). e-Shakti: Digitization of SHG’s, Pramana Research Journal, 9(1), pp. 293–300. Schiendler, D. R. (2010), Business Research Methods, New York: Tata Mc Graw Hill. World Bank Report (2020). Accessed on 24th August 2020https://www.worldbank.org/en/news/feature/2020/04/11/women-self-help-groups-combat-covid19-coronavirus-pandemic-india

Security and vulnerability issues in NoSQL Abdalla, Hemn & Li, Guoquang & Lin, Jinzhao & Alazeez, Mustafa . (2016). NoSQL Injection: Data Securityon Web Vulnerability. International Journal of Security and Its Applications. 10. 55–64.10.14257/ijsia.2016.10.9.07. Ajayi, Rosiji . (2015). Acid Properties, CAP Theorem & Mobile Databases. 10.13140/RG.2.1.1941.0084. Alapati, Sam . (2018). Apache Cassandra: An Introduction. 10.1007/978-1-4842-3126-5_1. Ali, Wajid & Majeed, Muhammad & Raza, Ali & Shafique, Muhammad Usman . (2019). Comparison betweenSQL and NoSQL Databases and Their Relationship with Big Data Analytics. Asian Journal of ComputerScience and Information Technology. 4. 1–10. 10.9734/AJRCOS/2019/v4i230108. Anwar pasha Deshmukh, Dr. & Qureshi, Riyazuddin . (2011). Transparent Data Encryption-Solution forSecurity of Database Contents. International Journal of Advanced Computer Sciences and Applications. 2.10.14569/IJACSA.2011.020305. Coffin, David . (2011). Data Encryption in Transit. 10.1007/978-1-4302-3832-4_7. Eessaar, Erki . (2016). The Database Normalization Theory and the Theory of Normalized Systems: Findinga Common Ground. Baltic Journal of Modern Computing. 4. 5–33. Ioan, Rus . (2015). Technologies and Methods for Auditing Databases. Procedia Economics and Finance.26. 991–999. 10.1016/S2212-5671(15)00921-1. Lake, Peter & Crowther, Paul . (2013). Database Scalability. 10.1007/978-1-4471-5601-7_9. Maktoubian, Jamal . (2019). MongoDB. 10.13140/RG.2.2.16032.43520. Thandeeswaran, R. & Lokesh, G. & Lokesh, S. & Kumar, Y. (2016). Enhanced database security with twolevel authentication. International Journal of Pharmacy and Technology. 8. 26346–26351. Tumin, Sharil & Encheva, Sylvia . (2012). A Closer Look at Authentication and Authorization Mechanisms forWeb-based Applications.

Artificial intelligence applications and techniques in interactive and adaptive smartlearning environments Bajaj, R. and Sharma, V. (2018). Smart Education with artificial intelligence based determination of learningstyles. Procedia computer science, 132, pp. 834–842.

Page 60: Artificial Intelligence and Speech Technology - Taylor & Francis

Chen, G. , Kumar, V. , Huang, R. and Kong, S. C. eds. (2015). Emerging issues in smart learning. SpringerBerlin Heidelberg. Chen, N. S. , Cheng, I. L. and Chew, S. W. (2016). Evolution is not enough: Revolutionizing current learningenvironments to smart learning environments. International Journal of Artificial Intelligence in Education,26(2), pp. 561–581. Chen, N. S. , Cheng, I. L. and Chew, S. W. (2016). Evolution is not enough: Revolutionizing current learningenvironments to smart learning environments. International Journal of Artificial Intelligence in Education,26(2), pp. 561–581. Gros, B. (2016). The design of smart educational environments. Smart Learning Environments, 3(1), p. 15. Gros, B. (2016). The design of smart educational environments. Smart Learning Environments, 3(1), p. 15. Hwang, G. J. (2014). Definition, framework and research issues of smart learning environments-a context-aware ubiquitous learning perspective. Smart Learning Environments, 1(1), p. 4. Jones, M. (1985). Applications of artificial intelligence within education. Computers & mathematics withapplications, 11(5), pp. 517–526. Kloos, C. D. , Dimitriadis, Y. , Hernández-Leo, D. , Muñoz-Merino, P. J. , Bote-Lorenzo, M. L. , Carrió, M. ,Alario-Hoyos, C. , Gómez-Sánchez, E. , and Santos, P. (October 2018). SmartLET: Learning analytics toenhance the design and orchestration in scalable, IoT-enriched, and ubiquitous Smart LearningEnvironments. In Proceedings of the Sixth International Conference on Technological Ecosystems forEnhancing Multiculturality (pp. 648–653). Mikulecky, P. (2019). September. Blended learning in smart learning environments. In EPIA Conference onArtificial Intelligence (pp. 62–67). Springer, Cham. Soltanpoor, R. and Yavari, A. (2017). June. CoALA: contextualization framework for smart learning analytics.In 2017 IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW) (pp.226–231). IEEE. Uskov, V. L. , Bakken, J. P. , Heinemann, C. , Rachakonda, R. , Guduru, V. S. , Thomas, A. B. andBodduluri, D. P. (2017). June. Building smart learning analytics system for smart university. In InternationalConference on Smart Education and Smart E-Learning (pp. 191–204). Springer, Cham. Uskov, V. L. , Bakken, J. P. , Shah, A. , Hancher, N. , McPartlin, C. , and Gayke, K. (2019). April. InnovativeInterLabs system for smart learning analytics in engineering education. In 2019 IEEE Global EngineeringEducation Conference (EDUCON) (pp. 1363–1369). IEEE. Uskov, V. L. , Bakken, J. P. , Shah, A. , Krock, T. , Uskov, A. , Syamala, J. , and Rachakonda, R. (2018).June. Smart Learning Analytics: Conceptual Modeling and Agile Engineering. In International KESConference on Smart Education and Smart E-Learning (pp. 3–16). Springer, Cham. Vesin, B. , Mangaroska, K. and Giannakos, M. (2018). Learning in smart environments: user-centereddesign and analytics of an adaptive learning system. Smart Learning Environments, 5(1), p. 24. Yoo, Y. , Lee, H. , Jo, I. H. , and Park, Y. (2015). Educational dashboards for smart learning: Review of casestudies. In Emerging issues in smart learning (pp. 145–155). Springer, Berlin, Heidelberg.

SIM-BERT: Speech intelligence model using NLP-BERT with improved accuracy Berard, A. (2016). Listen and translate: A proof of concept for end-to-end speech-to-text translation, NIPS. Lee, H. , and Glass, J. (2015). IEEE/ACM Transactions on Audio, Speech, and Language Processing, 23(9),pp. 1389–1420. Chen , (2017). Order preserving abstractive summarization for spoken content based on connectionisttemporal classification, Inter-speech 2017, pp. 2899–2903, 2017. Serdyuk, D. (2018). IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).IEEE, 2018, pp. 5754–5758. Chuang, G. (2018) Approaches to end-to-end spoken language understanding, IEEE (SLT). IEEE, 2018, pp.720–726. Devlin, J. (2019). Bert: Pretraining of deep bidirectional transformers for language understanding: HumanLanguage Technologies, vol. 1 (Long and Short Papers), pp. 4171–4186. Radford, A. (2018). Improving language understanding by generative pre-training. Rajpurkar, P. (2016). Conference on Empirical Methods in Natural Language Processing, 2016, pp.2383–2392. Rajpurkar, P. (2018). 56th Annual Meeting of the Association for Computational Linguistics, vol. 2 (ShortPapers), 2018, pp. 784–789. Chung , (2016), Audio word2vec: Unsupervised learning of audio segment representations using sequence-to-sequence autoencoder, Interspeech 2016, pp. 765–769.

Page 61: Artificial Intelligence and Speech Technology - Taylor & Francis

Glass, J. (2018). Speech2Vec: A sequence-to-sequence framework for learning word embeddings fromspeech, Proc. Interspeech 2018, pp. 811–815. Mikolov, T. (2013). Advances in neural information processing systems, pp. 3111–3119. Lee , (2016), Audio word2vec: Unsupervised learning of audio segment representations using sequence-to-sequence autoencoder Interspeech 2016, pp. 765–769, 2016. wen Yang, S. (2019). Mockingjay: Unsupervised speech representation learning with deep bidirectionaltransformer encoders. Baevski, A. (2020). vq-wav2vec: Self supervised learning of discrete speech representations, InternationalConference on Learning Representations. Jiang, D. (2019). Improving transformer-based speech recognition using unsupervised pre-training, arXiv Song, X. , et al . (2019). Speech-xlnet: Unsupervised acoustic model pretraining for self attention networks Fan, Zhiyun , Zhou, Shiyu , and Xu, Bo (2019). Unsupervised pre-traing for sequence to sequence speechrecognition,” arXiv preprint arXiv:1910.12418, 2019. Ling, S. (2019). Deep contextualized acoustic representations for semi-supervised speech recognition. Riloff, Ellen (2018). Architecture and representation. In: Proceedings of the 2018 Conference on EmpiricalMethods in Natural Language Processing, pages 1499–1509, 2018b. Peters, Matthew (2018). Deep contextualized word representations. Conference of the North AmericanChapter of the Association for Computational Linguistics, 1, pp. 2227–2237 Liu, Chi-Liang (2020). SpeechBERT: An Audio-and-text Jointly Learned Language Model for End-to-endSpoken Question Answering, arXiv:1910.11559v4 [cs.CL].

A literature review on virtual assistant for visually impaired Iyer, V. , Shah, K. , Sheth, S. , and Devadkar, K. (2020, June). Virtual assistant for the visually impaired. In:2020 5th International Conference on Communication and Electronics Systems (ICCES) (pp. 1057–1062).IEEE. Khairnar, D.P. , Karad, R.B. , Kapse, A. , Kale, G. , and Jadhav, P. (2020, April). Partha: A visually impairedassistance system. In: 2020 3rd International Conference on Communication System, Computing and ITApplications (CSCITA) (pp. 32–37). IEEE. Khaled, N. , Mohsen, S. , El-Din, K.E. , Akram, S. , Metawie, H. , and Mohamed, A. (2020, June). In-DoorAssistant Mobile Application Using CNN and TensorFlow. In: 2020 International Conference on Electrical,Communication, and Computer Engineering (ICECCE) (pp. 1–6). IEEE. Kukade, Rutuja V. , Fengse, Ruchita G. , Rodge, Kiran D. , Ransing, Siddhi P. , Lomte, Vina M. (2018).Virtual Personal Assistant for the Blind, Dept. of Computer Engineering, RMD Sinhgad School ofEngineering, Pune, Maharashtra, India. Matusiak, K. , Skulimowski, P. , and Strurniłło, P. (2013, June). Object recognition in a mobile phoneapplication for visually impaired users. In: 2013 6th International Conference on Human System Interactions(HSI) (pp. 479–484). IEEE. Mishra, R. , Mondal, S. , Kuchnure, A. , and Shah, R. (2016). Directions Aids for the Visually ChallengedUsing Image Processing Using Image Recognition. Singh, G. , Takhtani, K. , Kandale, O. and Dadhwal, N. , 2019. A Smart Personal AI Assistant for VisuallyImpaired People: A Survey. Sultan, M. R. , and Hoque, M. M. (2019, December). ABYS (Always By Your Side): A Virtual Assistant forVisually Impaired Persons. In: 2019 22nd International Conference on Computer and InformationTechnology (ICCIT) (pp. 1–6). IEEE. Tembhurne, N. M. , Vaidya, S. V. , Afrin Shiekh, P. , and Dravyakar, S. (2019). Voice Assistant for VisuallyImpaired People. Vtyurina, A. , Fourney, A. , Morris, M. R. , Findlater, L. and White, R. W. (2019, May). Bridging screenreaders and voice assistants for enhanced eyes-free web search. In: The World Wide Web Conference (pp.3590–3594). Wang, R. , Yu, C. , Yang, X. D. , He, W. and Shi, Y. (2019, May). EarTouch: facilitating smartphone use forvisually impaired people in mobile and public scenarios. In: Proceedings of the 2019 CHI Conference onHuman Factors in Computing Systems (pp. 1–13).

Page 62: Artificial Intelligence and Speech Technology - Taylor & Francis

Congestion control mechanisms to avoid congestion in VANET: A comparativereview Chandhar, P. B. , et al . (2018). A Survey on Congestion Control Techniques for Vehicular ADHOCNetworks, 6(3), pp. 1–4. Cheng, N. , et al . (2018). Big Data Driven Vehicular Networks, IEEE Network. doi:10.1109/MNET.2018.1700460. Fatemidokht, H. , and Kuchaki Rafsanjani, M. (2020). QMM-VANET: An efficient clustering algorithm basedon QoS and monitoring of malicious vehicles in vehicular ad hoc networks, Journal of Systems and Software.doi: 10.1016/j.jss.2020.110561. Hasrouny, H. , et al . (2019). Misbehavior detection and efficient revocation within VANET, Journal ofInformation Security and Applications. doi: 10.1016/j.jisa.2019.03.001. Kolte, S. R. , and Madankar, M. S. (2014). Adaptive congestion control for transmission of safety messagesin VANET. In: 2014 International Conference for Convergence of Technology, I2CT 2014. doi:10.1109/I2CT.2014.7092177. Kumar, P. , Kataria, H. S. , and Ghosh, T. (2015). Congestion control approach by reducing the number ofmessages in VANET. In: 2015 4th International Conference on Reliability, Infocom Technologies andOptimization: Trends and Future Directions, ICRITO 2015. doi: 10.1109/ICRITO.2015.7359297. Liu, X. , and Jaekel, A. (2019). Congestion control in V2V safety communication: Problem, analysis,approaches, Electronics (Switzerland). doi: 10.3390/electronics8050540. Martinez, F. J. , et al . (2009). A performance evaluation of warning message dissemination in 802.11pbased VANETs. In: Proceedings – Conference on Local Computer Networks, LCN. doi:10.1109/LCN.2009.5355151. Jabbarpour Sattari, Mohammad Reza , Md Noor, P. Rafidah (2012). Dynamic D-FPAV Congestion Controlfor Algorithm for VANETs to Rescue Human Lives, Archives Des Science. Mondal, A. , and Mitra, S. (2014). Dynamic and distributed channel congestion control strategy in VANET. In:Proceedings of the 2014 International Conference on Advances in Computing, Communications andInformatics, ICACCI 2014. doi: 10.1109/ICACCI.2014.6968382. Mughal, B. M. , Wagan, A. A. , and Hasbullah, H. (2010). Efficient congestion control in VANET for safetymessaging. In: Proceedings 2010 International Symposium on Information Technology – EngineeringTechnology, ITSim’10. doi: 10.1109/ITSIM.2010.5561609. Nahar, K. , et al . (2019). A Review on Congestion Control in Vehicular Ad Hoc Network at MAC Layer,Proceedings of International Conference on Sustainable Computing in Science, Technology andManagement (SUSCOM), pp. 26–28. Qureshi, K. N. , et al . (2018). A Dynamic Congestion Control Scheme for safety applications in vehicular adhoc networks, Computers and Electrical Engineering. doi: 10.1016/j.compeleceng.2017.12.015. Sepulcre, M. , Mittag, J. , et al . (2011). Congestion and awareness control in cooperative vehicular systems,Proceedings of the IEEE. doi: 10.1109/JPROC.2011.2116751. Sepulcre, M. , Gozalvez, J. , et al . (2011). Contextual communications congestion control for cooperativevehicular networks, IEEE Transactions on Wireless Communications. doi:10.1109/TWC.2010.120610.100079. Sharma, S. , Chahal, M. , and Harit, S. (2019). Transmission Rate-based Congestion Control in Vehicular AdHoc Networks. In: 2019 Amity International Conference on Artificial Intelligence (AICAI), pp. 303–307. doi:10.1109/AICAI.2019.8701304. de Sousa, R. S. , Boukerche, A. , and Loureiro, A. A. F. (2020). A distributed and low-overhead trafficcongestion control protocol for vehicular ad hoc networks, Computer Communications. doi:10.1016/j.comcom.2020.05.032. Taherkhani, N. , and Pierre, S. (2015). Improving dynamic and distributed congestion control in vehicular adhoc networks, Ad Hoc Networks. doi: 10.1016/j.adhoc.2015.04.008. Weinfield, A. (2010). Methods to reduce DSRC channel congestion and improve V2V communicationreliability. In: 17th ITS World Congress. Wisitpongphan, N. , et al . (2007). Broadcast storm mitigation techniques in vehicular ad hoc networks, IEEEWireless Communications. doi: 10.1109/MWC.2007.4407231. Zhang, Z. , Boukerche, A. , and Pazzi, R. W. (2011). A novel multi-hop clustering scheme for vehicular ad-hoc networks. In: MobiWac’11 – Proceedings of the 9th ACM International Symposium on MobilityManagement and Wireless Access, Co-located with MSWiM’11. doi: 10.1145/2069131.2069135.

Page 63: Artificial Intelligence and Speech Technology - Taylor & Francis

Comparative Study of various Stable and Unstable sorting Algorithms Mishra, Aditya Dev ., and Garg, Deepak . (2008, Dec). “Selection of Best Sorting Algorithm “, InternationalJournal of intelligent information Processing. II (II). pp. 363–368 Bender, M. A. , Farach-Colton, M. , and Mosteiro, M. A. (2006). Insertion sort is O (n log n). Theory ofComputing Systems, 39(3), 391–397. Fahriye, G. F. (2016). A comparative Study of Selection Sort and Insertion Sort Algorithms. InternationalJournal of Engineering and Technology (IRJET). 3(12), 326–330. Geissmann, B. , and Penna, P. (2018, January). Inversions from sorting with distance-based errors. InInternational Conference on Current Trends in Theory and Practice of Informatics (pp. 508–522). Edizionidella Normale, Cham. Hoare, C. A. R. (1961). Algorithm 64: quicksort. Communications of the ACM, 4(7), 321. Jadoon, S. , Solehria, S. F. , Rehman, S. , and Jan, H. (2011). Design and analysis of optimized selectionsort algorithm. International Journal of Electric & Computer Sciences (IJECS-IJENS), 11(01), 16–22. Jyoti, T. (2016). Review on Execution Time of Sorting Algorithms- A Comparative Study. InternationalJournal of Computer Science and Mobile Computing; 5(11):158–166. Knuth, D. E. (1998). The art of computer programming: Volume 3: Sorting and Searching. Addison-WesleyProfessional. Kumar, A. , Dutt, A. , and Saini, G. (2014). Merge Sort Algorithm. International Journal of Research, 1(11),16–21. Mohammed, A. S. , Amrahov, Ş. E. , and Çelebi, F. V. (2017). Bidirectional Conditional Insertion Sortalgorithm; An efficient progress on the classical insertion sort. Future Generation Computer Systems, 71,102–112. Sedgewick ,, and Wayne, K. (2011). Algorithms, Pearson Education, 4th Edition, pp. 248–249. Schaffer, R. , and Sedgewick, R. (1993). The analysis of heapsort. Journal of Algorithms, 15(1), 76–100. Cormen ,, Leiserson, C. , Rivest, R. , and Stein, C. (2009). Introduction To Algorithms, McGraw-Hill, ThirdEdition, pp. 15–17. Taiwo, O. E. , Christianah, A. O. , Oluwatobi, A. N. , and Aderonke, K. A. (2020). Comparative Study of TwoDivide and Conquer Sorting Algorithms: Quicksort And Mergesort. Procedia Computer Science, 171, pp.2532–2540. Verma, R. M. (1994). A general method and a master theorem for divide-and-conquer recurrences withapplications. Journal of Algorithms, 16(1), 67–79. Xiang, W. (2011, November). Analysis of the time complexity of quick sort algorithm. In 2011 internationalconference on information management, innovation management and industrial engineering (vol. 1, pp.408–410). IEEE.

Prediction analysis of forecasting applications with concept drifting distributions Baena-Garcıa, M. , del Campo-Ávila, J. , Fidalgo, R. , Bifet, A. , Gavalda, R. , and Morales-Bueno, R. (2006).Early drift detection method. In Fourth international workshop on knowledge discovery from data streams,vol. 6, pp. 77–86. de Barros, R. S. M. , de Lima Cabral, D. R., Jr. , P. M. G., and de Carvalho Santos, S. G. T. (2017). RDDM:reactive drift detection method. Expert Syst. Appl., 90, pp. 344–355. Delany, S. J. , Cunningham, P. , Tsymbal, A. , and Coyle, L. (2004). A case-based technique for trackingconcept drift in spam filtering. In: International Conference on Innovative Techniques and Applications ofArtificial Intelligence, pp. 3–16. Springer. Gama, J. , Medas, P. , Castillo, G. , and Rodrigues, P. (2004). Learning with drift detection. In BrazilianSymposium on Artificial Intelligence, pp. 286–295. Springer. Gama, J. , Žliobaitė, I. , Bifet, A. , Pechenizkiy, M. , and Bouchachia, A. (2014). A survey on concept driftadaptation. ACM computing surveys (CSUR), 46(4), pp. 1–37. Hilas, C. S. (2009). Designing an expert system for fraud detection in private telecommunications networks.Expert Syst. Appl., 36(9), pp. 11559–11569. Katakis, I. , Tsoumakas, G. , Banos, E. , Bassiliades, N. , and Vlahavas, I. P. (2009). An adaptivepersonalized news dissemination system. J. Intell. Inf. Syst., 32(2), pp. 191–212. Minku, L. L. and Yao, X. (2011). DDD: A new ensemble approach for dealing with concept drift. IEEEtransactions on knowledge and data engineering, 24(4), pp. 619–633. Mittal, S. and Tyagi, S. (2020). Computational techniques for real-time credit card fraud detection. InHandbook of Computer Networks and Cyber Security, pp. 653–681. Springer.

Page 64: Artificial Intelligence and Speech Technology - Taylor & Francis

Nishida, K. and Yamauchi, K. (2007). Detecting concept drift using statistical testing. In Internationalconference on discovery science, pp. 264–269. Springer. Ren, S. , Liao, B. , Zhu, W. , Li, Z. , Liu, W. , and Li, K. (2018). The gradual resampling ensemble for miningimbalanced data streams with concept drift. Neurocomputing, 286, pp. 150–166. Webb, G. I. , Hyde, R. , Cao, H. , Nguyen, H. L. , and Petitjean, F. (2016). Characterizing concept drift. DataMining and Knowledge Discovery, 30(4), pp. 964–994.

A hybrid cardiovascular disease prediction system using machine learningalgorithms Awang, M. K. , and Siraj, F. (2013). Utilization of an artificial neural network in the prediction ofcardiovascular disease, Int. J. Bio-Science Bio-Technology, 5(4), pp. 159–165. Methaila, A. , Kansal, P. , Arya, H. , and Kumar, P. (2014). Early Cardiovascular disease Prediction UsingData Mining Techniques, 6956, October, pp. 53–59. Ordonez, C. (2004). Improving Cardiovascular disease Prediction using Constrained Association Rules,Tech. Semin. Present. Univ. Tokyo. Noh, Kiyong , Lee, H. , Shon, H. , Lee, B. , and Ryu, K. (2006). Associative Classification Approach forDiagnosing Cardiovascular Disease, Intell. Comput. Signal Process. Pattern Recognit., 345, pp. 721–727,2006. Yanwei, N. , and Heon Gyu Lee, K. H. R. (2007). Mining Bio Signal Data: Coronary Artery Disease Diagnosisusing Linear and Nonlinear Features of HRV, Proc. Int. Conf. Emerg. Technol. Knowl. Discov. Data Min., pp.56–66. Chaurasia, V. , and Pal, S. (2013). Data Mining Approach to Detect Cardiac vascular diseases, Int. J. Adv.Comput. Sci. Inf. Technol., 2(4), pp. 56–66. Kumari Milan, G. S. (2011). Comp. Study Data Min. Classif. Methods Cardiovasc. Dis. Predict., 2, IJCST 2,Issue 2, June 2011, 2011. Silva, A. M. D. (2015). Feature Selection, 13, pp. 1–13, Springer, Berlin, Germany. Kiruthika Devi, S. , et al . (2016). Prediction of Heart Disease using Data Mining Techniques, Indian Journalof Science and Technology, Vol 9(39), October 2016 Palaniappan, S. and Awang, R. (2008). Intelligent heart disease prediction system using data miningtechniques. In: Proceedings of IEEE/ACS International Conference on Computer Systems and Applications(AICCSA 2008), pp. 108 115, Doha, Qatar, March–April 2008. Thirumuruganathan, S. (2010). A Detailed Introduction to K-Nearest Neighbor (KNN) Algorithm, [Online –https://saravananthirumuruganathan.wordpress.com/2010/05/17/a-detailed-introduction-to-k-nearest-neighbor-knn-algorithm/]. Wu, X. , and Kumar, V. (2007). Top 10 Algorithms in Data Mining, Springer, Berlin, Germany. Wagacha, P. W. (2003). Induction of decision trees, Foundations of Learning and Adaptive Systems, 12, pp.1 14, 2003. Jain, A. K. , Duin, P. W. , and Mao, J. (1999). Statistical pattern recognition, IEEE Transactions on PatternAnalysis and Machine Intelligence, 22(1), pp. 4–37, 1999. Harrell, F. E. (2015). Ordinal logistic regression, in Regression Modeling Strategies, pp. 311–325, Springer,Berlin, Germany, 2015. Sivasankari, S. , and Sankara Subramanian, R. (2016). An improved model of cardiovascular diseaseprediction system using data mining models, International Journal of Advanced Research in BasicEngineering Sciences and Technology (IJARBEST), 2(Special Issue 19), October 2016. Shouman, Mai , et al . (2012). Integrating Naive and clustering with a different initial centroid selectionmethods in the diagnosis of cardiovascular disease prediction., CS IT CSCP, pp. 125–137. Biau, G. (2012). Analysis of a random forest model, J. Mach. Learn. Res., 13, pp. 1063–1095. Parthiban, Latha , and Subramanian, R. (2008). Intelligent Cardiovascular disease Prediction System usingCANFIS and Genetic Algorithm, Int. J. Biol. Biomed. Med. Sci., 3(3), pp. 1–8. Srinivas, K. (2010). Analysis of coronary cardiovascular disease and prediction of a heart attack in coalmining regions using data mining techniques, IEEE Trans. Comput. Sci. Educ. (ICCSE), pp. (1344–1349). Durairaj, M. , and Ramasamy, N. (2016). A comparison of the perceptive approaches for preprocessing thedata set for predicting fertility success rate, International Journal of Control theory and Applications, 9, pp.256–260. Fatima, M. , and Pasha, M. (2017). Survey of machine learning algorithms for disease diagnostic. Journal ofIntelligent Learning Systems and Applications, Journal of Intelligent Learning Systems and Applications,9(01), pp. 1.

Page 65: Artificial Intelligence and Speech Technology - Taylor & Francis

Financial inclusion via Fintech: A conceptual framework for digitalizing thebanking landscape of rural India Ananth, S. , and Öncü, T. S. (2013). Challenges to financial inclusion in India: The case of Andhra Pradesh.Economic and Political Weekly, 48(7), pp. 77–83. Bansal, S. (2014). Perspective of technology in achieving financial inclusion in rural India. ProcediaEconomics and Finance, 11, pp. 472–480. Bhuyan, A. K. (2018). Contributoral role of banking sector in financial inclusion in India. ITIHAS The Journalof Indian Management, 8(2), pp. 9–15. Das, S. (2019). Opportunities and challenges of FinTech. Retrieved fromhttps://rbi.org.in/Scripts/BS_SpeechesView.aspx?Id=1071 Deb, M. , and Agrawal, A. (2017). Factors impacting the adoption of m-banking: understanding brand India’spotential for financial inclusion. Journal of Asia Business Studies. 11(1), pp. 22–40. Dorfleitner, G. , Hornuf, L. , Schmitt, M. , and Weber, M. (2017). The Fintech market in Germany. In: FinTechin Germany (pp. 13–46). Springer, Cham. Guild, J. (2017). Fintech and the Future of Finance. Asian Journal of Public Affairs, 10(1), pp. 17–20. Kandpal, V. , and Mehrotra, R. (2019). Financial inclusion: The role of Fintech and digital financial services inIndia. Indian Journal of Economics & Business, 19(1), pp. 85–93. Kashyap, P. (2016). Rural marketing. Pearson Education India. Kondracki, N. L. , and Wellman, N. S. (2002). Content analysis: Review of methods and their applications innutrition education. Journal of Nutrition Education and Behavior, 34(4), pp. 224–230. Kumar, A. , (2019). Fintech and Financial Inclusion: The need to focus on digitally-enabled financial servicesin upcoming budget. Retrieved from https://yourstory.com/2019/01/fintech-financial-inclusion-focus-digitally-services-upcoming-budget. Kumari, R. , and Kochikunnel, N. J. (2018), Application of Fintech in banking sector with reference to artificialintelligence. International Journal of Social Science and Economic Research, 3(9), pp. 4547–4568. Lal, T. (2019). Measuring impact of financial inclusion on rural development through cooperatives.International Journal of Social Economics. 46(3), pp. 352–376. Lenka, S. K. , and Barik, R. (2018). A discourse analysis of financial inclusion: post-liberalization mapping inrural and urban India. Journal of Financial Economic Policy. 10(3), pp. 406–425. Lenka, S. K. , and Sharma, R. (2017). Does financial inclusion spur economic growth in India? The Journalof Developing Areas, 51(3), pp. 215–228. Miles, M. B. , and Huberman, A. M. (1994). Qualitative data analysis. An expanded sourcebook, (2ndedition), Thousand Oaks, CA: Sage. Mundra, S. S. (2016). Financial Inclusion in India–The Journey so far and the Way Ahead. In Speech atBRICS Workshop on Financial Inclusion, September (Vol. 19). OICU-IOSCO (2017). Research Report on Financial Technologies (Fintech). Retrieved fromhttps://www.iosco.org/library/pubdocs/pdf/IOSCOPD554.pdf. Ozili, P. K. (2018). Impact of Digital Finance on Financial Inclusion and Stability. Borsa Istanbul Review,18(4), pp. 329–340. Reserve Bank of India (2018). Report of the Steering Committee on FinTech related Issues 2019:Department of Economic Affairs, Ministry of Finance, GoI. World Bank (2018). 19 crore Indian adults don’t have bank accounts. Retrieved fromhttps://www.livemint.com/Industry/CJk2Yalf8NYRdgp8HcvFFJ/19-crore-Indian-adults-dont-have-bank-account-World-Bank.html Yadav, R. K. , and Saxena, A. K. (2019). Impact of Financial Inclusion on Women Empowerment in RuralArea through Banking Services. Global Journal of Enterprise Information System, 11(1), pp. 22–30.