Top Banner
Editor Valentin Popa Founding Editor Severian Dumitriu VOLUME 1 Structure and Function The Polymeric-Biomaterials 2-Volume Set, Third Edition
452

Polymeric Biomaterials - Taylor & Francis eBooks

Mar 06, 2023

Download

Documents

Khang Minh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Polymeric Biomaterials - Taylor & Francis eBooks

9470X

Structure and FunctionVO LU M E 1

Materials Science & Engineering; and Polymer Science

Biomaterials have had a major impact on the practice of contemporary medicine and patient care. Growing into a major interdisciplinary effort involving chemists, biologists, engineers, and physicians, biomaterials development has enabled the creation of high-quality devices, implants, and drug carriers with greater biocompatibility and biofunctionality. The fast-paced research and increasing interest in finding new and improved biocompatible or biodegradable polymers have provided a wealth of new information, transforming this edition of Polymeric Biomaterials into a 2-volume set.

This volume, Polymeric Biomaterials: Structure and Function, contains 25 authoritative chapters written by experts from around the world. Contributors cover the following topics:

• The structure and properties of synthetic polymers including polyesters, polyphosphazenes, and elastomers

• The structure and properties of natural polymers such as mucoadhesives, chitin, lignin, and carbohydrate derivatives

• Blends and composites—for example, metal–polymer composites and biodegradable polymeric/ceramic composites

• Bioresorbable hybrid membranes, drug delivery systems, cell bioassay systems, electrospinning for regenerative medicine, and more

Completely revised and expanded, this state-of-the-art reference presents recent developments in polymeric biomaterials: from their chemical, physical, and structural properties to polymer synthesis and processing techniques and current applications in the medical and pharmaceutical fields.

The Polymeric Biomaterials 2-Volume Set, Third Edition

EditorValentin Popa

Founding EditorSeverian Dumitriu

VO LU M E 1

Structure and Function

The Polymeric-Biomaterials 2-Volume Set, Third Edition

Structure and Function

PopaDumitriu

VO LU M E 1

The Polym

eric Biom

aterials 2-Volum

e Set, Third E

dition

Page 2: Polymeric Biomaterials - Taylor & Francis eBooks

Structure and FunctionVO LU M E 1

Page 3: Polymeric Biomaterials - Taylor & Francis eBooks

Polymeric Biomaterials

Polymeric Biomaterials: Structure and Function, Volume 1

Polymeric Biomaterials: Medicinal and Pharmaceutical Applications, Volume 2

Page 4: Polymeric Biomaterials - Taylor & Francis eBooks

CRC Press is an imprint of theTaylor & Francis Group, an informa business

Boca Raton London New York

EditorValentin Popa

Founding EditorSeverian Dumitriu

Structure and FunctionVO LU M E 1

Page 5: Polymeric Biomaterials - Taylor & Francis eBooks

CRC PressTaylor & Francis Group6000 Broken Sound Parkway NW, Suite 300Boca Raton, FL 33487-2742

© 2013 by Taylor & Francis Group, LLCCRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government worksVersion Date: 20120726

International Standard Book Number-13: 978-1-4200-9471-8 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material repro-duced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copy-right.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identifica-tion and explanation without intent to infringe.

Visit the Taylor & Francis Web site athttp://www.taylorandfrancis.com

and the CRC Press Web site athttp://www.crcpress.com

Page 6: Polymeric Biomaterials - Taylor & Francis eBooks

v

ContentsPreface...............................................................................................................................................ixAcknowledgments .............................................................................................................................xiEditors ............................................................................................................................................ xiiiContributors .....................................................................................................................................xv

Chapter 1 Synthesis and Fabrication of Polyesters as Biomaterials .............................................1

Philippe Lecomte and Christine Jérôme

Chapter 2 Hydrogels Formed by Cross-Linked Poly(Vinyl Alcohol) ......................................... 37

Gaio Paradossi

Chapter 3 Development and Evaluation of Poly(Vinyl Alcohol) Hydrogels as a Component of Hybrid Arti�cial Tissues for Orthopedics Surgery Application ........ 57

Masanori Kobayashi

Chapter 4 Polyphosphazenes as Biomaterials ............................................................................. 83

Meng Deng, Cato T. Laurencin, Harry R. Allcock, and Sangamesh G. Kumbar

Chapter 5 Biodegradable Polymers as Drug Carrier Systems .................................................. 135

Abraham J. Domb and Wahid Khan

Chapter 6 Bioresorbable Hybrid Membranes for Bone Regeneration ...................................... 177

Akiko Obata and Toshihiro Kasuga

Chapter 7 Mucoadhesive Polymers: Basics, Strategies, and Future Trends ............................. 193

Andreas Bernkop-Schnürch

Chapter 8 Biodegradable Polymeric/Ceramic Composite Scaffolds to Regenerate Bone Tissue .............................................................................................................. 221

Catherine Gkioni, Sander Leeuwenburgh, and John Jansen

Chapter 9 Amphiphilic Systems as Biomaterials Based on Chitin, Chitosan, and Their Derivatives ............................................................................................... 243

Jacques Desbrieres

Chapter 10 Biomaterials of Natural Origin in Regenerative Medicine ...................................... 271

Vijay Kumar Nandagiri, Valeria Chiono, Piergiorgio Gentile, Franco Maria Montevecchi, and Gianluca Ciardelli

Page 7: Polymeric Biomaterials - Taylor & Francis eBooks

vi Contents

Chapter 11 Natural Polymers as Components of Blends for Biomedical Applications ..............309

Alina Sionkowska

Chapter 12 Metal–Polymer Composite Biomaterials ................................................................. 343

Takao Hanawa

Chapter 13 Evolution of Current and Future Concepts of Biocompatibility Testing.................. 377

Menno L.W. Knetsch

Chapter 14 Biocompatibility of Elastomers ................................................................................ 415

Dominique Chauvel-Lebret, Pascal Auroy, and Martine Bonnaure-Mallet

Chapter 15 Preparation and Applications of Modulated Surface Energy Biomaterials ............. 495

Blanca Vázquez, Luis M. Rodríguez-Lorenzo, Gema Rodríguez-Crespo, Juan Parra, Mar Fernández, and Julio San Román

Chapter 16 Electrospinning for Regenerative Medicine ............................................................. 539

Toby D. Brown, Cedryck Vaquette, Dietmar W. Hutmacher, and Paul D. Dalton

Chapter 17 Polymeric Nanoparticles for Targeted Delivery of Bioactive Agents and Drugs .... 593

Cesare Errico, Alberto Dessy, Anna Maria Piras, and Federica Chiellini

Chapter 18 Polymeric Materials Obtained through Biocatalysis ............................................... 617

Florin Dan Irimie, Csaba Paizs, and Monica Ioana Tosa

Chapter 19 Polymer-Based Colloidal Aggregates as a New Class of Drug Delivery Systems ......659

Cesare Cametti

Chapter 20 Photoresponsive Polymers for Control of Cell Bioassay Systems ............................ 683

Kimio Sumaru, Shinji Sugiura, Toshiyuki Takagi, and Toshiyuki Kanamori

Chapter 21 Lignin in Biological Systems ...................................................................................709

Valentin I. Popa

Chapter 22 Carbohydrate-Derived Self-Crosslinkable In Situ Gelable Hydrogels for Modulation of Wound Healing ........................................................................... 739

Lihui Weng, Christine Falabella, and Weiliam Chen

Page 8: Polymeric Biomaterials - Taylor & Francis eBooks

viiContents

Chapter 23 Dental and Maxillofacial Surgery Applications of Polymers .................................. 783

E.C. Combe

Chapter 24 Biomaterials as Platforms for Topical Administration of Therapeutic Agents in Cutaneous Wound Healing .................................................................................. 837

Rhiannon Braund and Natalie J. Medlicott

Chapter 25 Polymers for Arti�cial Joints ................................................................................... 851

Masayuki Kyomoto, Toru Moro, and Kazuhiko Ishihara

Index .............................................................................................................................................. 885

Page 9: Polymeric Biomaterials - Taylor & Francis eBooks
Page 10: Polymeric Biomaterials - Taylor & Francis eBooks

ix

PrefaceThe �eld of biomaterials has developed rapidly because of the continuous and ever-expanding practical needs of medicine and health-care practice. There are currently thousands of medical devices, diagnostic products, and disposables on the market, and the range of applications contin-ues to grow. In addition to traditional medical devices, diagnostic products, pharmaceutical prepa-rations, and health-care disposables, the list of biomaterials applications includes smart delivery systems for drugs, tissue cultures, engineered tissues, and hybrid organs.

Undoubtedly, biomaterials have had a major impact on the practice of contemporary medicine and patient care, resulting in both saving and improving the quality of lives of humans and animals. Modern biomaterials practice is continuing to develop into a major interdisciplinary effort involv-ing chemists, biologists, engineers, and physicians. It also takes advantage of developments in the traditional, nonmedical materials �eld, and much progress has been made since the beginning of the research in biomaterials that made possible the creation of a high-quality and much improved vari-ety of devices, implants (permanent or temporary), and drug carrier devices. All of these now dis-play a greater than ever biocompatibility and biofunctionality. The variety of chemical substances used in these materials is currently very broad, and most biomedical applications are associated with various polymers and materials based on them.

The pace of research in the �eld of polymeric biomaterials is so fast that two editions of Polymeric Biomaterials have already been edited by Severian Dumitriu. Due to the interest generated and the success of these books, Severian was working on a third edition. Unfortunately, he passed away before this could be �nalized. Many of the scientists who accepted his invitation to cooperate for this new edition agreed to contribute to the book in memory of the contribution that Severian made to the �eld of polymeric biomaterials. Together with Daniela, his beloved daughter, and Barbara Glunn and Jessika Vakili from Taylor & Francis Group, we decided to continue the work and �nal-ize this book.

This book is organized in two volumes consisting of 53 chapters that systematically provide the latest developments in different aspects of polymeric biomaterials. Thus, we can mention contribu-tions to the �eld of synthesis and applications of polymers such as polyesters, poly(vinyl alcohol), polyphosphazenes, elastomers, bioceramics, blends or composites, enzymatic synthesis, along with natural ones such as mucoadhesives, chitin, chitosan, lignin, carbohydrates derivatives, heparin, etc.

Drugs carriers and delivery systems, gene and nucleic acids delivery represent other subjects of some chapters, dealing with both supports (biodegradable and biocompatible) and techniques (nanoparticles, electrospinning, photo- and pH responsive polymers, hydrogels, lipid-core micelles, biomimetic systems, medical devices) aspects. In some cases, biomaterials can be synthesized, modi�ed, and processed by different methods to ensure biocompatibility and biodegradability to be used as membranes, composites, scaffolds, and implants. Some examples of speci�c utilizations of polymeric biomaterials are presented, such as orthopedic surgery, bone regeneration, wound healing, dental and maxillofacial surgery applications, arti�cial joints, diabetes, anticancer agents and cancer therapy, modi�cation of living cells, myocardial tissue engineering—repair and recon-struction, and bioarti�cial organs.

Publishing this book was accomplished with the contributions of renowned scientists from all over the world. They are all experts in their particular �eld of biomaterials research and have made high-level contributions to various �elds of research. We are very grateful to these scientists for their willingness to contribute to this reference work as well as for their engagement. Without their commitment and enthusiasm, it would not have been possible to compile such a book.

Page 11: Polymeric Biomaterials - Taylor & Francis eBooks

x Preface

I am also grateful to the publisher for recognizing the demand for such a book, for taking the risk to bring out such a book, and for realizing the excellent quality of the publication.

I would like to thank Daniela for her inestimable help and assistance. I dedicate this book to memory of Severian, one of my best friends.

Last but not least, I would like to thank my family for their patience. I sincerely apologize for the many hours I spent in the preparation of this book, which kept me away from them.

This book is a very useful tool for many scientists, physicians, pharmacists, engineers, and other experts in a variety of disciplines, both in academe and industry. It may not only be useful for research and development but may also be suitable for teaching.

This book has a companion CD that contains color �gures as noted at the applicable text �gures.

Valentin I. Popa

Page 12: Polymeric Biomaterials - Taylor & Francis eBooks

xi

AcknowledgmentsMy father was passionate about polymeric biomaterials. He was very happy when this project was planned with Taylor & Francis Group. He had worked tirelessly toward this. He would have loved to have seen this book published, but destiny willed otherwise.

I am extremely grateful to Professor Popa for accepting to serve as the editor, to all the authors for their precious contributions, and to the staff at Taylor & Francis Group.

The positive response from the authors to pursue their contribution to this book was amazing and is testimony of their appreciation for the scienti�c contribution that my father made to the �eld of polymeric biomaterials.

I trust the book is of great quality and re¥ects the efforts and dedication that have been put into it by my father and all the contributors.

My small contribution to this book is dedicated to the memory of my parents, Severian and Maria, for their unconditional love and for being the best teachers ever. And to �nish on a positive note, I want to cite one quote of Dr. Seuss that I particularly like:

“Don’t cry because it’s over. Smile because it happened”.

Daniela Dumitriu

Page 13: Polymeric Biomaterials - Taylor & Francis eBooks
Page 14: Polymeric Biomaterials - Taylor & Francis eBooks

xiii

EditorsSeverian Dumitriu (deceased) was a research professor, Department of Chemical Engineering, University of Sherbrooke, Quebec, Canada. He edited several books, including Polymeric Biomaterials, second edition, Polysaccharides in Medicinal Applications, and Polysaccharides: Structural Diversity and Functional Versatility (all three titles were published by Taylor & Francis Group [previously Marcel Dekker]), and authored or coauthored over 190 professional papers and book chapters in the �elds of polymer and cellulose chemistry, polyfunctional initiators, and bioactive polymers. He also held 15 international patents. Professor Dumitriu received his BSc (1959) and MS (1961) in chemical engineering and his PhD (1971) in macromolecular chemistry from the Polytechnic Institute of Jassy, Romania. Upon completing his doctorate, he worked with Professor G. Smets at the Catholic University of Louvain, Belgium, and was a research associate at the University of Pisa, Italy; the Hebrew University Medical School, Jerusalem, Israel; and the University of Paris, South France.

Valentin I. Popa earned his BSc and MSc in chemical engineering (1969) and PhD in the �eld of polysaccharide chemistry (1976) from Polytechnic Institute of Iasi, Romania. He was awarded the Romanian Academy Prize for his contributions in the �eld of seaweed chemistry (1976). He has published more than 500 papers in the following �elds: wood chemistry and biotechnology, bio-mass complex processing, biosynthesis and biodegradation of natural compounds, allelochemicals, bioadhesives, and bioremediation. He is also the author or coauthor of 37 books or book chapters. Dr. Popa holds six patents and has been involved in many Romanian and European research proj-ects as scienti�c manager. He was visiting scientist or visiting professor at Academy of Sciences (Seoul, Korea, 1972), Technical University of Helsinki (Finland, 1978), Institute of Biotechnology (Vienna, Austria, 1995), Research Institute for Pulp and Paper (Braila, Romania, 1976), “Petru Poni” Institute of Macromolecular Chemistry (Iasi, Romania, 1985, 1986), Université de Sherbrooke and University McGill (Canada, 2003), STFI–Packforsk (now known as Innventia, Stockholm, Sweden, 2008), and Institute of Wood Chemistry (Riga, Latvia, 2009). Dr. Popa is a member of the International Lignin Institute, International Association of Scienti�c Papermakers, International Academy of Wood Science, Romanian Academy for Technical Sciences, and American Chemical Society. He is also a professor of wood chemistry and biotechnology in “Gheorghe Asachi” Technical University of Iasi, PhD supervisor (30 students defended their theses), and editor-in-chief of Cellulose Chemistry and Technology.

Page 15: Polymeric Biomaterials - Taylor & Francis eBooks
Page 16: Polymeric Biomaterials - Taylor & Francis eBooks

xv

Harry R. AllcockDepartment of ChemistryThe Pennsylvania State UniversityUniversity Park, Pennsylvania

Pascal AuroyUniversité d’AuvergneClermont-Ferrand, France

Andreas Bernkop-SchnürchInstitute of PharmacyUniversity of InnsbruckInnsbruck, Austria

Martine Bonnaure-MalletUFR Odontologie Equipe de Microbiologie

EA 1254Université Européenne de BretagneRennes, France

Rhiannon BraundSchool of PharmacyUniversity of OtagoDunedin, New Zealand

Toby D. BrownInstitute for Health and Biomedical

InnovationQueensland University of TechnologyBrisbane, Queensland, Australia

Cesare CamettiDepartment of PhysicsUniversity of Rome “La Sapienza”andCNR-INFM-SOFTRome, Italy

Dominique Chauvel-LebretUniversité Européenne de BretagneUFR d’Odontologie-UMR CNRS 6226

Sciences Chimiques de Rennes-UR1, CHU-pole d’Odontologie et de chirurgie Buccale

Rennes, France

Weiliam ChenDepartment of SurgeryDivision of Wound Healing and Regenerative

MedicineSchool of MedicineNew York UniversityNew York, New York

Federica ChielliniLaboratory of Bioactive Polymeric Materials

for Biomedical and Environmental Application (BIOLab)

Department of Chemistry and Industrial Chemistry

University of PisaPisa, Italy

Valeria ChionoDepartment of Mechanical and Aerospace

EngineeringPolitecnico di TorinoTorino, Italy

Gianluca CiardelliDepartment of Mechanical and Aerospace

EngineeringPolitecnico di TorinoTorino, Italy

E.C. CombeSchool of DentistryUniversity of MinnesotaMinneapolis, Minnesota

Paul D. DaltonInstitute for Health and Biomedical InnovationQueensland University of TechnologyBrisbane, Queensland, Australia

Meng DengInstitute for Regenerative EngineeringRaymond and Beverly Sackler Center for

Biological, Physical and Engineering Sciences

The University of ConnecticutStorrs, Connecticut

Contributors

Page 17: Polymeric Biomaterials - Taylor & Francis eBooks

xvi Contributors

Jacques DesbrieresDepartment of Physics and Chemistry

of PolymersPau and Adour Countries UniversityPau, France

Alberto DessyLaboratory of Bioactive Polymeric Materials

for Biomedical and Environmental Application (BIOLab)

Department of Chemistry and Industrial Chemistry

University of PisaPisa, Italy

Abraham J. DombFaculty of MedicineSchool of PharmacyInstitute of Drug ResearchThe Hebrew University of JerusalemJerusalem, Israel

Cesare ErricoLaboratory of Bioactive Polymeric Materials

for Biomedical and Environmental Application (BIOLab)

Department of Chemistry and Industrial Chemistry

University of PisaPisa, Italy

Christine FalabellaDepartment of Biomedical

EngineeringStony Brook UniversityState University of New YorkNew York, New York

Mar FernándezInstitute for Health and Biomedical

InnovationQueensland University of TechnologyKelvin Grove, Queensland, Australia

Piergiorgio GentileDepartment of Mechanical and Aerospace

EngineeringPolitecnico di TorinoTorino, Italy

Catherine GkioniDepartment of Periodontology and BiomaterialsRadboud University Nijmegen Medical CenterNijmegen, the Netherlands

Takao HanawaInstitute of Biomaterials and BioengineeringTokyo Medical and Dental UniversityTokyo, Japan

Dietmar W. HutmacherInstitute for Health and Biomedical InnovationQueensland University of TechnologyBrisbane, Queensland, Australia

Florin Dan IrimieDepartment of Biochemistry and Biochemical

Engineering“Babeş-Bolyai” UniversityCluj-Napoca, Romania

Kazuhiko IshiharaDepartment of Materials EngineeringandDepartment of BioengineeringSchool of EngineeringThe University of TokyoTokyo, Japan

John JansenDepartment of Periodontology and BiomaterialsRadboud University Nijmegen Medical CenterNijmegen, the Netherlands

Christine JérômeCenter for Education and

Research on MacromoleculesUniversity of LiègeLiège, Belgium

Toshiyuki KanamoriNational Institute of Advanced

Industrial Science and Technology

Tsukuba, Japan

Toshihiro KasugaGraduate School of EngineeringNagoya Institute of TechnologyNagoya, Japan

Page 18: Polymeric Biomaterials - Taylor & Francis eBooks

xviiContributors

Wahid KhanInstitute of Drug Research (IDR)School of Pharmacy-Faculty of MedicineThe Hebrew University

of JerusalemJerusalem, Israel

Menno L.W. KnetschDepartment of Biomedical

Engineering/Biomaterials ScienceMaastricht UniversityMaastricht, the Netherlands

Masanori KobayashiDepartment of Biomedical EngineeringDaido UniversityNagoya, Japan

Sangamesh G. KumbarDepartment of Orthopaedic Surgery, Chemical,

Materials and Biomolecular EngineeringInstitute for Regenerative EngineeringRaymond and Beverly Sackler Center for

Biological, Physical and Engineering Sciences

The University of ConnecticutStorrs, Connecticut

Masayuki KyomotoDepartment of Materials EngineeringSchool of EngineeringandScience for Joint ReconstructionGraduate School of MedicineThe University of TokyoandResearch DepartmentKyocera Medical CorporationTokyo, Japan

Cato T. LaurencinConnecticut Institute for Clinical and

Translational ScienceandInstitute for Regenerative EngineeringRaymond and Beverly Sackler Center for

Biological, Physical and Engineering Sciences

The University of ConnecticutStorrs, Connecticut

Philippe LecomteCenter for Education and Research on

MacromoleculesUniversity of LiègeLiège, Belgium

Sander LeeuwenburghDepartment of Periodontology

and BiomaterialsRadboud University Nijmegen Medical CenterNijmegen, the Netherlands

Natalie J. MedlicottSchool of PharmacyUniversity of OtagoDunedin, New Zealand

Franco Maria MontevecchiDepartment of Mechanical and Aerospace

EngineeringPolitecnico di TorinoTorino, Italy

Toru MoroScience for Joint ReconstructionGraduate School of MedicineThe University of TokyoTokyo, Japan

Vijay Kumar NandagiriDepartment of Mechanical and Aerospace

EngineeringPolitecnico di TorinoTorino, Italy

Akiko ObataGraduate School of EngineeringNagoya Institute of TechnologyNagoya, Japan

Csaba PaizsDepartment of Biochemistry and Biochemical

Engineering“Babeş-Bolyai” UniversityCluj-Napoca, Romania

Gaio ParadossiDepartment of Chemical Sciences

and TechnologiesUniversity of Rome Tor VergataRome, Italy

Page 19: Polymeric Biomaterials - Taylor & Francis eBooks

xviii Contributors

Juan ParraInstitute for Health and Biomedical

InnovationQueensland University of TechnologyKelvin Grove, Queensland, Australia

Anna Maria PirasLaboratory of Bioactive Polymeric Materials

for Biomedical and Environmental Application (BIOLab)

Department of Chemistry and Industrial Chemistry

University of PisaPisa, Italy

Valentin I. PopaDepartment of Natural and Synthetic

PolymersFaculty of Chemical Engineering and

Environmental Protection“Gheorghe Asachi” Technical University

of IasiIasi, Romania

Gema Rodríguez-CrespoInstitute for Health and Biomedical

InnovationQueensland University of TechnologyKelvin Grove, Queensland, Australia

Luis M. Rodríguez-LorenzoInstitute for Health and Biomedical

InnovationQueensland University of TechnologyKelvin Grove, Queensland, Australia

Julio San RománInstitute for Health and Biomedical

InnovationQueensland University of TechnologyKelvin Grove, Queensland, Australia

Alina SionkowskaFaculty of ChemistryNicolaus Copernicus UniversityTorun, Poland

Shinji SugiuraNational Institute of Advanced Industrial

Science and TechnologyTsukuba, Japan

Kimio SumaruNational Institute of Advanced Industrial

Science and TechnologyTsukuba, Japan

Toshiyuki TakagiNational Institute of Advanced

Industrial Science and Technology

Tsukuba, Japan

Monica Ioana TosaDepartment of Biochemistry

and Biochemical Engineering“Babeş-Bolyai” UniversityCluj-Napoca, Romania

Cedryck VaquetteInstitute for Health and Biomedical

InnovationQueensland University of TechnologyBrisbane, Queensland, Australia

Blanca VázquezInstitute for Health and Biomedical

InnovationQueensland University of TechnologyKelvin Grove, Queensland, Australia

Lihui WengDepartment of RadiologyUniversity of MinnesotaMinneapolis, Minnesota

Page 20: Polymeric Biomaterials - Taylor & Francis eBooks

1

1 Synthesis and Fabrication of Polyesters as Biomaterials

Philippe Lecomte and Christine Jérôme

1.1 INTRODUCTION

Nowadays, biomaterials are produced from a wide range of polymers. Among them, biodegradable and biocompatible aliphatic polyesters occupy a key position. Their chemical structure can be eas-ily modi�ed, which allows the tailoring of important properties such as bioadherence, mechanical properties, and kinetics of biodegradation. Aliphatic polyesters are thus widely used in biomedical applications as implants, as scaffolds in tissue engineering, and as carriers for drug delivery.

This chapter aims at reviewing the most important techniques used for the synthesis of aliphatic polyesters in biomedical applications. The simplest approach relies on step-growth polymerization (Figure 1.1, routes a and b). Nevertheless, the control imparted to the polymerization is limited by this technique, and the synthesis of high molar mass polyesters is dif�cult. These drawbacks can be tackled by implementing another technique, the ring-opening polymerization of cyclic esters (Figure 1.1, route c). Under appropriate conditions, this polymerization is living and enables the synthesis of controlled high molar mass aliphatic polyesters. The chemical structure of the chain-ends can be controlled and it is thus possible to functionalize them on demand. Besides, aliphatic polyesters are produced by the ring-opening polymerization of cyclic esters at the industrial scale. Moreover, the livingness of the ring-opening polymerization of cyclic esters opens up the possibility to prepare various architectures such as star-shaped, comb-shaped, hyperbranched polymers and net-works. The versatility of the ring-opening polymerization of cyclic esters thus allows �ne tailoring of the properties of aliphatic polyesters in view of biomedical applications. A very important section of this chapter will thus be dedicated to this technique. It must be noted that other polymerization

CONTENTS

1.1 Introduction ..............................................................................................................................11.2 Step-Growth Polymerization ....................................................................................................21.3 Ring-Opening Polymerization of Cyclic Esters .......................................................................3

1.3.1 Anionic Polymerization ................................................................................................41.3.2 Coordination Polymerization ........................................................................................61.3.3 Metal-Free Ring-Opening Polymerization ...................................................................81.3.4 Enzymatic Ring-Opening Polymerization ................................................................. 131.3.5 Polymerization of Substituted and Functionalized Cyclic Esters ............................... 14

1.4 Radical Ring-Opening Polymerization of Cyclic Ketene Acetals .........................................251.5 Macromolecular Engineering of Aliphatic Polyesters ............................................................26

1.5.1 Copolymerization .......................................................................................................261.5.2 Modi�cation of the Architecture ................................................................................27

1.6 Conclusions .............................................................................................................................28Acknowledgments ............................................................................................................................28References ........................................................................................................................................28

Page 21: Polymeric Biomaterials - Taylor & Francis eBooks

2 Polymeric Biomaterials: Structure and Function, Volume 1

techniques were investigated even though they were not so popular. In this regard, special attention will be paid to the ring-opening polymerization of cyclic ketene acetals (Figure 1.1, route d).

For biomedical applications, it is mandatory that aliphatic polyesters exhibit a very high purity and are not contaminated by potentially toxic impurities. Unfortunately, usual polymerization tech-niques are based on catalysts and initiators made up of toxic metals such as tin and aluminum, especially as far as the ring-opening polymerization of cyclic esters is concerned. Special attention will thus be paid to the recent advances in the implementation of polymerization processes based on less toxic metals or, even better, on metal-free processes.

1.2 STEP-GROWTH POLYMERIZATION

A straightforward approach for the synthesis of aliphatic polyesters is based on the step-growth polymerization of a mixture of diacids and diols or, more directly, of hydroxy acids, by imple-menting an esteri�cation reaction. This technique allows the synthesis of a very wide range of aliphatic polyesters because of the easy synthesis of various diols, diacids, and hydroxy acids. Some of these can even be obtained from renewable resources, and bio-based aliphatic polyesters can then be produced. Step-growth polymerization has been in use for a long time, and hence we will not develop further the theory of polycondensation. It is just worth noting that, recently, Kricheldorf revised the concept of kinetically controlled (Kricheldorf and Schwarz 2003) and thermodynami-cally controlled (Kricheldorf 2003) step-growth polymerization.

The main limitation of all step-growth polymerizations remains the dif�cult synthesis of high molar masses. Indeed, the synthesis of high molar mass polyesters by step-growth polymerization requires to reach high conversions very close to 100% and to stay close to the ideal 1/1 stoichiometry between alcohol and acid functions.

The synthesis of polyhydroxyalkanoates (PHAs) by step-growth polymerization is a naturally occurring process (Lu et al. 2009). These aliphatic polyesters are produced by microorganisms as an intracellular reserve of carbon storage compounds and energy (Lu et al. 2009). Poly(3-(R)-hydroxybutyrate) (PHB) is a typical example, but PHAs with a huge variety of chemical structures can be synthesized from a very wide range of hydroxyalkanoates. The potential of PHAs has been assessed for several biomedical applications such as controlled release, tissue engineering, surgical sutures, and wound dressings (Williams et al. 1999).

The limitations of step-growth polymerization urged chemists to search for more ef�cient tech-niques for the synthesis of high molar mass aliphatic polyesters with a �ne control of the chemical structure and the molar mass. This goal was achieved by implementing the ring-opening polymer-ization of cyclic esters, as will be shown in the next section.

O O

OO

O

R OHHO

O

R O n

HO R OH

O

RHO

O

OH

R

R

+a

b

c

d

FIGURE 1.1 Main techniques for the synthesis of aliphatic polyesters.

Page 22: Polymeric Biomaterials - Taylor & Francis eBooks

3Synthesis and Fabrication of Polyesters as Biomaterials

1.3 RING-OPENING POLYMERIZATION OF CYCLIC ESTERS

Ring-opening polymerization is a very popular technique to synthesize aliphatic polyesters in view of biomedical applications. The main reason for its success lies in the very easy synthesis of aliphatic polyesters with high and controlled molar masses (Stridsberg et al. 2002, Penczek et al. 2007). The main limitation remains, for the time being, the scarcity of cyclic esters, despite the recent pro-gresses being made in the last few years, especially compared to diacids, diols, and hydroxyacids used in step-growth polymerization.

The ring-opening polymerization of cyclic esters has been in use for a long time. van Natta et al. (1934) already reported in 1934 the ring-opening polymerization of ɛ-caprolactone (ɛCL). Nowadays, polylactide (PLA) and poly(ɛ-caprolactone) (PCL) are produced at the industrial scale (Figure 1.2).

PCL is a semicrystalline biodegradable and biocompatible polyester (Tm = 60°C; Tg = −60°C) (Woodruff and Hutmacher 2010). Nevertheless, the degradation of PCL is slow, making it suitable in the �eld of drug delivery applications for long-term applications (Sinha et al. 2004). PLA and copolymers of lactide and glycolide (PLGA) have the advantage to be more hydrophilic than PCL and thus to degrade faster. Polylactide contains a chiral center (R or S), and its properties depend on tacticity. It is indeed well known that isotactic PLA is semicrystalline, whereas atactic PLA is amorphous. Semicrystalline PLA exhibits interesting mechanical properties but at the expense of biodegradability. Isotactic PLLA is synthesized by the polymerization of enantiomerically pure l-lactide, whereas atactic PLLA is obtained from a racemic mixture of l- and d-lactides.

The ring-opening polymerization of ɛCL and LA is carried out at the industrial level. Interestingly enough, PLA is a bio-based polyester produced from agricultural renewable resources such as starch, whereas biodegradable PCL is produced from oil.

Although ɛCL, GA, and LA are very important monomers, other cyclic esters can be polymer-ized by ring-opening depending on their size. First, there is an important question to determine whether a cyclic ester can be polymerized or not. The answer to this question can be found by considering thermodynamic data. According to the microreversibility rule, there is a competition between polymerization and depolymerization. Table 1.1 shows the values of the enthalpy (ΔHp) and entropy (ΔSp) of polymerization, the monomer concentration at equilibrium ([M]eq), and the ceiling temperature (Tc) (Duda et al. 2005).

Table 1.1 shows that the polymerization of low-membered cyclic esters is an enthalpy-driven process (Penczek et al. 2000, Duda et al. 2005). The release of the ring strain is obviously a key parameter in favor of polymerization. Nevertheless, the behavior of �ve-membered lactones is completely different, as shown by the high-ceiling temperature, because depolymerization is faster than polymerization. Although the ring-opening polymerization of γBL is dif�cult, it is possible to

O

O

O

O

n

ε-Caprolactone Poly(ε-caprolactone) (PCL)

O

O

O

O

R

RO

O

R n

R = H: glycolideR = Me: lactide

R = H: polyglycolide (PGA)R = Me: polylactide (PLA)

FIGURE 1.2 Polymerization of ɛ-caprolactone (ɛCL) and lactide (LA) and glycolide (GA).

Page 23: Polymeric Biomaterials - Taylor & Francis eBooks

4 Polymeric Biomaterials: Structure and Function, Volume 1

obtain low molar mass oligomers under suitable conditions and also to copolymerize γBL with other cyclic esters (Penczek et al. 2000).

It is worth noting that lactide, caprolactone, and glycolide are not the names recommended by IUPAC. Table 1.2 shows the usual and of�cial names for several cyclic esters. For the sake of sim-plicity, the usual names will be mentioned in this review to avoid confusion.

So many initiators and catalysts have been used for the ring-opening polymerization of cyclic esters for the last few years that it is impossible to list all. This review will thus focus on the most popular processes with special attention being paid to the livingness and kinetics of polymeriza-tion, and the contamination of aliphatic polyesters by toxic residues not tolerated in the frame of biomedical applications.

1.3.1 ANIONIC POLYMERIZATION

Metal alkoxides are nucleophilic species prone to initiate the ring-opening polymerization of cyclic esters. Polymerization takes place usually by the cleavage of the acyl-oxygen bond. Figure 1.3 shows the initiation and propagation steps in the case of polymerization of ɛCL.

O–RO

O

O–

ORO

O

O

ROO

O–

O

O

n55+Initiation Propagation

FIGURE 1.3 Anionic ring-opening polymerization of ɛCL.

TABLE 1.1Thermodynamics for the Polymerization of Cyclic Esters

MonomerRing Size

Monomer Polymer States ΔHp (kJ/mol) ΔSp (J/mol K)p [M]eq (mol/L) Tc (K)

βPL 4 1c −82.3 −74 3.9 × 10−10 1112

γBL 5 1c 5.1 −29.9 3.3 × 10−3 −171

LA 6 88 −22.9 −41 5.5 × 10−2 914

GA 6 11 −13.8 −45 2.5 520

VL 6 Lc −27.4 −65 3.9 × 10−1 —

εCL 7 1c −28.8 −53.9 5.3 × 10−2 534

TABLE 1.2Nomenclature of Cyclic Esters

Ring Size IUPAC Name Usual Name

4 βPL oxetan-2-one β-propionolactone

5 γBL dihydrofuran-2(3H)-one γ-butyrolactone

6 δVL tetrahydro-2H-pyran-2-one δ-valerolactone

6 LA lactide 3,6-dimethyl-1,4-dioxane-2,5-dione

6 GA glycolide 1,4-dioxane-2,5-dione

7 εCL oxepan-2-one ε-caprolactone

Page 24: Polymeric Biomaterials - Taylor & Francis eBooks

5Synthesis and Fabrication of Polyesters as Biomaterials

The mechanism shown in Figure 1.3 assumes that polymerization is living and takes place only by initiation and propagation reactions according to Szwarc (1956), which means that no termination and transfer reactions are present. This view is unfortunately oversimpli�ed because termination and transfer reactions are often observed. Indeed, anionic species are deactivated by traces of water or by other protic substances, which is nothing but a termination reaction. It is thus necessary to perform these anionic polymerizations with carefully puri�ed monomers under strictly anhydrous conditions. Besides, although metal alkoxides react as nucleophiles, they react also as bases. For instance, potassium tert-butoxide reacts with ɛCL to form the corresponding potassium enolate.

Transfer reactions by transesteri�cation reactions are commonly observed and are at the origin of loss of control of polymerization (Figures 1.4 and 1.5). Indeed, alkoxides are often too reactive to be selective, and they can react not only with the ester functions of monomers but also with the ester functions present all along the polymer chains. Depending upon whether alkoxide and ester are located on the same chain or not, transesteri�cation reaction can be intramolecular or intermo-lecular. Intramolecular transesteri�cation reactions result in a decrease of the molar mass and in the formation of cyclic oligomers (Figure 1.4). Conversely, intermolecular transesteri�cation does not result in a decrease of the number-average molar mass but rather results in the reshuf¥ing of the length of chains and thus in the modi�cation of the polydispersity index (Figure 1.5). For the sake of simplicity, the mechanism of ɛCL is shown in Figures 1.4 and 1.5, but it can be extended to other cyclic esters as well.

Special attention has to be paid to the four-membered lactones because of their unusual behavior.Indeed, polymerization of β-lactones by the mechanism based on the cleavage of the acyl-oxygen

bond is disfavored, which was accounted for by stereo-electronic effects (Coulembier et al. 2006a). Another mechanism based on the scission of the alkyl-oxygen bond is then observed (Figure 1.6).

OO

OO–

O

O

O

mn5 5 5 OO–

O

n5Cyclic oligomer +

FIGURE 1.4 Intramolecular transesteri�cation reactions during the polymerization of ɛCL.

OO–

O

n5 OO

O

O

O

O

pm5 5 5

OO

O O

O

O

n5 5 5 p OO–

O

m5

+

+

FIGURE 1.5 Intermolecular transesteri�cation reactions during the polymerization of ɛCL.

O

O

O–R

RO O–

O

FIGURE 1.6 Ring-opening polymerization of β-lactones by cleavage of the alkyl-oxygen bond.

Page 25: Polymeric Biomaterials - Taylor & Francis eBooks

6 Polymeric Biomaterials: Structure and Function, Volume 1

Interestingly enough, ring-opening affords a carboxylate anion rather than an alkoxide. This polym-erization can thus also be initiated by carboxylic salts even though they are less nucleophilic than alkoxides (Penczek 2007).

It is worth noting that another transfer reaction mechanism shown in Figure 1.7 is reported as far as β-lactones are concerned (Penczek 2007).

1.3.2 COORDINATION POLYMERIZATION

Anionic metal alkoxides are too reactive to be selective and transfer transesteri�cation reactions are very dif�cult to get rid of, at the expense of control of polymerization. In order to improve the con-trol of polymerization, it is mandatory to use less reactive initiators. This can be achieved by playing with steric and electronic effects (Lecomte and Jérôme 2004). The use of cumbersome ligands is the �rst possible route to obtain more selective species. The most common approach relies on the use of less electrophilic metals. The works of Teyssié and coworkers who used bimetallic μ-oxo-alkoxides as initiators have to be mentioned (Hamitou et al. 1973, Ouhadi et al. 1976). Since then, a wide range of transition metals have been investigated.

Aluminum alkoxides occupy a key position because of the very good control imparted to the polymerization of cyclic esters. Commercially available aluminum triisopropoxide is a widely used aluminum alkoxide. Firstly, the three alkoxide bonds initiate polymerization. Nevertheless, the behavior of aluminum triisopropoxide is complicated due to its aggregation in solution. Indeed, aluminum isopropoxide exists as a mixture of trimers (A3) and tetramers (A4; Ropson et al. 1995). As  long as polymerization of ɛCL is carried out by aluminum isopropoxide in toluene at 0°C, only A3 is prone to initiate polymerization. The interconversion of A4 into A3 is slow compared to the kinetics of polymerization, and A4 does not initiate polymerization under these conditions. Conversely, polymerization of lactide is carried out at a higher temperature, typically at 70°C. The interconversion of A4 into A3 is faster, and all species initiate polymerization. It is thus very impor-tant to take into account the equilibrium between A3 and A4 species to determine the theoretical molar mass on the basis of the monomer-to-initiator molar ratio. Last but not least, it is worth noting that aluminum alkoxides can be prepared in the laboratory by the reaction of any alcohol with triethylaluminum or aluminum isopropoxide (Dubois et al. 1989).

The mechanism of polymerization is quite similar to that of anionic polymerization. Nevertheless, one has to take into account the coordination of the metal with oxygen atoms. The mechanism shown in Figure 1.8 is referred in the state of the art as the coordination–insertion mechanism. Firstly, the alkoxide (RO-M) coordinates with the carbonyl of the cyclic ester, followed by the nucleophilic addition of the alkoxide onto the electrophilic C=O bond. Thereafter, ring-opening takes place by an elimination reaction, resulting in the cleavage of the acyl-oxygen bond and in the formation of a new alkoxide. The initiator can contain one functional group, provided it is tolerated by aluminum alkoxide species (Dubois et al. 1989).

O

O

R

RHCO–

O

O O–

OR

nO OH

OR

n

O

O–

R

+R=H, Me

+

Intramolecularelimination reaction

FIGURE 1.7 Transfer reaction for the polymerization of β-lactones.

Page 26: Polymeric Biomaterials - Taylor & Francis eBooks

7Synthesis and Fabrication of Polyesters as Biomaterials

During the propagation of the ring-opening polymerization of cyclic esters initiated by alu-minum alkoxides, aggregation can again take place depending upon stereoelectronic factors, as shown by NMR spectroscopy and kinetic studies (Duda and Penczek 1991). For instance, during the polymerization of ɛCL, the three-arm growing species is a unimer when initiated by A3 and is a trimer when initiated by Et2AlOR (Ropson et al. 1995).

Although aluminum alkoxides exerted an excellent control to the polymerization of cyclic esters, they are suspected to be involved in Alzheimer’s disease. Moreover, catalytical remnants are very dif�cult to withdraw and these toxicity issues are thus a huge limitation for biomedical applications.

Many researchers used tin(II) bis-(2-ethylhexanoate), also commonly referred to as tin octoate, instead of aluminum alkoxides because of its recognition by the American Food and Drug Administration (FDA). Another reason for the popularity of tin(II) bis-(2-ethylhexanoate) is its lower sensitivity to water and other impurities. It is thus easier to achieve polymerization in labora-tories or in industry. Nevertheless, it was found that tin(II) bis-(2-ethylhexanoate) is also cytotoxic and should ideally be avoided for the synthesis of biomaterials.

Tin(II) bis-(2-ethylhexanoate) does not contain any alkoxide bond, and the mechanism remained unclear for a long time and several proposals were reported. In 1998, Penczek and coworkers reported that tin alkoxides are formed in the polymerization medium by the reaction of tin(II) bis-(2-ethylhexanoate) with traces of water or with any other protic impurities. Polymerization thus takes place by the usual coordination–insertion mechanism at least as long as it is carried out in THF at 80°C (Kowalski et al. 1998). This proposal was substantiated by kinetic measurements (Kowalski et al. 1998, 2000a), analysis of the chain-ends by MALDI-TOF (Kowalski et al. 2000b), and proton-trapping agent experiments (Majerska et al. 2000).

It is worth noting that other tin-based initiators are also used. Hedrick and coworkers proposed to use tin tri¥uoromethanesulfonate to improve the kinetics of polymerization (Möller et al. 2000). Another possibility relies on the use of Sn(II) alkoxides (Duda et al. 2000, Kowalski et al. 2000c) and Sn(IV) alkoxides (Kricheldorf and Eggerstedt 1998, Kricheldorf et al. 2001, Kricheldorf 2004). Penczek and coworkers reported that the polymerization of lactide, initiated by Sn(OBu)2, is under con-trol in a range of molar masses up to 106 g/mol (Duda et al. 2000, Kowalski et al. 2000c). Nevertheless, whatever the tin derivative used to initiate polymerization, toxicity remains an issue. Albertsson and coworkers proposed a smart approach to extract tin derivatives (Stjerndahl et al. 2007). They initiated the polymerization of cyclic esters by tin(IV) alkoxides before adding 1,2-ethanedithiol to the polym-erization medium to afford a sulfur-containing dibutyltin derivative, which can be extracted because of its high solubility in organic solvents. For example, this process allowed synthesizing a sample of PCL contaminated by only 23 ppm of tin residues (Stjerndahl et al. 2007).

If ring-opening polymerization can be carried out in bulk and in organic solvents, supercritical carbon dioxide is also a valuable medium. The technology based on supercritical carbon dioxide is

ROO

O OM

O

O

R OMO

O

R

OM

OOR

OM

OOR

MO

O

O

OR

O

5 5

n

O

O

+

n

M

FIGURE 1.8 Coordination–insertion mechanism for the ring-opening polymerization of cyclic esters.

Page 27: Polymeric Biomaterials - Taylor & Francis eBooks

8 Polymeric Biomaterials: Structure and Function, Volume 1

particularly interesting in the �eld of biomaterials because of the remarkable extraction properties of this medium with the prospect to purify aliphatic polyesters. Ring-opening polymerization of ɛCL in supercritical carbon dioxide was �rst reported by Mingotaud and coworkers (Mingotaud et al. 1999, 2000). Then, Jérôme and coworkers observed that tin(IV) alkoxides initiate the con-trolled ring-opening polymerization of ɛCL in supercritical CO2 (Stassin et al. 2001). Slow kinetics was accounted for by the reversible reaction of tin alkoxides and carbon dioxide (Stassin and Jérôme 2002). PCL is not soluble in supercritical carbon dioxide, and the polymerization of ɛCL is thus heterogeneous. Nevertheless, in the presence of a suitable surfactant, nanoparticles can be obtained (Stassin and Jérôme 2004). Last but not least, supercritical CO2 was used to withdraw quantitatively unconverted monomer and metallic remnants.

The issues related to the toxicity of tin and aluminum derivatives urged researchers to initiate the polymerization of cyclic esters by alkoxides based on less toxic metals. In this regard, bismuth (Kim et al. 2004), magnesium (Shueh et al. 2004, Yu et al. 2005b), and calcium (Zhong et al. 2001, Westerhausen et al. 2003) alkoxides are reported. The mechanism remains the usual coordination–insertion mechanism. The kinetics and control of polymerization depend on the nature of the metal and on its ligands.

So many metallic derivatives have been used to initiate or catalyze the ring-opening polymer-ization of cyclic esters that it is almost impossible to list all. Among these derivatives, zinc octoate (Libiszowki et al. 2002, Kowalski et al. 2007), aluminum acetyl acetonate (Kowalski et al. 2007), scandium tri¥uoromethanesulfonate (Möller et al. 2000, Nomura et al. 2000), and scandium tri¥uo-romethanesulfonimide [Sc(NTf2)3] (Oshimura and Takasu 2010) can be mentioned. Special atten-tion has to be paid to lanthanides alkoxides (Metal = Er, Sm, Dy, La) as initiators because of the very fast kinetics of polymerization (McLain and Drysdale 1992). Shen et al. (1996) showed that the increase of steric hindrance of the ligand disfavors transesteri�cation reactions. Yasuda and cowork-ers polymerized ɛCL by SmOEt(C5Me5)2(OEt2), [YOMe(C5H5)2]2, and YOMe(C5Me5)2(THF) (Yamashita et al. 1996). In 1996, yttrium isopropoxide was obtained “in situ” by the reaction of isopropanol and yttrium tris(2,6-di-tert-butylphenolate (Stevels et al. 1996a,b). Then, a similar approach was implemented by Jérôme and Spitz who synthesized Y(OiPr)3 (Martin et al. 2000, 2003a) and Nd(OiPr)3 (Tortosa et al. 2001) by the reaction of isopropanol with Y[N(SiMe3)2]3 and Nd[N(SiMe3)2]3, respectively. In 2003, the polymerization of ɛ-caprolactone was carried out by La(OiPr)3 (Save et al. 2002) and M(BH4)3(THF)3 (M = Nd, La, Sm) (Guillaume et al. 2003, Palard et al. 2005). Cyclic esters other than ɛCL can be polymerized by the same family of lanthanide alkoxides (Yamashita et al. 1996). Last but not least, Jérôme and coworkers grafted yttrium isop-ropoxide onto a porous silica surface (Martin et al. 2003b,c). Two methods of immobilization were reported. Firstly, the hydroxyl groups located on the surface of silica were allowed to react with an excess of Y[N(SiMe3)2]3 into silylamido groups, which were �nally allowed to react with 2-propanol to obtain yttrium alkoxides. Secondly, Y[N(SiMe3)2]3 was made to react with less than three equiva-lents of 2-propanol into an yttrium alkoxide, which was then grafted onto the surface. Hamaide and coworkers supported alkoxides based on other metals (Al, Zr, Sm, and Nd) onto silica and alumina (Miola-Delaite et al. 2000).

1.3.3 METAL-FREE RING-OPENING POLYMERIZATION

Aluminum and tin alkoxides being too toxic for biomedical applications, chemists investigated original metal-free processes for the ring-opening polymerization of cyclic esters. Their strategy relies on the initiation of the polymerization by nucleophilic species such as alcohols and amines. Nevertheless, these species are in general not nucleophilic enough to react with cyclic esters. Nevertheless, there are exceptions to this general rule. For instance, highly reactive β-lactones are polymerized by nucleophilic amines in the absence of any catalyst. Polymerization initiated by tertiary amines is known as zwitterionic polymerization in the literature (Löfgren et al. 1995). The mechanism shown in Figure 1.9 is based on the reaction of tertiary amines and cyclic esters

Page 28: Polymeric Biomaterials - Taylor & Francis eBooks

9Synthesis and Fabrication of Polyesters as Biomaterials

with a zwitterionic species made up of an ammonium cation and a carboxylate anion. Interestingly enough, Kricheldorf et al. (2005) mentioned the possibility that chain extension takes place by step-growth polycondensation at least at some stage of polymerization.

As a rule, alcohols and amines are in general not nucleophilic enough to react with cyclic esters and the reaction has thus to be catalyzed. In order to do so, two main strategies might be imple-mented. They rely on the activation of either the monomer or the initiator. Last but not least, some processes combine both mechanisms of activation.

Cyclic esters can be activated by either acids or nucleophiles to allow their reaction with alcohols and amines in the frame of a polymerization process. As far as acids are concerned as catalysts, the mechanism of ring-opening polymerization relies on the activation of cyclic esters by protonation of the exocyclic oxygen of cyclic diesters, which facilitates the reaction with the nucleophilic spe-cies, that can be the initiator during initiation or the hydroxyl-end capped chain during propaga-tion (Figure 1.10). Polymerization takes place by the scission of the oxygen-acyl bond. In 2000, an example of ring-opening polymerization of ɛCL and δVL was reported by Endo and coworkers by using alcohol as an initiator and HCl.Et2O as a catalyst (Shibasaki et al. 2000). Polymerization was under control but the molar mass did not exceed 15,000 g/mol. It is worth noting that, later on, Jérôme and coworkers reported that molar masses up to 50,000 g/mol were obtained as far as PVL was polymerized (Lou et al. 2002a). Recently, the process was extended to a wider range of acids. Tri¥uoromethanesulfonic is an ef�cient catalyst for the controlled ring-opening polymerization of lactide (Bourissou et al. 2005) and ɛ-caprolactone (Basko and Kubisa 2006). Later, Bourrissou showed that tri¥uoromethanesulfonic acid can be substituted for less acidic methanesulfonic acid for the polymerization of ɛCL (Gazeau-Bureau et al. 2008). Polymerization of δVL was catalyzed by tri¥uoromethanesulfonimide according to Kakuchi et al. (2010). Interestingly enough, polymer-ization was under control and various functionalized alcohols were used as initiators. Very recently, Takasu and coworkers extended this strategy to nona¥uorobutanesulfonimide for the polymeriza-tion of ɛCL (Oshimura et al. 2011). Interestingly enough, organic catalysts such as lactic acid (Casas et al. 2004, Persson et al. 2006), citric acid (Casas et al. 2004), fumaric acid (Sanda et al. 2002, Zeng et al. 2005), and amino acids (Casas et al. 2004) were also used. In addition, the acid catalyst can be supported on silica (Wilson and Jones 2004). Amino acids exhibit a particular behavior because they both catalyze and initiate polymerization (Liu and Liu 2004).

In the absence of any nucleophilic species such as an alcohol, the only nucleophilic species remaining in the system is the cyclic ester. This is the typical case of cationic ring-opening polym-erization of cyclic esters, which has been in use for a long time. The cationic polymerization can be catalyzed not only by Bronsted acids but also by alkylating agents, acylating agents, and Lewis acids.

O

O

nO

O

n

n

ORO

OH

O

R

H

H+

H+_

H

+

FIGURE 1.10 Ring-opening polymerization of cyclic esters catalyzed by acids and initiated by alcohols.

OO

N R΄R΄

R΄N+O

R΄R΄

O

O–

On

OO

N+O–

R΄R΄

O

+

Zwitterion

FIGURE 1.9 Zwitterionic polymerization of pivalolactone.

Page 29: Polymeric Biomaterials - Taylor & Francis eBooks

10 Polymeric Biomaterials: Structure and Function, Volume 1

For instance, in 1984, Penczek reported the cationic polymerization of ɛCL and βPL by acylating agents (Hofman et al. 1984). For a long time it was accepted that cationic ring-opening polymeriza-tion mediated by alkylating agents takes place by the mechanism shown in Figure 1.11, which is based on the reaction of the cation with the endocyclic oxygen followed by the cleavage of the acyl-oxygen bond. In 1984, Penczek (Hofman et al. 1984) and Kricheldorf et al. (1986) proposed that the cation reacts with the exocyclic oxygen rather than the endocyclic oxygen to afford a dialkoxycarbo-cationic species, which �nally reacts by cleavage of the alkyl-oxygen bond (Figure 1.12). It is worth noting that both mechanisms shown in Figures 1.12 and 1.13 are observed when acylating agents are used (Slomkowski et al. 1985).

In recent years, the ring-opening polymerization of cyclic esters by nucleophilic catalysts has emerged as a very promising process under the impulse given by the group of Hedrick (Kamber et al. 2007). Table 1.3 shows several nucleophiles known to activate cyclic esters and thus prone to catalyze the ring-opening polymerization of cyclic esters initiated by alcohols by the mecha-nism shown in Figure 1.13. Among nucleophilic species, N-heterocyclic carbenes (Table 1.3, entries 1–7), amines (Table 1.3, entries 8–11), and phosphines (Table 1.3, entries 12–17) can be mentioned. Depending upon the cyclic ester that has to be polymerized, the nucleophilic catalyst must be care-fully selected because its nucleophilicity and thus the kinetics of this ring-opening is in¥uenced by steric and electronic effects. Interestingly enough, polymerization is under control. Although this approach is very promising, more work is needed to assess the impact of these catalysts on the bio-compatibility of aliphatic polyesters.

Another mechanism relies on the activation of the initiator. Bases that are able to activate nucleo-philic alcohols and catalyze the ring-opening polymerization of cyclic esters are shown in Table 1.4. TBD and DBU catalyze the ring-opening polymerization of cyclic esters (Table 1.4, entries 1, 2).

O

O

OC+

O

R

OO

C+

O

O

O

O

R

R++

FIGURE 1.12 Mechanism for cationic ring-opening polymerization based on the reaction of the exocyclic oxygen.

O

O

OC

+

O

R

O

O

OC

+

O

O

O R5

n+ R+

FIGURE 1.11 Mechanism for cationic ring-opening polymerization based on the reaction of the endocyclic oxygen.

ROOH

O

5

RO

O

NuO–

O

5+ +Nu

OH

FIGURE 1.13 Activation of cyclic esters by nucleophiles.

Page 30: Polymeric Biomaterials - Taylor & Francis eBooks

11Synthesis and Fabrication of Polyesters as Biomaterials

TABLE 1.3Nucleophilic Catalysts for the Ring-Opening Polymerization of Lactones

Entry Organocatalyst Monomer Initiator Reference

1N N

C

l-lactide EtOH, pyrenebutanol Connor et al. (2002)

εCL EtOH, pyrenebutanol

βBL EtOH, pyrenebutanol

rac-lactide — Dove et al. (2006)

meso-lactide — Dove et al. (2006)

2N N

C

εCLδVL

PhCH2OHPhCH2OH

Nyce et al. (2003)

3N N

C

βBL PhCH2OH Nyce et al. (2003)

δVL PhCH2OH

εCL PhCH2OH

4

N NC

εCL PhCH2OH Nyce et al. (2003)

5

N NPhPh

Ph

N

C

l-lactide MeOH, pyrenebutanol, PEO-OH

Coulembier et al. (2005)

βBL pyrenebutanol Coulembier et al. (2006b)

6N N

OR

l-lactide — Connor et al. (2002)

7

N

Ph Ph

NC

rac-lactide — Dove et al. (2006)

meso-lactide —

7

NH

Ph Ph

Ph

Ph

Me

Me

HNC

rac-lactide — Dove et al. (2006)

meso-lactide —

8N N

DMAP

Lactide EtOH, PhCH2OH Nederberg et al. (2001)

9N N

Lactide EtOH, PhCH2OH Nederberg et al. (2001)

10 N

N

MTBD

N

Lactide Pyrenebutanol Pratt et al. (2006) and Lohmeijer et al. (2006)

11 N

DBUN

Lactide Pyrenebutanol Lohmeijer et al. (2006)

(continued)

Page 31: Polymeric Biomaterials - Taylor & Francis eBooks

12 Polymeric Biomaterials: Structure and Function, Volume 1

The mechanism is pseudoanionic and is based on the activation of the alcohol by attracting the proton. Phosphazene bases are also prone to catalyzing the ring-opening polymerization of cyclic esters (Zhang et al. 2007a). In particular, 2-tert-butylimino-2-diethylamino-1,3-dimethylper-hydrdro-1,3,2-diazaphosphorine (BEMP) is ef�cient (Table 1.4, entry 3). It is worth noting that BEMP exhibits a higher basicity (pKBH+ = 27.6) compared to DBU (pKBH+ = 24.3) and MTBD (pKBH+ = 25.4). As long as a dimeric phosphazene is used to catalyze the polymerization of racemic lactide (Table 1.4, entry 4), isotactic polylactide is obtained (Zhang et al. 2007b).

Several catalysts have the ability to activate both the monomer and the initiator at the same time (Table 1.5). 1,5,7-Triazabicyclo[4.4.0]dec-5-ene (TBD) is an ef�cient organocatalyst for the ring-opening polymerization of cyclic esters initiated by alcohols (Table 1.5, entry 1), and the polymerization takes place by dual activation of both the monomer and the initiator. The activa-tion of the monomer can take place either by an acyl transfer mechanism or by a mechanism based on hydrogen bonding. This last mechanism was preferred as far as the polymerization of l-lactide is concerned (Chuma et al. 2008). As long as 1,8-diaza[5.4.0]bicycloundec-7-ene (DBU) and N-methylated TBD (MTBD) were used as catalysts instead of TBD, the polymer-ization of lactide was slower. Polymerization of CL and VL did not take place. Indeed, these experimental data can be easily understood if one takes into account that these catalysts can only activate the alcohol but not cyclic esters (Lohmeijer et al. 2006). However, a possible trick to overcome this issue relies on the addition of a thiourea activating cyclic esters by hydrogen

TABLE 1.3 (continued)Nucleophilic Catalysts for the Ring-Opening Polymerization of Lactones

Entry Organocatalyst Monomer Initiator Reference

12 PBu3 Lactide PhEtOH Myers et al. (2002)

13 PPhMe2 Lactide PhEtOH Myers et al. (2002)

14 PPh3 Lactide PhEtOH Myers et al. (2002)

15

P

P

Lactide PhEtOH Myers et al. (2002)

16

P

P

FeEt

Et

Et

Et

Lactide PhEtOH Myers et al. (2002)

17

Fe

Pipr2

Pipr2

Lactide PhEtOH Myers et al. (2002)

18

Fe

PCy2

PCy2

Lactide PhEtOH Myers et al. (2002)

Page 32: Polymeric Biomaterials - Taylor & Francis eBooks

13Synthesis and Fabrication of Polyesters as Biomaterials

bonding (Table 1.5, entry 2). Interestingly enough, both catalytical species can be combined in a single molecule. Indeed, Hedrick and coworkers reported that the polymerization of cyclic esters is ef�ciently catalyzed by 1-[3,5-bis(tri¥uoromethyl)phenyl]-3-[2-(dimethylamino)cyclo-hexyl]thiourea with a very good control of the molecular parameters (Table 1.5, entry 3; Dove et al. 2005). Polymerization takes place also in the presence of both 1-[3,5-bis(tri¥uoromethyl)phenyl]-3-cyclohexylthiourea and N,N-dimethylcyclohexanamine (Table 1.5, entry 4; Dove et al. 2005). Whenever only one of these is present, no polymer was obtained, in agreement with a dual activation mechanism.

1.3.4 ENZYMATIC RING-OPENING POLYMERIZATION

Enzymes are very promising nontoxic catalysts for the preparation of biomaterials. They are green catalysts obtained from renewable resources and are easily separated from polyesters. Among enzymes, lipases are known to catalyze the hydrolysis reaction of esters. Chemists used these natural enzymes to catalyze the reverse reaction, for example, the esteri�cation reaction. The ring-opening polymerization of cyclic esters can be catalyzed by lipases as independently discovered in 1993 by the groups of Kobayashi (Uyama and Kobayashi 1993) and Knani et al. (1993). Since  then, a wide variety of cyclic esters of different size were polymerized. Several reviews have been published on this topic (Gross et al. 2001, Varma et al. 2005, Albertsson and Srivastava 2008, Kobayashi and Makino 2009). Among the different lipases, Candida antarctica (lipase CA, CALB or Novozym 435) is widely used. An alcohol can purposely be added in the reaction medium to initiate polymerization. The course of polymerization is in¥uenced by water.

TABLE 1.4Basic Catalysts for the Ring-Opening Polymerization of Lactones

Entry Organocatalyst Monomer Initiator Reference

1N

N

MTBD

N

Lactide 1-Pyrenebutanol Pratt et al. (2006) and Lohmeijer et al. (2006)

2

N

N

DBU

Lactide 1-Pyrenebutanol Lohmeijer et al. (2006)

3

N

Et2N

NP

NtBu

l-lactide 1-Pyrenebutanol Zhang et al. (2007a)

δVL 1-Pyrenebutanol Zhang et al. (2007a)

εCL 1-Pyrenebutanol Zhang et al. (2007a)

4

N

N

N N tBu

NN

P P

Nl-lactide 1-Pyrenebutanol Zhang et al. (2007a)

Page 33: Polymeric Biomaterials - Taylor & Francis eBooks

14 Polymeric Biomaterials: Structure and Function, Volume 1

Indeed, a minimum amount of water needs to be bound to the surface of the enzyme to maintain its conformational ¥exibility and catalytic activity (Gross et al. 2001). Nevertheless, water also initiates this polymerization. The synthesis of high molar mass aliphatic polyesters by enzymatic ring-opening polymerization is thus dif�cult because it is not possible to carry out polymerization in strictly anhydrous conditions. In terms of the control of polymerization, enzymatic polym-erization cannot compete with coordination or organocatalytic polymerization. Nevertheless, enzymatic polymerization has some practical interests. Polymerization proceeds under mild con-ditions in terms of pH, temperature, and pressure and can be carried out in bulk, in organic media, and even in supercritical carbon dioxide (Takamoto et al. 2001, Loeker et al. 2004). Moreover, enzymes are able to catalyze the ring-opening polymerization of large-membered cyclic esters, which are very dif�cult to polymerize by chemical catalysts and initiators such as metal alkoxides and organocatalysts (Duda et al. 2002).

The mechanism of enzymatic polymerization is based on the activation of the monomer and is very similar to the one already shown for nucleophilic organocatalysts. Brie¥y, a complex is formed between the enzyme and cyclic esters. The hydroxyl group of a serine residue of the active site of the enzyme reacts with cyclic esters affording an activated open form of the monomer. This activated intermediate then reacts with an alcohol, which can be the initiator or a hydroxyl-end capped chain. This mechanism is summarized in Figure 1.14.

1.3.5 POLYMERIZATION OF SUBSTITUTED AND FUNCTIONALIZED CYCLIC ESTERS

Although PCL, PLA, and PGA are widely used for biomedical applications, it is highly desirable to synthesize a wider range of aliphatic polyesters in view of the development of novel biomedical applications. Two main routes were investigated for this application: the �rst one relies on the direct

TABLE 1.5Dual Catalysts for the Ring-Opening Polymerization of Lactones

Entry Organocatalyst Monomer Initiator Reference

1

TBD

N

NN

Lactide Pyrenebutanol Pratt et al. (2006)

δVL Pyrenebutanol Lohmeijer et al. (2006)

εCL Pyrenebutanol Lohmeijer et al. (2006)

2

DBU

CF3

F3C

+S

N

N

NH

NH

δVL Pyrenebutanol Lohmeijer et al. (2006)

εCL Pyrenebutanol Lohmeijer et al. (2006)

3 CF3

F3C

S

NMe2

rac

NH

NH

Lactide Pyrenebutanol Dove et al. (2005)

4 CF3

F3C

S+

NH

NH

NMe2

Lactide Pyrenebutanol Dove et al. (2005)

Page 34: Polymeric Biomaterials - Taylor & Francis eBooks

15Synthesis and Fabrication of Polyesters as Biomaterials

chemical modi�cation of aliphatic polyesters, and the second one is based on the synthesis and polymerization of substituted and/or functionalized cyclic esters.

The direct functionalization of aliphatic polyesters is the most straightforward route. Vert and coworkers functionalized PCL by a two-step process. Firstly, the metallation of PCL was carried out by lithium diisopropylamide in order to obtain a poly(enolate), which was then reacted with any elec-trophile such as naphthoyl chloride (Ponsart et al. 2000), benzylchloroformate (Ponsart et al. 2000), acetophenone (Ponsart et al. 2000), benzaldehyde (Ponsart et al. 2000), carbon dioxide (Gimenez et al. 2001), tritiated water (Ponsart et al. 2001), α-bromoacetoxy-ω-methoxy-poly(ethylene oxide) (Ponsart et al. 2002), and iodine (Nottelet et al. 2006; Figure 1.15).

This approach is very simple, and many functionalized PCL can be synthesized just by changing the nature of the electrophile. Moreover, the absence of any potentially toxic cata-lyst is a huge advantage. Unfortunately, this strategy is very touchy because degradation of aliphatic polyesters by nucleophilic enolates always takes place at a signi�cant level. Under optimized conditions, degradation can only be limited. Although the process was extended to the functionalization of PLA, degradation is even more dif�cult to limit, this polymer being more sensitive than PCL. Moreover, the content of functionalization is quite low (<30%) even under optimized conditions.

O

O

n

O

O OHn

LipaseLipase-OH

Lipase/OH complex

R OR

O OHn– Lipase-OH

OH

FIGURE 1.14 Enzymatic polymerization of cyclic esters.

O

O

4 x

O

OLi

4 x

O

O

4 x

OH Ph

O Ph

H

O

O

4 x

O OBn

O OBn

Cl

O

O

4 x

O

O

4 x

O

O

Cl

LDA

MeI

FIGURE 1.15 Functionalization of PCL according to Vert and coworkers.

Page 35: Polymeric Biomaterials - Taylor & Francis eBooks

16 Polymeric Biomaterials: Structure and Function, Volume 1

The important limitations of the process shown in Figure 1.15 prompted chemists to investigate a less direct approach based on the synthesis and polymerization of functionalized cyclic esters (Lou et al. 2003). For that sake, two strategies can be applied. The �rst one relies on the insertion of the functional group inside the ring, and the second one is based on the substitution of the cyclic ester by a pendent functionalized group.

Table 1.6 shows the conditions used for the polymerization of cyclic esters bearing, inside the ring, functional groups such as an ether (Table 1.6, entries 1–3), a protected amine (Table 1.6, entries 4,5), an unsaturation (Table 1.6, entries 6,7), a ketone (Table 1.6, entry 8), and an amide (Table 1.6, entries 9–12) are present.

Table 1.7 shows cyclic esters bearing a substituent, functionalized or not. As functional groups, aromatics (Table 1.7, entry 1), chloride (Table 1.7, entries 2,3), bromide (Table 1.7, entries 4–6), iodide (Table 1.7, entry 7), alkyne (Table 1.7, entries 8, 9), alkene (Table 1.7, entries 10–15), and epoxide (Table 1.7, entry 16) can be mentioned.

Cyclic esters reported in Tables 1.6 and 1.7 are usually polymerized by tin and aluminum alkoxides. It is worth noting that 6,7-dihydro-2(3H)-oxepinone is an unusual case because this monomer can be polymerized by another mechanism, the ring-opening metathesis polymerization (ROMP) process by using the Schrock’s catalyst (Figure 1.16; Lou et al. 2002c).

In terms of chemoselectivity, enzymes are appealing catalysts because they tolerate a wide range of functional groups and even epoxides (Table 1.7, entry 16). Unfortunately, tin and aluminum alk-oxides are less tolerant and do not tolerate the presence of alcohols, carboxylic acids, and epoxides. Noteworthily, ketones are tolerated by tin (IV) alkoxides but not by aluminum alkoxides for reasons which still remain unclear (Latere et al. 2002). This issue was overcome by protecting these func-tional groups prior to polymerization. Table 1.8 shows lactones substituted by protected ketones (Table 1.8, entry 1), alcohols (Table 1.8, entries 2–6), diols (Table 1.8, entry 7), carboxylic acids (Table 1.8, entries 8–15), and amines (Table 1.8, entries 16–19). The choice of the protection group is essential for the success of this strategy. One the one hand, the protected functional groups have to be stable enough to avoid any degradation prior to polymerization and to allow obtaining the monomer in a very high purity, which is a prerequisite to achieve polymerization, at least as far as sensitive initiators are concerned, such as aluminum alkoxides. On the other hand, the protec-tion group has to be removed after polymerization under conditions that prevent degradation from occurring. For this reason, benzylic alcohols and carboxylic esters are widely used because they can be deprotected under neutral conditions rather than in acidic conditions. As a rule, these two condi-tions are contradictory and it is not always that easy to �nd a satisfactory compromise between the stability of the monomer and the easy deprotection.

Many of the cyclic esters shown in Tables 1.6 through 1.8 are chiral and possess at least one chi-ral carbon (R or S). Although the stereoselective polymerization of lactide (Zhong et al. 2004) and β-butyrolactone (Amgoune et al. 2006, Carpentier 2010) is reported in the literature, the stereoselectiv-ity of their polymerization is in general not discussed and racemic mixtures are polymerized. Obviously, more attention should be paid to these aspects in the future because stereoselective polymerization allows the synthesis of aliphatic polyesters with different tacticities, and thus of different properties.

Last but not least, it must be noted that substituted cyclic esters can sometimes be expensive because their synthesis can require several steps from commercially available compounds at the expense of the global yield, which can be low. It is beyond the scope of this chapter to describe all the syntheses of these functionalized cyclic esters, and the reader is invited to read the references given in Tables 1.6 through 1.8. Another limitation relies on the necessity to synthesize a new cyclic ester for any new functional aliphatic polyester.

The functionalization of aliphatic polyesters opens up new avenues in the �eld of biomaterials. The presence of functional groups allows modifying the biodegradation rate by changing the crys-tallinity and hydrophilicity or by adding functional groups such as carboxylic acids prone to catalyze the degradation. Interestingly enough, pH-sensitive aliphatic polyesters can be obtained by grafting carboxylic acids or amines along aliphatic polyesters. These groups can be under a neutral or an

Page 36: Polymeric Biomaterials - Taylor & Francis eBooks

17Synthesis and Fabrication of Polyesters as Biomaterials

TABLE 1.6Ring-Opening of Cyclic Monoesters Functionalized inside the Ring

Entry Monomer Initiator Reference

1 O

O

O

Bu2SnO, Sn(Oct)2 Mathisen and Albertsson (1989) and Mathisen et al. (1989)

Al(OiPr)3 Löfgren et al. (1994)

2

O

O

RMe

O

Et3Al, H2O Shirahama et al. (1993, 1996)

3

O

O

O

Zn(II) l-lactateAl (OiPr)3

Kricheldorf and Damrau (1998) and Raquez et al. (2000)

4

O

O

N

CF3

O ROH/Sn(Oct)2 Trollsas et al. (2000)

5

O

PhN

O DBU Kudoh et al. (2009)

6

O

O Al(OiPr)3 Lou et al. (2001)

7

O

O Al(OiPr)3 Lou et al. (2002b)

Schrock’s catalyst Lou et al. (2002c)

(continued)

Page 37: Polymeric Biomaterials - Taylor & Francis eBooks

18 Polymeric Biomaterials: Structure and Function, Volume 1

ionic form depending upon the pH and their pKa, which affects their solubility in water. Another application relies on the use of these functional groups for the covalent grafting of biologically active molecules, drugs, targeting units, and other functional groups. For that sake, very ef�cient reactions have to be used under nondegrading conditions. It is not very easy to �nd a reaction that meets these criteria (Lecomte et al. 2006). Recently, it turned out that the click copper-catalyzed alkyne-azyde Huisgen’s cycloaddition reaction (CuAAC) is particularly ef�cient (Parrish et al. 2005, Riva et al. 2007, Lecomte et al. 2008) in the presence of limited degradation (Lecomte et al. 2008). Moreover, the reaction can take place in water and in organic solvents. Nevertheless, the use of copper salts as catalysts is a severe limitation for biomedical applications. Although they are not as ef�cient as the CuAAC reaction, several other metal-free reactions have been used such as the esteri�cation reaction between alcohols and carboxylic acids (Renard et al. 2003, Parrish and Emrick 2004), the ring-opening of epoxides by thiols (Lou et al. 2002b), the thiol-ene reaction (Rieger et al. 2005), and the coupling of ketones and oxyamines (Taniguchi et al. 2005, van Horn et al. 2008).

TABLE 1.6 (continued)Ring-Opening of Cyclic Monoesters Functionalized inside the Ring

Entry Monomer Initiator Reference

8

O

O

O

l-Phenyl-2-propanol, Sn(Oct)2

Latere et al. (2002)

9 O

O

O

N

Porcine pancreatic lipase Feng et al. (1999a, 2000)

Lipase type XIII from Pseudomonas species

Feng et al. (1999a,b)

Lipase from Pseudomonas cepacia

Feng et al. (1999a,b)

Lipase type VII from Candida rugosa

Feng et al. (1999b)

10 O

O

O

N

Porcine pancreatic lipase Feng et al. (2000)

11 O

O

O

N

Porcine pancreatic lipase Feng et al. (2000)

12 O

O

O

N

Porcine pancreatic lipase Feng et al. (2000)

Page 38: Polymeric Biomaterials - Taylor & Francis eBooks

19Synthesis and Fabrication of Polyesters as Biomaterials

TABLE 1.7Ring-Opening Polymerization of Functionalized Cyclic Esters

Entry Monomer Initiator Reference

1

O

O

O

O 4-tBu-C6H4-CH2OH, Sn(Oct)2 Simmons and Baker (2001)

2

O

O

Cl Sn(Oct)2

Al(OiOr)3

Pyridine, Et3NCF3CO2H

Liu et al. (1999)Liu et al. (1999)Liu et al. (1999)Liu et al. (1999)

3

O

OCl

2,2-Dibutyl-2-stanna-1,3-dioxepane

Lenoir et al. (2004)

4

O

O

O

Br

O Al(OiPr)3 Mecerreyes et al. (1999)

5

O

Br

O Al(OiPr)3 Detrembleur et al. (2000)

6

O

OBr

Al(OiPr)3 (copolymerization with εCL)

Wang et al. (2005)

(continued)

Page 39: Polymeric Biomaterials - Taylor & Francis eBooks

20 Polymeric Biomaterials: Structure and Function, Volume 1

TABLE 1.7 (continued)Ring-Opening Polymerization of Functionalized Cyclic Esters

Entry Monomer Initiator Reference

7

O

OI

MeOH, Sn(Oct)2 El Habnouni et al. (2009)

8 O

O

EtOH, Sn(OTf)2 Parrish et al. (2005)

9

O

O

O

O 4-tBu-C6H4-CH2OH, Sn(Oct)2 Jiang et al. (2008)

10 O

O

O

O

Al(OiPr)3 Mecerreyes et al. (2000a)

11 O

O

PhCH2OH, Sn(Oct)2 Mecerreyes et al. (2000b)

12 OO

MeO-[Y] (copolymerization with βBL)

Ajellal et al. (2009)

Page 40: Polymeric Biomaterials - Taylor & Francis eBooks

21Synthesis and Fabrication of Polyesters as Biomaterials

O

O

O

O

n

MoN

OC(CF3)2CH3

CMe2PhCH3(CF3)2OC

ROMP

FIGURE 1.16 Polymerization of 6,7-dihydro-2(3H)-oxepinone by ROMP.

TABLE 1.7 (continued)Ring-Opening Polymerization of Functionalized Cyclic Esters

Entry Monomer Initiator Reference

13

O

O

O

O

PhCH2OH, Sn(Oct)2 Leemhuis et al. (2008)

14 O

O

O

O

2,2-Dibutyl-2-stanna-1,3-dioxepane (block copolymerization with εCL)

Li et al. (2006)

15O

O

O Novozym 435 Veld et al. (2007)

16

O

O

O Novozym 435 Veld et al. (2007)

Page 41: Polymeric Biomaterials - Taylor & Francis eBooks

22 Polymeric Biomaterials: Structure and Function, Volume 1

TABLE 1.8Ring-Opening Polymerization of Cyclic Esters Bearing Protected Functional Groups

Entry Monomer Initiator Reference

1

O

O

O

O Al(OiPr)3 Tian et al. (1997)

2

O

TBDMSO

O Sn(Oct)2 (copolymerization with δVL and a dilactone)

Pitt et al. (1987)

3

O

O

Et3SiO

Al(OiPr)3 (copolymerization with εCL and TOSUO)

Stassin et al. (2000)

4

O

O

PhCH2O

ROH, Sn(Oct)2 Trollsas et al. (2000)

5

O

O

O

O OBn

iPrOH,

OZn

NLeemhuis et al. (2006)

6

O

O

O

OOBn

iPrOH,

OZn

NLeemhuis et al. (2006)

Page 42: Polymeric Biomaterials - Taylor & Francis eBooks

23Synthesis and Fabrication of Polyesters as Biomaterials

TABLE 1.8 (continued)Ring-Opening Polymerization of Cyclic Esters Bearing Protected Functional Groups

Entry Monomer Initiator Reference

7

O

Ph

O

O

O O

O ROH, Sn(Oct)2 Trollsas et al. (2000)

8 O

O

O

OBn

ROH, Sn(Oct)2 Trollsas et al. (2000)

9 O

O

O

OtBn

ROH, Sn(Oct)2 Trollsas et al. (2000)

10 O

O

O

OTBDMS

Al(OiPr)3 (copolymerization with εCL)

Lecomte et al. (2000)

11 OO

OBnO

Tetraethylammonium benzoate Bizzari et al. (2002)

(continued)

Page 43: Polymeric Biomaterials - Taylor & Francis eBooks

24 Polymeric Biomaterials: Structure and Function, Volume 1

TABLE 1.8 (continued)Ring-Opening Polymerization of Cyclic Esters Bearing Protected Functional Groups

Entry Monomer Initiator Reference

12 OO

OBnO

Tetraethylammonium benzoate Barbaud et al. (2004)

13O

O

OBn

O

PEO-OH, Sn(Oct)2 Mahmud et al. (2006)

14

O

O

O

O

O n = 1,2

n OBn

PhCH2OH, Sn(Oct)2 Gerhardt et al. (2007)

15

O

O

O

O

O O

Al(OiPr)3, Sn(Oct)2, Et2zn Kimura et al. (1988)

16

OO

TrN

Tetrabutylammonium acetate Flétier et al. (1990)

17

O

O

OBnHN

O

O

iPrOH, Sn(Oct)2 Blanquer et al. (2010)

Page 44: Polymeric Biomaterials - Taylor & Francis eBooks

25Synthesis and Fabrication of Polyesters as Biomaterials

1.4 RADICAL RING-OPENING POLYMERIZATION OF CYCLIC KETENE ACETALS

Although the ring-opening polymerization of cyclic esters is a very widely used technique to prepare aliphatic polyesters, special attention has to be paid to a less common process based on the ring-opening polymerization of cyclic ketene acetals (Bailey 1985, Sanda and Endo 2001, Agarwal 2010). For instance, the polymerization of ɛCL and 2-methylidene-1,3-dioxepane affords an aliphatic polyester with the same chemical structure. Nevertheless, the polyester obtained from ɛCL is semicrystalline and the polyester obtained from 2-methylidene-1,3-dioxepane is completely amorphous due to a high degree of branching (Jin and Gonsalves 1997, Undin et al. 2010). The degradation rate of amorphous polymers being faster compared to semicrystalline polymers, the synthesis of amorphous aliphatic polyesters is promising in terms of biomedical applications.

The mechanism of the polymerization of 2-methylidene-1,3-dioxepane is shown in Figure 1.17. Radicals add onto the double bond to afford a new radical. This radical rearrange by ring-opening of the ketal into a new radical, which then propagate. The new C=O double bond is approximately more stable than 50 kcal than the starting C=C double bond. This energy gain, combined with the release of the ring-strain, is the driving force of polymerization (Bailey 1985).

Another possible mechanism is the direct radical polymerization without any ring-opening (Figure 1.18). The polymerization selectivity (ring-opening versus direct polymerization) depends on several parameters such as ring size, substituents, and temperature. As far as the seven-mem-bered cyclic acetal 2-methylene-1,3-dioxepane is concerned, polymerization takes place with 100% of ring-opening at room temperature (Bailey et al. 1982). Conversely, ring-opening is accompanied by direct vinyl polymerization whenever �ve- and six-membered cyclic acetals are polymerized (Bailey 1985). It is also worth noting that the presence of substituents can affect the selectivity of polymerization. Indeed, substituents able to stabilize the radical formed after the ring-opening step disfavor the direct vinyl polymerization. For instance, polymerization of 2-methylidene-4-phenyl-1,3-dioxolane is fully selective with 100% ring-opening, whereas polymerization of unsubstituted �ve-membered cycles is usually not selective (Bailey 1985).

TABLE 1.8 (continued)Ring-Opening Polymerization of Cyclic Esters Bearing Protected Functional Groups

Entry Monomer Initiator Reference

18 O

O

OBnHN

O

Sn(Oct)2 (copolymerization with εCL) Yan et al. (2010)

19

OBn

O

4

HN

O

O

O O

PhCH2OH, Sn(Oct)2 Gerhardt et al. (2007)

Page 45: Polymeric Biomaterials - Taylor & Francis eBooks

26 Polymeric Biomaterials: Structure and Function, Volume 1

This technique of polymerization is not very popular because of its poor selectivity and the very dif�cult synthesis and puri�cation of cyclic ketene acetals with moderate or even low yields.

1.5 MACROMOLECULAR ENGINEERING OF ALIPHATIC POLYESTERS

The properties of aliphatic polyesters have to be tailored on demand to develop novel biomedical applications. The previous sections of this review dealt with the main processes of polymeriza-tion and the examples given were limited to homopolymerizations. It was already shown that the functionalization of aliphatic polyesters is a �rst tool allowing the extension of the range of their properties. A second possible approach is based on copolymerization or in the modi�cation of the architecture in the frame of macromolecular engineering.

1.5.1 COPOLYMERIZATION

The simplest technique of copolymerization is the polymerization of a mixture of, at least, two comonomers. The distribution of the two comonomers in the �nal polymer depends on their reac-tivity ratios. As far as copolymerization is random, the so-obtained copolyesters exhibit averaged properties of the corresponding homopolymers. The sequential polymerization of comonomers pro-vides block copolymers, provided that the polymerization is living. In this review, it was shown that a plethora of initiators and catalysts allows the ring-opening polymerization of cyclic esters to be living. Accordingly, the literature reports a large number of examples dealing with the synthesis of block copolymers by this technique. Interestingly enough, block copolymers exhibit brand new properties compared to the corresponding homopolymers, and thus not just averaged properties as is the case for random copolymers. In many examples, the ring-opening polymerization of cyclic esters is just used to synthesize one block and the other block is obtained by another technique.

R

C

O OR

O

C

O

O

CO

R

O O

CO

OR

O O

O OO OR +

Direct polymerization

Ring- opening

FIGURE 1.18 Polymerization of six-membered cyclic ketene acetals.

ROO

OC

O

R

O

C O

R OO

O

C

O

OO

R

+

FIGURE 1.17 Polymerization of 2-methylidene-1,3-dioxepane.

Page 46: Polymeric Biomaterials - Taylor & Francis eBooks

27Synthesis and Fabrication of Polyesters as Biomaterials

For example, PCL-b-PEO diblock copolymers are synthesized by successive polymerization of eth-ylene oxide and ɛCL (Kim et al. 2004, Bednarek and Kubisa 2005). These polymers are amphi-philic, PEO being soluble in water, which is not in the case of PCL. The self-association of these amphiphilic copolymers in water affords micelles or hollow spheres, which are used as drug carriers in drug delivery applications. It is worth recalling that PEO is not biodegradable but is biocompat-ible and bioresorbable provided its molar mass is low enough. A plethora of other works describes examples of fully degradable block copolyesters synthesized by ring-opening polymerization.

1.5.2 MODIFICATION OF THE ARCHITECTURE

The synthesis of aliphatic polyesters with various architectures is achieved by using the ring- opening polymerization of cyclic esters, this technique being living under appropriate conditions.

A �rst example is given by star-branched polyesters, which show particular properties such as lower melt viscosities, lower crystallinity, and smaller hydrodynamic volume. Interestingly enough, star-shaped copolyesters contain a higher number of chain-ends compared to linear polymers. Whenever chemists desire to graft a drug, a targeting unit, or a probe, the use of star-shaped polyes-ters rather than linear polyesters is thus an easy trick to increase their number. Two main techniques allow synthesizing star-shaped copolyesters. In the frame of the arm-�rst technique, living chains are coupled onto multifunctional (>3) electrophiles (Tian et al. 1994). Conversely, the initiation of the ring-opening polymerization by multifunctional initiators is known as the core-�rst technique. The most usual conditions are based on the initiation of the polymerization of cyclic esters by poly-ols in the presence of tin octoate (Trollsas et al. 1998, Lang et al. 2002, Kricheldorf 2004, Choi et al. 2005). Another approach less commonly used relies on the initiation of the polymerization by a spirocyclic initiator (Kricheldorf and Lee 1996, Li et al. 2008). Finally, the arm-�rst and core-�rst techniques can be combined to synthesize star-shaped copolymers in order to increase further the range of properties of star-shaped copolymers (Van Butsele et al. 2006, Riva et al. 2011).

Graft polymers are other examples of polymers with a branched architecture (Dai et al. 2009). These polymers can be synthesized by three main methods. The polymerization of chains end-capped by a polymerizable unit, i.e., a macromonomer, is known as the “grafting through approach.” The “grafting onto” process is based on the coupling of chains functionalized at one chain-end onto a backbone bearing several complementary functions. The last process, the “grafting from” technique, relies on the initiation of the polymerization by a macroinitiator bearing several initiating units. Hyperbranched aliphatic polyesters are obtained by the polymerization of ABx inimers made up of an initiator and a polymerizable group. Typical examples are lactones substituted by unprotected alcohols (Liu et al. 1999a, Trollsas et al. 1999, Tasaka et al. 2001, Yu et al. 2005a, Parzuchowski et al. 2006).

The crystallinity, biodegradation rate, and the mechanical properties of biomaterials made up of aliphatic polyesters can be modi�ed by implementing cross-linking reactions. For instance, Hedrick and coworkers reported the cross-linking of PCL bearing pendant acrylates (Mecerreyes et al. 2001). An intramolecular cross-linking takes place under diluted conditions and nanoparticles are then prepared. As far as the cross-linking is carried out at higher concentration, intermolecular cross-linking affords three-dimensional networks. The cross-linking can be carried out in the pres-ence of radicals (Mecerreyes et al. 2001) or photochemically (Riva et al. 2007, Vaida et al. 2008). The cross-linking of linear or star-shaped aliphatic polyesters bearing an unsaturation at least at two chain-ends is also possible (Turunen et al. 2001, Kweon et al. 2003). The cross-linking can be car-ried out by processes based exclusively on ring-opening polymerization. In this respect, Albertsson and coworkers reported on the ring-opening polymerization of tetrafunctional bis-(ɛ-caprolactones) (Palmgren et al. 1997, Albertsson et al. 2000). Other cross-linking agents are made up of other polymerizable heterocycles, such as bis-carbonates (Grijpma et al. 1993) or lactones substituted by epoxides (Lowe et al. 2009). All these processes are based on the ring-opening polymerization technique. Nevertheless, networks can also be obtained by the polycondensation of comonomers, one of them being at least trifunctional (Kricheldorf and Fechner 2002, Theiler et al. 2010).

Page 47: Polymeric Biomaterials - Taylor & Francis eBooks

28 Polymeric Biomaterials: Structure and Function, Volume 1

Finally, the cross-linking can be carried out by the coupling of telechelic polymers with polyes-ters bearing along the chains the complementary functional groups. Several coupling reactions are reported for that sake such as the Michael addition of amines onto acrylates (Theiler et al. 2010), the coupling of ketones and oxyamines (van Horn and Wooley 2007), the click copper(II) catalyzed azide-alkyne cycloaddition (Zednik et al. 2008), and the esteri�cation reaction (Kricheldorf and Fechner 2001, Kricheldorf 2004, Theiler et al. 2010).

Finally, it is worth noting that other examples of architectures such as macrocycles (Li et al. 2006, Jeong et al. 2007, Lang et al. 2002, Hiskins and Grayson 2009, Misaka et al. 2009, Xie et al. 2009) can be found in the literature. Nevertheless, their impact on the �eld of biomaterial is quite limited and they will not be reported in this review. As far as macrocycles are concerned, the lack of applications as biomaterials can be accounted for by their dif�cult synthesis even though some recent progresses have been made in this �eld (Laurent and Grayson 2009).

1.6 CONCLUSIONS

The importance of biodegradable and biocompatible aliphatic polyesters as biomaterials and as environ-mentally friendly thermoplastics prompted researchers to develop ef�cient processes for their synthesis, mainly by step-growth polymerization and ring-opening polymerization of cyclic esters. Nowadays, owing to the impressive progresses achieved in this �eld, it is possible to synthesize aliphatic polyesters with high and controlled molar masses, to control the functionalities at the chain-ends and to graft functional groups all along the chains. The architecture of aliphatic polyesters can also be modi�ed on demand in the frame of macromolecular engineering. Remarkably, ring- opening polymerization can be carried out by a very wide range of polymerization techniques such as anionic, cationic, coordina-tion, organocatalytic, enzymatic, and radical polymerizations. The synthesis of aliphatic polyesters can thus be considered as a mature �eld. Currently, the challenge for a chemist remains to develop ef�cient processes for the synthesis of ultrapure aliphatic polyesters, thus noncontaminated by toxic catalytical residues. In this regard, tin(II) bis-(2-ethylhexanoate) is still widely used despite its known toxicity and very dif�cult extraction. Obviously, more work needs to be done despite the very important progresses being reported in the last few years. In the future, special attention will have to be paid to implement green processes, for instance, by avoiding organic solvents and to the synthesis of a wider range of bio-based aliphatic polyesters from new monomers produced from renewable resources.

ACKNOWLEDGMENTS

CERM is indebted to the “Belgian Science Policy” for general support in the frame of the “Interuniversity Attraction Poles Programme (IAP 6/27)—Functional Supramolecular Systems.” P.L. is research associate by the “Fonds National pour la Recherche Scienti�que” (FRS-FNRS).

REFERENCES

Agarwal, S. 2010. Chemistry, chances and limitations of the radical ring-opening polymerization of cyclic ketene acetals for the synthesis of degradable polyesters. Polym. Chem. 1: 953–954.

Ajellal, N., C.M. Thomas, and J.F. Carpentier. 2009. Functional syndiotactic poly(β-hydroxyalkanoate)s via stereoselective ring-opening copolymerization of rac-β-butyrolactone and rac-allyl-β-butyrolactone. J. Polym. Sci. A Polym. Chem. 47: 3177–3189.

Albertsson, A.C., U. Edlund, and K. Stridsberg. 2000. Controlled ring-opening polymerization of lactones and lactides. Macromol. Symp. 157: 39–46.

Albertsson, A.C. and R.K. Srivastava. 2008. Recent developments in enzyme-catalyzed ring-opening polymer-ization. Adv. Drug Deliv. Rev. 60: 1077–1093.

Amgoune, A., C.M. Thomas, S. Ilinca, T. Roisnel, and J.-F. Carpentier. 2006. Highly active, productive, and syndiospeci�c yttrium initiators for the polymerization of racemic β-butyrolactone. Ang. Chem. Int. Ed. 45: 2782–2784.

Bailey, W.J. 1985. Free-radical ring-opening polymerization. Polymer J. 17: 85–95.

Page 48: Polymeric Biomaterials - Taylor & Francis eBooks

29Synthesis and Fabrication of Polyesters as Biomaterials

Bailey, W.J., Z. Ni, and S.R. Wu. 1982. Synthesis of poly-ɛ-caprolactone via a free radical mechanism. Free radical ring opening polymerization of 2-methylene-1,3-dioxepane. J. Polym. Sci. A Polym. Chem. 20: 3021–3030.

Barbaud, C., F. Fay, F. Abdillah, S. Randriamahefa, and P. Guérin. 2004. Synthesis of new homopolyester and copolyesters by anionic ring-opening polymerization of α,α′,β-trisubstituted β-lactones. Macromol. Chem. Phys. 205: 199–207.

Basko, M. and P. Kubisa. 2006. Cationic copolymerization of ɛ-caprolactone and l,l-lactide by an activated monomer mechanism. J. Polym. Sci. A Polym. Chem. 44: 7071–7081.

Bednarek, M. and P. Kubisa. 2005. Copolymerization with the feeding of one of the comonomers: Cationic activated monomer copolymerization of ɛ-caprolactone with ethylene oxide. J. Polym. Sci. A Polym. Chem. 43: 3788–3796.

Bizzari, R., F. Chiellini, R. Solaro, E. Chiellini, S. Cammas-Marion, and P. Guerin. 2002. Synthesis and charac-terization of new malolactonate polymers and copolymers for biomedical applications. Macromolecules 35: 1215–1223.

Blanquer, S., J. Tailhades, V. Darcos, M. Amblard, J. Martinez, B. Nottelet, and J. Coudane. 2010. Easy synthesis and ring-opening polymerization of 5-Z-Amino-δ-valerolactone: New degradable amino-functionalized (co)polyesters. J. Polym. Sci. A Polym. Chem. 48: 5891–5898.

Bourissou, D., B. Martin-Vaca, A. Dumitrescu, M. Graullier, and F. Lacombe. 2005. Controlled cationic polym-erization of lactide. Macromolecules 38: 9993–9998.

Carpentier, J.-F. 2010. Discrete metal catalysts for stereoselective ring-opening polymerization of chiral race-mic β-lactones. Macromol. Rapid Commun. 31: 1696–1705.

Casas, J., P.V. Persson, T. Iversen, and A. Cordova. 2004. Direct organocatalytic ring-opening polymerizations of lactones. Adv. Synth. Catal. 346: 1087–1089.

Choi, J., I.K. Kim, and C.Y. Kwak. 2005. Synthesis and characterization of a series of star-branched poly(ɛ-caprolactone)s with the variation in arm numbers and lengths. Polymer 46: 9725–9735.

Chuma, A., H.W. Horn, W.C. Swope, R.C. Pratt, L. Zhang, B.G.G. Lohmeijer, C.G. Wade et al. 2008. The reaction mechanism for the organocatalytic ring-opening polymerization of l-Lactide using a guanidine-based catalyst: Hydrogen-bonded or covalently bound? J. Am. Chem. Soc. 130: 6749–6754.

Connor, E.F., G.W. Nyce, M. Myers, A. Möck, and J.L. Hedrick. 2002. First example of N-heterocyclic car-benes as catalysts for living polymerization: Organocatalytic ring-opening polymerization of cyclic esters. J. Am. Chem. Soc. 124: 914–915.

Coulembier, O., P. Degée, J.L. Hedrick, and P. Dubois. 2006a. From controlled ring-opening polymerization to biodegradable aliphatic polyester: Especially poly(β-malic acid) derivatives. Prog. Polym. Sci. 31: 723–747.

Coulembier, O., A.P. Dove, R.C. Pratt, A.C. Sentman, D.A. Culkin, L. Mespouille, P. Dubois et al. 2005. Latent, thermally activated organic catalysts for the on-demand living polymerization of lactide. Ang. Chem. Int. Ed. 44: 4964–4968.

Coulembier, O., B.G.G. Lohmeijer, A.P. Dove, R.C. Pratt, L. Mespouille, D.A. Culkin, S.J. Benight et al. 2006b. Alcohol adducts of N-heterocyclic carbenes: Latent catalysts for the thermally-controlled living polymerization of cyclic esters. Macromolecules 39: 5617–5628.

Dai, W., J. Zhu, A. Shangguan, and M. Lang. 2009. Synthesis, characterization and degradability of the comb-type poly(4-hydroxyl-ɛ-caprolactone-co-ɛ-caprolactone)-g-poly(l-lactide). Eur. Polym. J. 45: 1659–1667.

Detrembleur, C., M. Mazza, O. Halleux, P. Lecomte, D. Mecerreyes, J.L. Hedrick, and R. Jérôme. 2000. Ring-opening polymerization of γ-bromo-ɛ-caprolactone: A novel route to functionalized aliphatic polyesters. Macromolecules 33: 14–18.

Dove, A.P., H. Li, R.C. Pratt, B.G.G. Lohmeijer, D.A. Culkin, R.M. Waymouth, and J.L. Hedrick. 2006. Stereoselective polymerization of rac- and meso-lactide catalyzed by sterically encumbered N-heterocyclic carbenes. Chem. Commun. 2006: 2881–2883.

Dove, A.P., R.C. Pratt, B.G.G. Lohmeijer, R.M. Waymouth, and J.L. Hedrick. 2005. Thiourea-based bifunc-tional organocatalysis: Supramolecular recognition for living polymerization. J. Am. Chem. Soc. 127: 13798–13799.

Dubois, P., R. Jérôme, and P. Teyssié. 1989. Macromolecular engineering of polylactones and polylactides. I. End-functionalization of poly-ɛ-caprolactone. Polym. Bull. 22: 475–482.

Duda, A., A. Kowalski, S. Penczek, H. Uyama, and S. Kobayashi. 2002. Kinetics of the ring-opening polym-erization of 6-, 7-, 9-, 12-, 13-, 16-, and 17-membered lactones. Comparison of chemical and enzymatic polymerizations. Macromolecules 35: 4266–4270.

Duda, A., J. Libiszowski, J. Mosnacek, and S. Penczek. 2005. Copolymerization of cyclic esters at the living polymer-monomer equilibrium. Macromol. Symp. 226: 109–119.

Duda, A. and S. Penczek. 1991. Anionic and pseudoanionic polymerization of ɛ-caprolactone. Macromol. Symp. 42/43: 135–143.

Page 49: Polymeric Biomaterials - Taylor & Francis eBooks

30 Polymeric Biomaterials: Structure and Function, Volume 1

Duda, A., S. Penczek, A. Kowalski, and J. Libiszowski. 2000. Polymerization of ɛ-caprolactone and l,l-dilactide initiated with stannous octoate and stannous butoxide—A comparison. Macromol. Symp. 153: 41–53.

El Habnouni, S., V. Darcos, and J. Coudane. 2009. Synthesis and ring-opening polymerization of a new func-tional lactone, α-iodo-ɛ-caprolactone: A novel route to functionalized aliphatic polyesters. Macromol. Rapid Commun. 30: 165–169.

Feng, Y., D. Klee, H. Keul, and H. Höcker. 2000. Lipase-catalyzed ring-opening polymerization of morpholine-2,5-dione derivatives: A novel route to the synthesis of poly(ester amide)s. Macromol. Chem. Phys. 201: 2670–2675.

Feng, Y., J. Knüfermann, D. Klee, and H. Höcker. 1999a. Enzyme-catalyzed ring-opening polymerization of 3(S)-isopropylmorpholine-2,5-dione. Macromol. Rapid Commun. 20: 88–90.

Feng, Y., J. Knüfermann, D. Klee, and H. Höcker. 1999b. Lipase-catalyzed ring-opening polymerization of 3(S)-isopropylmorpholine-2,5-dione. Macromol. Chem. Phys. 200: 1506–1514.

Flétier, I., A. Le Borgne, and N. Spassky. 1990. Synthesis of functional polyesters derived from serine. Polym. Bull. 24: 349–353.

Gazeau-Bureau, S., D. Delcroix, B. Martin-Vaca, D. Bourissou, C. Navarro, and S. Magnet. 2008. Organo-catalyzed ROP of ɛ-caprolactone: Methanesulfonic acid competes with tri¥uoromethanesulfonic acid. Macromolecules 41: 3782–3784.

Gerhardt, W.W., D.E. Noga, K.I. Hardcastle, A.J. Garcıa, D.M. Collard, and M. Weck. 2007. Functional lactide monomers: Methodology and polymerization. Biomacromolecules 8: 1735–1742.

Gimenez, S., S. Ponsart, J. Coudane, and M. Vert. 2001. Synthesis, properties and in vitro degradation of carboxyl-bearing PCL. J. Bioact. Compat. Polym. 16: 32–46.

Grijpma, D.W., E. Kroeze, A.J. Nijenhuis, and A.J. Pennings. 1993. Poly(l-lactide) crosslinked with spiro-bis-dimethylene-carbonate. Polymer 34: 1496–1503.

Gross, R.A., A. Kumar, and B. Kalra. 2001. Polymer synthesis by in vitro enzyme catalysis. Chem. Rev. 101: 2097–2124.

Guillaume, S.M., M. Schappacher, and A. Soum. 2003. Polymerization of ɛ-caprolactone by Nd(BH4)3(THF)3: Synthesis of hydroxytelechelic poly(ɛ-caprolactone). Macromolecules 36: 54–60.

Hamitou, A., R. Jérôme, A.J. Hubert, and P. Teyssié. 1973. A new catalyst for the ring-opening polymerization of lactones to polyesters. Macromolecules 6: 651–652.

Hiskins, J.N. and J.M. Grayson. 2009. Synthesis and degradation behavior of cyclic poly(ɛ-caprolactone). Macromolecules 42: 6406–6413.

Hofman, A., R. Szymanski, S. Slomkowski, and S. Penczek. 1984. Structure of active species in the cationic polymerization of β-propiolactone and ɛ-caprolactone. Makromol. Chem. 185: 655–667.

van Horn, B.A., R.K. Iha, and K.L. Wooley. 2008. Sequential and single-step, one-pot strategies for the trans-formation of hydrolytically degradable polyesters into multifunctional systems. Macromolecules 41: 1618–1626.

van Horn, B.A. and K.L. Wooley. 2007. Cross-linked and functionalized polyester materials constructed using ketoxime ether linkages. Soft Matter 3: 1032–1040.

Jeong, W., J.L. Hedrick, and R.M. Waymouth. 2007. Organic spirocyclic initiators for the ring-expansion polymerization of β-lactones. J. Am. Chem. Soc. 129: 8414–8415.

Jiang, X., E.B. Vogel, M.R. Smith III, and G.L. Baker. 2008. “Clickable” polyglycolides: Tunable synthons for thermoresponsive, degradable polymers. Macromolecules 41: 1937–1944.

Jin, S. and K.E. Gonsalves. 1997. A study of the mechanism of the free-radical ring-opening polymerization of 2-methylene-1,3-dioxepane. Macromolecules 30: 3104–3106.

Kakuchi, R., Y. Tsuji, K. Chiba, K. Fuchise, R. Sakai, T. Satoh, and T. Kakuchi. 2010. Controlled/living ring-opening polymerization of δ-valerolactone using tri¥ylimide as an ef�cient cationic organocatalyst. Macromolecules 43: 7090–7094.

Kamber, N.E., W. Jeong, R.M. Waymouth, R.C. Pratt, B.G.G. Lohmeijer, and J.L. Hedrick. 2007. Organocatalytic ring-opening polymerization. Chem. Rev. 107: 5813–5840.

Kim, M.S., K.S. Seo, G. Khang, S.H. Cho, and H.B. Lee. 2004. Preparation of methoxy poly(ethylene glycol)/polyester diblock copolymers and examination of the gel-to-sol transition. J. Polym. Sci. A Polym. Chem. 42: 5784–5793.

Kimura, Y., K. Shirotani, H. Yamane, and T. Kitao. 1988. Ring-opening polymerization of 3(S)-[(benzyloxycarbonyl)methyl]-1,4-dioxane-2,5-dione: A new route to a poly(α-hydroxy acid) with pendant carboxyl groups. Macromolecules 21: 3338–3340.

Knani, D., A.L. Gutman, and D.H. Kohn. 1993. Enzymatic polyesteri�cation in organic media. Enzyme-catalyzed synthesis of linear polyesters. I. Condensation polymerization of linear hydroxyester. II. Ring-opening polymerization of ɛ-caprolactone. J. Polym. Sci. A Polym. Chem. 31: 1221–1232.

Page 50: Polymeric Biomaterials - Taylor & Francis eBooks

31Synthesis and Fabrication of Polyesters as Biomaterials

Kobayashi, S. and A. Makino. 2009. Enzymatic polymer synthesis: An opportunity for green polymer chemis-try. Chem. Rev. 109: 5288–5353.

Kowalski, A., A. Duda, and S. Penczek. 1998. Kinetics and mechanism of cyclic esters polymerization initi-ated with tin(II) octoate, 1 Polymerization of ɛ-caprolactone. Macromol. Rapid Commun. 19: 567–572.

Kowalski, A., A. Duda, and S. Penczek. 2000a. Kinetics and mechanism of cyclic esters polymerization initi-ated with tin(II) octoate, 3. Polymerization of l,l-dilactide. Macromolecules 33: 7359–7370.

Kowalski, A., A. Duda, and S. Penczek. 2000b. Mechanism of cyclic ester polymerization initiated with tin(II) octoate. 2. Macromolecules �tted with tin(II) alkoxide species observed directly in MALDI-TOF spectra. Macromolecules 33: 689–695.

Kowalski, A., J. Libiszowski, A. Duda, and S. Penczek. 2000c. Polymerization of l,l-dilactide initiated by tin(II) butoxide. Macromolecules 33: 1964–1971.

Kowalski, A., J. Libiszowski, K. Majerska, A. Duda, and S. Penczek. 2007. Kinetics and mechanism of ɛ-caprolactone and l,l-lactide polymerization coinitiated with zinc octoate or aluminum acetylacetonate: The next proofs for the general alkoxide mechanism and synthetic applications. Polymer 48: 3952–3960.

Kricheldorf, H.R. 2003. Macrocycles. 21. Role of ring-ring equilibria in thermodynamically controlled poly-condensations. Macromolecules 36: 2302–2308.

Kricheldorf, H.R. 2004. Biodegradable polymers with variable architectures via ring-expansion polymerization. J. Polym. Sci. A Polym. Chem. 42: 4723–4742.

Kricheldorf, H.R., K. Ahrensdorf, and S. Rost. 2004. Star-shaped homo- and copolyesters derived from ɛ-caprolactone, l,l-lactide and trimethylene carbonate. Macromol. Chem. Phys. 205: 1602–1610.

Kricheldorf, H.R. and D.O. Damrau. 1998. Zn l-lactate-catalyzed polymerizations of 1,4-dioxan-2-one. Macromol. Chem. Phys. 199: 1089–1097.

Kricheldorf, H.R. and S. Eggerstedt. 1998. Macrocycles 2. Living macrocyclic polymerization of ɛ-caprolactone with 2,2-dibutyl-2-stanna-1,3-dioxepane as initiator. Macromol. Chem. Phys. 199: 283–290.

Kricheldorf, H.R. and B. Fechner. 2001. Polylactones. 51. Resorbable networks by combined ring-expansion polym-erization and ring-opening polycondensation of ɛ-caprolactone or dl-lactide. Macromolecules 34: 3517–3521.

Kricheldorf, H.R. and B. Fechner. 2002. Polylactones. 59. Biodegradable networks via ring-expansion polym-erization of lactones and lactides. Biomacromolecules 3: 691–695.

Kricheldorf, H.R., M. Garaleh, and G. Schwarz. 2005. Tertiary amine-initiated zwitterionic polymerization of pivalolactone—A reinvestigation by means of MALDI-TOF mass spectrometry. J. Macromol. Sci. A Pure Appl. Chem. 42: 139–148.

Kricheldorf, H.R., J.M. Jonte, and R. Dunsing. 1986. Polylactones. 7. The mechanism of cationic polymeriza-tion of β-propiolactone and ɛ-caprolactone. Makromol. Chem. 187: 771–785.

Kricheldorf, H.R. and S.R. Lee. 1996. Polylactones. 40. Nanopretzels by macrocyclic polymerization of lac-tones via a spirocyclic tin initiator derived from pentaerythritol. Macromolecules 29: 8669–8695.

Kricheldorf, H.R. and G. Schwarz. 2003. Cyclic polymers by kinetically controlled step-growth polymeriza-tion. Macromol. Rapid Commun. 24: 359–381.

Kricheldorf, H.R., A. Stricker, and D. Langanke. 2001. Polylactones, 50. The reactivity of cyclic and noncyclic dibu-tyltin bisalkoxides as initiators in the polymerization of lactones. Macromol. Chem. Phys. 202: 2525–2534.

Kudoh, R., A. Sudo, and T. Endo. 2009. Synthesis of eight-membered lactone having tertiary amine moiety by ring-expansion reaction of 1,3-benzoxazine and its anionic ring-opening polymerization behavior. Macromolecules 42: 2327–2329.

Kweon, H., M.K. Yoo, I.K. Park, T.H. Kim, H.C. Lee, H.S. Lee, J.S. Oh et al. 2003. A novel degradable poly-caprolactone networks for tissue engineering. Biomaterials 24: 801–808.

Lang, M., R.P. Wong, and C.C. Chu. 2002. Synthesis and structural analysis of functionalized poly(ɛ-caprolactone)-based three arm star polymers. J. Polym. Sci. A Polym. Chem. 40: 1127–1141.

Latere, J.P., P. Lecomte, P. Dubois, and R. Jérôme. 2002. 2-Oxepane-1,5-dione: A precursor of a novel class of versatile semicrystalline biodegradable (co)polyester. Macromolecules 21: 7857–7859.

Laurent, B.A. and S.M. Grayson. 2009. Synthetic approaches for the preparation of cyclic polymers. Chem. Soc. Rev. 38: 2202–2213.

Lecomte, P., V. D’Aloia, M. Mazza, O. Halleux, S. Gautier, C. Detrembleur, and R. Jérôme. 2000. Synthesis of new hydrophilic γ-substituted poly-ɛ-caprolactones. Polymer Preprints. Am. Chem. Soc. 41(2): 1534–1535.

Lecomte, P. and R. Jérôme. 2004. Recent developments in controlled/living ring opening polymerization. In Encyclopedia of Polymer Science and Technology, ed. J. Kroschwitz, pp. 547–565. Hoboken, NJ: Wiley.

Lecomte, P., R. Riva, C. Jérôme, and R. Jérôme. 2008. Macromolecular engineering of biodegradable polyesters by ring-opening polymerization and click chemistry. Macromol. Rapid Commun. 29: 982–997.

Page 51: Polymeric Biomaterials - Taylor & Francis eBooks

32 Polymeric Biomaterials: Structure and Function, Volume 1

Lecomte, P., R. Riva, S. Schmeits, J. Rieger, K. Van Butsele, C. Jérôme, and R. Jérôme. 2006. New prospects for the grafting of functional groups onto aliphatic polyesters. Ring-opening polymerization of α- or γ-substituted ɛ-caprolactone followed by chemical derivatization of the substituents. Macromol. Symp. 240: 157–165.

Leemhuis, M., N. Akeroyd, J.A.W. Kruijtzer, C.F. van Nostrum, and W.E. Hennink. 2008. Synthesis and char-acterization of allyl functionalized poly(α-hydroxy)acids and their further dihydroxylation and epoxida-tion. Eur. Polym. J. 44: 308–317.

Leemhuis, M., C.F. van Nostrum, J.A.W. Kruijtzer, Z.Y. Zhong, M.R. ten Breteler, P.J. Dijkstra, J. Feijen et al. 2006. Functionalized poly(α-hydroxy acid)s via ring-opening polymerization: Toward hydrophilic poly-esters with pendant hydroxyl groups. Macromolecules 39: 3500–3508.

Lenoir, S., R. Riva, X. Lou, C. Detrembleur, R. Jérôme, and P. Lecomte. 2004. Ring-opening polymerization of α-chloro-ɛ-caprolactone and chemical modi�cation of poly(α-chloro-ɛ-caprolactone) by atom transfer radical processes. Macromolecules 37: 4055–4061.

Li, H., A. Debuigne, R. Jérôme, and P. Lecomte. 2006. Synthesis of macrocyclic poly(ɛ-caprolactone) by intra-molecular cross-linking of unsaturated end groups of chains precyclic by the initiation. Ang. Chem. Int. Ed. 45: 2264–2267.

Li, H., R. Riva, H.R. Kricheldorf, R. Jérôme, and P. Lecomte. 2008. Synthesis of eight and star-shaped poly(ɛ-caprolactone)s and their amphiphilic derivatives. Chem. Eur. J. 14: 358–368.

Libiszowki, J., A. Kowalski, A. Duda, and S. Penczek. 2002. Kinetics and mechanism of cyclic esters polymer-ization initiated with covalent metal carboxylates, 5. End-group studies in the model ɛ-caprolactone and l,l-dilactide/tin(II) and zinc octoate/butyl alcohol systems. Macromol. Chem. Phys. 203: 1694–1701.

Liu, J. and L. Liu. 2004. Ring-opening polymerization of ɛ-caprolactone initiated by natural amino acids. Macromolecules 37: 2674–2676.

Liu, M., N. Vladimirov, and J.M.J. Fréchet. 1999a. A new approach to hyperbranched polymers by ring-opening polymerization of an AB Monomer: 4-(2-hydroxyethyl)-ɛ-caprolactone. Macromolecules 32: 6881–6884.

Liu, X.Q., M.X. Wang, Z.C. Li, and F.M. Li. 1999b. Synthesis and ring-opening polymerization of α-chloromethyl-α-methyl-β-propiolactone. Macromol. Chem. Phys. 200: 468–473.

Loeker, F.C., C.J. Duxbury, R. Kumar, W. Gao, R.A. Gross, and S.M. Howdle. 2004. Enzyme-catalyzed ring-opening polymerization of ɛ-caprolactone in supercritical carbon dioxide. Macromolecules 37: 2450–2453.

Löfgren, A., A.C. Albertsson, P. Dubois, and R. Jérôme. 1995. Recent advances in ring-opening polymeriza-tion of lactones and related compounds. J. Macromol. Sci. C Rev. Macromol. Chem. Phys. 35: 379–418.

Löfgren, A., A.C. Albertsson, P. Dubois, R. Jérôme, and P. Teyssié. 1994. Synthesis and characterization of biodegrad-able homopolymers and block copolymers based on 1,5-dioxepan-2-one. Macromolecules 27: 5556–5562.

Lohmeijer, B.G.G., R.C. Pratt, F. Leibfarth, J.W. Logan, D.A. Long, A.P. Dove, F. Nederberg, J. Choi, C. Wade, R.M. Waymouth, and J.L. Hedrick. 2006. Guanidine and amidine organocatalysts for ring-opening polymerization of cyclic esters. Macromolecules 39: 8574–8583.

Lou, X., C. Detrembleur, and R. Jérôme. 2002a. Living cationic polymerization of δ-valerolactone and synthesis of high molecular weight homopolymer and asymmetric telechelic and block copolymer. Macromolecules 35: 1190–1195.

Lou, X., C. Detrembleur, and R. Jérôme. 2003. Novel aliphatic polyesters based on functional cyclic (di)esters. Macromol. Rapid Commun. 24: 161–172.

Lou, X., C. Detrembleur, P. Lecomte, and R. Jérôme. 2001. Living ring-opening (co)polymerization of 6,7-dihydro-2(5H)-oxepinone into unsaturated aliphatic polyesters. Macromolecules 34: 5806–5811.

Lou, X., C. Detrembleur, P. Lecomte, and R. Jérôme. 2002b. Controlled synthesis and chemical modi�cation of unsaturated aliphatic (co)polyesters based on 6,7-dihydro-2(3H)-oxepinone. J. Polym. Sci. A Polym. Chem. 40: 2286–2297.

Lou, X., C. Detrembleur, P. Lecomte, and R. Jérôme. 2002c. Novel unsaturated ɛ-caprolactone polymerizable by ring-opening metathesis mechanisms. e-polymers 34: 1–12.

Lowe, J.R., W.B. Tolman, and M.A. Hillmyer. 2009. Oxidized dihydrocarvone as a renewable multifunctional monomer for the synthesis of shape memory polyesters. Biomacromolecules 10: 2003–2008.

Lu, J., R.C. Tappel, and C.T. Nomura. 2009. Mini-review: Biosynthesis of poly(hydroxyalkanoates). J. Macromol. Sci. C Polym. Rev. 49: 226–248.

Mahmud, A., X.B. Xiong, and A. Lavasanifar. 2006. Novel self-associating poly(ethylene oxide)-block-poly(ɛ-caprolactone) block copolymers with functional side groups on the polyester block for drug delivery. Macromolecules 39: 9419–9428.

Majerska, K., A. Duda, and S. Penczek. 2000. Kinetics and mechanism of cyclic esters polymerization initiated with tin(II) octoate, 4. In¥uence of proton trapping agents on the kinetics of ɛ-caprolactone and l,l-dilactide polymerization. Macromol. Rapid Commun. 21: 1327–1332.

Page 52: Polymeric Biomaterials - Taylor & Francis eBooks

33Synthesis and Fabrication of Polyesters as Biomaterials

Martin, E., P. Dubois, and R. Jérôme. 2000. Controlled ring-opening polymerization of ɛ-caprolactone pro-moted by “in situ” formed yttrium alkoxides. Macromolecules 33: 1530–1535.

Martin, E., P. Dubois, and R. Jérôme. 2003a. “In situ” formation of yttrium alkoxides: A versatile and ef�cient catalyst for the ROP of ɛ-caprolactone. Macromolecules 36: 5934–5941.

Martin, E., P. Dubois, and R. Jérôme. 2003b. Preparation of supported yttrium alkoxides as catalysts for the polymerization of lactones and oxirane. J. Polym. Sci. A Polym. Chem. 41: 569–578.

Martin, E., P. Dubois, and R. Jérôme. 2003c. Polymerization of ɛ-caprolactone initiated by Y alkoxide grafted onto porous silica. Macromolecules 36: 7094–7099.

Mathisen, T. and A.C. Albertsson. 1989. Polymerization of 1,5-dioxepan-2-one. 1. Synthesis and character-ization of the monomer 1,5-dioxepan-2-one and its cyclic dimer 1,5,8,12-tetraoxacyclotetradecane-2,9-dione. Macromolecules 22: 3838–3842.

Mathisen, T., K. Masus, and A.C. Albertsson. 1989. Polymerization of 1,5-dioxepan-2-one. 2. Polymerization of 1,5-dioxepan-2-one and its cyclic dimer, including a new procedure for the synthesis of 1,5-dioxepan-2-one. Macromolecules 22: 3842–3846.

McLain, S.J. and N.E. Drysdale. 1992. Living ring-opening polymerization of ɛ-caprolactone by yttrium and lanthanide alkoxides. Polymer Preprints. Am. Chem. Soc. 33(1): 174–175.

Mecerreyes, D., B. Atthoff, K.A. Boduch, M. Trollsas, and J.L. Hedrick. 1999. Unimolecular combination of an atom transfer radical polymerization initiator and a lactone monomer as a route to new graft copolymers. Macromolecules 16: 5175–5182.

Mecerreyes, D., J. Humes, R.D. Miller, J.L. Hedrick, P. Lecomte, C. Detrembleur, and R. Jérôme. 2000a. First example of an unsymmetrical difunctional monomer polymerizable by two living/controlled methods. Macromol. Rapid Commun. 21: 779–784.

Mecerreyes, D., V. Lee., C.J. Hawker, J.L. Hedrick, A. Wursch, W. Volksen, T. Magbitang et al. 2001. A novel approach to functionalized nanoparticles: Self-crosslinking of macromolecules in ultradilute solution. Adv. Mater. 13: 204–208.

Mecerreyes, D., R.D. Miller, J.L. Hedrick, C. Detrembleur, and R. Jérôme. 2000b. Ring-opening polymeriza-tion of 6-hydroxynon-8-enoic acid lactone: Novel biodegradable copolymers containing allyl pendent groups. J. Polym. Sci. A Polym. Chem. 38: 870–875.

Mingotaud, A.-F., F. Cansell, N. Gilbert, and A. Soum. 1999. Cationic and anionic ring-opening polymerization in supercritical CO2. Preliminary results. Polym. J. 31: 406–410.

Mingotaud, A.-F., F. Dargelas, and F. Cansell. 2000. Cationic and anionic ring-opening polymerization in supercritical CO2. Macromol. Symp. 153: 77–86.

Miola-Delaite, C., E. Colomb, E. Pollet, and T. Hamaide. 2000. Anionic ring-opening polymerization of oxy-genated heterocycles with supported zirconium and rare earth alkoxides as initiators in protic conditions towards a catalytic heterogeneous process. Macromol. Symp. 153: 275–286.

Misaka, H., R. Kakuchi, C. Zhang, R. Sakai, T. Satoh, and T. Kakuchi. 2009. Synthesis of well-de�ned macro-cyclic poly(δ-valerolactone) by “click cyclization.” Macromolecules 42: 5091–5096.

Möller, M., F. Nederberg, L.S. Lim, R. Kange, C.J. Hawker, J.L. Hedrick, Y. Gu et al. 2000. Sn(OTf)2 and Sc(OTf)3: Ef�cient and versatile catalysts for the controlled polymerization of lactones. J. Polym. Sci. A Polym. Chem. 38: 2067–2074.

Myers, M., E.F. Connor, T. Glauser, A. Möck, G. Nyce, and J.L. Hedrick. 2002. Phosphines: Nucleophilic organic catalysts for the controlled ring-opening polymerization of lactides. J. Polym. Sci. A Polym. Chem. 40: 844–851.

van Natta, F.J., J.W. Hill, and W.H. Carothers. 1934. Studies of polymerization and ring formation. XXIII. ɛ-Caprolactone and its polymers. J. Am. Chem. Soc. 56: 455–457.

Nederberg, F., E.F. Connor, M. Möller, T. Glauser, and J.L. Hedrick. 2001. New paradigms for organic cata-lysts: The �rst organocatalytic living polymerization. Ang. Chem. Int. Ed. 40: 2712–2715.

Nomura, N., A. Taira, T. Tomioka, and M. Okada. 2000. A catalytic approach for cationic living polymeriza-tion: Sc(OTf)3-catalyzed ring-opening polymerization of lactones. Macromolecules 33: 1497–1499.

Nottelet, B., J. Coudane, and M. Vert. 2006. Synthesis of an x-ray opaque biodegradable copolyester by chemi-cal modi�cation of poly (ɛ-caprolactone). Biomaterials 27: 4948–4954.

Nyce, G.W., T. Glauser, E.F. Connor, A. Möck, R.M. Waymouth, and J.L. Hedrick. 2003. In situ generation of carbenes: A general and versatile platform for organocatalytic living polymerization. J. Am. Chem. Soc. 125: 3046–3056.

Oshimura, M. and A. Takasu. 2010. Controlled ring-opening polymerization of ɛ-caprolactone catalyzed by rare-earth per¥uoroalkanesulfonates and per¥uoroalkanesulfonimides. Macromolecules 43: 2283–2290.

Oshimura, M., T. Tang, and A. Takasu. 2011. Ring-opening polymerization of ɛ-caprolactone using per¥uo-roalkanesulfonates and per¥uoroalkanesulfonimides as organic catalysts. J. Polym. Sci. A Polym. Chem. 49: 1210–1218.

Page 53: Polymeric Biomaterials - Taylor & Francis eBooks

34 Polymeric Biomaterials: Structure and Function, Volume 1

Ouhadi, T., A. Hamitou, R. Jérôme, and P. Teyssié. 1976. Soluble bimetallic μ-oxoalkoxides. 8. Structure and kinetic behavior of the catalytic species in unsubstituted lactone ring-opening polymerization. Macromolecules 9: 927–931.

Palard, I., A. Soum, and S.M. Guillaume. 2005. Rare earth metal tris(borohydride) complexes as initiators for ɛ-caprolactone polymerization: General features and IR investigations of the process. Macromolecules 36: 54–60.

Palmgren, R., S. Karlsson, and A.C. Albertsson. 1997. Synthesis of degradable crosslinked polymers based on 1,5-dioxepan-2-one and crosslinker of bis-1-caprolactone type. J. Polym. Sci. A Polym. Chem. 35: 1635–1649.

Parrish, B., R.B. Breitenkamp, and T. Emrick. 2005. PEG- and peptide-grafted aliphatic polyesters by click chemistry. J. Am. Chem. Soc. 127: 7404–7410.

Parrish, B. and T. Emrick. 2004. Aliphatic polyesters withy pendant cyclopentene groups: Controlled synthesis and conversion to polyester-graft-PEG copolymers. Macromolecules 37: 5863–5865.

Parzuchowski, P.G., M. Grabowska, M. Tryznowski, and G. Rokicki. 2006. Synthesis of glycerol based hyper-branched polyesters with primary hydroxyl groups. Macromolecules 39: 7181–7186.

Penczek, S., T. Biela, and A. Duda. 2000. Living polymerization with reversible chain transfer and reversible deactivation: The case of cyclic esters. Macromol. Rapid Commun. 21: 941–950.

Penczek, S., M. Cypryk, A. Duda, P. Kubisa, and S. Slomkowski. 2007. Living ring-opening polymerizations of heterocyclic monomers. Prog. Polym. Sci. 32: 247–282.

Persson, P.V., J. Casas, T. Iversen, and A. Cordova. 2006. Direct organocatalytic chemoselective synthesis of a dendrimer-like star polyester. Macromolecules 39: 2819–2822.

Pitt, C.G., Z.H. Gu, P. Ingram, and R.W. Hendren. 1987. The synthesis of biodegradable polymers with func-tional side chains. J. Polym. Sci. A Polym. Chem. 25: 955–966.

Ponsart, S., J. Coudane, J. McGrath, and M. Vert. 2002. Study of the grafting of bromoacetylated α-hydroxy-ω-methoxypoly(ethyleneglycol) onto anionically activated poly(ɛ-caprolactone). J. Bioact. Compat. Polym. 17: 417–432.

Ponsart, S., J. Coudane, J.L. Morgat, and M. Vert. 2001. Synthesis of 3H and ¥uorescence-labelled poly (dl-Lactic acid). J. Labelled Comp. Radiopharm. 44: 677–687.

Ponsart, S., J. Coudane, and M. Vert. 2000. A novel route to poly(ɛ-caprolactone)-based copolymers via anionic derivatization. Biomacromolecules 1: 275–281.

Pratt, R.C., B.G.G. Lohmeijer, D.A. Long, R.M. Waymouth, and J.L. Hedrick. 2006. Triazabicyclodecene: A simple bifunctional organocatalyst for acyl transfer and ring-opening polymerization of cyclic esters. J. Am. Chem. Soc. 128: 4556–4557.

Raquez, J.M., P. Degée, R. Narayan, and P. Dubois. 2000. “Coordination-insertion” ring-opening polymeriza-tion of 1,4-dioxan-2-one and controlled synthesis of diblock copolymers with ɛ-caprolactone. Macromol. Rapid Commun. 21: 1063–1071.

Raquez, J.M., P. Degée, R. Narayan, and P. Dubois. 2001. Some thermodynamic, kinetic, and mechanis-tic aspects of the ring-opening polymerization of 1,4-dioxan-2-one initiated by Al(OiPr)3 in bulk. Macromolecules 34: 8419–8425.

Renard, E., C. Ternat, V. Langlois, and P. Guérin. 2003. Synthesis of graft bacterial polyesters for nanoparticles preparation. Macromol. Biosci. 3: 248–252.

Rieger, J., K. Van Butsele, P. Lecomte, C. Detrembleur, R. Jérôme, and C. Jérôme. 2005. Versatile functional-ization and grafting of poly(ɛ-caprolactone) by Michael-type addition. Chem. Commun. 274–276.

Riva, R., W. Lazzari, L. Billiet, F. Du Prez, C. Jérôme, and P. Lecomte. 2011. Preparation of pH-sensitive star-shaped aliphatic polyesters as precursors of polymersomes. J. Polym. Sci. A Polym. Chem. 49: 1552–1563.

Riva, R., S. Schmeits, C. Jérôme, R. Jérôme, and P. Lecomte. 2007. Combination of ring-opening polymeriza-tion toward functionalization and grafting of poly(ɛ-caprolactone). Macromolecules 40: 796–803.

Ropson, N., P. Dubois, R. Jérôme, and P. Teyssié. 1995. Macromolecular engineering of polylactones and polylactides. 20. Effect of monomer, solvent, and initiator on the ring-opening polymerization as initiated with aluminum alkoxides. Macromolecules 28: 7589–7598.

Sanda, F. and T. Endo. 2001. Radical ring-opening polymerization. J. Polym. Sci. A Polym. Chem. 39: 265–276.Sanda, F., H. Sanada, Y. Shibasaki, and T. Endo. 2002. Star polymer synthesis from ɛ-caprolactone utilizing

polyol/protonic acid initiator. Macromolecules 35: 680–683.Save, M., M. Schappacher, and A. Soum. 2002. Controlled ring-opening polymerization of lactones and lac-

tides initiated by lanthanum isopropoxide. I. General aspects and kinetics. Macromol. Chem. Phys. 203: 889–899.

Shen, Y., Z. Shen, Y. Zhang, and K. Yao. 1996. Novel rare earth catalysts for the living polymerization and block copolymerization of ɛ-caprolactone. Macromolecules 29: 8289–8295.

Page 54: Polymeric Biomaterials - Taylor & Francis eBooks

35Synthesis and Fabrication of Polyesters as Biomaterials

Shibasaki, Y., H. Sanada, M. Yokoi, F. Sanda, and T. Endo. 2000. Activated monomer cationic polymerization of lactones and the application to well-de�ned block copolymer synthesis with seven-membered cyclic carbonate. Macromolecules 33: 4316–4320.

Shirahama, H., K. Mizuma, Y. Kawaguchi, M. Shomi, and H. Yasuda. 1993. Development of new biodegrad-able polymers. Kobunshi Ronbunshu 50: 821–835.

Shirahama, H., M. Shomi, M. Sakane, and H. Yasuda. 1996. Biodegradation of novel optically active polyesters synthesized by copolymerization of (R)-MOHEL with lactones. Macromolecules 29: 4821–4828.

Shueh, M.L., Y.S. Wang, B.H. Huang, C.Y. Kuo, and C.C. Lin. 2004. Reactions of 2,2′-methylenebis(4-chloro-6-isopropyl-3-methylphenol) and 2,2′-ethylenebis(4,6-di-tert-butylphenol)with MgnBr2: Ef�cient catalysts for the ring-opening polymerization of ɛ-caprolactone and l-lactide. Macromolecules 37: 5155–5162.

Simmons, T.L. and G.L. Baker. 2001. Poly(phenyllactide): Synthesis, characterization and hydrolytic degrada-tion. Biomacromolecules 2: 658–663.

Sinha, V. R., K. Bansal, R. Kaushik, R. Kumria, and A. Trehan. 2004. Poly-ɛ-caprolactone microspheres and nanospheres: An overview. Int. J. Pharm. 278: 1–23.

Slomkowski, S., R. Szymanski, and A. Hofman. 1985. Formation of the intermediate cyclic six-membered oxonium ion in the cationic polymerization of β-propiolactone initiated with CH CO SbF3 6

+ −. Makromol. Chem. 186: 2283–2290.

Stassin, H., O. Halleux, P. Dubois, C. Detrembleur, P. Lecomte, and R. Jérôme. 2000. Ring-opening copo-lymerization of ɛ-caprolactone, γ-triethylsilyloxy-ɛ-caprolactone and γ-ethylene ketal- ɛ-caprolactone: A route to hetero-graft copolyesters. Macromol. Symp. 153: 27–39.

Stassin, F., O. Halleux, and R. Jérôme. 2001. Ring-opening polymerization of ɛ-caprolactone in supercritical carbon dioxide. Macromolecules 34: 775–781.

Stassin, F. and R. Jérôme. 2002. Effect of pressure and temperature upon tin alkoxide-promoted ring-opening polymerisation of ɛ-caprolactone in supercritical carbon dioxide. Chem. Commun. 232–233.

Stassin, F. and R. Jérôme. 2004. Contribution of supercritical CO2 to the preparation of aliphatic polyesters and materials thereof. Macromol. Symp. 217: 135–146.

Stevels, W.M., M.J.K. Ankoné, P.J. Dijkstra, and J. Feijen. 1996a. A versatile and highly ef�cient catalyst system for the preparation of polyesters based on lanthanide tris(2,6-di-tert-butylphenolate)s and various alcohols. Macromolecules 29: 3332–3333.

Stevels, W.M., M.J.K. Ankoné, P.J. Dijkstra, and J. Feijen. 1996b. Kinetics and mechanism of ɛ-caprolactone polymerization using yttrium alkoxides as initiators. Macromolecules 29: 8296–8303.

Stjerndahl, A., A.F. Wistrand, and A.C. Albertsson. 2007. Industrial utilization of tin-initiated resorbable poly-mers: Synthesis on a large scale with a low amount of initiator residue. Biomacromolecules 8: 937–940.

Stridsberg, K.M., M. Ryner, and A.-C. Albertsson. 2002. Controlled ring-opening polymerization: Polymers with designed macromolecular architecture. Adv. Polym. Sci. 157: 42–139.

Szwarc, M. 1956. Living polymers. Nature 178: 1168–1169.Takamoto, T., H. Uyama, and S. Kobayashi. 2001. Lipase-catalyzed synthesis of aliphatic polyesters in super-

critical carbon dioxide. e-polymers 4:1–6.Taniguchi, I., A.M. Mayes, E.W.L. Chan, and L.G. Grif�th. 2005. A chemoselective approach to grafting bio-

degradable polyesters. Macromolecules 38: 216–219.Tasaka, F., Y. Ohya, and T. Ouchi. 2001. One-pot synthesis of novel branched polylactide through the copoly-

merization of lactide with mevalonolactone. Macromol. Rapid Commun. 22: 820–824.Theiler, S., M. Teske, H. Keul, K. Sternberg, and M. Möller. 2010. Synthesis, characterization and in vitro

degradation of 3D-microstructured poly(ɛ-caprolactone) resins. Polym. Chem. 1: 1215–1225.Tian, D., P. Dubois, C. Grand�ls, and R. Jérôme. 1997. Ring-opening polymerization of 1,4,8-trioxaspiro[4.6]-

9-undecanone: A new route to aliphatic polyesters bearing functional pendent groups. Macromolecules 30: 406–409.

Tian, D., P. Dubois, R. Jérôme, and P. Teyssié. 1994. Macromolecular engineering of polylactones and poly-lactides. 18. Synthesis of star-branched aliphatic polyesters bearing various functional end-groups. Macromolecules 27: 4134–4144.

Tortosa, K., T. Hamaide, C. Boisson, and R. Spitz. 2001. Homogeneous and heterogeneous polymerization of ɛ-caprolactone by neodymium alkoxides prepared in situ. Macromol. Chem. Phys. 202: 1156–1160.

Trollsas, M., C.J. Hawker, J.F. Remenar, J.L. Hedrick, M. Johansson, H. Ihre, and A. Hult. 1998. Highly branched radial block copolymers via dendritic initiation of aliphatic polyesters. J. Polym. Sci. A Polym. Chem. 36: 2793–2798.

Trollsas, M., V.Y. Lee, D. Mecerreyes, P. Löwenhielm, M. Möller, R.D. Miller, and J.L. Hedrick. 2000. Hydrophilic aliphatic polyesters: Design, synthesis, and ring-opening polymerization of functional cyclic esters. Macromolecules 33: 4619–4627.

Page 55: Polymeric Biomaterials - Taylor & Francis eBooks

36 Polymeric Biomaterials: Structure and Function, Volume 1

Trollsas, M., P. Löwenhielm, V.Y. Lee, M. Möller, R.D. Miller, and J.L. Hedrick. 1999. New approach to hyper-branched polyesters: Self-condensing cyclic ester polymerization of bis(hydroxymethyl)-substituted ɛ-caprolactone. Macromolecules 32: 9062–9066.

Turunen, M.P.K., H. Korhonen, J. Tuominen, and J.V. Seppälä. 2001. Synthesis, characterization and crosslink-ing of functional star-shaped poly(ɛ-caprolactone). Polym. Int. 51: 92–100.

Undin, J., P. Plikk, A. Finne-Wistrand, and A.C. Albertsson. 2010. Synthesis of amorphous aliphatic polyester-ether homo- and copolymers by radical polymerization of ketene acetals. J. Polym. Sci. A Polym. Chem. 48: 4965–4973.

Uyama, H. and S. Kobayashi. 1993. Enzymatic ring-opening polymerization of lactones catalyzed by lipase. Chem. Lett. 7: 1149–1150.

Vaida, C., P. Mela, H. Keul, and M. Möller. 2008. 2D- and 3D-Microstructured biodegradable polyester resins. J. Polym. Sci. A Polym. Chem. 46: 6789–6800.

Van Butsele, K., F. Stoffelbach, R. Jérôme, and C. Jérôme. 2006. Synthesis of novel amphiphilic and pH-sensitive ABC miktoarm star terpolymers. Macromolecules 39: 5652–5656.

Varma, I.K., A.C. Albertsson, R. Rajkhowa, and R.K. Srivistava. 2005. Enzyme catalyzed synthesis of polyes-ters. Prog. Polym. Sci. 30: 949–981.

Veld, M.J., A.R.A. Palmans, and E.W. Meijer. 2007. Selective polymerization of functional monomers with Novozym 435. J. Polym. Sci. A Polym. Chem. 45: 5968–5978.

Wang, G., Y. Shi, Z. Fu, W. Yang, Q. Huang, and Y. Zhang. 2005. Controlled synthesis of poly(ɛ-caprolactone)-graft-polystyrene by atom transfer radical polymerization with poly(ɛ-caprolactone-co-α-bromo-ɛ-caprolactone) copolymer as macroinitiator. Polymer 46: 10601–10606.

Westerhausen, M., S. Schneiderbauer, A.N. Kneifel, Y. Söltl, P. Mayer, H. Nöth, Z. Zhong, P.J. Dijkstra, and J. Feijen. 2003. Organocalcium compounds with catalytic activity for the ring-opening polymerization of lactones. Eur. J. Inorg. Chem. 2003: 3432–3439.

Williams, S.F., D.P. Martin, D.M. Horowitz, and O.P. Peoples. 1999. PHA applications: Addressing the price performance issue I. Tissue engineering. Int. J. Biol. Macromol. 25: 111–121.

Wilson, B.C. and C.W. Jones. 2004. A recoverable, metal-free catalyst for the green polymerization of ɛ-caprolactone. Macromolecules 37: 9709–9714.

Woodruff, M.A. and W. Hutmacher. 2010. The return of a forgotten polymer-polycaprolactone in the 21st cen-tury. Prog. Polym. Sci. 35: 1217–1256.

Xie, M., J. Shi, L. Ding, J. Li, H. Han, and Y. Zhang. 2009. Cyclic poly(ɛ-caprolactone) synthesized by com-bination of ring-opening polymerization with ring-closing metathesis, ring closing enyne metathesis, or “click” reaction. J. Polym. Sci. A Polym. Chem. 47: 3022–3033.

Yamashita, M., Y. Takemoto, E. Ihara, and H. Yasuda. 1996. Organolanthanide-initiated living polymerization of ɛ-caprolactone, δ-valerolactone, and β-propiolactone. Macromolecules 29: 1798–1806.

Yan, J., Y. Zhang, Y. Xiao, Y. Zhang, and M.D. Lang. 2010. Novel poly(ɛ-caprolactone)s bearing amino groups: Synthesis, characterization and biotinylation. React. Funct. Polym. 70: 400–407.

Yu, X.H., J. Feng, and R.X. Zhuo. 2005a. Preparation of hyperbranched aliphatic polyester derived from func-tionalized 1,4-dioxan-2-one. Macromolecules 38: 6244–6247.

Yu, T.L., C.C. Wu, C.C. Chen, B.H. Huang, J. Wu, and C.C. Lin. 2005b. Catalysts for the ring-opening polym-erization of ɛ-caprolactone and l-lactide and the mechanistic study. Polymer 46: 5909–5917.

Zednik, J., R. Riva, P. Lussis, C. Jérôme, R. Jérôme, and P. Lecomte. 2008. pH-responsive biodegradable amphiphilic networks. Polymer 49: 697–702.

Zeng, F., H. Lee, M. Chidiac, and C. Allen. 2005. Synthesis and characterization of six-arm star poly(δ-valerolactone)-block-methoxy poly(ethylene glycol) copolymers. Biomacromolecules 6: 2140–2149.

Zhang, L., F. Nederberg, J.M. Messman, R.C. Pratt, R.M. Waymouth, J.L. Hedrick, and C.G. Wade. 2007b. Organocatalytic stereoselective ring-opening polymerization of lactide with dimeric phosphazene bases. J. Am. Chem. Soc. 129: 12610–12611.

Zhang, L., F. Nederberg, R.C. Pratt, R.M. Waymouth, J.L. Hedrick, and C.G. Wade. 2007a. Phosphazene bases: A new category of organocatalysts for the living ring-opening polymerization of cyclic esters. Macromolecules 40: 4154–4158.

Zhong, Z., P.J. Dijkstra, C. Birg, M. Westerhausen, and J. Feijen. 2001. A novel and versatile calcium-based initiator system for the ring-opening polymerization of cyclic esters. Macromolecules 34: 3863–3868.

Zhong, Z., P.J. Dijkstra, and J. Feijen. 2004. Controlled synthesis of biodegradable lactide polymers and copo-lymers using novel in situ generated or single site stereoselective polymerization initiators. J. Biomater. Sci. Polymer Ed. 15: 929–946.

Page 56: Polymeric Biomaterials - Taylor & Francis eBooks

References

1 Chapter 1. Synthesis and Fabrication ofPolyesters as Biomaterials

Agarwal, S. 2010. Chemistry, chances and limitations of theradical ring-opening polymerization of cyclic keteneacetals for the synthesis of degradable polyesters. Polym.Chem. 1: 953–954.

Ajellal, N., C.M. Thomas, and J.F. Carpentier. 2009.Functional syndiotactic poly(β-hydroxyalkanoate)s viastereoselective ring-opening copolymerization ofrac-β-butyrolactone and rac-allyl-β-butyrolactone.J. Polym. Sci. A Polym. Chem. 47: 3177–3189.

Albertsson, A.C., U. Edlund, and K. Stridsberg. 2000.Controlled ring-opening polymerization of lactones andlactides. Macromol. Symp. 157: 39–46.

Albertsson, A.C. and R.K. Srivastava. 2008. Recentdevelopments in enzyme-catalyzed ring-openingpolymerization. Adv. Drug Deliv. Rev. 60: 1077–1093.

Amgoune, A., C.M. Thomas, S. Ilinca, T. Roisnel, and J.-F.Carpentier. 2006. Highly active, productive, andsyndiospeci�c yttrium initiators for the polymerization ofracemic β-butyrolactone. Ang. Chem. Int. Ed. 45:2782–2784.

Bailey, W.J. 1985. Free-radical ring-openingpolymerization. Polymer J. 17: 85–95.

Bailey, W.J., Z. Ni, and S.R. Wu. 1982. Synthesis ofpoly-ɛ-caprolactone via a free radical mechanism. Freeradical ring opening polymerization of2-methylene-1,3-dioxepane. J. Polym. Sci. A Polym. Chem.20: 3021–3030.

Barbaud, C., F. Fay, F. Abdillah, S. Randriamahefa, and P.Guérin. 2004. Synthesis of new homopolyester andcopolyesters by anionic ring-opening polymerization ofα,α′,β-trisubstituted β-lactones. Macromol. Chem. Phys.205: 199–207.

Basko, M. and P. Kubisa. 2006. Cationic copolymerization ofɛ-caprolactone and l,l-lactide by an activated monomermechanism. J. Polym. Sci. A Polym. Chem. 44: 7071–7081.

Bednarek, M. and P. Kubisa. 2005. Copolymerization with the

Page 57: Polymeric Biomaterials - Taylor & Francis eBooks

feeding of one of the comonomers: Cationic activatedmonomer copolymerization of ɛ-caprolactone with ethyleneoxide. J. Polym. Sci. A Polym. Chem. 43: 3788–3796.

Bizzari, R., F. Chiellini, R. Solaro, E. Chiellini, S.Cammas-Marion, and P. Guerin. 2002. Synthesis andcharacterization of new malolactonate polymers andcopolymers for biomedical applications. Macromolecules 35:1215–1223.

Blanquer, S., J. Tailhades, V. Darcos, M. Amblard, J.Martinez, B. Nottelet, and J. Coudane. 2010. Easy synthesisand ring-opening polymerization of5-Z-Amino-δ-valerolactone: New degradableamino-functionalized (co)polyesters. J. Polym. Sci. APolym. Chem. 48: 5891–5898.

Bourissou, D., B. Martin-Vaca, A. Dumitrescu, M. Graullier,and F. Lacombe. 2005. Controlled cationic polymerization oflactide. Macromolecules 38: 9993–9998.

Carpentier, J.-F. 2010. Discrete metal catalysts forstereoselective ring-opening polymerization of chiralracemic β-lactones. Macromol. Rapid Commun. 31: 1696–1705.

Casas, J., P.V. Persson, T. Iversen, and A. Cordova. 2004.Direct organocatalytic ring-opening polymerizations oflactones. Adv. Synth. Catal. 346: 1087–1089.

Choi, J., I.K. Kim, and C.Y. Kwak. 2005. Synthesis andcharacterization of a series of star-branchedpoly(ɛcaprolactone)s with the variation in arm numbers andlengths. Polymer 46: 9725–9735.

Chuma, A., H.W. Horn, W.C. Swope, R.C. Pratt, L. Zhang,B.G.G. Lohmeijer, C.G. Wade et al. 2008. The reactionmechanism for the organocatalytic ring-openingpolymerization of l-Lactide using a guanidinebasedcatalyst: Hydrogen-bonded or covalently bound? J. Am. Chem.Soc. 130: 6749–6754.

Connor, E.F., G.W. Nyce, M. Myers, A. Möck, and J.L.Hedrick. 2002. First example of N-heterocyclic carbenes ascatalysts for living polymerization: Organocatalyticring-opening polymerization of cyclic esters. J. Am. Chem.Soc. 124: 914–915.

Coulembier, O., P. Degée, J.L. Hedrick, and P. Dubois.2006a. From controlled ring-opening polymerization tobiodegradable aliphatic polyester: Especially poly(β-malic

Page 58: Polymeric Biomaterials - Taylor & Francis eBooks

acid) derivatives. Prog. Polym. Sci. 31: 723–747.

Coulembier, O., A.P. Dove, R.C. Pratt, A.C. Sentman, D.A.Culkin, L. Mespouille, P. Dubois et al. 2005. Latent,thermally activated organic catalysts for the on-demandliving polymerization of lactide. Ang. Chem. Int. Ed. 44:4964–4968.

Coulembier, O., B.G.G. Lohmeijer, A.P. Dove, R.C. Pratt, L.Mespouille, D.A. Culkin, S.J. Benight et al. 2006b.Alcohol adducts of N-heterocyclic carbenes: Latentcatalysts for the thermally-controlled livingpolymerization of cyclic esters. Macromolecules 39:5617–5628.

Dai, W., J. Zhu, A. Shangguan, and M. Lang. 2009.Synthesis, characterization and degradability of thecombtype

Detrembleur, C., M. Mazza, O. Halleux, P. Lecomte, D.Mecerreyes, J.L. Hedrick, and R. Jérôme. 2000. Ringopeningpolymerization of γ-bromo-ɛ-caprolactone: A novel route tofunctionalized aliphatic polyesters. Macromolecules 33:14–18.

Dove, A.P., H. Li, R.C. Pratt, B.G.G. Lohmeijer, D.A.Culkin, R.M. Waymouth, and J.L. Hedrick. 2006.Stereoselective polymerization of rac- and meso-lactidecatalyzed by sterically encumbered N-heterocycliccarbenes. Chem. Commun. 2006: 2881–2883.

Dove, A.P., R.C. Pratt, B.G.G. Lohmeijer, R.M. Waymouth,and J.L. Hedrick. 2005. Thiourea-based bifunctionalorganocatalysis: Supramolecular recognition for livingpolymerization. J. Am. Chem. Soc. 127: 13798–13799.

Dubois, P., R. Jérôme, and P. Teyssié. 1989. Macromolecularengineering of polylactones and polylactides. I.End-functionalization of poly-ɛ-caprolactone. Polym. Bull.22: 475–482.

Duda, A., A. Kowalski, S. Penczek, H. Uyama, and S.Kobayashi. 2002. Kinetics of the ring-openingpolymerization of 6-, 7-, 9-, 12-, 13-, 16-, and17-membered lactones. Comparison of chemical and enzymaticpolymerizations. Macromolecules 35: 4266–4270.

Duda, A., J. Libiszowski, J. Mosnacek, and S. Penczek.2005. Copolymerization of cyclic esters at the livingpolymer-monomer equilibrium. Macromol. Symp. 226: 109–119.

Page 59: Polymeric Biomaterials - Taylor & Francis eBooks

Duda, A. and S. Penczek. 1991. Anionic and pseudoanionicpolymerization of ɛ-caprolactone. Macromol. Symp. 42/43:135–143.

Duda, A., S. Penczek, A. Kowalski, and J. Libiszowski.2000. Polymerization of ɛ-caprolactone and l,l-dilactideinitiated with stannous octoate and stannous butoxide—Acomparison. Macromol. Symp. 153: 41–53.

El Habnouni, S., V. Darcos, and J. Coudane. 2009. Synthesisand ring-opening polymerization of a new functionallactone, α-iodo-ɛ-caprolactone: A novel route tofunctionalized aliphatic polyesters. Macromol. RapidCommun. 30: 165–169.

Feng, Y., D. Klee, H. Keul, and H. Höcker. 2000.Lipase-catalyzed ring-opening polymerization ofmorpholine2,5-dione derivatives: A novel route to thesynthesis of poly(ester amide)s. Macromol. Chem. Phys. 201:2670–2675.

Feng, Y., J. Knüfermann, D. Klee, and H. Höcker. 1999a.Enzyme-catalyzed ring-opening polymerization of3(S)-isopropylmorpholine-2,5-dione. Macromol. Rapid Commun.20: 88–90.

Feng, Y., J. Knüfermann, D. Klee, and H. Höcker. 1999b.Lipase-catalyzed ring-opening polymerization of3(S)-isopropylmorpholine-2,5-dione. Macromol. Chem. Phys.200: 1506–1514.

Flétier, I., A. Le Borgne, and N. Spassky. 1990. Synthesisof functional polyesters derived from serine. Polym. Bull.24: 349–353.

Gazeau-Bureau, S., D. Delcroix, B. Martin-Vaca, D.Bourissou, C. Navarro, and S. Magnet. 2008. OrganocatalyzedROP of ɛ-caprolactone: Methanesulfonic acid competes withtri¥uoromethanesulfonic acid. Macromolecules 41:3782–3784.

Gerhardt, W.W., D.E. Noga, K.I. Hardcastle, A.J. Garcıa,D.M. Collard, and M. Weck. 2007. Functional lactidemonomers: Methodology and polymerization. Biomacromolecules8: 1735–1742.

Gimenez, S., S. Ponsart, J. Coudane, and M. Vert. 2001.Synthesis, properties and in vitro degradation ofcarboxyl-bearing PCL. J. Bioact. Compat. Polym. 16: 32–46.

Page 60: Polymeric Biomaterials - Taylor & Francis eBooks

Grijpma, D.W., E. Kroeze, A.J. Nijenhuis, and A.J.Pennings. 1993. Poly(l-lactide) crosslinked withspirobis-dimethylene-carbonate. Polymer 34: 1496–1503.

Gross, R.A., A. Kumar, and B. Kalra. 2001. Polymersynthesis by in vitro enzyme catalysis. Chem. Rev. 101:2097–2124.

Guillaume, S.M., M. Schappacher, and A. Soum. 2003.Polymerization of ɛ-caprolactone by Nd(BH 4 ) 3 (THF) 3 :Synthesis of hydroxytelechelic poly(ɛ-caprolactone).Macromolecules 36: 54–60.

Hamitou, A., R. Jérôme, A.J. Hubert, and P. Teyssié. 1973.A new catalyst for the ring-opening polymerization oflactones to polyesters. Macromolecules 6: 651–652.

Hiskins, J.N. and J.M. Grayson. 2009. Synthesis anddegradation behavior of cyclic poly(ɛ-caprolactone).Macromolecules 42: 6406–6413.

Hofman, A., R. Szymanski, S. Slomkowski, and S. Penczek.1984. Structure of active species in the cationicpolymerization of β-propiolactone and ɛ-caprolactone.Makromol. Chem. 185: 655–667.

van Horn, B.A., R.K. Iha, and K.L. Wooley. 2008. Sequentialand single-step, one-pot strategies for the transformationof hydrolytically degradable polyesters intomultifunctional systems. Macromolecules 41: 1618–1626.

van Horn, B.A. and K.L. Wooley. 2007. Cross-linked andfunctionalized polyester materials constructed usingketoxime ether linkages. Soft Matter 3: 1032–1040.

Jeong, W., J.L. Hedrick, and R.M. Waymouth. 2007. Organicspirocyclic initiators for the ring-expansionpolymerization of β-lactones. J. Am. Chem. Soc. 129:8414–8415.

Jiang, X., E.B. Vogel, M.R. Smith III, and G.L. Baker.2008. “Clickable” polyglycolides: Tunable synthons forthermoresponsive, degradable polymers. Macromolecules 41:1937–1944.

Jin, S. and K.E. Gonsalves. 1997. A study of the mechanismof the free-radical ring-opening polymerization of2-methylene-1,3-dioxepane. Macromolecules 30: 3104–3106.

Page 61: Polymeric Biomaterials - Taylor & Francis eBooks

Kakuchi, R., Y. Tsuji, K. Chiba, K. Fuchise, R. Sakai, T.Satoh, and T. Kakuchi. 2010. Controlled/living ringopeningpolymerization of δ-valerolactone using tri¥ylimide as anef�cient cationic organocatalyst. Macromolecules 43:7090–7094.

Kamber, N.E., W. Jeong, R.M. Waymouth, R.C. Pratt, B.G.G.Lohmeijer, and J.L. Hedrick. 2007. Organocatalyticring-opening polymerization. Chem. Rev. 107: 5813–5840.

Kim, M.S., K.S. Seo, G. Khang, S.H. Cho, and H.B. Lee.2004. Preparation of methoxy poly(ethylene glycol)/polyester diblock copolymers and examination of thegel-to-sol transition. J. Polym. Sci. A Polym. Chem. 42:5784–5793.

Kimura, Y., K. Shirotani, H. Yamane, and T. Kitao. 1988.Ring-opening polymerization of3(S)-[(benzyloxycarbonyl)methyl]-1,4-dioxane-2,5-dione: Anew route to a poly(α-hydroxy acid) with pendant carboxylgroups. Macromolecules 21: 3338–3340.

Knani, D., A.L. Gutman, and D.H. Kohn. 1993. Enzymaticpolyesteri�cation in organic media. Enzymecatalyzedsynthesis of linear polyesters. I. Condensationpolymerization of linear hydroxyester. II. Ringopeningpolymerization of ɛ-caprolactone. J. Polym. Sci. A Polym.Chem. 31: 1221–1232.

Kobayashi, S. and A. Makino. 2009. Enzymatic polymersynthesis: An opportunity for green polymer chemistry.Chem. Rev. 109: 5288–5353.

Kowalski, A., A. Duda, and S. Penczek. 1998. Kinetics andmechanism of cyclic esters polymerization initiated withtin(II) octoate, 1 Polymerization of ɛ-caprolactone.Macromol. Rapid Commun. 19: 567–572.

Kowalski, A., A. Duda, and S. Penczek. 2000a. Kinetics andmechanism of cyclic esters polymerization initiated withtin(II) octoate, 3. Polymerization of l,l-dilactide.Macromolecules 33: 7359–7370.

Kowalski, A., A. Duda, and S. Penczek. 2000b. Mechanism ofcyclic ester polymerization initiated with tin(II)octoate. 2. Macromolecules �tted with tin(II) alkoxidespecies observed directly in MALDI-TOF spectra.Macromolecules 33: 689–695.

Kowalski, A., J. Libiszowski, A. Duda, and S. Penczek.

Page 62: Polymeric Biomaterials - Taylor & Francis eBooks

2000c. Polymerization of l,l-dilactide initiated bytin(II) butoxide. Macromolecules 33: 1964–1971.

Kowalski, A., J. Libiszowski, K. Majerska, A. Duda, and S.Penczek. 2007. Kinetics and mechanism of ɛ-caprolactoneand l,l-lactide polymerization coinitiated with zincoctoate or aluminum acetylacetonate: The next proofs forthe general alkoxide mechanism and synthetic applications.Polymer 48: 3952–3960.

Kricheldorf, H.R. 2003. Macrocycles. 21. Role of ring-ringequilibria in thermodynamically controlledpolycondensations. Macromolecules 36: 2302–2308.

Kricheldorf, H.R. 2004. Biodegradable polymers withvariable architectures via ring-expansion polymerization.J. Polym. Sci. A Polym. Chem. 42: 4723–4742.

Kricheldorf, H.R., K. Ahrensdorf, and S. Rost. 2004.Star-shaped homo- and copolyesters derived fromɛ-caprolactone, l,l-lactide and trimethylene carbonate.Macromol. Chem. Phys. 205: 1602–1610.

Kricheldorf, H.R. and D.O. Damrau. 1998. Znl-lactate-catalyzed polymerizations of 1,4-dioxan-2-one.Macromol. Chem. Phys. 199: 1089–1097.

Kricheldorf, H.R. and S. Eggerstedt. 1998. Macrocycles 2.Living macrocyclic polymerization of ɛ-caprolactone with2,2-dibutyl-2-stanna-1,3-dioxepane as initiator. Macromol.Chem. Phys. 199: 283–290.

Kricheldorf, H.R. and B. Fechner. 2001. Polylactones. 51.Resorbable networks by combined ring-expansionpolymerization and ring-opening polycondensation ofɛ-caprolactone or dl-lactide. Macromolecules 34: 3517–3521.

Kricheldorf, H.R. and B. Fechner. 2002. Polylactones. 59.Biodegradable networks via ring-expansion polymerization oflactones and lactides. Biomacromolecules 3: 691–695.

Kricheldorf, H.R., M. Garaleh, and G. Schwarz. 2005.Tertiary amine-initiated zwitterionic polymerization ofpivalolactone—A reinvestigation by means of MALDI-TOF massspectrometry. J. Macromol. Sci. A Pure Appl. Chem. 42:139–148.

Kricheldorf, H.R., J.M. Jonte, and R. Dunsing. 1986.Polylactones. 7. The mechanism of cationic polymerizationof β-propiolactone and ɛ-caprolactone. Makromol. Chem. 187:

Page 63: Polymeric Biomaterials - Taylor & Francis eBooks

771–785.

Kricheldorf, H.R. and S.R. Lee. 1996. Polylactones. 40.Nanopretzels by macrocyclic polymerization of lactones viaa spirocyclic tin initiator derived from pentaerythritol.Macromolecules 29: 8669–8695.

Kricheldorf, H.R. and G. Schwarz. 2003. Cyclic polymers bykinetically controlled step-growth polymerization.Macromol. Rapid Commun. 24: 359–381.

Kricheldorf, H.R., A. Stricker, and D. Langanke. 2001.Polylactones, 50. The reactivity of cyclic and noncyclicdibutyltin bisalkoxides as initiators in the polymerizationof lactones. Macromol. Chem. Phys. 202: 2525–2534.

Kudoh, R., A. Sudo, and T. Endo. 2009. Synthesis ofeight-membered lactone having tertiary amine moiety byring-expansion reaction of 1,3-benzoxazine and its anionicring-opening polymerization behavior. Macromolecules 42:2327–2329.

Kweon, H., M.K. Yoo, I.K. Park, T.H. Kim, H.C. Lee, H.S.Lee, J.S. Oh et al. 2003. A novel degradablepolycaprolactone networks for tissue engineering.Biomaterials 24: 801–808.

Lang, M., R.P. Wong, and C.C. Chu. 2002. Synthesis andstructural analysis of functionalizedpoly(ɛcaprolactone)-based three arm star polymers. J.Polym. Sci. A Polym. Chem. 40: 1127–1141.

Latere, J.P., P. Lecomte, P. Dubois, and R. Jérôme. 2002.2-Oxepane-1,5-dione: A precursor of a novel class ofversatile semicrystalline biodegradable (co)polyester.Macromolecules 21: 7857–7859.

Laurent, B.A. and S.M. Grayson. 2009. Synthetic approachesfor the preparation of cyclic polymers. Chem. Soc. Rev.38: 2202–2213.

Lecomte, P., V. D’Aloia, M. Mazza, O. Halleux, S. Gautier,C. Detrembleur, and R. Jérôme. 2000. Synthesis of newhydrophilic γ-substituted poly-ɛ-caprolactones. PolymerPreprints. Am. Chem. Soc. 41(2): 1534–1535.

Lecomte, P. and R. Jérôme. 2004. Recent developments incontrolled/living ring opening polymerization. InEncyclopedia of Polymer Science and Technology, ed. J.Kroschwitz, pp. 547–565. Hoboken, NJ: Wiley.

Page 64: Polymeric Biomaterials - Taylor & Francis eBooks

Lecomte, P., R. Riva, C. Jérôme, and R. Jérôme. 2008.Macromolecular engineering of biodegradable polyesters byring-opening polymerization and click chemistry. Macromol.Rapid Commun. 29: 982–997.

Lecomte, P., R. Riva, S. Schmeits, J. Rieger, K. VanButsele, C. Jérôme, and R. Jérôme. 2006. New prospects forthe grafting of functional groups onto aliphaticpolyesters. Ring-opening polymerization of α- orγ-substituted ɛ-caprolactone followed by chemicalderivatization of the substituents. Macromol. Symp. 240:157–165.

Leemhuis, M., N. Akeroyd, J.A.W. Kruijtzer, C.F. vanNostrum, and W.E. Hennink. 2008. Synthesis andcharacterization of allyl functionalizedpoly(α-hydroxy)acids and their further dihydroxylation andepoxidation. Eur. Polym. J. 44: 308–317.

Leemhuis, M., C.F. van Nostrum, J.A.W. Kruijtzer, Z.Y.Zhong, M.R. ten Breteler, P.J. Dijkstra, J. Feijen et al.2006. Functionalized poly(α-hydroxy acid)s via ring-openingpolymerization: Toward hydrophilic polyesters with pendanthydroxyl groups. Macromolecules 39: 3500–3508.

Lenoir, S., R. Riva, X. Lou, C. Detrembleur, R. Jérôme, andP. Lecomte. 2004. Ring-opening polymerization ofα-chloro-ɛ-caprolactone and chemical modi�cation ofpoly(α-chloro-ɛ-caprolactone) by atom transfer radicalprocesses. Macromolecules 37: 4055–4061.

Li, H., A. Debuigne, R. Jérôme, and P. Lecomte. 2006.Synthesis of macrocyclic poly(ɛ-caprolactone) byintramolecular cross-linking of unsaturated end groups ofchains precyclic by the initiation. Ang. Chem. Int. Ed.45: 2264–2267.

Li, H., R. Riva, H.R. Kricheldorf, R. Jérôme, and P.Lecomte. 2008. Synthesis of eight and star-shapedpoly(ɛcaprolactone)s and their amphiphilic derivatives.Chem. Eur. J. 14: 358–368.

Libiszowki, J., A. Kowalski, A. Duda, and S. Penczek. 2002.Kinetics and mechanism of cyclic esters polymerizationinitiated with covalent metal carboxylates, 5. End-groupstudies in the model ɛ-caprolactone andl,l-dilactide/tin(II) and zinc octoate/butyl alcoholsystems. Macromol. Chem. Phys. 203: 1694–1701.

Page 65: Polymeric Biomaterials - Taylor & Francis eBooks

Liu, J. and L. Liu. 2004. Ring-opening polymerization ofɛ-caprolactone initiated by natural amino acids.Macromolecules 37: 2674–2676.

Liu, M., N. Vladimirov, and J.M.J. Fréchet. 1999a. A newapproach to hyperbranched polymers by ring-openingpolymerization of an AB Monomer:4-(2-hydroxyethyl)-ɛ-caprolactone. Macromolecules 32:6881–6884.

Liu, X.Q., M.X. Wang, Z.C. Li, and F.M. Li. 1999b.Synthesis and ring-opening polymerization ofα-chloromethyl-α-methyl-β-propiolactone. Macromol. Chem.Phys. 200: 468–473.

Loeker, F.C., C.J. Duxbury, R. Kumar, W. Gao, R.A. Gross,and S.M. Howdle. 2004. Enzyme-catalyzed ring-openingpolymerization of ɛ-caprolactone in supercritical carbondioxide. Macromolecules 37: 2450–2453.

Löfgren, A., A.C. Albertsson, P. Dubois, and R. Jérôme.1995. Recent advances in ring-opening polymerization oflactones and related compounds. J. Macromol. Sci. C Rev.Macromol. Chem. Phys. 35: 379–418.

Löfgren, A., A.C. Albertsson, P. Dubois, R. Jérôme, and P.Teyssié. 1994. Synthesis and characterization ofbiodegradable homopolymers and block copolymers based on1,5-dioxepan-2-one. Macromolecules 27: 5556–5562.

Lohmeijer, B.G.G., R.C. Pratt, F. Leibfarth, J.W. Logan,D.A. Long, A.P. Dove, F. Nederberg, J. Choi, C. Wade, R.M.Waymouth, and J.L. Hedrick. 2006. Guanidine and amidineorganocatalysts for ringopening polymerization of cyclicesters. Macromolecules 39: 8574–8583.

Lou, X., C. Detrembleur, and R. Jérôme. 2002a. Livingcationic polymerization of δ-valerolactone and synthesisof high molecular weight homopolymer and asymmetrictelechelic and block copolymer. Macromolecules 35:1190–1195.

Lou, X., C. Detrembleur, and R. Jérôme. 2003. Novelaliphatic polyesters based on functional cyclic (di)esters.Macromol. Rapid Commun. 24: 161–172.

Lou, X., C. Detrembleur, P. Lecomte, and R. Jérôme. 2001.Living ring-opening (co)polymerization of6,7-dihydro-2(5H)-oxepinone into unsaturated aliphaticpolyesters. Macromolecules 34: 5806–5811.

Page 66: Polymeric Biomaterials - Taylor & Francis eBooks

Lou, X., C. Detrembleur, P. Lecomte, and R. Jérôme. 2002b.Controlled synthesis and chemical modi�cation ofunsaturated aliphatic (co)polyesters based on6,7-dihydro-2(3H)-oxepinone. J. Polym. Sci. A Polym. Chem.40: 2286–2297.

Lou, X., C. Detrembleur, P. Lecomte, and R. Jérôme. 2002c.Novel unsaturated ɛ-caprolactone polymerizable byring-opening metathesis mechanisms. e-polymers 34: 1–12.

Lowe, J.R., W.B. Tolman, and M.A. Hillmyer. 2009. Oxidizeddihydrocarvone as a renewable multifunctional monomer forthe synthesis of shape memory polyesters. Biomacromolecules10: 2003–2008.

Lu, J., R.C. Tappel, and C.T. Nomura. 2009. Mini-review:Biosynthesis of poly(hydroxyalkanoates). J. Macromol. Sci.C Polym. Rev. 49: 226–248.

Mahmud, A., X.B. Xiong, and A. Lavasanifar. 2006. Novelself-associating poly(ethyleneoxide)-block-poly(ɛcaprolactone) block copolymers withfunctional side groups on the polyester block for drugdelivery. Macromolecules 39: 9419–9428.

Majerska, K., A. Duda, and S. Penczek. 2000. Kinetics andmechanism of cyclic esters polymerization initiated withtin(II) octoate, 4. In¥uence of proton trapping agents onthe kinetics of ɛ-caprolactone and l,ldilactidepolymerization. Macromol. Rapid Commun. 21: 1327–1332.

Martin, E., P. Dubois, and R. Jérôme. 2000. Controlledring-opening polymerization of ɛ-caprolactone promoted by“in situ” formed yttrium alkoxides. Macromolecules 33:1530–1535.

Martin, E., P. Dubois, and R. Jérôme. 2003a. “In situ”formation of yttrium alkoxides: A versatile and ef�cientcatalyst for the ROP of ɛ-caprolactone. Macromolecules 36:5934–5941.

Martin, E., P. Dubois, and R. Jérôme. 2003b. Preparation ofsupported yttrium alkoxides as catalysts for thepolymerization of lactones and oxirane. J. Polym. Sci. APolym. Chem. 41: 569–578.

Martin, E., P. Dubois, and R. Jérôme. 2003c. Polymerizationof ɛ-caprolactone initiated by Y alkoxide grafted ontoporous silica. Macromolecules 36: 7094–7099.

Page 67: Polymeric Biomaterials - Taylor & Francis eBooks

Mathisen, T. and A.C. Albertsson. 1989. Polymerization of1,5-dioxepan-2-one. 1. Synthesis and characterization ofthe monomer 1,5-dioxepan-2-one and its cyclic dimer1,5,8,12-tetraoxacyclotetradecane-2,9dione. Macromolecules22: 3838–3842.

Mathisen, T., K. Masus, and A.C. Albertsson. 1989.Polymerization of 1,5-dioxepan-2-one. 2. Polymerization of1,5-dioxepan-2-one and its cyclic dimer, including a newprocedure for the synthesis of 1,5-dioxepan2-one.Macromolecules 22: 3842–3846.

McLain, S.J. and N.E. Drysdale. 1992. Living ring-openingpolymerization of ɛ-caprolactone by yttrium and lanthanidealkoxides. Polymer Preprints. Am. Chem. Soc. 33(1):174–175.

Mecerreyes, D., B. Atthoff, K.A. Boduch, M. Trollsas, andJ.L. Hedrick. 1999. Unimolecular combination of an atomtransfer radical polymerization initiator and a lactonemonomer as a route to new graft copolymers. Macromolecules16: 5175–5182.

Mecerreyes, D., J. Humes, R.D. Miller, J.L. Hedrick, P.Lecomte, C. Detrembleur, and R. Jérôme. 2000a. Firstexample of an unsymmetrical difunctional monomerpolymerizable by two living/controlled methods. Macromol.Rapid Commun. 21: 779–784.

Mecerreyes, D., V. Lee., C.J. Hawker, J.L. Hedrick, A.Wursch, W. Volksen, T. Magbitang et al. 2001. A novelapproach to functionalized nanoparticles: Self-crosslinkingof macromolecules in ultradilute solution. Adv. Mater. 13:204–208.

Mecerreyes, D., R.D. Miller, J.L. Hedrick, C. Detrembleur,and R. Jérôme. 2000b. Ring-opening polymerization of6-hydroxynon-8-enoic acid lactone: Novel biodegradablecopolymers containing allyl pendent groups. J. Polym. Sci.A Polym. Chem. 38: 870–875.

Mingotaud, A.-F., F. Cansell, N. Gilbert, and A. Soum.1999. Cationic and anionic ring-opening polymerization insupercritical CO 2 . Preliminary results. Polym. J. 31:406–410.

Mingotaud, A.-F., F. Dargelas, and F. Cansell. 2000.Cationic and anionic ring-opening polymerization insupercritical CO 2 . Macromol. Symp. 153: 77–86.

Page 68: Polymeric Biomaterials - Taylor & Francis eBooks

Miola-Delaite, C., E. Colomb, E. Pollet, and T. Hamaide.2000. Anionic ring-opening polymerization of oxygenatedheterocycles with supported zirconium and rare earthalkoxides as initiators in protic conditions towards acatalytic heterogeneous process. Macromol. Symp. 153:275–286.

Misaka, H., R. Kakuchi, C. Zhang, R. Sakai, T. Satoh, andT. Kakuchi. 2009. Synthesis of well-de�ned macrocyclicpoly(δ-valerolactone) by “click cyclization.”Macromolecules 42: 5091–5096.

Möller, M., F. Nederberg, L.S. Lim, R. Kange, C.J. Hawker,J.L. Hedrick, Y. Gu et al. 2000. Sn(OTf) 2 and Sc(OTf) 3: Ef�cient and versatile catalysts for the controlledpolymerization of lactones. J. Polym. Sci. A Polym. Chem.38: 2067–2074.

Myers, M., E.F. Connor, T. Glauser, A. Möck, G. Nyce, andJ.L. Hedrick. 2002. Phosphines: Nucleophilic organiccatalysts for the controlled ring-opening polymerization oflactides. J. Polym. Sci. A Polym. Chem. 40: 844–851.

van Natta, F.J., J.W. Hill, and W.H. Carothers. 1934.Studies of polymerization and ring formation. XXIII.ɛ-Caprolactone and its polymers. J. Am. Chem. Soc. 56:455–457.

Nederberg, F., E.F. Connor, M. Möller, T. Glauser, and J.L.Hedrick. 2001. New paradigms for organic catalysts: The�rst organocatalytic living polymerization. Ang. Chem. Int.Ed. 40: 2712–2715.

Nomura, N., A. Taira, T. Tomioka, and M. Okada. 2000. Acatalytic approach for cationic living polymerization:Sc(OTf) 3 -catalyzed ring-opening polymerization oflactones. Macromolecules 33: 1497–1499.

Nottelet, B., J. Coudane, and M. Vert. 2006. Synthesis ofan x-ray opaque biodegradable copolyester by chemicalmodi�cation of poly (ɛ-caprolactone). Biomaterials 27:4948–4954.

Nyce, G.W., T. Glauser, E.F. Connor, A. Möck, R.M.Waymouth, and J.L. Hedrick. 2003. In situ generation ofcarbenes: A general and versatile platform fororganocatalytic living polymerization. J. Am. Chem. Soc.125: 3046–3056.

Page 69: Polymeric Biomaterials - Taylor & Francis eBooks

Oshimura, M. and A. Takasu. 2010. Controlled ring-openingpolymerization of ɛ-caprolactone catalyzed by rare-earthper¥uoroalkanesulfonates and per¥uoroalkanesulfonimides.Macromolecules 43: 2283–2290.

Oshimura, M., T. Tang, and A. Takasu. 2011. Ring-openingpolymerization of ɛ-caprolactone usingper¥uoroalkanesulfonates and per¥uoroalkanesulfonimides asorganic catalysts. J. Polym. Sci. A Polym. Chem. 49:1210–1218.

Ouhadi, T., A. Hamitou, R. Jérôme, and P. Teyssié. 1976.Soluble bimetallic μ-oxoalkoxides. 8. Structure andkinetic behavior of the catalytic species in unsubstitutedlactone ring-opening polymerization. Macromolecules 9:927–931.

Palard, I., A. Soum, and S.M. Guillaume. 2005. Rare earthmetal tris(borohydride) complexes as initiators forɛ-caprolactone polymerization: General features and IRinvestigations of the process. Macromolecules 36: 54–60.

Palmgren, R., S. Karlsson, and A.C. Albertsson. 1997.Synthesis of degradable crosslinked polymers based on1,5-dioxepan-2-one and crosslinker of bis-1-caprolactonetype. J. Polym. Sci. A Polym. Chem. 35: 1635–1649.

Parrish, B., R.B. Breitenkamp, and T. Emrick. 2005. PEG-and peptide-grafted aliphatic polyesters by clickchemistry. J. Am. Chem. Soc. 127: 7404–7410.

Parrish, B. and T. Emrick. 2004. Aliphatic polyesters withypendant cyclopentene groups: Controlled synthesis andconversion to polyester-graft-PEG copolymers.Macromolecules 37: 5863–5865.

Parzuchowski, P.G., M. Grabowska, M. Tryznowski, and G.Rokicki. 2006. Synthesis of glycerol based hyperbranchedpolyesters with primary hydroxyl groups. Macromolecules 39:7181–7186.

Penczek, S., T. Biela, and A. Duda. 2000. Livingpolymerization with reversible chain transfer andreversible deactivation: The case of cyclic esters.Macromol. Rapid Commun. 21: 941–950.

Penczek, S., M. Cypryk, A. Duda, P. Kubisa, and S.Slomkowski. 2007. Living ring-opening polymerizations ofheterocyclic monomers. Prog. Polym. Sci. 32: 247–282.

Page 70: Polymeric Biomaterials - Taylor & Francis eBooks

Persson, P.V., J. Casas, T. Iversen, and A. Cordova. 2006.Direct organocatalytic chemoselective synthesis of adendrimer-like star polyester. Macromolecules 39:2819–2822.

Pitt, C.G., Z.H. Gu, P. Ingram, and R.W. Hendren. 1987. Thesynthesis of biodegradable polymers with functional sidechains. J. Polym. Sci. A Polym. Chem. 25: 955–966.

Ponsart, S., J. Coudane, J. McGrath, and M. Vert. 2002.Study of the grafting of bromoacetylatedα-hydroxy-ωmethoxypoly(ethyleneglycol) onto anionicallyactivated poly(ɛ-caprolactone). J. Bioact. Compat. Polym.17: 417–432.

Ponsart, S., J. Coudane, J.L. Morgat, and M. Vert. 2001.Synthesis of 3 H and ¥uorescence-labelled poly (dlLacticacid). J. Labelled Comp. Radiopharm. 44: 677–687.

Ponsart, S., J. Coudane, and M. Vert. 2000. A novel routeto poly(ɛ-caprolactone)-based copolymers via anionicderivatization. Biomacromolecules 1: 275–281.

Pratt, R.C., B.G.G. Lohmeijer, D.A. Long, R.M. Waymouth,and J.L. Hedrick. 2006. Triazabicyclodecene: A simplebifunctional organocatalyst for acyl transfer andring-opening polymerization of cyclic esters. J. Am. Chem.Soc. 128: 4556–4557.

Raquez, J.M., P. Degée, R. Narayan, and P. Dubois. 2000.“Coordination-insertion” ring-opening polymerization of1,4-dioxan-2-one and controlled synthesis of diblockcopolymers with ɛ-caprolactone. Macromol. Rapid Commun.21: 1063–1071.

Raquez, J.M., P. Degée, R. Narayan, and P. Dubois. 2001.Some thermodynamic, kinetic, and mechanistic aspects of thering-opening polymerization of 1,4-dioxan-2-one initiatedby Al(OiPr) 3 in bulk. Macromolecules 34: 8419–8425.

Renard, E., C. Ternat, V. Langlois, and P. Guérin. 2003.Synthesis of graft bacterial polyesters for nanoparticlespreparation. Macromol. Biosci. 3: 248–252.

Rieger, J., K. Van Butsele, P. Lecomte, C. Detrembleur, R.Jérôme, and C. Jérôme. 2005. Versatile functionalizationand grafting of poly(ɛ-caprolactone) by Michael-typeaddition. Chem. Commun. 274–276.

Riva, R., W. Lazzari, L. Billiet, F. Du Prez, C. Jérôme,

Page 71: Polymeric Biomaterials - Taylor & Francis eBooks

and P. Lecomte. 2011. Preparation of pH-sensitivestarshaped aliphatic polyesters as precursors ofpolymersomes. J. Polym. Sci. A Polym. Chem. 49: 1552–1563.

Riva, R., S. Schmeits, C. Jérôme, R. Jérôme, and P.Lecomte. 2007. Combination of ring-opening polymerizationtoward functionalization and grafting ofpoly(ɛ-caprolactone). Macromolecules 40: 796–803.

Ropson, N., P. Dubois, R. Jérôme, and P. Teyssié. 1995.Macromolecular engineering of polylactones andpolylactides. 20. Effect of monomer, solvent, and initiatoron the ring-opening polymerization as initiated withaluminum alkoxides. Macromolecules 28: 7589–7598.

Sanda, F. and T. Endo. 2001. Radical ring-openingpolymerization. J. Polym. Sci. A Polym. Chem. 39: 265–276.

Sanda, F., H. Sanada, Y. Shibasaki, and T. Endo. 2002. Starpolymer synthesis from ɛ-caprolactone utilizingpolyol/protonic acid initiator. Macromolecules 35: 680–683.

Save, M., M. Schappacher, and A. Soum. 2002. Controlledring-opening polymerization of lactones and lactidesinitiated by lanthanum isopropoxide. I. General aspects andkinetics. Macromol. Chem. Phys. 203: 889–899.

Shen, Y., Z. Shen, Y. Zhang, and K. Yao. 1996. Novel rareearth catalysts for the living polymerization and blockcopolymerization of ɛ-caprolactone. Macromolecules 29:8289–8295.

Shibasaki, Y., H. Sanada, M. Yokoi, F. Sanda, and T. Endo.2000. Activated monomer cationic polymerization oflactones and the application to well-de�ned block copolymersynthesis with seven-membered cyclic carbonate.Macromolecules 33: 4316–4320.

Shirahama, H., K. Mizuma, Y. Kawaguchi, M. Shomi, and H.Yasuda. 1993. Development of new biodegradable polymers.Kobunshi Ronbunshu 50: 821–835.

Shirahama, H., M. Shomi, M. Sakane, and H. Yasuda. 1996.Biodegradation of novel optically active polyesterssynthesized by copolymerization of (R)-MOHEL with lactones.Macromolecules 29: 4821–4828.

Shueh, M.L., Y.S. Wang, B.H. Huang, C.Y. Kuo, and C.C. Lin.2004. Reactions of2,2′-methylenebis(4-chloro-6isopropyl-3-methylphenol) and

Page 72: Polymeric Biomaterials - Taylor & Francis eBooks

2,2′-ethylenebis(4,6-di-tert-butylphenol)with Mg n Br 2 :Ef�cient catalysts for the ring-opening polymerization ofɛ-caprolactone and l-lactide. Macromolecules 37: 5155–5162.

Simmons, T.L. and G.L. Baker. 2001. Poly(phenyllactide):Synthesis, characterization and hydrolytic degradation.Biomacromolecules 2: 658–663.

Sinha, V. R., K. Bansal, R. Kaushik, R. Kumria, and A.Trehan. 2004. Poly-ɛ-caprolactone microspheres andnanospheres: An overview. Int. J. Pharm. 278: 1–23.

Slomkowski, S., R. Szymanski, and A. Hofman. 1985.Formation of the intermediate cyclic six-membered oxoniumion in the cationic polymerization of β-propiolactoneinitiated with CH CO SbF 3 6 + − . Makromol. Chem. 186:2283–2290.

Stassin, H., O. Halleux, P. Dubois, C. Detrembleur, P.Lecomte, and R. Jérôme. 2000. Ring-opening copolymerizationof ɛ-caprolactone, γ-triethylsilyloxy-ɛ-caprolactone andγ-ethylene ketal- ɛ-caprolactone: A route to hetero-graftcopolyesters. Macromol. Symp. 153: 27–39.

Stassin, F., O. Halleux, and R. Jérôme. 2001. Ring-openingpolymerization of ɛ-caprolactone in supercritical carbondioxide. Macromolecules 34: 775–781.

Stassin, F. and R. Jérôme. 2002. Effect of pressure andtemperature upon tin alkoxide-promoted ring-openingpolymerisation of ɛ-caprolactone in supercritical carbondioxide. Chem. Commun. 232–233.

Stassin, F. and R. Jérôme. 2004. Contribution ofsupercritical CO 2 to the preparation of aliphaticpolyesters and materials thereof. Macromol. Symp. 217:135–146.

Stevels, W.M., M.J.K. Ankoné, P.J. Dijkstra, and J. Feijen.1996a. A versatile and highly ef�cient catalyst system forthe preparation of polyesters based on lanthanidetris(2,6-di-tert-butylphenolate)s and various alcohols.Macromolecules 29: 3332–3333.

Stevels, W.M., M.J.K. Ankoné, P.J. Dijkstra, and J. Feijen.1996b. Kinetics and mechanism of ɛ-caprolactonepolymerization using yttrium alkoxides as initiators.Macromolecules 29: 8296–8303.

Stjerndahl, A., A.F. Wistrand, and A.C. Albertsson. 2007.

Page 73: Polymeric Biomaterials - Taylor & Francis eBooks

Industrial utilization of tin-initiated resorbablepolymers: Synthesis on a large scale with a low amount ofinitiator residue. Biomacromolecules 8: 937–940.

Stridsberg, K.M., M. Ryner, and A.-C. Albertsson. 2002.Controlled ring-opening polymerization: Polymers withdesigned macromolecular architecture. Adv. Polym. Sci. 157:42–139.

Szwarc, M. 1956. Living polymers. Nature 178: 1168–1169.

Takamoto, T., H. Uyama, and S. Kobayashi. 2001.Lipase-catalyzed synthesis of aliphatic polyesters insupercritical carbon dioxide. e-polymers 4:1–6.

Taniguchi, I., A.M. Mayes, E.W.L. Chan, and L.G. Grif�th.2005. A chemoselective approach to grafting biodegradablepolyesters. Macromolecules 38: 216–219.

Tasaka, F., Y. Ohya, and T. Ouchi. 2001. One-pot synthesisof novel branched polylactide through the copolymerizationof lactide with mevalonolactone. Macromol. Rapid Commun.22: 820–824.

Theiler, S., M. Teske, H. Keul, K. Sternberg, and M.Möller. 2010. Synthesis, characterization and in vitrodegradation of 3D-microstructured poly(ɛ-caprolactone)resins. Polym. Chem. 1: 1215–1225.

Tian, D., P. Dubois, C. Grand�ls, and R. Jérôme. 1997.Ring-opening polymerization of1,4,8-trioxaspiro[4.6]9-undecanone: A new route toaliphatic polyesters bearing functional pendent groups.Macromolecules 30: 406–409.

Tian, D., P. Dubois, R. Jérôme, and P. Teyssié. 1994.Macromolecular engineering of polylactones andpolylactides. 18. Synthesis of star-branched aliphaticpolyesters bearing various functional end-groups.Macromolecules 27: 4134–4144.

Tortosa, K., T. Hamaide, C. Boisson, and R. Spitz. 2001.Homogeneous and heterogeneous polymerization ofɛ-caprolactone by neodymium alkoxides prepared in situ.Macromol. Chem. Phys. 202: 1156–1160.

Trollsas, M., C.J. Hawker, J.F. Remenar, J.L. Hedrick, M.Johansson, H. Ihre, and A. Hult. 1998. Highly branchedradial block copolymers via dendritic initiation ofaliphatic polyesters. J. Polym. Sci. A Polym. Chem. 36:

Page 74: Polymeric Biomaterials - Taylor & Francis eBooks

2793–2798.

Trollsas, M., V.Y. Lee, D. Mecerreyes, P. Löwenhielm, M.Möller, R.D. Miller, and J.L. Hedrick. 2000. Hydrophilicaliphatic polyesters: Design, synthesis, and ring-openingpolymerization of functional cyclic esters. Macromolecules33: 4619–4627.

Trollsas, M., P. Löwenhielm, V.Y. Lee, M. Möller, R.D.Miller, and J.L. Hedrick. 1999. New approach tohyperbranched polyesters: Self-condensing cyclic esterpolymerization of bis(hydroxymethyl)-substitutedɛ-caprolactone. Macromolecules 32: 9062–9066.

Turunen, M.P.K., H. Korhonen, J. Tuominen, and J.V.Seppälä. 2001. Synthesis, characterization and crosslinkingof functional star-shaped poly(ɛ-caprolactone). Polym. Int.51: 92–100.

Undin, J., P. Plikk, A. Finne-Wistrand, and A.C.Albertsson. 2010. Synthesis of amorphous aliphaticpolyesterether homo- and copolymers by radicalpolymerization of ketene acetals. J. Polym. Sci. A Polym.Chem. 48: 4965–4973.

Uyama, H. and S. Kobayashi. 1993. Enzymatic ring-openingpolymerization of lactones catalyzed by lipase. Chem.Lett. 7: 1149–1150.

Vaida, C., P. Mela, H. Keul, and M. Möller. 2008. 2D- and3D-Microstructured biodegradable polyester resins. J.Polym. Sci. A Polym. Chem. 46: 6789–6800.

Van Butsele, K., F. Stoffelbach, R. Jérôme, and C. Jérôme.2006. Synthesis of novel amphiphilic and pHsensitive ABCmiktoarm star terpolymers. Macromolecules 39: 5652–5656.

Varma, I.K., A.C. Albertsson, R. Rajkhowa, and R.K.Srivistava. 2005. Enzyme catalyzed synthesis of polyesters.Prog. Polym. Sci. 30: 949–981.

Veld, M.J., A.R.A. Palmans, and E.W. Meijer. 2007.Selective polymerization of functional monomers withNovozym 435. J. Polym. Sci. A Polym. Chem. 45: 5968–5978.

Wang, G., Y. Shi, Z. Fu, W. Yang, Q. Huang, and Y. Zhang.2005. Controlled synthesis ofpoly(ɛ-caprolactone)graft-polystyrene by atom transferradical polymerization withpoly(ɛ-caprolactone-co-α-bromo-ɛcaprolactone) copolymer as

Page 75: Polymeric Biomaterials - Taylor & Francis eBooks

macroinitiator. Polymer 46: 10601–10606.

Westerhausen, M., S. Schneiderbauer, A.N. Kneifel, Y.Söltl, P. Mayer, H. Nöth, Z. Zhong, P.J. Dijkstra, andJ. Feijen. 2003. Organocalcium compounds with catalyticactivity for the ring-opening polymerization of lactones.Eur. J. Inorg. Chem. 2003: 3432–3439.

Williams, S.F., D.P. Martin, D.M. Horowitz, and O.P.Peoples. 1999. PHA applications: Addressing the priceperformance issue I. Tissue engineering. Int. J. Biol.Macromol. 25: 111–121.

Wilson, B.C. and C.W. Jones. 2004. A recoverable,metal-free catalyst for the green polymerization ofɛ-caprolactone. Macromolecules 37: 9709–9714.

Woodruff, M.A. and W. Hutmacher. 2010. The return of aforgotten polymer-polycaprolactone in the 21st century.Prog. Polym. Sci. 35: 1217–1256.

Xie, M., J. Shi, L. Ding, J. Li, H. Han, and Y. Zhang.2009. Cyclic poly(ɛ-caprolactone) synthesized bycombination of ring-opening polymerization withring-closing metathesis, ring closing enyne metathesis, or“click” reaction. J. Polym. Sci. A Polym. Chem. 47:3022–3033.

Yamashita, M., Y. Takemoto, E. Ihara, and H. Yasuda. 1996.Organolanthanide-initiated living polymerization ofɛ-caprolactone, δ-valerolactone, and β-propiolactone.Macromolecules 29: 1798–1806.

Yan, J., Y. Zhang, Y. Xiao, Y. Zhang, and M.D. Lang. 2010.Novel poly(ɛ-caprolactone)s bearing amino groups:Synthesis, characterization and biotinylation. React.Funct. Polym. 70: 400–407.

Yu, X.H., J. Feng, and R.X. Zhuo. 2005a. Preparation ofhyperbranched aliphatic polyester derived fromfunctionalized 1,4-dioxan-2-one. Macromolecules 38:6244–6247.

Yu, T.L., C.C. Wu, C.C. Chen, B.H. Huang, J. Wu, and C.C.Lin. 2005b. Catalysts for the ring-opening polymerizationof ɛ-caprolactone and l-lactide and the mechanistic study.Polymer 46: 5909–5917.

Zednik, J., R. Riva, P. Lussis, C. Jérôme, R. Jérôme, andP. Lecomte. 2008. pH-responsive biodegradable amphiphilic

Page 76: Polymeric Biomaterials - Taylor & Francis eBooks

networks. Polymer 49: 697–702.

Zeng, F., H. Lee, M. Chidiac, and C. Allen. 2005. Synthesisand characterization of six-arm starpoly(δvalerolactone)-block-methoxy poly(ethylene glycol)copolymers. Biomacromolecules 6: 2140–2149.

Zhang, L., F. Nederberg, J.M. Messman, R.C. Pratt, R.M.Waymouth, J.L. Hedrick, and C.G. Wade. 2007b.Organocatalytic stereoselective ring-opening polymerizationof lactide with dimeric phosphazene bases. J. Am. Chem.Soc. 129: 12610–12611.

Zhang, L., F. Nederberg, R.C. Pratt, R.M. Waymouth, J.L.Hedrick, and C.G. Wade. 2007a. Phosphazene bases: A newcategory of organocatalysts for the living ring-openingpolymerization of cyclic esters. Macromolecules 40:4154–4158.

Zhong, Z., P.J. Dijkstra, C. Birg, M. Westerhausen, and J.Feijen. 2001. A novel and versatile calcium-basedinitiator system for the ring-opening polymerization ofcyclic esters. Macromolecules 34: 3863–3868.

Zhong, Z., P.J. Dijkstra, and J. Feijen. 2004. Controlledsynthesis of biodegradable lactide polymers and copolymersusing novel in situ generated or single sitestereoselective polymerization initiators. J. Biomater.Sci. Polymer Ed. 15: 929–946.

Page 77: Polymeric Biomaterials - Taylor & Francis eBooks

2 Chapter 2. Hydrogels Formed byCross-Linked Poly(Vinyl Alcohol)

1. Finch, C. A. 1973. Polyvinyl Alcohol. Properties andApplications. London, U.K.: Wiley.

2. Huisgen, R. 1989. Kinetics and reaction mechanisms:Selected examples from the experience of forty years. PureAppl. Chem. 61:613–628.

3. Kolb, H. C., Finn, M. G., Sharpless, K. B. 2001. Clickchemistry: Diverse chemical. Function from a few goodreactions. Angew. Chem. Int. Ed. 40:2004–2021.

4. Evans, R. A. 2007. The rise of azide-alkyne 1,3-dipolar‘click’ cycloaddition and its application to polymerscience and surface modi�cation. Aust. J. Chem. 60:384–395.

5. Flory, P. J. 1953. Principles of Polymer Chemistry.Ithaca, NY: Cornel1 University.

6. Peppas, N. A., Merril, E. W. 1976. Determination ofinteraction parameter χ 1 , for poly(vinyl alcohol) andwater in gels crosslinked from solutions. J. Pol. Sci.Polym. Chem. Ed. 14:459–464.

7. Peppas, N. A., Bar-Howell, B. D. 1986. Characterizationof the cross-linked structure of hydrogels. In Hydrogelsin Medicine and Pharmacy, ed. N. A. Peppas, pp. 27–55, Vol.1. Boca Raton, FL: CRC Press.

8. De Gennes, P. G. 1979. Scaling Concept in PolymerPhysics. Ithaca, NY: Cornell University Press.

9. Neuburger, N. A., Eichinger, B. E. 1988. Criticalexperimental test of the Flory-Rehner theory of swelling.Macromolecules 21:3060–3070.

10. Hansen, E. W., Bouzga, A. M., Sommer, B., Kvernberg, P.O. 2000. Crosslinking of PVA and glutaraldehyde in watermonitored by viscosity and pulse �eld gradient NMR: Acomparative study. Polym. Adv. Technol. 11:185–191.

11. Paradossi, G., Di Bari, M. T., Telling, M. T. F.,Turtù, A., Cavalieri, F. 2001. Incoherent quasi-elasticneutron scattering study of chemical hydrogels based onpoly (vinyl alcohol). Physica B 301:150–156.

12. de Groot, J. H., Spaans, C. J., van Calck, R. V., vanBeijma, F. J., Norrby, S., Pennings, A. J. 2003. Hydrogels

Page 78: Polymeric Biomaterials - Taylor & Francis eBooks

for an accommodating intraocular lens. An explorativestudy. Biomacromolecules 4:608–616.

13. Bo, J. 1992. Study on PVA hydrogel crosslinked byepichloroh ydrin. J. Appl. Polym. Sci. 46:783–786.

14. Painter, T., Larsen, B. 1970. Formation of hemiacetalsbetween neighbouring hexuronic acid residues during theperiodate oxidation of alginate. Acta Chem. Scand.24:813–33.

15. Barretta, P., Bordi, F., Rinaldi, C., Paradossi, G.2000. A dynamic light scattering study of hydrogels basedon telechelic PVA. J. Phys. Chem. B 104:11019–11026.

16. Paradossi, G., Ca valieri, F., Chiessi, E., Telling, M.T. F. 2003. Super-cooled water in PVA matrices: I. Anincoherent quasi elastic neutron scattering (QENS) study.J. Phys. Chem. B 107:8363–8371.

17. Cavalieri, F., El Hamassi, A., Chiessi, E., Paradossi,G. 2005. Stable polymeric microballoons as multifunctionaldevice for biomedical uses: Synthesis and characterization.Langmuir 21:8758–8764.

18. Martens, P., Anseth, K. S. 2000. Characterization ofhydrogels formed from acrylate modi�ed poly(vinyl alcohol)macromers. Polymer 41:7715–7722.

19. Mühlebach, A., Müller, B., Pharisa, C., Hofmann, M.,Seiferling, B., Guerry, D. 1997. New water-soluble photocrosslinkable polymers based on modi�ed poly(vinylalcohol). J. Polym. Sci. Part A Polym. Chem. 35:3603–3611.

20. Martens, P., Blundo, J., Nilasaroya, A., Odell, R. A.,Cooper-White, J., Poole-Warren, L. A. 2007. Effect ofpoly(vinyl alcohol) macromer chemistry and chaininteractions on hydrogel mechanical properties. Chem.Mater. 19:2641–2648.

21. van Dijk-Wolthuis, W. N. E., Franssen, O., Talsma, H.,van Stenbergen, M. J., Kettenes-van den Bosh, J. J.,Hennink, W. E. 1995. Synthesis, characterization, andpolymerization of glycidyl methacrylate derivatizeddextran. Macromolecules 28: 6317–6322.

22. Meyvis, T. K. L., De Smedt, S. C., Demeester, J.,Hennink, E. 1999. Rheological monitoring of long-termdegrading polymer hydrogels. J. Rheol. 43: 933–950.

Page 79: Polymeric Biomaterials - Taylor & Francis eBooks

23. Cavalieri, F ., Miano, F., D’Antona, P., Paradossi, G.2004. Study of gelling behaviour of poly(vinylalcohol)-methacrylate for in situ utilizations in tissuereplacement and drug delivery. Biomacromolecules5:2439–2446.

24. Cavalieri, F., Chiessi, E., Villa, R., Viganò, L.,Zaffaroni, N., Telling, M. F., Paradossi, G. 2008. NovelPVA-based hydrogel microparticles for doxorubicin delivery.Biomacromolecules 9:1967–1973.

25. Aruffo, A., Stamenkovic, I., Melnick, M., Underhill, C.B., Seed, B. 1990. CD44 is the principal cell surfacereceptor for hyaluronate. Cell 61:1303–1313.

26. Cerroni, B., Chiessi, E., Margheritelli, S., Oddo, L.,Paradossi, G. 2011. Polymer shelled microparticles for atargeted doxorubicin delivery in cancer therapy.Biomacromolecules 12:593–601.

27. Ghugare, S. V., Mozetic, P., Paradossi, G. 2009.Temperature-sensitive poly(vinyl alcohol)/poly(methacrylate-co-N-isopropyl acrylamide) microgels fordoxorubicin delivery. Biomacromolecules 10:1589–1596.

28. Ghugare, S. V., Chiessi, E., Telling, M. T. F., Deriu,A., Gerelli, Y., Wuttke, J., Paradossi, G. 2010. Structureand dynamics of a thermoresponsive microgel around itsvolume phase transition temperature. J. Phys. Chem. B114:10285–10293.

29. Mawad, D., Odell, R., Poole-Warren, L. A. 2009. Networkstructure and macromolecular drug release form poly(vinylalcohol) hydrogels fabricated via two crosslinkingstrategies. Int. J. Pharm. 366:31–37.

30. Nuttelman, C. R., Henry, S. M., Anseth, K. S. 2002.Synthesis and characterization of photocrosslinkable,degradable poly(vinyl alcohol)-based tissue engineeringscaffolds. Biomaterials 23:3617–3626.

31. Martens, P., Holland, T., Anseth, K. S. 2002. Synthesisand characterization of degradable hydrogels formed fromacrylate modi�ed poly(vinyl alcohol) macromers. Polymer43:6093–6100.

32. Ossipov, D. A., Piskounova, S., Hilborn, J. 2008.Poly(vinyl alcohol) cross-linkers for in vivo injectablehydrogels. Macromolecules 41:3971–3982.

Page 80: Polymeric Biomaterials - Taylor & Francis eBooks

33. Ossipov, D. A., Brännvall, K., Forsberg-Nilsson, K.,Hilborn, J. 2007. Formation of the �rst injectablepoly(vinyl alcohol) hydrogel by mixing of functional PVAprecursors. J. Appl. Polym. Sci. 106:60–70.

34. Tortora, M., Ca valieri, F., Chiessi, E., Paradossi, G.2007. Michael-type addition reactions for the in situformation of poly(vinyl alcohol)-based hydrogels.Biomacromolecules 8:209–214.

35. Ossipov, D. A., Hilborn, J. 2006. Poly(vinylalcohol)-based hydrogels formed by “Click Chemistry.”Macromolecules 39:1709–1718.

36. Nilasarova, A., Poole-warren, L. A., Whitelock, J. M.,Jo Martens, P. 2008. Structural and functionalcharacterization of poly (vinyl alcohol) and heparinhydrogels. Biomaterials 29:4658–4664.

37. Mansur, H. S., Costa, Jr., E., de, S., Mansur, A. A.P., Barbosa-Stancioli, E. F. 2009. Cytocompatibilityevaluation in cell-culture systems of chemicallycrosslinked chitosan/PVA hydrogels. Mater. Sci. Eng. C29:1574–1583.

Page 81: Polymeric Biomaterials - Taylor & Francis eBooks

3 Chapter 3. Development and Evaluationof Poly (Vinyl Alcohol )Hydrogels as aComponent of Hybrid Artificial Tissuesfor Orthopedics Surgery Application

1. S.H. Hyon, W.I. Cha, Y. Ikada; Preparation oftransparent poly (vinyl alcohol) hydrogel. Polym. Bull.1989: 22, 119–122.

2. W.I. Cha, S.H. Hyon, M. Oka, Y. Ikada; Mechanical andwear properties of poly (vinyl alcohol) hydrogels.Macromol. Symp. 1996: 109, 115–126.

3. J. Delecrin, M. Oka, P. Kumar et al.; Joint reactionsagainst polymer particles: PVA-H versus UHMEPE. J. Jpn.Ortho. Assoc. 1990: 64, S1395.

4. T. Noguchi, T. Yamamuro, M. Oka. et al.; Poly (vinylalcohol) hydrogel as an arti�cial articular cartilage:Evaluation of biocompatibility. J. Appl. Biomater. 1991: 2,101–107.

5. N.A. Peppas, E.W. Merrill; Development ofsemicrystalline poly(vinyl alcohol) hydrogels forbiomedical application. J. Biomed. Mater. Res. 1997: 11,423–434.

6. T.H. Young, N.K. Yao, R.F. Chang, L.W. Chen; Evaluationof asymmetric poly (vinyl alcohol) membranes for use inarti�cial islets. Biomaterials 1996: 17, 2139–2145.

7. M. Kobayashi, J. Toguchida, M. Oka; Development of PVA-Hshields with a high water content for tendon injury repair.J. Hand Surg. 2001: 26(B) 5, 436–440.

8. J. Nishiura, M. Oka, K. Sakaguchi et al.; Mechanicalproperties of PVA-H using injection molding method. J.Jpn. Clin. Biomech. 2001: 22, 129–133 (Japanese).

9. M. Kobayashi, M. Oka; Characterization of a poly(vinylalcohol)-hydrogel arti�cial articular cartilage preparedby injection molding. J. Biomater. Sci. Polym. Edn. 2004:15(6), 741–751.

10. M. Kobayashi, J. Toguchida, M. Oka; Development of anarti�cial meniscus using polyvinyl alcoholhydrogel forearly return to, and continuance of athletic life in sportspersons with severe meniscus injury. I: Mechanicalevaluation. The Knee 2003: 10, 47–51.

Page 82: Polymeric Biomaterials - Taylor & Francis eBooks

11. R. Hayashi, M. Oka, K. Ikeuchi et al.; Friction ofarti�cial cartilage sliding against articular cartilage.J. Jpn. Clin. Biomech. 1999: 20, 307–313 (Japanese).

12. M. Kobayashi, J. Toguchida, M. Oka; Study on thelubrication mechanism of natural joint by confocal laserscanning microscopy. J. Biomed. Mater. Res. 2001: 55,645–651.

13. M. Kobayashi, M. Oka; The lubricative function ofarti�cial joint material surfaces by confocal laserscanning microscopy. Comparison with natural synovial jointsurface. Bio-Med. Mater. Eng. 2003: 12, 429–437.

14. D.A. Swan, F.H. Silver, H.S. Slayter et al.; Themolecular structure and lubricating activity of lubricinisolated from bovine and human synovial ¥uids. Biochemistry1985: 225, 195–201.

15. J.E. Pickadr, E. Fisher, E. Ingham, J. Egan;Investigation into the effect of proteins and lipids on thefrictional properties of articular cartilage. Biomaterials1998: 19, 1807–1812.

16. T. Murakami; The adaptive multimode lubrication inbiotribological systems. Proc. Int. Tribol. Conf. 1995: 3,1981–1986.

17. Y. Matsuda, T. Yamamuro, R. Kasai et al.; Severemetallosis observed 17 years after replacement of the kneewith a tumor prosthesis: A case report. J. Long-TermEffects Med. Implants 1992: 1, 295–303.

18. E.A. Salvati, C.N. Coornell; Long-term follow up oftotal hip replacement in patient with avascular necrosis.Instr. Course Lect. 1988: 37, 67–73.

19. M. Oka, Y.S. Chang, K. Ushio et al.; Syntheticosteochondral replacement of the femoral articularsurface. J. Bone Joint Surg. (B) 1997: 79-B, 1003–1007.

20. P. Corkhill, A. Trevent, B. Tighe; The potential ofhydrogels as synthetic articular cartilage. Proc. Inst.Mech. Eng. 1990: 204, 147–155.

21. T. Murakami, Y . Sawae, K. Nakajima; Evaluation offriction and wear characteristics of arti�cial cartilagematerials. J. Jpn. Clin. Biomech. 1999: 20, 319–323(Japanese).

Page 83: Polymeric Biomaterials - Taylor & Francis eBooks

22. J. Arict; Nontraumatic a vascular necrosis of thefemoral head: Past, present, and future. Clin. Orthop.1992: 277, 12–21.

23. M.W. Hugerford, M.A. Mont, R. Scott et al.; Surfacereplacement hemiarthroplasty for the treatment ofosteonecrosis of the femoral head. J. Bone Joint Surg. (A)1998: 80-A, 1656–1664.

24. M. Singuler, T . Judel, T. Siguier et al.; Preliminaryresults of partial surface replacement of the femoral headin osteonecrosis. J. Arthroplast. 1999: 14, 45–51.

25. K. Ushio, M. Oka, S.H. Hyon et al.; Partialhemiarthroplasty for the treatment of osteonecrosis of thefemoral head. J. Bone-Joint. Surg. (B) 2003: 85-B, 922–930.

26. H.J. Mankin, H. Dorfman, L. Lippiello, A. Zarins;Biochemical and metabolic abnormalities in articularcartilage from osteo-arthritic human hips. J. Bone JointSurg. (A) 1971: 53-A, 523–537.

27. T. Brindle, J. Nyland, D.J. Johnson; The Meniscus:Review of basic principles with application to surgery andrehabilitation. J. Athl. Train. 2001: 36, 160–169.

28. E.L. Radin, F. Lamotte, P. Maquet; Role of the menisciin the distribution of stress in the knee. Clin. Orthop.1984: 185, 290–294.

29. A.S. Voloshin, J. Wosk; Shock absorption ofmenisectomized and painful knees: A comparative in vivostudy. J. Biomed. Eng. 1983: 5, 157–161.

30. T.J. Fairbank; Knee joint changes after meniscectomy.J. Bone Joint Surg. (B) 1948: 30-B, 664–670.

31. W.L. Lanzer, G. Komenda; Changes in articularcartilage after meniscectomy. Clin. Orthop. 1990: 252,41–48.

32. M.J. McNicholas, D.I. Roele y, D. Mcgurty et.al; Totalmeniscectomy in adolescence. A thirty-year follow up. J.Bone Joint Surg. (B) 2000: 82-B, 217–221.

33. M. Kobayashi, J. Toguchida, M. Oka; Preliminary studyof poly(vinyl alcohol)-hydrogel (PVA-H) arti�cial meniscus.Biomaterials 2003: 24, 639–647.

34. M. Kobayashi, Y.S. Chang, M. Oka; A two year in vivo

Page 84: Polymeric Biomaterials - Taylor & Francis eBooks

study of polyvinyl alcohol-hydrogel (PVA-H) arti�cialmeniscus. Biomaterials 2005: 26, 3243–3248.

35. C.K. Lee; Accelerated degeneration of the segmentadjacent to a lumber fusion. Spine 1988: 13, 375–377.

36. P. Enker, A. Steffee, C. Mcmillin et al.; Arti�cialdisc replacement. Spine 1993: 18, 1061–1070.

37. K. Taniyama, M. Oka, Y.S. Hyon et al.; Evaluation ofmechanical properties od canine arti�cial intervertebraldisc. J. Jpn. Clin. Biomech. 2001: 22, 109–115 (Japanese).

38. S. Yura, M. Oka, K. Ushio et al.; Development ofarti�cial intervertabral disc using poly(vinyl alcohol)hydrogels. SIROT 99 (Sydney, Australia), Freund PublishingHouse Ltd., London, U.K., 1999, pp. 371–376.

39. K. So, M. T akemoto, S. Fujibayashi et al.; Antidegenerative effects of partial disc replacement in ananimal surgery model. Spine 2007: 32, 1586–1591.

40. Y.S. Chang, M. Oka, M. Kobayashi et al.; Signi�canceof interstitial bone ingrowth under loadbearing conditions:A comparison between solid and porous implant materials.Biomaterials 1996: 17, 1141–1148.

41. Y.S. Chang, M. Oka, M. Kobayashi et al.; Comparison ofthe bony ingrowth into an osetochondral defect and anarti�cial osteochondral composite device in load-bearingjoints. The Knee 1998: 5, 205–213.

42. Y.S. Chang, M. Oka, M. Kobayashi et al.; In¥uence ofvarious structure treatment on histological �xation oftitanium implants. J. Arthroplasty 1998: 13, 816–825.

43. M. Kobayashi, M. Oka; Composite device for attachmentof poly(vinyl alcohol)-hydrogel to underlying bone. Artif.Organs 2004: 28, 734–738.

44. C. Roberts, C.S. Chen, M. Mrksich et al.; Using mixedself-assembled monolayers presenting RGD and (EG) 3OHgroups to characterize long-term attachment of bovinecapillary endothelial cells to surfaces. J. Am. Chem. Soc.1998: 120, 6548–6555.

45. M. Arnold, E.A. Cavalcanti-Adam, R. Glass et al.;Activation of integrin function by nanopatterned adhesiveinterfaces. ChemPhysChem. 2004: 5, 383–388.

Page 85: Polymeric Biomaterials - Taylor & Francis eBooks

46. T. Hayami, K. Matsumura, Y.S. Hyon et al.; The effectof ultra-thin coating of hydroxyapatite on arti�cialarticular cartilage (PVA-H) for cell contracture.Proceedings of the 35th Annual Meeting of Japanese Societyfor Clinical Biomechanics, Osaka, Japan, 2008, p. 142(Japanese).

47. C.J. Xian, B.K. F oster; Repair of injured articularand growth plate cartilage using mesenchymal stem cellsand chondrogenic gene therapy. Curr. Stem Cell Res. Ther.2006: 1, 213–229.

48. H.X. Song, F.B. Li, H.L. Shen et al.; Repairingarticular cartilage defects with tissue- engineeringcartilage in rabbits. Chin. J. Traumatol. 2006: 9, 266–271.

49. A. Heymer, G. Bradica, J. Eulert, U. Nöth; Multiphasiccollagen �bre-PLA composites seeded with human mesenchymalstem cells for osteochondral defect repair: An in vitrostudy. J. Tissue Eng. Regen. Med. 2009: 3(5), 389–397.

50. Y. Uchino, S. Shimmura, H. Miyashita et al.; Amnioticmembrane immobilized poly(vinyl alcohol) hybrid polymer asan arti�cial cornea scaffold that supports a strati�ed anddifferentiated corneal epithelium. J. Biomed. Mater. Res.Appl. Biomater. 2007: 81(1), 201–206.

51. C.R. Nuttelman, S.M. Henry , K.S. Anseth; Synthesis andcharacterization of photocrosslinkable, degradablepoly(vinyl alcohol)-based tissue engineering scaffolds.Biomaterials 2002: 23, 3617–3626.

Page 86: Polymeric Biomaterials - Taylor & Francis eBooks

4 Chapter 4. Polyphosphazenes asBiomaterials

Adibi, S. A. 1989. Glycyl-dipeptides: New substrates forprotein nutrition. J Lab Clin Med 113 (6):665–673.

Agrawal, C. M. and Athanasiou, K. A. 1997. Technique tocontrol pH in vicinity of biodegrading PLA-PGA implants. JBiomed Mater Res 38 (2):105–114.

Aldini, N. N., Fini, M., Rocca, M. et al. 1997. Peripheralnerve reconstruction with bioabsorbable polyphosphazeneconduits. J Bioact Compat Pol 12 (1):3–13.

Allcock, H. R. 1967. Heteroatom Ring Systems and Polymers.New York: Academic Press.

Allcock, H. R. 1972a. Phosphorus-Nitrogen Compounds.Cyclic, Linear and High Polymeric Systems. New York:Academic Press.

Allcock, H. R. 1972b. Recent advances in phosphazene(phosphonitrilic) chemistry. Chem Rev 72 (4):315–356.

Allcock, H. R. 1979. Small-molecule phosphazene rings asmodels for high polymeric chains. Acc Chem Res 12(10):351–358.

Allcock, H. R. 1985. Developments at the interface ofinorganic, organic, and polymer chemistry. Chem Eng News63 (11):22–36.

Allcock, H. R. 1992. Mechanisms and catalysis incyclophosphazene polymerization. In Catalysis in PolymerSynthesis, eds., E. J. Vandenberg and J. C. Salamone, pp.236–247. Washington, DC: American Chemical Society.

Allcock, H. R. 2003. Chemistry and Applications ofPolyphosphazenes. Hoboken, NJ: Wiley Interscience.

Allcock, H. R. 2010. Hybrids of hybrids: Nano-scalecombinations of polyphosphazenes with other materials.Appl Organometal Chem 24 (8):600–607.

Allcock, H. R. and Ambrosio, A. M. 1996. Synthesis andcharacterization of pH-sensitive poly (organophosphazene)hydrogels. Biomaterials 17 (23):2295–2302.

Allcock, H. R., Austin, P. E., and Neenan, T. X. 1982a.Phosphazene high polymers with bioactive substituent

Page 87: Polymeric Biomaterials - Taylor & Francis eBooks

groups: Prospective anesthetic aminophosphazenes.Macromolecules 15 (3):689–693.

Allcock, H. R., Bender, J. D., Morford, R. V., and Berda,E. B. 2003a. Synthesis and characterization of novel solidpolymer electrolytes based on poly(7-oxanorbornenes) withpendent oligoethyleneoxyfunctionalizedcyclotriphosphazenes. Macromolecules 36 (10):3563–3569.

Allcock, H. R. and Chu, C. T.-W. 1979. Reaction ofphenyllithium with poly(dichlorophosphazene).Macromolecules 12 (4):551–555.

Allcock, H. R., Clay Kellam, E., and Morford, R. V. 2001a.Gel electrolytes from co-substitutedoligoethyleneoxy/tri¥uoroethoxy linear polyphosphazenes.Solid State Ionics 143 (3–4):297–308.

Allcock, H. R., Cook, W. J., and Mack, D. P. 1972.Phosphonitrilic compounds. XV. High molecular weightpoly[bis(amino)phosphazenes] and mixed-substituentpoly(aminophosphazenes). Inorg Chem 11 (11):2584–2590.

Allcock, H. R., Crane, C. A., Morrissey, C. T. et al. 1996.Living cationic polymerization of phosphoranimines as anambient temperature route to polyphosphazenes withcontrolled molecular weights. Macromolecules 29(24):7740–7747.

Allcock, H. R. and Fuller, T. J. 1980. Phosphazene highpolymers with steroidal side groups. Macromolecules 13(6):1338–1345.

Allcock, H. R., Fuller, T. J., Mack, D. P., Matsumura, K.,and Smeltz, K. M. 1977. Synthesis of poly[(amino acidalkyl ester)phosphazenes]. Macromolecules 10 (4):824–830.

Allcock, H. R., Fuller, T. J., and Matsumura, K. 1982b.Hydrolysis pathways for aminophosphazenes. Inorg Chem 21(2):515–521.

Allcock, H. R., Hartle, T. J., Taylor, J. P., andSunderland, N. J. 2001b. Organic polymers withcyclophosphazene side groups: In¥uence of the phosphazeneon physical properties and thermolysis. Macromolecules 34(12):3896–3904.

Allcock, H. R. and Kellam, E. C. 2001. Incorporation ofcyclic phosphazene trimers into saturated and unsaturatedethylene-like polymer backbones. Macromolecules 35

Page 88: Polymeric Biomaterials - Taylor & Francis eBooks

(1):40–47.

Allcock, H. R., Kellam, E. C., and Hofmann, M. A. 2001c.Synthesis of cyclolinear phosphazene-containing polymersvia ADMET polymerization. Macromolecules 34 (15):5140–5146.

Allcock, H. R. and Kugel, R. L. 1965. Synthesis of highpolymeric alkoxy- and aryloxyphosphonitriles. J Am ChemSoc 87 (18):4216–4217.

Allcock, H. R. and Kugel, R. L. 1966. Phosphonitriliccompounds. VII. High molecular weightpoly(diaminophosphazenes). Inorg Chem 5 (10):1716–1718.

Allcock, H. R., Kugel, R. L., and Valan, K. J. 1966.Phosphonitrilic compounds. VI. High molecular weightpoly(alkoxy- and aryloxyphosphazenes). Inorg Chem 5(10):1709–1715.

Allcock, H. R. and Kwon, S. 1988. Glycerylpolyphosphazenes: Synthesis, properties, and hydrolysis.Macromolecules 21 (7):1980–1985.

Allcock, H. E., Kwon, S., Riding, G. H., Fitzpatrick, R.J., and Bennett, J. L. 1988. Hydrophilic polyphosphazenesas hydrogels: Radiation cross-linking and hydrogelcharacteristics of poly [bis(methoxyethoxyethoxy)phosphazene]. Biomaterials 9(6):509–513.

Allcock, H. R., Lampe, F. W., and Mark, J. E. 2003b.Contemporary Polymer Chemistry, 3rd edn. Upper SaddleRiver, NJ: Pearson Education, Inc (Pearson/Prentice Hall).

Allcock, H. R., Laredo, W. R., Kellam, E. C., and Morford,R. V. 2001d. Polynorbornenes bearing pendentcyclotriphosphazenes with oligoethyleneoxy side groups:Behavior as solid polymer electrolytes. Macromolecules 34(4):787–794.

Allcock, H. R., Nelson, J. M., Reeves, S. D., Honeyman, C.H., and Manners, I. 1997a. Ambient-temperature directsynthesis of poly(organophosphazenes) via the livingcationic polymerization of organosubstitutedphosphoranimines. Macromolecules 30 (1):50–56.

Allcock, H. R., Powell, E. S., Chang, Y., and Kim, C.2004a. Synthesis and micellar behavior of amphiphilicpolystyrene-poly[bis(methoxyethoxyethoxy)phosphazene] blockcopolymers. Macromolecules 37 (19):7163–7167.

Page 89: Polymeric Biomaterials - Taylor & Francis eBooks

Allcock, H. R., Powell, E. S., Maher, A. E., and Berda, E.B. 2004b. Poly(methyl methacrylate)-graft-poly-[bis(tri¥uoroethoxy)phosphazene] copolymers: Synthesis,characterization, and effects of polyphosphazeneincorporation. Macromolecules 37 (15):5824–5829.

Allcock, H. R. and Prange, R. 2001. Properties ofpoly(phosphazene-siloxane) block copolymers synthesized viatelechelic polyphosphazenes and polysiloxanephosphoranimines. Macromolecules 34 (20):6858–6865.

Allcock, H. R. and Pucher, S. R. 1991. Polyphosphazeneswith glucosyl and methylamino, tri¥uoroethoxy, phenoxy, or(methoxyethoxy)ethoxy side groups. Macromolecules 24(1):23–34.

Allcock, H. R., Pucher, S. R., and Scopelianos, A. G.1994a. Poly[(amino acid ester)phosphazenes] as substratesfor the controlled release of small molecules. Biomaterials15 (8):563–569.

Allcock, H. R., Pucher, S. R., and Scopelianos, A. G.1994b. Poly[(amino acid ester)phosphazenes]: Synthesis,crystallinity, and hydrolytic sensitivity in solution andthe solid state. Macromolecules 27 (5):1071–1075.

Allcock, H. R., Pucher, S. R., and Scopelianos, A. G.1994c. Synthesis of poly(orgnaophosphazenes) with glycolicacid ester and lactic acid ester side groups: Prototypesfor new bioerodible polymers. Macromolecules 27 (1):1–4.

Allcock, H. R., Ravikiran, R., and Olshavsky, M. A. 1998.Synthesis and characterization of hindered polyphosphazenesvia functionalized intermediates: Exploratory models forelectro-optical materials. Macromolecules 31(16):5206–5214.

Allcock, H. R., Reeves, S. D., Nelson, J. M., Crane, C. A.,and Manners, I. 1997b. Polyphosphazene block copolymersvia the controlled cationic, ambient temperaturepolymerization of phosphoranimines. Macromolecules 30(7):2213–2215.

Allcock, H. R. and Scopelianos, A. G. 1983. Synthesis ofsugar-substituted cyclic and polymeric phosphazenes andtheir oxidation, reduction, and acetylation reactions.Macromolecules 16 (5):715–719.

Allcock, H. R., Singh, A., Ambrosio, A. M., and Laredo, W.

Page 90: Polymeric Biomaterials - Taylor & Francis eBooks

R. 2003c. Tyrosine-bearing polyphosphazenes.Biomacromolecules 4 (6):1646–1653.

Allcock, H. R., Welna, D. T., and Stone, D. A. 2005.Synthesis of pendent functionalized cyclotriphosphazenepolyoctenamers: Amphiphilic lithium ion conductivematerials. Macromolecules 38 (25):10406–10412.

Ambrosio, A. M. A., Allcock, H. R., Katti, D. S., andLaurencin, C. T. 2002. Degradable polyphosphazene/poly([alpha]-hydroxyester) blends: Degradation studies.Biomaterials 23 (7):1667–1672.

Ambrosio, A. M., Sahota, J. S., Runge, C. et al. 2003.Novel polyphosphazene-hydroxyapatite composites asbiomaterials. IEEE Eng Med Biol Mag 22 (5):18–26.

Andrianov, A. K., DeCollibus, D. P., Gillis, H. A. et al.2009. Poly[di(carboxylatophenoxy)phosphazene] is a potentadjuvant for intradermal immunization. Proc Natl Acad SciUSA 106 (45):18936–18941.

Andrianov, A. K., Jianping, C., and Payne, L. G. 1998.Preparation of hydrogel microspheres by coacervation ofaqueous polyphosphazene solutions. Biomaterials 19(1–3):109–115.

Andrianov, A. K. and Marin, A. 2006. Degradation ofpolyaminophosphazenes: Effects of hydrolytic environmentand polymer processing. Biomacromolecules 7 (5):1581–1586.

Andrianov, A. K. and Payne, L. G. 1998. Protein releasefrom polyphosphazene matrices. Adv Drug Deliv Rev 31(3):185–196.

Barrett, E. W., Phelps, M. V. B., Silva, R. J., Gaumond, R.P., and Allcock, H. R. 2005. Patterningpoly(organophosphazenes) for selective cell adhesionapplications. Biomacromolecules 6 (3):1689–1697.

Bates, F. S. 1991. Polymer-polymer phase behavior. Science251 (4996):898–905.

Bhattacharyya, S., Kumbar, S. G., Khan, Y. M. et al. 2009.Biodegradable polyphosphazenenanohydroxyapatite compositenano�bers: Scaffolds for bone tissue engineering. J BiomedNanotec hnol 5 (1):69–75.

Bhattacharyya, S., Nair, L. S., Singh, A. et al. 2006.Electrospinning of poly[bis(ethyl alanato) phosphazene]

Page 91: Polymeric Biomaterials - Taylor & Francis eBooks

nano�bers J Biomed Nanotechnol 2 (1):36–45.

Bi, Y. M., Gong, X. Y., Wang, W. Z. et al. 2010. Synthesisand characterization of new biodegradable thermosensitivepolyphosphazenes with lactic acid ester andmethoxyethoxyethoxy side groups. Chin Chem Lett 21(2):237–241.

Borden, M., Attawia, M., Khan, Y., El-Amin, S. F., andLaurencin, C. T. 2004. Tissue-engineered bone formation invivo using a novel sintered polymeric microsphere matrix. JBone Joint Surg Br 86 (8):1200–1208.

Borden, M., Attawia, M., Khan, Y., and Laurencin, C. T.2002a. Tissue engineered microsphere-based matrices forbone repair: Design and evaluation. Biomaterials 23(2):551–559.

Borden, M., Attawia, M., and Laurencin, C. T. 2002b. Thesintered microsphere matrix for bone tissue engineering: Invitro osteoconductivity studies. J Biomed Mater Res 61(3):421–429.

Borden, M., El-Amin, S. F., Attawia, M., and Laurencin, C.T. 2003. Structural and human cellular assessment of anovel microsphere-based tissue engineered scaffold for bonerepair. Biomaterials 24 (4):597–609.

Böstman, O. M. 1998. Osteoarthritis of the ankle afterforeign-body reaction to absorbable pins and screws:A three- to nine-year follow-up study. J Bone Joint Surg Br80 (2):333–338.

Böstman, O. and Pihlajamäki, H. 2000. Clinicalbiocompatibility of biodegradable orthopaedic implants forinternal �xation: A review. Biomaterials 21 (24):2615–2621.

Braddock, M., Houston, P., Campbell, C., and Ashcroft, P.2001. Born again bone: Tissue engineering for bone repair.News Physiol Sci 16 (5):208–213.

Brown, J. L., Nair, L. S., Bender, J., Allcock, H. R., andLaurencin, C. T. 2007. The formation of an apatite coatingon carboxylated polyphosphazenes via a biomimetic process.Mater Lett 61 (17):3692–3695.

Brown, J. L., Nair, L. S., and Laurencin, C. T. 2008.Solvent/non-solvent sintering: A novel route to createporous microsphere scaffolds for tissue regeneration. JBiomed Mater Res B Appl Biomater 86B (2):396–406.

Page 92: Polymeric Biomaterials - Taylor & Francis eBooks

Brown, J. L., Peach, M. S., Nair, L. S., Kumbar, S. G., andLaurencin, C. T. 2010. Composite scaffolds: Bridgingnano�ber and microsphere architectures to improvebioactivity of mechanically competent constructs. J BiomedMater Res A 95 (4):1150–1158. DOI: 10.1002/jbm.a.32934.

Caliceti, P., Veronese, F. M., and Lora, S. 2000.Polyphosphazene microspheres for insulin delivery. Int JPharm 211 (1–2):57–65.

Carampin, P., Conconi, M. T., Lora, S. et al. 2007.Electrospun polyphosphazene nano�bers for in vitro ratendothelial cells proliferation. J Biomed Mater Res A 80A(3):661–668.

Chang, Y., Powell, E. S., and Allcock, H. R. 2005.Environmentally responsive micelles from polystyrene–poly[bis(potassium carboxylatophenoxy)phosphazene] blockcopolymers. J Polym Sci Polym Chem 43 (13):2912–2920.

Chang, Y., Powell, E. S., Allcock, H. R., Park, S. M., andKim, C. 2003. Thermosensitive behavior of poly(ethyleneoxide)-poly[bis(methoxyethoxyethoxy)-phosphazene] blockcopolymers. Macromolecules 36 (7):2568–2570.

Chang, Y., Prange, R., Allcock, H. R., Lee, S. C., and Kim,C. 2002. Amphiphilic poly[bis(tri¥uoroethoxy)phosphazene]-poly(ethylene oxide) block copolymers:Synthesis and micellar characteristics. Macromolecules 35(22):8556–8559.

Chatani, Y. and Yatsuyanagi, K. 1987. Structural studies ofpoly(phosphazenes). 1. Molecular and crystal structures ofpoly(dichlorophosphazene). Macromolecules 20 (5):1042–1045.

Chaubal, M. V., Gupta, A. S., Lopina, S. T., and Bruley, D.F. 2003. Polyphosphates and other phosphoruscontainingpolymers for drug delivery applications. Crit Rev Ther DrugCarrier Syst 20 (4):295–315.

Chen, C.-C., Chueh, J.-Y., Tseng, H., Huang, H.-M., andLee, S.-Y. 2003. Preparation and characterization ofbiodegradable PLA polymeric blends. Biomaterials 24(7):1167–1173.

Chen, G. and Hoffman, A. S. 1995. Graft copolymers thatexhibit temperature-induced phase transitions over a widerange of pH. Nature 373 (6509):49–52.

Page 93: Polymeric Biomaterials - Taylor & Francis eBooks

Chun, C., Lee, S. M., Kim, C. W. et al. 2009a.Doxorubicin-polyphosphazene conjugate hydrogels for locallycontrolled delivery of cancer therapeutics. Biomaterials 30(27):4752–4762.

Chun, C., Lee, S. M., Kim, S. Y., Yang, H. K., and Song,S.-C. 2009b. Thermosensitivepoly(organophosphazene)paclitaxel conjugate gels forantitumor applications. Biomaterials 30 (12):2349–2360.

Chun, C., Lim, H. J., Hong, K.-Y., Park, K.-H., and Song,S.-C. 2009c. The use of injectable, thermosensitivepoly(organophosphazene)-RGD conjugates for the enhancementof mesenchymal stem cell osteogenic differentiation.Biomaterials 30 (31):6295–6308.

Cohen, S., Bano, M. C., Cima, L. G. et al. 1993. Design ofsynthetic polymeric structures for cell transplantation andtissue engineering. Clin Mater 13 (1–4):3–10.

Coleman, M. M. and Painter, P. C. 1995. Hydrogen bondedpolymer blends. Prog Polym Sci 20 (1):1–59.

Conconi, M. T., Carampin, P., Lora, S., Grandi, C., andParnigotto, P. P. 2009. Electrospun polyphosphazenenano�bers for in vitro osteoblast culture. InPolyphosphazenes for Biomedical Applications, ed., A.Andrianov. Hoboken, NJ: Wiley-Interscience. pp. 169–184.

Conconi, M. T., Lora, S., Baiguera, S. et al. 2004. Invitro culture of rat neuromicrovascular endothelial cellson polymeric scaffolds. J Biomed Mater Res A 71A(4):669–674.

Conconi, M. T., Lora, S., Menti, A. M., Carampin, P., andParnigotto, P. P. 2006. In vitro evaluation ofpoly[bis(ethyl alanato)phosphazene] as a scaffold for bonetissue engineering. Tissue Eng 12 (4):811–819.

Conforti, A., Bertani, S., Lussignoli, S. et al. 1996.Anti-in¥ammatory activity of polyphosphazene-basednaproxen slow-release systems. J Pharm Pharmacol 48(5):468–473.

Crommen, J. H., Schacht, E. H., and Mense, E. H. 1992a.Biodegradable polymers. I. Synthesis of hydrolysissensitivepoly[(organo)phosphazenes]. Biomaterials 13 (8):511–520.

Crommen, J. H., Schacht, E. H., and Mense, E. H. 1992b.Biodegradable polymers. II. Degradation characteristics of

Page 94: Polymeric Biomaterials - Taylor & Francis eBooks

hydrolysis-sensitive poly[(organo)phosphazenes].Biomaterials 13 (9):601–611.

Crommen, J., Vandorpe, J., and Schacht, E. 1993. Degradablepolyphosphazenes for biomedical applications. J ControlRelease 24 (1–3):167–180.

Cui, Y., Zhao, X., Tang, X., and Luo, Y. 2004. Novelmicro-crosslinked poly(organophosphazenes) with improvedmechanical properties and controllable degradation rate aspotential biodegradable matrix. Biomaterials 25(3):451–457.

De Jaeger, R., Helioui, M., and Puscaric, E. 1983. Novelpolychlorophosphazenes and process for their preparation.U.S. Patent 4377558.

Deng, M. 2010. Novel biocompatible polymeric blends forbone regeneration: Material and matrix design anddevelopment, PhD dissertation, Department of ChemicalEngineering, University of Virginia, Charlottesville, VA.

Deng, M., Kumbar, S. G., Wan, Y. et al. 2010a.Polyphosphazene polymers for tissue engineering: Ananalysis of material synthesis, characterization andapplications. Soft Matter 6:3119–3132.

Deng, M., Nair, L. S., Krogman, N. R., Allcock, H. R., andLaurencin, C. T. 2009. Biodegradable polyphosphazene blendsfor biomedical applications. In Polyphosphazenes forBiomedical Applications, ed., A. Andrianov. Hoboken, NJ:Wiley-Interscience. pp. 139–154.

Deng, M., Nair, L. S., Nukavarapu, S. P. et al. 2008.Miscibility and in vitro osteocompatibility ofbiodegradable blends of poly[(ethyl alanato) (p-phenylphenoxy) phosphazene] and poly(lactic acid-glycolic acid).Biomaterials 29 (3):337–349.

Deng, M., Nair, L. S., Nukavarapu, S. P. et al. 2010b.Dipeptide-based polyphosphazene and polyester blends forbone tissue engineering. Biomaterials 31 (18):4898–4908.

Deng, M., Nair, L. S., Nukavarapu, S. P. et al. 2010c.Biomimetic, bioactive ethericpolyphosphazene-poly(lactideco-glycolide) blends for bonetissue engineering. J Biomed Mater Res A 92A (1):114–125.

Deng, M., Nair, L. S., Nukavarapu, S. P. et al. 2010d. Insitu porous structures: A unique polymer erosion mechanism

Page 95: Polymeric Biomaterials - Taylor & Francis eBooks

in biodegradable dipeptide-based polyphosphazene andpolyester blends producing matrices for regenerativeengineering. Adv Funct Mater 20 (17):2794–2806.

Devadoss, E. and Nair, C. P. R. 1985. A novel cyclomatrixpolymer based on (hydroxy phenoxy) phosphazenes and2-methyl aziridine: Some aspects of synthesis and adhesiveheat resistance. Polymer 26 (12):1895–1900.

El-Amin, S. F., Kwon, M. S., Starnes, T., Allcock, H. R.,and Laurencin, C. T. 2007. The biocompatibility ofbiodegradable glycine containing polyphosphazenes: Acomparative study in bone. J Inorg Organomet Polym Mater16 (4):387–396.

Fox, T. 1956. In¥uence of diluent and of copolymercomposition on the glass temperature of a polymer system.Bull Am Phys Soc 1:123.

Franz, U., Nuyken, O., and Matyjaszewski, K. 1994.Synthesis and characterization ofpoly(phenyl-ptolylphosphazene), prepared via in situpolymerization of phenyl-p-tolylphosphine azide. MacromolRapid Commun 15 (2):169–174.

Fu, K., Pack, D. W., Klibanov, A. M., and Langer, R. 2000.Visual evidence of acidic environment within degradingpoly(lactic-co-glycolic acid) (PLGA) microspheres. PharmRes 17 (1):100–106.

Ghattas, D. and Leroux, J. 2009. Amphiphilic ionizablepolyphosphazenes for the preparation of pHresponsiveliposomes. In P olyphosphazenes for BiomedicalApplications, ed., A. Andrianov. Hoboken, NJ:WileyInterscience. pp. 225–247.

Glatter, O., Scherf, G., Schillen, K., and Brown, W. 1994.Characterization of a poly(ethylene oxide)poly(propyleneoxide) triblock copolymer (EO27-PO39-EO27) in aqueoussolution. Macromolecules 27 (21):6046–6054.

Gleria, M. and De Jaeger, R. 2004. Phosphazenes: AWorldwide Insight. New York: Nova Science Publishers.

Greish, Y. E., Bender, J. D., Lakshmi, S. et al. 2005a.Composite formation from hydroxyapatite with sodium andpotassium salts of polyphosphazene. J Mater Sci Mater Med16 (7):613–620.

Greish, Y. E., Bender, J. D., Lakshmi, S. et al. 2005b. Low

Page 96: Polymeric Biomaterials - Taylor & Francis eBooks

temperature formation of hydroxyapatite-poly(alkyloxybenzoate)phosphazene composites for biomedicalapplications. Biomaterials 26 (1):1–9.

Greish, Y. E., Bender, J. D., Lakshmi, S. et al. 2006.Formation of hydroxyapatite-polyphosphazene polymercomposites at physiologic temperature. J Biomed Mater Res A77 (2):416–425.

Greish, Y. E., Sturgeon, J. L., Singh, A. et al. 2008.Formation and properties of composites comprised ofcalcium-de�cient hydroxyapatites and ethyl alanatepolyphosphazenes. J Mater Sci Mater Med 19 (9):3153–3160.

Grolleman, C. W. J., de Visser, A. C., Wolke, J. G. C., vander Goot, H., and Timmerman, H. 1986. Studies on abioerodible drug carrier system based on polyphosphazenePart I. Synthesis. J Control Release 3 (1–4):143–154.

Gümüsdereliolu, M. and Gür, A. 2002. Synthesis,characterization, in vitro degradation and cytotoxicity ofpoly[bis(ethyl 4-aminobutyro)phosphazene]. React FunctPolym 52 (2):71–80.

Gunatillake, P. A. and Adhikari, R. 2003. Biodegradablesynthetic polymers for tissue engineering. Eur Cell Mater5:1–16.

He, Y., Zhu, B., and Inoue, Y. 2004. Hydrogen bonds inpolymer blends. Prog Polym Sci 29 (10):1021–1051.

Helioui, M., De Jaeger, R., Puskaric, E., and Heubel, J.1982. Nouvelle préparation de polychlorophosphazèneslinéaires. Die Makromol. Chem. 183 (5):1137–1143.

Honeyman, C. H., Manners, I., Morrissey, C. T., andAllcock, H. R. 1995. Ambient temperature synthesis ofpoly(dichlorophosphazene) with molecular weight control. JAm Chem Soc 117 (26):7035–7036.

Huang, D., Balian, G., and Chhabra, A. B. 2006. Tendontissue engineering and gene transfer: The future ofsurgical treatment. J Hand Surg 31 (5):693–704.

Huang, Z. M., Zhang, Y. Z., Kotaki, M., and Ramakrishna, S.2003. A review on polymer nano�bers by electrospinning andtheir applications in nanocomposites. Compos Sci Technol63:2223–2253.

Ibim, S. E. M., Ambrosio, A. M. A., Kwon, M. S. et al.

Page 97: Polymeric Biomaterials - Taylor & Francis eBooks

1997. Novel polyphosphazene/poly(lactide-coglycolide)blends: Miscibility and degradation studies. Biomaterials18 (23):1565–1569.

Ibim, S. M., Ambrosio, A. A., Larrier, D., Allcock, H. R.,and Laurencin, C. T. 1996. Controlled macromoleculerelease from poly(phosphazene) matrices. J Control Release40 (1–2):31–39.

Ibim, S. M., El-Amin, S. F., Goad, M. E. P. et al. 1998. Invitro release of colchicine using poly(phosphazenes): Thedevelopment of delivery systems for musculoskeletal use.Pharmaceut Dev Tech 3 (1):55–62.

Ikada, Y. and Tsuji, H. 2000. Biodegradable polyesters formedical and ecological applications. Macromol Rapid Commun21 (3):117–132.

Ilia, G. 2009. Phosphorus containing hydrogels. Polym AdvTechnol 20 (9):707–722.

Iwasaki, Y., Sawada, S.-I., Ishihara, K., Khang, G., andLee, H. B. 2002. Reduction of surface-induced in¥ammatoryreaction on PLGA/MPC polymer blend. Biomaterials 23(18):3897–3903.

Jeong, B., Bae, Y. H., and Kim, S. W. 1999.Thermoreversible gelation of PEG-PLGA-PEG triblockcopolymer aqueous solutions. Macromolecules 32(21):7064–7069.

Jun, Y. J., Kim, J. I., Jun, M. J., and Sohn, Y. S. 2005.Selective tumor targeting by enhanced permeability andretention effect. Synthesis and antitumor activity ofpolyphosphazene-platinum (II) conjugates. J Inorg Biochem99 (8):1593–1601.

Kang, G. D., Heo, J. Y., Jung, S. B., and Song, S. C. 2005.Controlling the thermosensitive gelation properties ofpoly(organophosphazenes) by blending. Macromol Rapid Commun26 (20):1615–1618.

Katti, D. and Laurencin, C. T. 2003. Synthetic biomedicalpolymers for tissue engineering and drug delivery. InAdvanced Polymeric Materials: Structure PropertyRelationships, eds., G. O. Shonaike and S. G. Advani. BocaRaton, FL: CRC Press. pp. 479–525.

Kokubo, T. and Takadama, H. 2006. How useful is SBF inpredicting in vivo bone bioactivity? Biomaterials 27

Page 98: Polymeric Biomaterials - Taylor & Francis eBooks

(15):2907–2915.

Kricheldorf, H. R., Nuyken, O., and Swift, G. 2004.Handbook of Polymer Synthesis: Second Edition (PlasticsEngineering), 2nd edn. Boca Raton, FL: CRC Press.

Krogman, N. R., Hindenlang, M. D., Nair, L. S., Laurencin,C. T., and Allcock, H. R. 2008a. Synthesis of purine- andpyrimidine-containing polyphosphazenes: Physical propertiesand hydrolytic behavior. Macromolecules 41 (22):8467–8472.

Krogman, N. R., Singh, A., Nair, L. S., Laurencin, C. T.,and Allcock, H. R. 2007. Miscibility of bioerodiblepolyphosphazene/poly(lactide-co-glycolide) blends.Biomacromolecules 8 (4):1306–1312.

Krogman, N. R., Steely, L., Hindenlang, M. D. et al. 2008b.Synthesis and characterization ofpolyphosphazeneblock-polyester andpolyphosphazene-block-polycarbonate macromolecules.Macromolecules 41 (4):1126–1130.

Krogman, N. R., Weikel, A. L., Kristhart, K. A. et al.2009. The in¥uence of side group modi�cation inpolyphosphazenes on hydrolysis and cell adhesion of blendswith PLGA. Biomaterials 30 (17):3035–3041.

Krogman, N. R., Weikel, A. L., Nguyen, N. Q. et al. 2008c.Synthesis and characterization of new biomedical polymers:Serine- and threonine-containing polyphosphazenes andpoly(l-lactic acid) grafted copolymers. Macromolecules 41(21):7824–7828.

Krogman, N. R., Weikel, A. L., Nguyen, N. Q. et al. 2010.Hydrogen bonding in blends of polyesters withdipeptide-containing polyphosphazenes. J Appl Polym Sci 115(1):431–437.

Kumbar, S. G., Bhattacharyya, S., Nukavarapu, S. P. et al.2006. In vitro and in vivo characterization ofbiodegradable poly(organophosphazenes) for biomedicalapplications. J Inorg Organomet Polym Mater 16 (4):365–385.

Kumbar, S. G., Bhattacharyya, S., Sethuraman, S., andLaurencin, C. T. 2007. A preliminary report on a novelelectrospray technique for nanoparticle based biomedicalimplants coating: Precision electrospraying. J BiomedMater Res B Appl Biomater. 81B (1):91–103.

Kumbar, S. G., James, R., Nukavarapu, S. P., and Laurencin,

Page 99: Polymeric Biomaterials - Taylor & Francis eBooks

C. T. 2008. Electrospun nano�ber scaffolds: Engineeringsoft tissues. Biomed Mater 3 (3):034002.

Landes, C. A., Ballon, A., and Roth, C. 2006. Maxillary andmandibular osteosyntheses with PLGA and P(L/DL)LAimplants: A 5-year inpatient biocompatibility anddegradation experience. Plast Reconstr Surg 117(7):2347–2360.

Langer, R. 2000. Tissue engineering. Mol Ther 1 (1):12–15.

Langer, R. and Peppas, N. A. 2003. Advances inbiomaterials, drug delivery, and bionanotechnology. AIChE J49 (12):2990–3006.

Langer, R. and Vacanti, J. P. 1993. Tissue engineering.Science 260 (5110):920–926.

Langone, F., Lora, S., Veronese, F. M. et al. 1995.Peripheral nerve repair using a poly(organo)phosphazenetubular prosthesis. Biomaterials 16 (5):347–353.

Laurencin, C. T., Ambrosio, A. M. A., Bauer, T. W. et al.1998. The biocompatibility of polyphophazenes. Evaluationin bone. Paper read at Society for Biomaterials. 24thAnnual Meeting in Conjunction with 30th InternationalSymposium, San Diego, CA. p. 436.

Laurencin, C. T., Ambrosio, A. M. A., Borden, M. D., andCooper, J. A. 1999. Tissue engineering: Orthopedicapplications. Annu Rev Biomed Eng 1 (1):19–46.

Laurencin, C. T., El-Amin, S. F., Ibim, S. E. et al. 1996.A highly porous 3-dimensional polyphosphazene polymermatrix for skeletal tissue regeneration. J Biomed Mater Res30 (2):133–138.

Laurencin, C. T., Koh, H. J., Neenan, T. X., Allcock, H.R., and Langer, R. 1987. Controlled release using a newbioerodible polyphosphazene matrix system. J Biomed MaterRes 21 (10):1231–1246.

Laurencin, C. T., Morris, C. D., Pierre-Jacques, H. et al.1992. Osteoblast culture on bioerodible polymers: Studiesof initial cell adhesion and spread. Polym Adv Tech 3(6):359–364.

Laurencin, C. T., Norman, M. E., Elgendy, H. M. et al.1993. Use of polyphosphazenes for skeletal tissueregeneration. J Biomed Mater Res 27 (7):963–973.

Page 100: Polymeric Biomaterials - Taylor & Francis eBooks

Lee, B. H., Lee, Y. M., Sohn, Y. S., and Song, S.-C. 2002.A thermosensitive poly(organophosphazene) gel.Macromolecules 35 (10):3876–3879.

Lee, K. Y. and Mooney, D. J. 2001. Hydrogels for tissueengineering. Chem Rev 101 (7):1869–1880.

Lee, S. B. and Song, S.-C. 2005. Hydrolysis-improvedthermosensitive polyorganophosphazenes withalpha-aminoomega-methoxy-poly(ethylene glycol) and aminoacid esters as side groups. Polym Int 54 (9):1225–1232.

Lemmouchi, Y., Schacht, E., and Dejardin, S. 1998.Biodegradable poly[(amino acid ester)phosphazenes] forbiomedical applications. J Bioact Compat Polym 13 (1):4–18.

Li, W. J., Laurencin, C. T., Caterson, E. J., Tuan, R. S.,and Ko, F. K. 2002. Electrospun nano�brous structure: Anovel scaffold for tissue engineering. J Biomed Mater Res60 (4):613–621.

Li, Z., Li, J., and Qin, J. 2001. Synthesis ofpolyphosphazenes as potential photorefractive materials.React Funct Polym 48 (1–3):113–118.

Li, D. and Xia, Y. 2004. Electrospinning of nano�bers:Reinventing the wheel? Adv Mater 16 (14):1151–1170.

Lin, Y.-J., Cai, Q., Li, L. et al. 2010. Co-electrospuncomposite nano�bers of blends of polyamino acidesterphosphazene and gelatin. Polym Int 59:610–616.

Ma, P. X. 2008. Biomimetic materials for tissueengineering. Adv Drug Deliv Rev 60 (2):184–198.

Ma, P. X. and Zhang, R. 1999. Synthetic nano-scale �brousextracellular matrix. J Biomed Mater Res 46 (1):60–72.

Martin, C. R. 1996. Membrane-based synthesis ofnanomaterials. Chem Mater 8 (8):1739–1746.

Mi, F.-L., Shyu, S.-S., Lin, Y.-M. et al. 2003. Chitin/PLGAblend microspheres as a biodegradable drug delivery system:A new delivery system for protein. Biomaterials 24(27):5023–5036.

Montague, R. A. and Matyjaszewski, K. 1990. Synthesis ofpoly[bis(tri¥uoroethoxy)phosphazene] under mild conditionsusing a ¥uoride initiator. J Am Chem Soc 112

Page 101: Polymeric Biomaterials - Taylor & Francis eBooks

(18):6721–6723.

Nair, L. S., Allcock, H. R., and Laurencin, C. T. 2005.Biodegradable poly[bis(ethylalanato)phosphazene]poly(lactide-co-glycolide) blends:Miscibility and osteocompatibility evaluations. Paper readat Materials Research Society Symposium, Boston, MA.844:Y9.7.1–Y9.7.7.

Nair, L. S., Bhattacharyya, S., Bender, J. D. et al. 2004.Fabrication and optimization of methylphenoxy substitutedpolyphosphazene nano�bers for biomedical applications.Biomacromolecules 5 (6):2212–2220.

Nair, L. S., Katti, D. S., and Laurencin, C. T. 2003.Biodegradable polyphosphazenes for drug deliveryapplications. Adv Drug Deliv Rev 55 (4):467–482.

Nair, L. S. and Laurencin, C. T. 2007. Biodegradablepolymers as biomaterials. Progr Polym Sci 32(8–9):762–798.

Nair, L. S. and Laurencin, C. T. 2008. Nano�bers andnanoparticles for orthopaedic surgery applications. J BoneJoint Surg Am 90 (Suppl. 1):128–131.

Nair, L. S., Lee, D. A., Bender, J. D. et al. 2006.Synthesis, characterization, and osteocompatibilityevaluation of novel alanine-based polyphosphazenes. JBiomed Mater Res A 76 (1):206–213.

Neilson, R. H. and Wisian-Neilson, P. 1988.Poly(alkyl/arylphosphazenes) and their precursors. Chem Rev88 (3):541–562.

Nelson, J. M. and Allcock, H. R. 1997. Synthesis oftriarmed-star polyphosphazenes via the “living” cationicpolymerization of phosphoranimines at ambient temperatures.Macromolecules 30 (6):1854–1856.

Nukavarapu, S. P., Kumbar, S. G., Allcock, H. R., andLaurencin, C. T. 2009. Biodegradable polyphosphazenescaffolds for tissue engineering. In Polyphosphazenes forBiomedical Applications, ed., A. Andrianov. Hoboken, NJ:Wiley-Interscience. pp. 117–138.

Nukavarapu, S. P., Kumbar, S. G., Brown, J. L. et al. 2008.Polyphosphazene/nano-hydroxyapatite composite microspherescaffolds for bone tissue engineering. Biomacromolecules 9(7):1818–1825.

Page 102: Polymeric Biomaterials - Taylor & Francis eBooks

Odian, G. 2004. Principles of Polymerization, 4th edn.,Hoboken, NJ: John Wiley & Sons, Inc.

Ondarçuhu, T. and Joachim, C. 1998. Drawing a singlenano�bre over hundreds of microns. Europhys Lett42 (2):215.

Oredein-McCoy, O., Krogman, N. R., Weikel, A. L. et al.2009. Novel factor-loaded polyphosphazene matrices:Potential for driving angiogenesis. J Microencapsul 26(6):544–555.

Park, T. G., Cohen, S., and Langer, R. 1992. Poly(L-lacticacid)/pluronic blends: Characterization of phase separationbehavior, degradation, and morphology and use asprotein-releasing matrixes. Macromolecules 25 (1):116–122.

Payne, L. G., Jenkins, S. A., Andrianov, A., and Roberts,B. E. 1995. Water-soluble phosphazene polymers forparenteral and mucosal vaccine delivery. Pharm Biotechnol6:473–493.

Peppas, N. A., Huang, Y., Torres-Lugo, M., Ward, J. H., andZhang, J. 2003. Physicochemical foundations and structuraldesign of hydrogels in medicine and biology. Annu RevBiomed Eng 2 (1):9–29.

Pitt, G. G., Cha, Y., Shah, S. S., and Zhu, K. J. 1992.Blends of PVA and PGLA: Control of the permeability anddegradability of hydrogels by blending. J Control Release19 (1–3):189–199.

Potin, P. and De Jaeger, R. 1991. Polyphosphazenes:Synthesis, structures, properties, applications. Eur PolymJ 27 (4–5):341–348.

Potta, T., Chun, C., and Song, S.-C. 2010. Injectable, dualcross-linkable polyphosphazene blend hydrogels.Biomaterials 31 (32):8107–8120.

Prange, R. and Allcock, H. R. 1999. Telechelic syntheses ofthe �rst phosphazene siloxane block copolymers.Macromolecules 32 (19):6390–6392.

Qiu, L. Y. 2002a. Degradation and tissue compatibility ofpolyphosphazene blend �lms in vivo. Sheng Wu Yi Xue GongCheng Xue Za Zhi 19 (2):191–195.

Qiu, L. Y. 2002b. In vitro and in vivo degradation study on

Page 103: Polymeric Biomaterials - Taylor & Francis eBooks

novel blends composed of polyphosphazene and polyester orpolyanhydride. Polym Int 51:481–487.

Qiu, L. and Zheng, C. 2009. Amphiphilic polyphosphazenes asdrug carriers. In Polyphosphazenes for BiomedicalApplications, ed., A. Andrianov. Hoboken, NJ:Wiley-Interscience. pp. 277–295.

Qiu, L. Y. and Zhu, K. J. 2000a. Novel biodegradablepolyphosphazenes containing glycine ethyl ester and benzylester of amino acethydroxamic acid as cosubstituents. JAppl Polym Sci 77 (13):2987–2995.

Qiu, L. Y. and Zhu, K. J. 2000b. Novel blends ofpoly[bis(glycine ethyl ester) phosphazene] and polyestersor polyanhydrides: Compatibility and degradationcharacteristics in vitro. Polym Int 49 (11):1283–1288.

Ratner, B. D. and Bryant, S. J. 2004. Biomaterials: Wherewe have been and where we are going. Annu Rev Biomed Eng 6(1):41–75.

Rho, J. -Y., Kuhn-Spearing, L., and Zioupos, P. 1998.Mechanical properties and the hierarchical structure ofbone. Med Eng Phys 20 (2):92–102.

Schacht, E., Vandorpe, J., Dejardin, S., Lemmouchi, Y., andSeymour, L. 1996. Biomedical applications of degradablepolyphosphazenes. Biotechnol Bioeng 52 (1):102–108.

Schacht, E., Vandorpe, J., Lemmouchi, Y., Dejardin, S., andSeymour, L. 1998. Degradable polyphosphazenes forbiomedical applications. In Frontiers in Biomedical PolymerApplications, ed., R. Ottembrite. Lancaster, U.K.:Technomic. pp. 27–42.

Sethuraman, S., Nair, L. S., El-Amin, S. et al. 2006. Invivo biodegradability and biocompatibility evaluation ofnovel alanine ester based polyphosphazenes in a rat model.J Biomed Mater Res A 77 (4):679–687.

Sethuraman, S., Nair, L. S., El-Amin, S. et al. 2010.Mechanical properties and osteocompatibility of novelbiodegradable alanine based polyphosphazenes: Side groupeffects. Acta Biomaterialia 6 (6):1931–1937.

Sethuraman, S., Nair, L. S., Singh, A. et al. 2004.Synthesis and evaluation of novel amino acid ester phenylphenoxy polyphosphazene for bone tissue engineering. Paperread at Transactions of the Fifth Combined Meeting of the

Page 104: Polymeric Biomaterials - Taylor & Francis eBooks

Orthopaedic Research Societies of Canada, USA, Japan, andEurope. Calgary, Alberta, Canada.

Singh, A., Krogman, N. R., Sethuraman, S. et al. 2006.Effect of side group chemistry on the properties ofbiodegradable L-alanine cosubstituted polyphosphazenes.Biomacromolecules 7 (3):914–918.

Sulkowski, W., Sulkowska, A., and Kireev, V. 1997.Synthesis and spectroscopic studies ofpolyorganophosphazenes containing binaphthalene groups. JMol Struct 410–411:241–244.

Taylor, M. S., Daniels, A. U., Andriano, K. P., and Heller,J. 1994. Six bioabsorbable polymers: In vitro acutetoxicity of accumulated degradation products. J ApplBiomater 5 (2):151–157.

Tsuji, H. 2003. In vitro hydrolysis of blends fromenantiomeric poly(lactide)s. Part 4: Well-homo-crystallizedblend and nonblended �lms. Biomaterials 24 (4):537–547.

Utracki, L. A. 1989. Polymer Alloys and BlendsThermodynamics and Rheology. Munich, Germany: Hanser.

Vacanti, J. P. 1999. Tissue engineering: The design andfabrication of living replacement devices for surgicalreconstruction and transplantation. Lancet 354:S32.

Veronese, F. M., Marsilio, F., Caliceti, P. et al. 1998.Polyorganophosphazene microspheres for drug release:Polymer synthesis, microsphere preparation, in vitro and invivo naproxen release. J Control Release 52 (3):227–237.

Veronese, F. M., Marsilio, F., Lora, S. et al. 1999.Polyphosphazene membranes and microspheres in periodontaldiseases and implant surgery. Biomaterials 20 (1):91–98.

Wade, C. W. R., Gourlay, S., Rice, R. et al. 1978.Biocompatibility of eight poly(organophosphazenes). InOrganometallic Polymers, eds., C. E. Carraher, J. E. Sheatsand C. U. Pittman. New York: Academic. pp. 283–288.

Weikel, A. L., Cho, S. Y., Morozowich, N. L. et al. 2010a.Hydrolysable polylactide-polyphosphazene block copolymersfor biomedical applications: Synthesis, characterization,and composites with poly(lactic-coglycolic acid). PolymChem 1 (9):1459–1466.

Weikel, A. L., Krogman, N. R., Nguyen, N. Q. et al. 2009.

Page 105: Polymeric Biomaterials - Taylor & Francis eBooks

Polyphosphazenes that contain dipeptide side groups:Synthesis, characterization, and sensitivity to hydrolysis.Macromolecules 42 (3):636–639.

Weikel, A. L., Owens, S. G., Morozowich, N. L. et al.2010b. Miscibility of choline-substituted polyphosphazeneswith PLGA and osteoblast activity on resulting blends.Biomaterials 31 (33):8507–8515.

Welle, A., Grunze, M., and Tur, D. 2000. Bloodcompatibility of poly[bis(tri¥uoroethoxy)phosphazene]. JAppl Med Polym 4 (1):6–10.

Whitesides, G. M. and Boncheva, M. 2002. Beyond molecules:Self-assembly of mesoscopic and macroscopic components.Proc Natl Acad Sci USA 99 (8):4769–4774.

Whitesides, G. M. and Grzybowski, B. 2002. Self-assembly atall scales. Science 295 (5564):2418–2421.

Wood, L. A. 1958. Glass transition temperatures ofcopolymers. J Polym Sci 28 (117):319–330.

Yang, L. and Alexandridis, P. 2000. Physicochemical aspectsof drug delivery and release from polymer-based colloids.Curr Opin Colloid Interface Sci 5 (1–2):132–143.

Yuan, W., Song, Q., Zhu, L. et al. 2005. Asymmetricpenta-armed poly(e-caprolactone)s with short-chainphosphazene core: Synthesis, characterization, and in vitrodegradation. Polym Int 54 (9):1262–1267.

Zentner, G. M., Rathi, R., Shih, C. et al. 2001.Biodegradable block copolymers for delivery of proteins andwater-insoluble drugs. J Control Release 72 (1–3):203–215.

Zhang, T., Cai, Q., Wu, D. Z., and Jin, R. G. 2005.Phosphazene cyclomatrix network polymers: Some aspects ofthe synthesis, characterization, and ¥ame-retardantmechanisms of polymer. J Appl Polym Sci 95 (4):880–889.

Zhang, J. X., Qiu, L. Y., Jin, Y., and Zhu, K. J. 2006.Multimorphological self-assemblies of amphiphilic graftpolyphosphazenes with oligopoly(N-isopropylacrylamide) andethyl 4-aminobenzoate as side groups. Macromolecules 39(1):451–455.

Zhang, Q.-S., Yan, Y.-H., Li, S.-P., and Feng, T. 2009.Synthesis of a novel biodegradable and electroactivepolyphosphazene for biomedical application. Biomed Mater 4

Page 106: Polymeric Biomaterials - Taylor & Francis eBooks

(3):035008.

Zhu, G., Mallery, S. R., and Schwendeman, S. P. 2000.Stabilization of proteins encapsulated in injectable poly(lactide-co-glycolide). Nat Biotechnol 18 (1):52–57.

Page 107: Polymeric Biomaterials - Taylor & Francis eBooks

5 Chapter 5. Biodegradable Polymers asDrug Carrier Systems

Adhirajan, N., N. Shanmugasundaram, S. Shanmuganathan, andM. Babu. 2009. Functionally modi�ed gelatin microspheresimpregnated collagen scaffold as novel wound dressing toattenuate the proteases and bacterial growth. Eur J PharmSci 36 (2–3):235–245.

Agueros, M., L. Ruiz-Gaton, C. Vauthier, K. Bouchemal, S.Espuelas, G. Ponchel, and J. M. Irache. 2009. Combinedhydroxypropyl-beta-cyclodextrin and poly(anhydride)nanoparticles improve the oral permeability of paclitaxel.Eur J Pharm Sci 38 (4):405–413.

Albertsson, A. C. and S. Lundmark. 1988. Synthesis ofpoly(adipic anhydride) by use of ketene. 25 (3):247–258.

Allcock, H. R. 1976. Polyphosphazenes: New polymers withinorganic backbone atoms. Science 193 (4259):1214–1219.

Allcock, H. R. and A. M. Ambrosio. 1996. Synthesis andcharacterization of pH-sensitive poly(organo phosphazene)hydrogels. Biomaterials 17 (23):2295–2302.

Allcock, H. R. and T. J. Fuller. 1980. Phosphazene highpolymers with steroidal side groups. Macromolecules 13(6):1338–1345.

Allcock, H. R., T. J. Fuller, D. P. Mack, K. Matsumura, andK. M. Smeltz. 1977. Synthesis of Poly[(amino acid alkylester)phosphazenes]. Macromolecules 10 (4):824–830.

Allcock, H. R. and R. L. Kugel. 1966. High molecular weightpoly(diaminophosphazenes). Inorg Chem 5:1716.

Allcock, H. R. and S. Kwon. 1986. Covalent linkage ofproteins to surface-modi�ed poly(organophosphazenes):Immobilization of glucose-6-phosphate dehydrogenase andtrypsin. Macromolecules 19 (6):1502–1508.

Allcock, H. R., A. Singh, A. M. Ambrosio, and W. R. Laredo.2003. Tyrosine-bearing polyphosphazenes. Biomacromolecules4 (6):1646–1653.

Allcock, H. R., L. B. Steely, S. H. Kim, J. H. Kim, and B.K. Kang. 2007. Plasma surface functionalization ofpoly[bis(2,2,2-tri¥uoroethoxy)phosphazene] �lms andnano�bers. Langmuir 23 (15):8103–8107.

Page 108: Polymeric Biomaterials - Taylor & Francis eBooks

Amor, S. R., T. Rayment, and J. K. M. Sanders. 1991.Polyhydroxybutyrate in vivo: NMR and X-ray diffractioncharacterisation of the elastomeric state. Macromolecules24:4583–4588.

Anonymous. 1985. Capronor. Hypotenuse, May–Jun:2–5.

Anonymous. 1991. Phase II—Clinical trial with biodegradablesubdermal contraceptive implant Capronor (4.0-cm singleimplant). Indian Council of Medical Research Task Force onHormonal Contraception. Contraception 44 (4):409–417.

Armstrong, D. K., G. F. Fleming, M. Markman, and H. H.Bailey. 2006. A phase I trial of intraperitonealsustained-release paclitaxel microspheres (Paclimer) inrecurrent ovarian cancer: A Gynecologic Oncology Groupstudy. Gynecol Oncol 103 (2):391–396.

Aronson, S. B. and R. C. Horton. 1971. Mechanisms of thehost response in the eye. VII. The normal rabbit eye inanterior ocular in¥ammation. Arch Ophthalmol 85(3):306–308.

Arun, A., R. Arthi, V. Shanmugabalaji, and M. Eyini. 2009.Microbial production of poly-beta-hydroxybutyrate by marinemicrobes isolated from various marine environments.Bioresour Technol 100 (7):2320–2323.

Asch, R. H., F. J. Rojas, A. Bartke, A. V. Schally, T. R.Tice, H. G. Klemcke, T. M. Siler-Khodr, R. E. Bray, and M.P. Hogan. 1985a. Prolonged suppression of plasma LH levelsin male rats after a single injection of an LH-RH agonistin poly(dl-lactide-co-glycolide) microcapsules. J Androl 6(2):83–88.

Asch, R. H., F. J. Rojas, T. R. Tice, and A. V. Schally.1985b. Studies of a controlled-release microcapsuleformulation of an LH-RH agonist (d-Trp-6-LH-RH) in therhesus monkey menstrual cycle. Int J Fertil 30 (2):19–26.

Bailey, L. O., M. L. Becker, J. S. Stephens, N. D. Gallant,C. M. Mahoney, N. R. Washburn, A. Rege, J. Kohn, and E. J.Amis. 2006. Cellular response to phase-separated blends oftyrosine-derived polycarbonates. J Biomed Mater Res A 76(3):491–502.

Beck, L. R., C. E. Flowers, V. Z. Pope, W. H. Wilborn, andT. R. Tice. 1983a. Clinical evaluation of an improvedinjectable microcapsule contraceptive system. Am J ObstetGynecol 147 (7):815–821.

Page 109: Polymeric Biomaterials - Taylor & Francis eBooks

Beck, L. R., V. Z. Pope, C. E. Flowers, D. R. Cowsar, T. R.Tice, D. H. Lewis, R. L. Dunn, A. B. Moore, and R. M.Gilley. 1983b. Poly(dl-lactide-co-glycolide)/norethisteronemicrocapsules: An injectable biodegradable contraceptive.Biol Reprod 28 (1):186–195.

Beck, L. R., R. A. Ramos, C. E. Flowers, G. Z. Lopez, D. H.Lewis, and D. R. Cowsar. 1981. Clinical evaluation ofinjectable biodegradable contraceptive system. Am J ObstetGynecol 140 (7):799–806.

Belen’Kaya, B. G., Ye B. Lyudvig, A. L. Izyumnikov, and YuI. Kul’Velis. 1982. Aspects of the cationic polymerizationof [epsilon]-caprolactone in the presence of alcohols.Polym Sci U.S.S.R. 24 (2):306–313.

Benagiano, G. and H. L. Gabelnick. 1979. Biodegradablesystems for the sustained release of fertilityregulatingagents. J Steroid Bioc hem 11 (1B):449–455.

Bennett, D. B., X. Li, N. W. Adams, S. W. Kim, C. J. T.Hoes, and J. Feijen. 1991. Biodegradable polymericprodrugs of naltrexone. J Control Release 16 (1–2):43–52.

Bezwada, R. S., S. W. Shalaby, H. D. Newman, and A.Kafrauy. 1990. Bioabsorbable copolymers of p-dioxane andlactide for surgical devices. Trans Soc Biomater 13:194.

Bobo, W. V. and R. C. Shelton. 2010. Risperidonelong-acting injectable (Risperdal Consta) for maintenancetreatment in patients with bipolar disorder. Expert RevNeurother 10 (11):1637–1658.

Bodmeier, R., K. H. Oh, and H. Chen. 1989. The effect ofthe addition of low molecular weight poly(dllactide) ondrug release from biodegradable poly(dl-lactide) drugdelivery systems. Int J Pharm 51 (1):1–8.

Bogdansky, S. 1990. Natural polymers as drug deliverysystems, In Biodegradable Polymers as Drug DeliverySystems. M. Chasin and R. S. Langer, eds. New York: MarcelDekker. pp. 231–259.

Bourke, S. L. and J. Kohn. 2003. Polymers derived from theamino acid -tyrosine: Polycarbonates, polyarylates andcopolymers with poly(ethylene glycol). Adv Drug Deliv Rev55 (4):447–466.

Brandl, H., R. A. Gross, R. W. Lenz, and R. C. Fuller.

Page 110: Polymeric Biomaterials - Taylor & Francis eBooks

1988. Pseudomonas oleovorans as a source ofpoly(β-hydroxyalkanoates) for potential applications asbiodegradable polyesters. Appl Environ Microbiol 54(8):1977–1982.

Brem, H., H. Ahn, R. J. Tamargo, M. Pinn, and M. Chasin.1988a. A biodegradable polymer for intracranial drugdelivery: A radiological study in primates. Am Assoc NeurolSurg 24:349.

Brem, H., A. Kader, J. I. Epstein, R. J. Tamargo, A. J.Domb, R. Langer, and K. W. Leong. 1989. Biocompatibilityof a biodegradable, controlled-release polymer in therabbit brain. Sel Cancer Ther 5 (2):55–65.

Brem, H., S. Piantadosi, P. C. Burger, M. Walker, R.Selker, N. A. Vick, K. Black et al. 1995.Placebo-controlled trial of safety and ef�cacy ofintraoperative controlled delivery by biodegradablepolymers of chemotherapy for recurrent gliomas. ThePolymer-brain Tumor Treatment Group. Lancet 345(8956):1008–1012.

Brem, H., R. J. Tamargo, M. Pinn, and M. Chasin. 1988b.Biocompatibility of BCNU-loaded biodegradable polymer: Atoxicity study in primates. Am Assoc Neurol Surg 24:381.

Brin, Y. S., A. Nyska, A. J. Domb, J. Golenser, B. Mizrahi,and M. Nyska. 2009. Biocompatibility of a polymeric implantfor the treatment of osteomyelitis. J Biomater Sci Polym Ed20 (7–8):1081–1090.

Bucher, J. E. and W.C. Slade. 1909. The anhydrides ofisophthalic and terephthalic acids. J Am Chem Soc31:1319–1321.

Bunger, C. M., N. Grabow, K. Sternberg, C. Kroger, L.Ketner, K. P. Schmitz, H. J. Kreutzer, H. Ince, C. A.Nienaber, E. Klar, and W. Schareck. 2007. Sirolimus-elutingbiodegradable poly-l-lactide stent for peripheral vascularapplication: A preliminary study in porcine carotidarteries. J Surg Res 139 (1):77–82.

Byrro, R. M., D. Miyashita, V. B. Albuquerque, A. A.Velasco e Cruz, and S. Cunha Junior Ada. 2009.Biodegradable systems containing prednisolone acetate fororbital administration. Arq Bras Oftalmol 72 (4):444–450.

Cao, F. L., Y. W. Xi, L. Tang, A. H. Yu, and G. X. Zhai.2009. Preparation and characterization of curcumin loaded

Page 111: Polymeric Biomaterials - Taylor & Francis eBooks

gelatin microspheres for lung targeting. Zhong Yao Cai 32(3):423–426.

Chaubal, M. V., A. S. Gupta, S. T. Lopina, and D. F.Bruley. 2003. Polyphosphates and other phosphoruscontainingpolymers for drug delivery applications. Crit Rev Ther DrugCarrier Syst 20 (4):295–315.

Chen, C., L. Dong, and P. H. F. Yu. 2006. Characterizationand properties of biodegradable poly(hydroxyalkanoates)and 4,4-dihydroxydiphenylpropane blends: Intermolecularhydrogen bonds, miscibility and crystallization. Eur PolymJ 42:2838–2848.

Chen, J., C. Huang, and Z. Chen. 2000. Study on thebiocompatibility and toxicology of biomaterials—Poly(epsilon-caprolactone). Sheng Wu Yi Xue Gong Cheng XueZa Zhi 17 (4):380–382.

Chen, S. and J. Singh. 2008. Controlled release of growthhormone from thermosensitive triblock copolymer systems:In vitro and in vivo evaluation. Int J Pharm 352(1–2):58–65.

Cheng, G., X. Fan, W. Pan, and Y Liu. 2010. Ring-openingpolymerization of ɛ-caprolactone initiated byheteropolyacid. J Polym Res 17 (6):847–851.

Chiang, C. N., L. E. Hollister, A. Kishimoto, and G.Barnett. 1984. Kinetics of a naltrexone sustained-releasepreparation. Clin Pharmacol Ther 36 (5):704–708.

Choi, N. S. and J. Heller. 1979. Erodible agent releasingdevice comprising poly(orthoesters) andpoly(orthocarbonates). In US4138344 USA.

Conix, A. 1958. Aromatic polyanhydrides, a new class ofhigh melting �ber-forming polymers. J Polym Sci29:343–353.

Cook, D. M., B. M. Biller, M. L. Vance, A. R. Hoffman, L.S. Phillips, K. M. Ford, D. P. Benziger et al. 2002. Thepharmacokinetic and pharmacodynamic characteristics of along-acting growth hormone (GH) preparation (nutropindepot) in GH-de�cient adults. J Clin Endocrinol Metab 87(10):4508–4514.

Dadsetan, M., E. M. Christenson, F. Unger, M. Ausborn, T.Kissel, A. Hiltner, and J. M. Anderson. 2003. In vivobiocompatibility and biodegradation of poly(ethylene

Page 112: Polymeric Biomaterials - Taylor & Francis eBooks

carbonate). J Control Release 93 (3):259–270.

Dandagi, P. M., V. S. Mastiholimath, M. B. Patil, and M. K.Gupta. 2006. Biodegradable microparticulate system ofcaptopril. Int J Pharm 307 (1):83–88.

Danhier, F., B. Vroman, N. Lecouturier, N. Crokart, V.Pourcelle, H. Freichels, C. Jerome, J. Marchand-Brynaert,O. Feron, and V. Preat. 2009. Targeting of tumorendothelium by RGD-grafted PLGA-nanoparticles loaded withpaclitaxel. J Control Release 140 (2):166–173.

Daniels, A. U., M. K. Chang, and K. P. Andriano. 1990.Mechanical properties of biodegradable polymers andcomposites proposed for internal �xation of bone. J ApplBiomater 1 (1):57–78.

Darney, P. D., S. E. Monroe, C. M. Klaisle, and A.Alvarado. 1989. Clinical evaluation of the Capronorcontraceptive implant: Preliminary report. Am J ObstetGynecol 160 (5 Pt 2):1292–1295.

Deng, J. S., L. Li, Y. Tian, E. Ginsburg, M. Widman, and A.Myers. 2003. In vitro characterization of polyorthoestermicroparticles containing bupivacaine. Pharm Dev Technol 8(1):31–38.

Di Toro, R., V. Betti, and S. Spampinato. 2004.Biocompatibility and integrin-mediated adhesion of humanosteoblasts to poly(dl-lactide-co-glycolide) copolymers.Eur J Pharm Sci 21 (2–3):161–169.

Dittrich, V. W. and R. C. Schultz. 1971. Kinetics andmechanism of the ring opening polymerization of llactide.Angew Makromol Chem 15:109.

Dlugi, A. M., J. D. Miller, and J. Knittle. 1990. Luprondepot (leuprolide acetate for depot suspension) in thetreatment of endometriosis: A randomized,placebo-controlled, double-blind study. Lupron Study Group.Fertil Steril 54 (3):419–427.

Doi, Y., A. Tamaki, M. Kunioka, and K. Soga. 1988.Production of copolyesters of 3-hydroxybutirate and3-hydroxyvalerate by Alcanigenes eutrophus from butyric andpentanoic acids. Appl Microbiol Biotech 28:330.

Domb, A. J. 1990. Biodegradable polymers derived from aminoacids. Biomaterials 11 (9):686–689.

Page 113: Polymeric Biomaterials - Taylor & Francis eBooks

Domb, A. 1992. Synthesis and characterization ofbiodegradable aromatic anhydride copolymers.Macromolecules 25 (1):12–17.

Domb, A., C. Gallardo, and R. Langer. 1989.Poly(anhydrides) 3. Poly(anhydrides) based onaliphatic-aromatic diacids. Macromolecules 22:3200–3204.

Domb, A. and R. Langer. 1987. Polyanhydrides: I.preparation of high molecular weight polyanhydrides.J Polym Sci 25:3373–3386.

Domb, A. J. and R. Langer. 1989. Solid state and solutionstability of poly(anhydrides) and poly(esters).Macromolecules 22:2117–2122.

Domb, A. J., C. T. Laurencin, O. Israeli, T. N. Gerhart,and R. Langer. 1990. The formation of propylene fumarateoligomers for use in bioerodible bone cement composites. JPolym Sci A: Polym Chem 28:973–985.

Domb, A. J. and M. Maniar. 1993. Absorbable biopolymersderived from dimer fatty acids. J Polym Sci Polym Chem 31(5):1275.

Domb, A., M. Maniar, S. Bogdansky, and M. Chasin. 1991a.Drug delivery to the brain using polymers. Crit Rev TherDrug Carrier Syst 8 (1):1–17.

Domb, A. J., N. Manor, and O. Elmalak. 1996. Biodegradablebone cement compositions based on acrylate and epoxideterminated poly(propylene fumarate) oligomers and calciumsalt compositions. Biomaterials 17 (4):411–417.

Domb, A., E. Mathiowitz, E. Ron, S. Giannos, and R. Langer.1991b. Polyanhydrides IV: Unsaturated and cross-linkedpolyanhydrides. J Polym Sci 29:571–579.

Domb, A. J. and R. Nudelman. 1995. In vivo and in vitroelimination of aliphatic polyanhydrides. Biomaterials 16(4):319–323.

Domb, A., E. Ron, and R. Langer. 1988. Polyanhydrides II.One step polymerization using phosgene or diphosgene ascoupling agents. Macromolecules 21:1925–1929.

Edlund, U. and A. C. Albertsson. 2003. Polyesters based ondiacid monomers. Adv Drug Deliv Rev 55 (4):585–609.

El-Backly, R. M., A. G. Massoud, A. M. El-Badry, R. A.

Page 114: Polymeric Biomaterials - Taylor & Francis eBooks

Sherif, and M. K. Marei. 2008. Regeneration ofdentine/pulp-like tissue using a dental pulp stemcell/poly(lactic-co-glycolic) acid scaffold construct inNew Zealand white rabbits. Aust Endod J 34 (2):52–67.

Emerich, D. F., M. A. Tracy, K. L. Ward, M. Figueiredo, R.Qian, C. Henschel, and R. T. Bartus. 1999.Biocompatibility of poly (dl-lactide-co-glycolide)microspheres implanted into the brain. Cell Transplant 8(1):47–58.

Endo, M., T. Aida, and S. Inoue. 1987. Immortalpolymerization of .epsilon.-caprolactone initiated byaluminum porphyrin in the presence of alcohol.Macromolecules 20 (12):2982–2988.

Engelberg, I. and J. Kohn. 1991. Physico-mechanicalproperties of degradable polymers used in medicalapplications: A comparative study. Biomaterials 12(3):292–304.

Ertel, S. I., J. Kohn, M. C. Zimmerman, and J. R. Parsons.1995. Evaluation of poly(DTH carbonate), atyrosine-derived de gradable polymer, for orthopedicapplications. J Biomed Mater Res 29 (11):1337–1348.

Farng, E. and O. Sherman. 2004. Meniscal repair devices: Aclinical and biomechanical literature review. Arthroscopy20 (3):273–286.

Frank, A., S. K. Rath, and S. S. Venkatraman. 2005.Controlled release from bioerodible polymers: Effect ofdrug type and polymer composition. J Control Release 102(2):333–344.

Friess, W. 1998. Collagen—Biomaterial for drug delivery.Eur J Pharm Biopharm 45 (2):113–136.

Frosch, K. H., T. Sawallich, G. Schutze, A. Losch, T.Walde, P. Balcarek, F. Konietschke, and K. M. Sturmer.2009. Magnetic resonance imaging analysis of thebioabsorbable Milagro interference screw for graft �xationin anterior cruciate ligament reconstruction. StrategiesTrauma Limb Reconstr 4 (2):73–79.

Ge, Z., J. C. Goh, L. Wang, E. P. Tan, and E. H. Lee. 2005.Characterization of knitted polymeric scaffolds forpotential use in ligament tissue engineering. J BiomaterSci Polym Ed 16 (9):1179–1192.

Page 115: Polymeric Biomaterials - Taylor & Francis eBooks

Gefvert, O., B. Eriksson, P. Persson, L. Helldin, A.Bjorner, E. Mannaert, B. Remmerie, M. Eerdekens, and S.Nyberg. 2005. Pharmacokinetics and D2 receptor occupancy oflong-acting injectable risperidone (Risperdal Consta) inpatients with schizophrenia. Int J Neuropsychopharmacol 8(1):27–36.

Gillissen, M., R. Steendam, A. van der Laan, and E. Tijsma.2006. Development of doxycycline-eluting delivery systemsbased on SynBiosys biodegradable multi-block copolymers. JControl Release 116 (2):e90–e92.

Gopferich, A. 1997. Mechanisms of polymer degradation andelimination. In Handbook of Biodegradable Polymers, J.Kost, D. M. Wiseman, and A. J. Domb, eds., pp. 451–471.Amsterdam, the Netherlands: Harwood Academic.

Gopferich, A. and J. Tessmar. 2002. Polyanhydridedegradation and erosion. Adv Drug Deliv Rev 54 (7):911–931.

Guo, W., Z. Shi, R. Guo, and R. Sun. 2007. Preparation ofgentamicin sulfate-polyanhydride sustained-release beadsand in vitro bacteriostatic activity studies. Sheng Wu YiXue Gong Cheng Xue Za Zhi 24 (2):360– 362, 384.

Hamitou, A., T. Ouhadi, R. Jerome, and P. Teyssie. 1977.Soluble bimetallic μ-oxoalkoxides. VII. Characteristicsand mechanism of ring-opening polymerization of lactones. JPolym Sci A: Polym Chem 15:865–873.

Harper, E., W. Dang, R. G. Lapidus, and R. I. Garver, Jr.1999. Enhanced ef�cacy of a novel controlled releasepaclitaxel formulation (PACLIMER delivery system) forlocal-regional therapy of lung cancer tumor nodules inmice. Clin Cancer Res 5 (12):4242–4248.

Heller, J. 1990. Development of poly(ortho esters): Ahistorical overview. Biomaterials 11 (9):659–665.

Heller, J., B. K. Fritzinger, S. Y. Ng, and D. W. H.Pennale. 1985. In vitro and in vivo release oflevonorgestrel from poly(ortho esters): II. Crosslinkedpolymers. J Control Release 1 (3):233–238.

Heller, J., S. Y. Ng, and B. K. Fritzinger. 1992. Synthesisand characterization of a new family of poly(ortho esters).Macromolecules 25 (13):3362–3364.

Heller, J., S. Y. Ng, B. K. Fritzinger, and K. V. Roskos.1990. Controlled drug release from bioerodible hydrophobic

Page 116: Polymeric Biomaterials - Taylor & Francis eBooks

ointments. Biomaterials 11 (4):235–237.

Heller, J., S. Y. Ng, D. W. Penhale, B. K. Fritzinger, L.M. Sanders, R. A. Burns, M. G. Gaynon, and S. S. Bhosale.1987. Use of poly(ortho esters) for the controlled releaseof 5-¥uorouracyl and a LHRH analogue. J Control Release 6(1):217–224.

Heller, J., D. W. Penhale, B. K. Fritzinger, J. E. Rose,and R. F. Helwing. 1983. Controlled release ofcontraceptive steroids from biodegradable poly (orthoesters). Contracept Deliv Syst 4 (1):43–53.

Heng, B. C., H. Liu, and T. Cao. 2005. Scaffold implantsfor the controlled release of heparan sulfate (HS) andother glycosaminoglycan (GAG) species: This couldfacilitate the homing of adult stem cells for tissue/ organregeneration. Med Hypotheses 65 (2):414–415.

Henkind, P. 1978. Ocular neovascularization. Am JOphthalmol 85:287–301.

Hild, S. A., M. L. Meistrich, R. P. Blye, and J. R. Reel.2001. Lupron depot prevention of antispermatogenic/antifertility activity of the indenopyridine, CDB-4022, inthe rat. Biol Reprod 65 (1):165–172.

Hill, J. W. and W. H. Carothers. 1932. Studies ofpolymerization and ring formation. XIV. A linearsuperpolyanhydride and a cyclic dimeric anhydride fromsebacic acid. J Am Chem Soc 54:1569.

Holland, S. J., B. J. Tighe, and P. L. Gould. 1986.Polymers for biodegradable medical devices. 1. Thepotential of polyesters as controlled macromolecularrelease systems. J Control Release 4 (3):155–180.

Holmes, P. A. 1985. Application of PHB-a microbiallyproduced biodegradable thermoplastic. Phys Technol16:32–36.

Hou, S., L. K. McCauley, and P. X. Ma. 2007. Synthesis anderosion properties of PEG-containing polyanhydrides.Macromol Biosci 7 (5):620–628.

Huang, S. W., J. Wang, P. C. Zhang, H. Q. Mao, R. X. Zhuo,and K. W. Leong. 2004. Water-soluble and nonionicpolyphosphoester: Synthesis, degradation, biocompatibilityand enhancement of gene expression in mouse muscle.Biomacromolecules 5 (2):306–311.

Page 117: Polymeric Biomaterials - Taylor & Francis eBooks

Iwai, S., Y. Sawa, S. Taketani, K. Torikai, K. Hirakawa,and H. Matsuda. 2005. Novel tissue-engineered biodegradablematerial for reconstruction of vascular wall. Ann ThoracSurg 80 (5):1821–1827.

Izumi, Y., M. Gika, N. Shinya, S. Miyabashira, T. Imamura,C. Nozaki, M. Kawamura, and K. Kobayashi. 2007. Hemostaticef�cacy of a recombinant thrombin-coated polyglycolic acidsheet coupled with liquid �brinogen, evaluated in a caninemodel of pulmonary arterial hemorrhage. J Trauma 63(4):783–787; discussion 787.

Jain, J. P., S. Modi, and N. Kumar. 2008. Hydroxy fattyacid based polyanhydride as drug delivery system:Synthesis, characterization, in vitro degradation, drugrelease, and biocompatibility. J Biomed Mater Res A 84(3):740–752.

Jerome, C. and P. Lecomte. 2008. Recent advances in thesynthesis of aliphatic polyesters by ring-openingpolymerization. Adv Drug Deliv Rev 60 (9):1056–1076.

Ju, Y. M., B. Yu, L. West, Y. Moussy, and F. Moussy. 2009.A dexamethasone-loaded PLGA microspheres/ collagen scaffoldcomposite for implantable glucose sensors. J Biomed MaterRes A 93 (1):200–210.

Jung, Y., M. S. Park, J. W. Lee, Y. H. Kim, and S. H. Kim.2008. Cartilage regeneration with highlyelasticthree-dimensional scaffolds prepared from biodegradablepoly(l-lactide-co-epsilon-caprolactone). Biomaterials 29(35):4630–4636.

Kappy, M., T. Stuart, A. Perelman, and R. Clemons. 1989.Suppression of gonadotropin secretion by a longactinggonadotropin-releasing hormone analog (leuprolide acetate,Lupron Depot) in children with precocious puberty. J ClinEndocrinol Metab 69 (5):1087–1089.

Kaschke, O., H. J. Gerhardt, K. Bohm, M. Wenzel, and H.Planck. 1996. Experimental in vitro and in vivo studies ofepithelium formation on biomaterials seeded with isolatedrespiratory cells. J Invest Surg 9 (2):59–79.

Kato, M., T. Namikawa, H. Terai, M. Hoshino, S. Miyamoto,and K. Takaoka. 2006a. Ectopic bone formation in miceassociated with a lactic acid/dioxanone/ethylene glycolcopolymer-tricalcium phosphate composite with addedrecombinant human bone morphogenetic protein-2.

Page 118: Polymeric Biomaterials - Taylor & Francis eBooks

Biomaterials 27 (21):3927–3933.

Kato, M., H. Toyoda, T. Namikawa, M. Hoshino, H. Terai, S.Miyamoto, and K. Takaoka. 2006b. Optimized use of abiodegradable polymer as a carrier material for the localdelivery of recombinant human bone morphogenetic protein-2(rhBMP-2). Biomaterials 27 (9):2035–2041.

Katti, D. S., S. Lakshmi, R. Langer, and C. T. Laurencin.2002. Toxicity, biodegradation and elimination ofpolyanhydrides. Adv Drug Deliv Rev 54 (7):933–961.

Katz, A., D. P. Mukherjee, A. L. Kaganov, and S. Gordon.1985. A new synthetic mono�lament absorbable suture madefrom polytrimethylene carbonate. Surg Gynecol Obstet161:213–222.

Kawaguchi, T., M. Nakano, K. Juni, S. Inoue, and Y.Yoshida. 1982. Release pro�les of 5-¥uorouracil and itsderivatives from polycarbonate matrices in vitro. ChemPharm Bull 30 1517–1520.

Kawaguchi, T., M. Nakano, K. Juni, S. Inoue, and Y.Yoshida. 1983. Examination of biodegradability ofpoly(ethylene carbonate) and poly(propylene carbonate) inthe peritoneal cavity in rats. Chem Pharm Bull (Tokyo) 31(4):1400–1403.

Kemnitzer, J. and J. Kohn. 1997. Degradable polymersderived from the amino acid L-tyrosine. In Handbook ofBiodegradable Polymers, J. Kost, A. J. Domb, and D. M.Weiseman, eds., pp. 251–272. Amsterdam, the Netherlands:Hardwood academic publishers.

Kemp, S. F., P. J. Fielder, K. M. Attie, S. L. Blethen, E.O. Reiter, K. M. Ford, M. Marian, L. N. Dao, H. J. Lee,and P. Saenger. 2004. Pharmacokinetic and pharmacodynamiccharacteristics of a long-acting growth hormone (GH)preparation (nutropin depot) in GH-de�cient children. JClin Endocrinol Metab 89 (7):3234–3240.

Khan, W. and N. Kumar. 2011. Drug targeting to macrophagesusing paromomycin-loaded albumin microspheres for treatmentof visceral leishmaniasis: An in vitro evaluation. J DrugTarget 19 (4):239–250.

Kim, K., Y. K. Luu, C. Chang, D. Fang, B. S. Hsiao, B. Chu,and M. Hadjiargyrou. 2004. Incorporation and controlledrelease of a hydrophilic antibiotic usingpoly(lactide-co-glycolide)-based electrospun nano�brous

Page 119: Polymeric Biomaterials - Taylor & Francis eBooks

scaffolds. J Control Release 98 (1):47–56.

Kissel, T., Z. Brich, S. Bantle, I. Lancranjan, F.Nimmerfall, and P. Vit. 1991. Parenteral depot-systems onthe basis of biodegradable polyesters. J Control Release16 (1–2):27–41.

Kleinberg, L. R., J. Weingart, P. Burger, K. Carson, S. A.Grossman, K. Li, A. Olivi, M. D. Wharam, and H. Brem.2004. Clinical course and pathologic �ndings after Gliadeland radiotherapy for newly diagnosed malignant glioma:Implications for patient management. Cancer Invest 22(1):1–9.

Kohn, J. and R. Langer. 1987. Polymerization reactionsinvolving the side chains of.alpha.-l-amino acids. J AmChem Soc 109 (3):817–820.

Krasko, M. Y. and A. J. Domb. 2007. Pasty injectablebiodegradable polymers derived from natural acids.J Biomed Mater Res A 83 (4):1138–1145.

Kubek, M. J., A. J. Domb, and M. C. Veronesi. 2009.Attenuation of kindled seizures by intranasal delivery ofneuropeptide-loaded nanoparticles. Neurotherapeutics 6(2):359–371.

Kumar, N., A. C. Albertsson, U. Edlund, D. Teomim, R.Aliza, and A. J. Domb. 2005. Polyanhydrides, BiopolymersOnline. New York: Wiley-VCH Verlag GmbH & Co. KGaA.

Kunioka, M., Y. Nakamura, and Y. Doi. 1988. New bacterialcopolyester produced in alcanigenes eutrophus from organicacids. Polym Commun 29:174–176.

Kwong, A. K., S. Chou, A. M. Sun, M. V. Sefton, and M. F.A. Goosen. 1986. In vitro and in vivo release of insulinfrom poly(lactic acid) microbeads and pellets. J ControlRelease 4 (1):47–62.

Langer, R., H. Brem, and D. Tapper. 1981. Biocompatibilityof polymeric delivery systems for macromolecules. J BiomedMater Res 15 (2):267–277.

Langer, R., D. Lund, K. Leong, and J. Folkman. 1985.Controlled release of macromolecules: Biological studies.J Control Release 2:331–341.

Lapidus, R. G., W. Dang, D. M. Rosen, A. M. Gady, Y.Zabelinka, R. O’Meally, T. L. DeWeese, and S. R. Denmeade.

Page 120: Polymeric Biomaterials - Taylor & Francis eBooks

2004. Anti-tumor effect of combination therapy withintratumoral controlled-release paclitaxel (PACLIMERmicrospheres) and radiation. Prostate 58 (3):291–298.

Laurencin, C., A. Domb, C. Morris, V. Brown, M. Chasin, R.McConnell, N. Lange, and R. Langer. 1990. Poly(anhydride)administration in high doses in vivo: Studies ofbiocompatibility and toxicology. J Biomed Mater Res 24(11):1463–1481.

Laurencin, C. T., M. E. Norman, H. M. Elgendy, S. F.el-Amin, H. R. Allcock, S. R. Pucher, and A. A. Ambrosio.1993. Use of polyphosphazenes for skeletal tissueregeneration. J Biomed Mater Res. 27 (7):963–973.

Lee, C. H., A. Singla, and Y. Lee. 2001. Biomedicalapplications of collagen. Int J Pharm 221 (1–2):1–22.

Lenz, R. W. and P. Guerin. 1983. Functional polyesters andpolyamides for medical applications of biodegradablepolymers. In Polymers in Medicine, E. Chiellini and P.Giusti, eds. New York: Plenum Press. pp. 219–230.

Leong, K. W. 1995. Alternative materials for fracture�xation. Connect Tissue Res 31 (4):S69–S75.

Leong, K. W., B. C. Brott, and R. Langer. 1985. Bioerodiblepolyanhydrides as drug-carrier matrices. I:Characterization, degradation, and release characteristics.J Biomed Mater Res 19 (8):941–955.

Leong, K. W., P. D. D’Amore, M. Marletta, and R. Langer.1986. Bioerodible polyanhydrides as drug-carrier matrices.II. Biocompatibility and chemical reactivity. J BiomedMater Res 20 (1):51–64.

Leong, K., V. Simonte, and R. Langer. 1987. Synthesis ofpolyanhydrides: Melt-polycondensation, dehydrochlorination,and dehydrative coupling. Macromolecules 20:705–712.

Lewis, D. H. 1990. Controlled release of bioactive agentsfrom lactide/glycolide polymers. In Biodegradable Polymersas Drug Delivery Systems, M. Chasin and R. Langer, eds. NewYork: Marcel Dekker. pp. 1–41.

Liu, J., W. Huang, Y. Pang, X. Zhu, Y. Zhou, and D. Yan.2010a. Hyperbranched polyphosphates for drug deliveryapplication: Design, synthesis, and in vitro evaluation.Biomacromolecules 11 (6):1564–1570.

Page 121: Polymeric Biomaterials - Taylor & Francis eBooks

Liu, Y., A. Kemmer, K. Keim, C. Curdy, H. Petersen, and T.Kissel. 2010b. Poly(ethylene carbonate) as asurface-eroding biomaterial for in situ forming parenteraldrug delivery systems: A feasibility study. Eur J PharmBiopharm 76 (2):222–229.

Ludvig, E. B. and B. G. Belenkaya. 1974. Investigation ofthe mechanism of cationic polymerization ofÎμ-caprolactone. J Macromol Sci A Pure Appl Chem 8(4):819–828.

Lundmark, S., M. SjÖling, and A. C. Albertsson. 1991.Polymerization of oxepan-2,7-dione in solution andsynthesis of block copolymers of oxepan-2,7-dione and2-oxepanone. J Macromol Sci A 28 (1):15–29.

Lyman, D. J. and K. Knutson. 1980. Chemical, physical, andmechanical aspects of blood compatibility. In BiomedicalPolymers, E. Goldberg and A. Nakajima, eds., pp. 1–30. NewYork: Academic Press.

Ma, H., G. Melillo, L. Oliva, T. P. Spaniol, U. Englert,and J. Okuda. 2005. Aluminium alkyl complexes supported by[OSSO] type bisphenolato ligands: Synthesis,characterization and living polymerization of rac-lactide.Dalton Trans 4:721–727.

Maniar, M., X. D. Xie, and A. J. Domb. 1990.Polyanhydrides. V. Branched polyanhydrides. Biomaterials11 (9):690–694.

Manoharan, C. and J. Singh. 2009. Evaluation ofpolyanhydride microspheres for basal insulin delivery:Effect of copolymer composition and zinc salt onencapsulation, in vitro release, stability, in vivoabsorption and bioactivity in diabetic rats. J Pharm Sci98 (11):4237–4250.

Mathew, S. T., S. G. Devi, V. V. Prasanth, and B. Vinod.2009. Formulation and in vitro-in vivo evaluation ofketoprofen-loaded albumin microspheres for intramuscularadministration. J Microencapsul 26 (5):456–469.

Mathiowitz, E. and R. Langer. 1987. Polyanhydridemicrospheres as drug carriers I. Hot-meltmicroencapsulation. J Control Release 5 (1):13–22.

Mathiowitz, E., E. Ron, G. Mathiowtiz, C. Amato, and R.Langer. 1990. Morphological characterization ofbioerodible polymers. I. Crystallinity of poly(anhydride)

Page 122: Polymeric Biomaterials - Taylor & Francis eBooks

copolymers. Macromolecules 23:3212–3218.

Mathiowitz, E., M. Saltzman, A. Domb, P. Dor, and R.Langer. 1988. Polyanhydride microspheres as drug carriers.II. Microencapsulation by solvent removal. J Appl Polym Sci35:755–774.

Mecerreyes, D., R. Jérôme, and P. Dubois. 1999. Novelmacromolecular architectures based on aliphatic polyesters:Relevance of the “Coordination-Insertion” ring-openingpolymerization. Adv Polym Sci 147:1–59.

Molinari, G. 2009. Natural products in drug discovery:Present status and perspectives. Adv Exp Med Biol655:13–27.

Moll, F. and G. Koller. 1990. Biodegradable tablets havinga matrix of low molecular weight poly-l-lactic acid andpoly-d,l-lactic acid. Arch Pharm 323:887–888.

Montanari, L., M. Costantini, E. C. Signoretti, L. Valvo,M. Santucci, M. Bartolomei, P. Fattibene, S. Onori,A. Faucitano, B. Conti, and I. Genta. 1998. Gammairradiation effects on poly(dl-lactictide-co-glycolide)microspheres. J Control Release 56 (1–3):219–229.

Mukerjee, A. and J. K. Vishwanatha. 2009. Formulation,characterization and evaluation of curcumin-loaded PLGAnanospheres for cancer therapy. Anticancer Res 29(10):3867–3875.

Nahar, M. and N. K. Jain. 2009. Preparation,characterization and evaluation of targeting potential ofamphotericin B-loaded engineered PLGA nanoparticles. PharmRes 26 (12):2588–2598.

Nair, L. S. and C. T. Laurencin. 2007. Biodegradablepolymers as biomaterials. Prog Polym Sci 32 (8–9):762–798.

Nakamura, T., S. Hitomi, S. Watanabe, Y. Shimizu, K.Jamshidi, S. H. Hyon, and Y. Ikada. 1989. Bioabsorption ofpolylactides with different molecular properties. J BiomedMater Res 23 (10):1115–1130.

Ngiam, M., S. Liao, A. J. Patil, Z. Cheng, F. Yang, M. J.Gubler, S. Ramakrishna, and C. K. Chan. 2009. Fabricationof mineralized polymeric nano�brous composites for bonegraft materials. Tissue Eng Part A 15 (3):535–546.

Nicol, F., M. Wong, F. C. MacLaughlin, J. Perrard, E.

Page 123: Polymeric Biomaterials - Taylor & Francis eBooks

Wilson, and J. L. Nordstrom. 2002. l-glutamate, an anionicpolymer, enhances transgene expression for plasmidsdelivered by intramuscular injection with in vivoelectroporation. Gene Ther 9:1351–1358.

Nijenhuis, A. J., D. W. Grijpma, and A. J. Pennings. 1992.Lewis acid catalyzed polymerization of l-lactide. kineticsand mechanism of the bulk polymerization. Macromolecules25:6419–6424.

Nogueira, R., C. Alves, M. Matos, and A. G. Brito. 2009.Synthesis and degradation of poly-betahydroxybutyrate in asequencing batch bio�lm reactor. Bioresour Technol 100(7):2106–2110.

Nojehdehian, H., F. Moztarzadeh, H. Baharvand, H. Nazarian,and M. Tahriri. 2009. Preparation and surfacecharacterization of poly-l-lysine-coated PLGA microspherescaffolds containing retinoic acid for nerve tissueengineering: In vitro study. Colloids Surf B Biointerfaces73:23–29.

Novikova, L. N., J. Pettersson, M. Brohlin, M. Wiberg, andL. N. Novikov. 2008. Biodegradable poly-betahydroxybutyratescaffold seeded with Schwann cells to promote spinal cordrepair. Biomaterials 29 (9):1198–1206.

Nukavarapu, S. P., S. G. Kumbar, J. L. Brown, N. R.Krogman, A. L. Weikel, M. D. Hindenlang, L. S. Nair, H. R.Allcock, and C. T. Laurencin. 2008.Polyphosphazene/nano-hydroxyapatite composite microspherescaffolds for bone tissue engineering. Biomacromolecules 9(7):1818–1825.

Ohta, S., N. Nitta, A. Sonoda, A. Seko, T. Tanaka, M.Takahashi, Y. Kimura, Y. Tabata, and K. Murata. 2009.Cisplatin-conjugated degradable gelatin microspheres:Fundamental study in vitro. Br J Radiol 82 (977):380–385.

Ory, S. J., C. B. Hammond, S. G. Yancy, R. W. Hendren, andC. G. Pitt. 1983. The effect of a biodegradablecontraceptive capsule (Capronor) containing levonorgestrelon gonadotropin, estrogen, and progesterone levels. Am JObstet Gynecol 145 (5):600–605.

Pal, A., A. Prabhu, A. A. Kumar, B. Rajagopal, K. Dadhe, V.Ponnamma, and S. Shivakumar. 2009. Optimization of processparameters for maximum poly(-beta-)hydroxybutyrate (PHB)production by Bacillus thuringiensis IAM 12077. Pol JMicrobiol 58 (2):149–154.

Page 124: Polymeric Biomaterials - Taylor & Francis eBooks

Park, J., P. M. Fong, J. Lu, K. S. Russell, C. J. Booth, W.M. Saltzman, and T. M. Fahmy. 2009. PEGylated PLGAnanoparticles for the improved delivery of doxorubicin.Nanomedicine 5 (4):410–418.

Perrin, D. E. and J. P. English. 1997. Polycaprolactone. InHandbook of Biodegradable Polymers, J. Kost, A. J. Domb,and D. M. Weiseman eds. Amsterdam, the Netherlands:Hardwood Academic Publishers. pp. 63–77.

Pinholt, E. M., E. Solheim, G. Bang, and E. Sudmann. 1991.Bone induction by composite of bioerodible polyorthoesterand demineralized bone matrix in rats. Acta Orthop Scand 62(5):476–480.

Pitt, C. G. 1990. Poly(ɛ-caprolactone) and its copolymers.In Biodegradable Polymers as Drug Delivery Systems, R. S.Langer and M. Chasin, eds. New York: Marcel Dekker. pp.71–120.

Pitt, C. G., F. I. Chasalow, Y. M. Hibionada, D. M. Klimas,and A. Schindler. 1981a. Aliphatic polyesters. I. Thedegradation of poly(ɛ-caprolactone) in vivo. J Appl PolymSci 26 (11):3779–3787.

Pitt, C. G., M. M. Gratzl, G. L. Kimmel, J. Surles, and A.Schindler. 1981b. Aliphatic polyesters II. The degradationof poly (dl-lactide), poly (epsilon-caprolactone), andtheir copolymers in vivo. Biomaterials 2 (4):215–20.

Pitt, C. G. and A. Schindler. 1984. Capronor™: Abiodegradable delivery system for levonorgestrel. InLongActing Contraceptive Delivery Systems, A. Glodsmith, G.L. Zatuchni, J. D. Shelton, and J. J. Sciarra, eds.Philadelphia, PA: Harper and Row, pp. 48–63.

Poshusta, A. K., J. A. Burdick, D. J. Mortisen, R. F.Padera, D. Ruehlman, M. J. Yaszemski, and K. S. Anseth.2003. Histocompatibility of photocrosslinkedpolyanhydrides: A novel in situ forming orthopaedicbiomaterial. J Biomed Mater Res A 64 (1):62–69.

Pradilla, G., P. P. Wang, P. Gabikian, K. Li, C. A. Magee,K. A. Walter, and H. Brem. 2006. Local intracerebraladministration of Paclitaxel with the paclimer deliverysystem: Toxicity study in a canine model. J Neurooncol 76(2):131–138.

Puppi, D., F. Chiellini, A. M. Piras, and E. Chiellini.

Page 125: Polymeric Biomaterials - Taylor & Francis eBooks

2010. Polymeric materials for bone and cartilage repair.Prog Polym Sci 35 (4):403–440.

Qiu, L. Y. and M. Q. Yan. 2009. Constructingdoxorubicin-loaded polymeric micelles through amphiphilicgraft polyphosphazenes containing ethyl tryptophan and PEGsegments. Acta Biomater 5 (6):2132–2141.

Quintilio, W., C. S. Takata, O. A. Sant’Anna, M. H. daCosta, and I. Raw. 2009. Evaluation of a diphtheria andtetanus PLGA microencapsulated vaccine formulation withoutstabilizers. Curr Drug Deliv 6 (3):297–304.

Rock, M., M. Green, C. Fait, R. Geil, J. Myer, M. Maniar,and A. Domb. 1991. Evaluation and comparison ofbiocompatibility of various classes of polyanhydrides.Polym Preprints 32:221–222.

Rodeheaver, G. T., K. A. Beltran, C. W. Green, B. C.Faulkner, B. M. Stiles, G. W. Stanimir, H. Traeland,G. M. Fried, H. C. Brown, and R. F. Edlich. 1996.Biomechanical and clinical performance of a new syntheticmono�lament absorbable suture. J Long Term Eff Med Implants6 (3–4):181–198.

Rosen, H. B., J. Chang, G. E. Wnek, R. J. Linhardt, and R.Langer. 1983. Bioerodible polyanhydrides for controlleddrug delivery. Biomaterials 4 (2):131–133.

Sahoo, S., J. G. Cho-Hong, and T. Siew-Lok. 2007.Development of hybrid polymer scaffolds for potentialapplications in ligament and tendon tissue engineering.Biomed Mater 2 (3):169–173.

Sahoo, S., H. Ouyang, J. C. Goh, T. E. Tay, and S. L. Toh.2006. Characterization of a novel polymeric scaffold forpotential application in tendon/ligament tissueengineering. Tissue Eng 12 (1):91–99.

Samad, A., Y. Sultana, R. K. Khar, K. Chuttani, and A. K.Mishra. 2009. Gelatin microspheres of rifampicincross-linked with sucrose using thermal gelation method forthe treatment of tuberculosis. J Microencapsul 26(1):83–89.

Sano, A., T. Hojo, M. Maeda, and K. Fujioka. 1998. Proteinrelease from collagen matrices. Adv Drug Deliv Rev 31(3):247–266.

Santander-Ortega, M. J., D. Bastos-Gonzalez, J. L.

Page 126: Polymeric Biomaterials - Taylor & Francis eBooks

Ortega-Vinuesa, and M. J. Alonso. 2009. Insulin-loadedPLGA nanoparticles for oral administration: An in vitrophysico-chemical characterization. J Biomed Nanotechnol 5(1):45–53.

Schafer, V., H. von Briesen, H. Rubsamen-Waigmann, A. M.Steffan, C. Royer, and J. Kreuter. 1994. Phagocytosis anddegradation of human serum albumin microspheres andnanoparticles in human macrophages. J Microencapsul 11(3):261–269.

Schenderlein, S., M. Luck, and B. W. Muller. 2004. Partialsolubility parameters of poly(d,l-lactide-coglycolide). IntJ Pharm 286 (1–2):19–26.

Schwope, A. D., D. L. Wise, and J. F. Howes. 1975.Development of polylactic/glycolic acid delivery systemsfor use in treatment of narcotic addiction. Natl Inst DrugAbuse Res Monogr Ser (4):13–18.

Seckel, B. R., T. H. Chiu, E. Nyilas, and R. L. Sidman.1984. Nerve regeneration through synthetic biodegradablenerve guides: Regulation by the target organ. PlastReconstr Surg 74 (2):173–181.

Sehgal, P. K. and A. Srinivasan. 2009. Collagen-coatedmicroparticles in drug delivery. Expert Opin Drug Deliv 6(7):687–695.

Sethuraman, S., L. S. Nair, S. El-Amin, R. Farrar, M. T.Nguyen, A. Singh, H. R. Allcock, Y. E. Greish,P. W. Brown, and C. T. Laurencin. 2006. In vivobiodegradability and biocompatibility evaluation of novelalanine ester based polyphosphazenes in a rat model. JBiomed Mater Res A 77 (4):679–687.

Shanmugasundaram, K. and A. C. Rigby. 2009. Exploring noveltarget space: A need to partner high throughput dockingand ligand-based similarity searches? Comb Chem HighThroughput Screen 12 (10):984–999.

Shen, J. Y., M. B. Chan-Park, B. He, A. P. Zhu, X. Zhu, R.W. Beuerman, E. B. Yang, W. Chen, and V. Chan. 2006.Three-dimensional microchannels in biodegradable polymeric�lms for control orientation and phenotype of vascularsmooth muscle cells. Tissue Eng 12 (8):2229–2240.

Shindler, A., R. Jeffcoat, G. L. Kimmel, C. G. Pitt, M. E.Wall, and R. Zweidinger. 1977. Biodegradable polymers forsustained drug delivery. Contemp. Top. Polym. Sci.

Page 127: Polymeric Biomaterials - Taylor & Francis eBooks

2:251–289.

Shire, S. J. 2009. Formulation and manufacturability ofbiologics. Curr Opin Biotechnol 20 (6):708–714.

Silverman, B. L., S. L. Blethen, E. O. Reiter, K. M. Attie,R. B. Neuwirth, and K. M. Ford. 2002. A long-acting humangrowth hormone (Nutropin Depot): Ef�cacy and safetyfollowing two years of treatment in children with growthhormone de�ciency. J Pediatr Endocrinol Metab 15 (Suppl2):715–722.

Sinha, V. R., K. Bansal, R. Kaushik, R. Kumria, and A.Trehan. 2004. Poly-epsilon-caprolactone microspheres andnanospheres: An overview. Int J Pharm 278 (1):1–23.

Slager, J. and A. J. Domb. 2002. Stereocomplexes based onpoly(lactic acid) and insulin: Formulation and releasestudies. Biomaterials 23 (22):4389–4396.

Sokolsky-Papkov, M., K. Agashi, A. Olaye, K. Shakesheff,and A. J. Domb. 2007. Polymer carriers for drug deliveryin tissue engineering. Adv Drug Deliv Rev 59 (4–5):187–206.

Solheim, E., E. M. Pinholt, R. Andersen, G. Bang, and E.Sudmann. 1995. Local delivery of indomethacin by apolyorthoester inhibits reossi�cation of experimental bonedefects. J Biomed Mater Res 29 (9):1141–1146.

Sonmez, K., B. Bahar, R. Karabulut, O. Gulbahar, A. Poyraz,Z. Turkyilmaz, B. Sancak, and A. C. Basaklar. 2009.Effects of different suture materials on wound healing andinfection in subcutaneous closure techniques. B-ENT 5(3):149–152.

Sosnowski, S., S. Slornkowski, and S. Penczek. 1991.Kinetics of the anionic polymerization of caprolactonewith K + —(dibenzo-18-crownd ether) counterion. Propagationvia macroions and macroion pairs. Die MakromolekulareChemie 192:735.

Sparer, Randall V., Shih Chung, Cheryl D. Ringeisen, andKenneth J. Himmelstein. 1984. Controlled release fromerod1ble poly(ortho ester) drug delivery systems. J ControlRelease 1 (1):23–32.

Steendam, R., A. van der Laan, and D. Hissink. 2006.Bioresorbable drug-eluting stent coating formulationsbased on SynBiosys biodegradable multi-block copolymers. JControl Release 116 (2):e94–e95.

Page 128: Polymeric Biomaterials - Taylor & Francis eBooks

Steinmann, R., H. Gerngross, and W. Hartel. 1990. [The useof bioresorbable implants (Bio�x) in surgery. Theindications, technic and initial clinical results].Aktuelle Traumatol 20 (2):102–107.

Stoll, G. H., F. Nimmerfall, M. Acemoglu, D. Bodmer, S.Bantle, I. Muller, A. Mahl, M. Kolopp, and K. Tullberg.2001. Poly(ethylene carbonate)s, part II: Degradationmechanisms and parenteral delivery of bioactive agents. JControl Release 76 (3):209–225.

Subramanyam, R., and A. G. Pinkus. 1985. Synthesis ofpoly(terephthalic anhydride) by hydrolysis of terephthaloylchloride triethylamine intermediate adduct:Characterization of intermediate adduct. J Macromol SciChem A22 (1):23.

Sun, L., S. Zhou, W. Wang, Q. Su, X. Li, and J. Weng. 2009.Preparation and characterization of protein-loadedpolyanhydride microspheres. J Mater Sci Mater Med 20(10):2035–2042.

Susperregui, N., D. Delcroix, B. Martin-Vaca, D. Bourissou,and L. Maron. 2010. Ring-opening polymerization ofepsilon-caprolactone catalyzed by sulfonic acids:Computational evidence for bifunctional activation. J OrgChem 75 (19):6581–6587.

Suzuki, A., H. Terai, H. Toyoda, T. Namikawa, Y. Yokota, T.Tsunoda, and K. Takaoka. 2006. A biodegradable deliverysystem for antibiotics and recombinant human bonemorphogenetic protein-2: A potential treatment for infectedbone defects. J Orthop Res 24 (3):327–332.

Tamargo, R. J., J. I. Epstein, C. S. Reinhard, M. Chasin,and H. Brem. 1989. Brain biocompatibility of abiodegradable, controlled-release polymer in rats. J BiomedMater Res 23 (2):253–266.

Teomim, D. and A. J. Domb. 1999. Fatty acid terminatedpolyanhydrides. J Polym Sci A Polym Chem 37(16):3337–3344.

Teomim, D., A. Nyska, and A. J. Domb. 1999. Ricinoleicacid-based biopolymers. J Biomed Mater Res 45 (3):258–267.

Torres, M. P., A. S. Determan, G. L. Anderson, S. K.Mallapragada, and B. Narasimhan. 2007. Amphiphilicpolyanhydrides for protein stabilization and release.

Page 129: Polymeric Biomaterials - Taylor & Francis eBooks

Biomaterials 28 (1):108–116.

Unger, F., U. Westedt, P. Hanefeld, R. Wombacher, S.Zimmermann, A. Greiner, M. Ausborn, and T. Kissel. 2007.Poly(ethylene carbonate): A thermoelastic and biodegradablebiomaterial for drug eluting stent coatings? J ControlRelease 117 (3):312–321.

Urakami, H. and Z. Guan. 2008. Living ring-openingpolymerization of a carbohydrate-derived lactone for thesynthesis of protein-resistant biomaterials.Biomacromolecules 9 (2):592–597.

Vaquette, C., S. Fawzi-Grancher, P. Lavalle, C. Frochot, M.L. Viriot, S. Muller, and X. Wang. 2006. In vitrobiocompatibility of different polyester membranes. BiomedMater Eng 16 (4 Suppl):S131–S136.

Veronesi, M. C., Y. Aldouby, A. J. Domb, and M. J. Kubek.2009. Thyrotropin-releasing hormone d,l polylactidenanoparticles (TRH-NPs) protect against glutamate toxicityin vitro and kindling development in vivo. Brain Res1303:151–160.

Vert, M. 2005. Aliphatic polyesters: Great degradablepolymers that cannot do everything. Biomacromolecules 6(2):538–546.

Vert, M., S. Li, and H. Garreau. 1991. More about thedegradation of LA/GA-derived matrices in aqueous media. JControl Release 16 (1–2):15–26.

Villegas-Cabello, O., J. L. Vazquez-Juarez, F. M.Gutierrez-Perez, R. F. Davila-Cordova, and C.DiazMontemayor. 1994. Staged replacement of the caninetrachea with ringed polyethylene terephthalate grafts.Thorac Cardiovasc Surg 42 (5):302–305.

Wade, C. W. R., S. Gourlay, R. Rice, A. Hegyeli, R.Singler, and J. White. 1978. Biocompatibility of eightpoly(organophosphazenes). In Organometallic Polymers, eds.,J. E. Sheats, C. U. Pittmann, and C. E. Carraher, pp.283–288. New York: Academic Press.

Wang, Y. C., X. Q. Liu, T. M. Sun, M. H. Xiong, and J.Wang. 2008. Functionalized micelles from block copolymerof polyphosphoester and poly(epsilon-caprolactone) forreceptor-mediated drug delivery. J Control Release 128(1):32–40.

Page 130: Polymeric Biomaterials - Taylor & Francis eBooks

Wang, S., A. C. Wan, X. Xu, S. Gao, H. Q. Mao, K. W. Leong,and H. Yu. 2001. A new nerve guide conduit materialcomposed of a biodegradable poly(phosphoester).Biomaterials 22 (10):1157–1169.

Wei, X., C. Gong, M. Gou, S. Fu, Q. Guo, S. Shi, F. Luo, G.Guo, L. Qiu, and Z. Qian. 2009. Biodegradablepoly(epsilon-caprolactone)-poly(ethylene glycol) copolymersas drug delivery system. Int J Pharm 381 (1):1–18.

Wen, J., G. J. Kim, and K. W. Leong. 2003.Poly(d,l-lactide-co-ethyl ethylene phosphate)s as new drugcarriers. J Control Release 92 (1–2):39–48.

Wen, J., H. Q. Mao, W. Li, K. Y. Lin, and K. W. Leong.2004. Biodegradable polyphosphoester micelles for genedelivery. J Pharm Sci 93 (8):2142–2157.

Wenk, E., A. J. Meinel, S. Wildy, H. P. Merkle, and L.Meinel. 2009. Microporous silk �broin scaffolds embeddingPLGA microparticles for controlled growth factor deliveryin tissue engineering. Biomaterials 30 (13):2571–2581.

Wheeler, J. M., J. D. Knittle, and J. D. Miller. 1993.Depot leuprolide acetate versus danazol in the treatmentof women with symptomatic endometriosis: A multicenter,double-blind randomized clinical trial. II. Assessment ofsafety. The Lupron Endometriosis Study Group. Am J ObstetGynecol 169 (1):26–33.

Whittle, I. R., S. Lyles, and M. Walker. 2003. Gliadeltherapy given for �rst resection of malignant glioma:A single centre study of the potential use of Gliadel. Br JNeurosurg 17 (4):352–354.

Woodward, S. C., P. S. Brewer, F. Moatamed, A. Schindler,and C. G. Pitt. 1985. The intracellular degradation ofpoly(epsilon-caprolactone). J Biomed Mater Res 19(4):437–444.

Xie, H., Y. S. Khajanchee, and B. S. Shaffer. 2008.Chitosan hemostatic dressing for renal parenchymal woundsealing in a porcine model: Implications for laparoscopicpartial nephrectomy technique. JSLS 12 (1):18–24.

Xue, J. M., C. H. Tan, and D. Lukito. 2006. Biodegradablepolymer-silica xerogel composite microspheres forcontrolled release of gentamicin. J Biomed Mater Res B ApplBiomater 78 (2):417–422.

Page 131: Polymeric Biomaterials - Taylor & Francis eBooks

Yi Mok, N., J. Chadwick, K. A. Kellett, N. M. Hooper, A. P.Johnson, and C. W. Fishwick. 2009. Discovery of novelnon-peptide inhibitors of BACE-1 using virtualhigh-throughput screening. Bioorg Med Chem Lett 19(23):6770–6774.

Yoda, N. 1963. Synthesis of polyanhydrides. XII. J PolymSci 1:1323–1338.

Yu, H. 1988. Pseudopoly(Amino Acids): A Study of theSynthesis and Characterization of Polyesters Madefrom-l-Amino Acids. Cambridge, MA: Massachusetts Instituteof Technology.

Zhang, N. and S. Guo. 2003. [Studies on a kind of newbiodegradable material—Polycaprolactone and developments inmedical area]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 20(4):746–749.

Zhang, P., Z. Hong, T. Yu, X. Chen, and X. Jing. 2009. Invivo mineralization and osteogenesis of nanocompositescaffold of poly(lactide-co-glycolide) and hydroxyapatitesurface-grafted with poly(l-lactide). Biomaterials 30(1):58–70.

Zhang, Z., R. Kuijer, S. K. Bulstra, D. W. Grijpma, and J.Feijen. 2006. The in vivo and in vitro degradationbehavior of poly(trimethylene carbonate). Biomaterials 27(9):1741–1748.

Zhang, J. X., M. Q. Yan, X. H. Li, L. Y. Qiu, X. D. Li, X.J. Li, Y. Jin, and K. J. Zhu. 2007. Local delivery ofindomethacin to arthritis-bearing rats through polymericmicelles based on amphiphilic polyphosphazenes. Pharm Res24 (10):1944–1953.

Zheng, C., L. Qiu, X. Yao, and K. Zhu. 2009. Novel micellesfrom graft polyphosphazenes as potential anticancer drugdeliv ery systems: Drug encapsulation and in vitroevaluation. Int J Pharm 373 (1–2):133–140.

Zheng, C., J. Xu, X. Yao, and L. Qiu. 2011. Polyphosphazenenanoparticles for cytoplasmic release of doxorubicin withimproved cytotoxicity against Dox-resistant tumor cells. JColloid Interface Sci 355 (2):374–382.

Zurita, R., J. Puiggali, and A. Rodriguez-Galan. 2006.Loading and release of ibuprofen in multi- and mono�lamentsurgical sutures. Macromol Biosci 6 (9):767–775.

Page 132: Polymeric Biomaterials - Taylor & Francis eBooks

6 Chapter 6. Bioresorbable HybridMembranes for Bone Regeneration

Asada, M., Asada, N., Toyoda, A., Ando, I., and Kurosu, H.1991. Side-chain structure of poly(methacrylic acid) andits zinc salts in the solid state as studied byhigh-resolution solid-state 13 C NMR spectroscopy. J MolStruct 244:237–248.

Badami, A.S., Kreke, M.R., Thompson, M.S., Rif¥e, J.S., andGoldstein, A.S. 2006. Effect of �ber diameter onspreading, proliferation, and differentiation ofosteoblastic cells on electrospun poly(lactic acid)substrates. Biomaterials 27:596–606.

Bos, R.R.M., Rozema, F.B., Boering, G. et al. 1991.Degradation of and tissue reaction to biodegradablepoly(L-lactide) for use as internal �xation of fractures: Astudy in rats. Biomaterials 12:32–36.

Boskey, A.L., Wright, T.M., and Blank, R.D. 1999. Collagenand bone strength. J Bone Miner Res 14:330–335.

Carlisle, E.M. 1986. Silicon as an essential trace elementin animal nutrition. In Silicon Biochemistry, eds. Evered,D. and O’Connor, M., pp. 123–139. Chichester, U.K.: Wiley.

Gough, J.E., Jones, J.R., and Hench, L.L. 2004. Noduleformation and mineralisation of human primary osteoblastscultured on a porous bioactive glass scaffold. Biomaterials25:2039–2046.

Jaiswal, N., Haynesworth, S.E., Caplan, A.I., and Bruder,S.P. 1997. Osteogenic differentiation of puri�ed,culture-expanded human mesenchymal stem cells in vitro. JCell Biochem 64:295–312.

Jones, J.R., Tsigkou, O., Coates, E.E., Stevens, M.M.,Polak, J.M., and Hench, L.L. 2007. Extracellular matrixformation and mineralization on a phosphate-free porousbioactive glass scaffold using primary human osteoblast(HOB) cells. Biomaterials 28:1653–1663.

Kasuga, T., Maeda, H., Kato, K., Nogami, M., Hata, K., andUeda, M. 2003. Preparation of poly(lactic acid) compositescontaining calcium carbonate (vaterite). Biomaterials24:3247–3253.

Kenawy, E.R., Bowlin, G.L., Mans�eld, K. et al. 2002.Release of tetracycline hydrochloride from electrospun

Page 133: Polymeric Biomaterials - Taylor & Francis eBooks

poly(ethylene-co-vinylacetate), poly(lactic acid), and ablend. J Control Release 81:57–64.

Kim, S.S., Park, M.S., Jeon, O., Choi, C.Y., and Kim, B.S.2006. Poly(lactide-co-glycolide)/hydroxyapatite compostedscaffolds for bone tissue engineering. Biomaterials27:1399–1409.

Kokubo, T., Kushitani, H., Sakka, S., Kitsugi, T., andYamamuro, T. 1990. Solutions able to reproduce in vivosurface-structure changes in bioactive glass-ceramic A-W3.J Biomed Mater Res 24:721–734.

Li, W.J., Laurencin, C.T., Caterson, E.J., Tuan, R.S., andKo, F.K. 2002. Electrospun nano�brous structure: A novelscaffold for tissue engineering. J Biomed Mater Res60:613–621.

Liao, H., Mutvei, H., Sjöström, M., Hammarström, L., andLi, J. 2000. Tissue responses to natural aragonite(Margaritifera shell) implants in vivo. Biomaterials21:457–468.

Maeda, H., Kasuga, T., and Hench, L.L. 2006. Preparation ofpoly(L-lactic acid)-polysiloxane-calcium carbonate hybridmembranes for guided bone regeneration. Biomaterials27:1216–1222.

Maeda, H., Kasuga, T., and Nogami, M. 2004. Bonelikeapatite coating on skeleton of poly(lactic acid) compositesponge. Mater Trans 45:989–993.

Mainil-Varlet, P., Rahn, B., and Gogolewski, S. 1997.Long-term in vivo degradation and bone reaction to variouspolylactides: 1. One-year results. Biomaterials 18:257–266.

Nie, H. and Wang, C.H. 2007. Fabrication andcharacterization of PLGA/HAp composite scaffolds fordelivery of BMP-2 plasmid DNA. J Control Release120:111–121.

Ref�tt, D.M., Ogston, N., Jugdaohsingh, R. et al. 2003.Orthosilicic acid stimulates collagen type 1 synthesis andosteoblastic differentiation in human osteoblast-like cellsin vitro. Bone 32:127–135.

Still, T.J. and von Recum, H.A. 2008. Electrospinning:Applications in drug delivery and tissue engineering.Biomaterials 29:1989–2006.

Page 134: Polymeric Biomaterials - Taylor & Francis eBooks

Thian, E.S., Huang, J., Best, S.M., Barber, Z.H., Brooks,R.A., Rushton, N., and Bon�eld, W. 2006. The response ofosteoblasts to nanocrystalline silicon-substitutedhydroxyapatite thin �lms. Biomaterials 27:2692–2698.

Vago, R., Plotquin, D., Bunin, A., Sinelnikov, I., Atar,D., and Itzhak, D. 2002. Hard tissue remodeling usingbiofabricated coralline biomaterials. J Biochem BiophysMethods 50:253–259.

Xin, X., Hussain, M., and Mao, J.J. 2007. Continuingdifferentiation of human mesenchymal stem cells andinduced chondrogenic and osteogenic lineages in electrospunPLGA nano�ber scaffold. Biomaterials 28:316–325.

Xynos, I.D., Edgar, A.J., Buttery, L.D.K., Hench, L.L., andPolak, J.M. 2000. Ionic products of bioactive glassdissolution increase proliferation of human osteoblasts andinduce insulin-like growth factor II mRNA expression andprotein synthesis. Biochem Biophys Res Commun 276:461–465.

Xynos, I.D., Edgar, A.J., Buttery, L.D.K., Hench, L.L., andPolak, J.M. 2001. Gene-expression pro�ling of humanosteoblasts following treatment with the ionic products ofBioglass ® 45S5 dissolution. J Biomed Mater Res55:151–157.

Yabuta, T., Tsuru, K., Hayakawa, S., Ohtsuki, C., andOsaka, A. 2000. Synthesis of bioactive organic-inorganichybrids with γ-methacryloxypropyltrimethoxysilane. JSol-Gel Sci Technol 19:745–748.

Yang, F., Murugan, R., Wang, S., and Ramakrishna, S. 2005.Electrospinning of nano/micro scale poly(L-lactic acid)aligned �bers and their potential in neural tissueengineering. Biomaterials 26:2603–2610.

Zeng, J., Xu, X., Chen, X. et al. 2003. Biodegradableelectrospun �bers for drug delivery. J Control Release92:227–231.

Zhang, K., Wang, Y., Hillmyer, M.A., and Francis, L.F.2004. Processing and properties of porous poly(L-lactide)/bioactive glass composites. Biomaterials 25:2489–2500.

Page 135: Polymeric Biomaterials - Taylor & Francis eBooks

7 Chapter 7. Mucoadhesive Polymers

1. Robinson, J. R. and W. J. Bologna. 1994. Vaginal andreproductive system treatments using a bioadhesivepolymer. J. Control. Release 28:87–94.

2. Akiyama, Y., N. Nagahara, E. Nara, M. Kitano, S. Iwasa,I. Yamamoto, J. Azuma, and Y. Ogawa. 1998. Evaluation oforal mucoadhesive microspheres in man on the basis of thepharmacokinetics of furosemide and ribo¥avin, compoundswith limited gastrointestinal absorption sites. J. Pharm.Pharmacol. 50:159–166.

3. Takeuchi, H., H. Yamamoto, N. Toshiyuki, H. Tomoaki, andY. Kawashima. 1996. Enteral absorption of insulin in ratsfrom mucoadhesive chitosan-coated liposomes. Pharm. Res.13:896–901.

4. Takeuchi, H., Y. Matsui, H. Yamamoto, and Y. Kawashima.2003. Mucoadhesive properties of carbopol orchitosan-coated liposomes and their effectiveness in theoral administration of calcitonin to rats. J. Control.Release 86:235–242.

5. Clausen, A. and A. Bernkop-Schnürch. 2000. In vitroevaluation of the permeation enhancing effect of thiolatedpolycarbophil. J. Pharm. Sci. 89:1253–1261.

6. Schipper, N. G. M., S. Olsson, J. A. Hoogstraate, A. G.de Boer, K. M. Varum, and P. Artursson. 1997. Chitosans asabsorption enhancers for poorly absorbable drugs 2:Mechanism of absorption enhancement. Pharm. Res.14:923–929.

7. Lueß en, H. L., V. Bohner, D. Perard, P. Langguth, J. C.Verhoef, A. G. de Boer, H. P. Merkle, and H. E. Junginger.1996. Mucoadhesive polymers in peroral peptide drugdelivery. V. Effect of poly(acrylates) on the enzymaticdegradation of peptide drugs by intestinal brush bordermembrane vesicles. Int. J. Pharm. 141:39–52.

8. Bernkop-Schnürch, A., C. Paikl, and C. Valenta. 1997.Novel bioadhesive chitosan-EDTA conjugate protects leucineenkephalin from degradation by aminopeptidase N. Pharm.Res. 14:917–922.

9. Matthes, I., F. Nimmerfall, and H. Sucker. 1992.Mucusmodelle zur Untersuchung von intestinalenAbsorptionsmechanismen. Pharmazie 47:505–515.

Page 136: Polymeric Biomaterials - Taylor & Francis eBooks

10. Bernkop-Schnürch, A. and R. Fragner. 1996.Investigations into the diffusion behaviour of polypeptidesin native intestinal mucus with regard to their peroraladministration. Pharm. Sci. 2:361–363.

11. Campbell, B. J. 1999. Biochemical and functionalaspects of mucus and mucin-type glycoproteins, bioadhesivedrug delivery systems in Bioadhesive Drug Delivery Systems:Fundamentals, Novel Approaches, and Developments, E.Mathiowitz, D. E. Chickering III, and C.-M. Lehr, eds., pp.85–130. New York: Marcel Dekker.

12. Gendler, S. J. and A. P. Spicer. 1995. Epithelial mucingenes. Ann. Rev. Physiol. 57:607–634.

13. Gum, J. R., J. W. Hicks, N. W. Toribara, E. M. Rothe,R. E. Lagace, and Y. S. Kim. 1992. The human MUC2intestinal mucin has cysteine-rich subdomains located bothupstream and downstream of its central repetitive region.J. Biol. Chem. 267:21375–21383.

14. Gum, J. R., J. W. Hicks, D. M. Swallow, R. L. Lagace,J. C. Byrd, D. T. A. Lamport, B. Siddiki, and Y. S. Kim.1990. Molecular cloning of cDNAs derived from a novel humanintestinal mucin gene. Biochem. Biophys. Res. Commun.171:407–415.

15. Porchet, N., V. C. Nguyen, J. Dufosse, J. P. Audie, V.Guyonnet-Duperat, M. S. Gross, C. Denis, P. Degand, A.Bernheim, and J. P. Aubert. 1991. Molecular cloning andchromosomal localisation of a novel humantracheo-bronchial mucin cDNA containing tandemly repeatedsequences of 48 base pairs. Biochem. Biophys. Res. Commun.175:414–422.

16. Guyonnet-Duperat, V., J. P. Audie, V. Debailleul, A.Laine, M. P. Buisine, S. Galiegue-Zouitina, P. Pigny, P.Degand, J. P. Aubert, and N. Porchet. 1995.Characterisation of the human mucin gene MUC5AC:A consensus cysteine rich domain for 11p15 mucin genes?Biochem. J. 305:211–219.

17. Thornton, D. J., M. Howard, N. Khan, and J. K. Sheehan.1997. Identi�cation of two glycoforms of the MUC5B mucinin human respiratory mucus. Evidence for a cysteine-richsequence repeated within the molecule. J. Biol. Chem.272:9561–9566.

18. Toribara, N. W., A. M. Roberton, S. B. Ho, W. L. Kuo,E. T. Gum, J. R. Gum, J. C. Byrd, B. Siddiki, and Y. S.

Page 137: Polymeric Biomaterials - Taylor & Francis eBooks

Kim. 1993. Human gastric mucin: Identi�cation of uniquespecies by expression cloning. J. Biol. Chem.268:5879–5885.

19. Bobek, L. A., H. Tsai, A. R. Biesbrock, and M. J.Levine. 1993. Molecular cloning, sequence, and speci�cityof expression of the gene encoding the low molecular weighthuman salivary mucin (MUC7). J. Biol. Chem.268:20563–20569.

20. Shankar, V., P. Pichan, R. L. Eddy, V. Tonk, N. Nowak,S. N. Sait, T. B. Shows, R. E. Shultz, G. Gotway,R. C. Elkins, M. S. Gilmore, and G. P. Sachdev. 1997.Chromosomal localisation of a human mucin gene (MUC8) andcloning of the cDNA corresponding to the carboxy terminus.Am. J. Respir. Cell Mol. Biol. 16:232–241.

21. Lehr, C.-M., F . G. J. Poelma, and H. E. Junginger.1991. An estimate of turnover time of intestinal mucus gellayer in the rat in situ loop. Int. J. Pharm. 70:235–240.

22. Bernkop-Schnürch, A. and S. Steininger. 2000.Synthesis and characterisation of mucoadhesive thiolatedpolymers. Int. J. Pharm. 194:239–247.

23. Bernkop-Schnürch, A. and I. Apprich. 1997. Synthesisand evaluation of a modi�ed mucoadhesive polymer protectingfrom α-chymotrypsinic degradation. Int. J. Pharm.146:247–254.

24. Jabbari, E., N. Wisniewski, and N. A. Peppas. 1993.Evidence of mucoadhesion by chain interpenetration at apoly(acrylic acid)/mucin interface using ATR-FTIRspectroscopy. J. Control. Release 26:99–108.

25. Imam, M. E., M. Hornof, C. Valenta, G. Reznicek, andA. Bernkop-Schnürch. 2003. Evidence for theinterpenetration of mucoadhesive polymers into the mucousgel layer. STP Pharma. Sci. 13:171–176.

26. Mortazavi, S. A. and J. D. Smart. 1993. Aninvestigation into the role of water movement and mucus geldehydration in mucoadhesion. J. Control. Release25:197–203.

27. Cara mella, C. M., S. Rossi, and M. C. Bonferoni. 1999.A rheological approach to explain the mucoadhesive behaviorof polymer hydrogels in Bioadhesive Drug Delivery Systems:Fundamentals, E. Mathiowitz, D. E. Chickering III, andC.-M. Lehr, eds., pp. 25–65. New York: Marcel Dekker.

Page 138: Polymeric Biomaterials - Taylor & Francis eBooks

28. Bernkop-Schnürch, A., C. Humenberger, and C. Valenta.1998. Basic studies on bioadhesive delivery systems forpeptide and protein drugs. Int. J. Pharm. 165:217–225.

29. Hertzog, B. A. and E. Mathiowitz. 1999. Novel magnetictechnique to measure bioadhesion Novel Approaches, andDevelopments, E. Mathiowitz, D. E. Chickering III, andC.-M. Lehr, eds., pp. 147–175. New York: Marcel Dekker.

30. Schneider, J. and M. Tirrell. 1999. Direct measurementof molecular-level forces and adhesion in biologicalsystems Novel Approaches, and Developments, E. Mathiowitz,D. E. Chickering III, and C.-M. Lehr, eds., pp. 223–261.New York: Marcel Dekker.

31. Bernkop-Schnürch, A., A. Weithaler, K. Albrecht, and A.Greimel. 2006. Thiomers: Preparation and in vitroevaluation of a mucoadhesive nanoparticulate drug deliverysystem. Int. J. Pharm. 317:76–81.

32. Nielsen, L. S., L. Schubert, and J. Hansen. 1998.Bioadhesive drug delivery systems—I. Characterisation ofmucoadhesive properties of systems based on glycerylmono-oleate and glyceryl monolinoleate. Eur. J. Pharm.Sci. 6:231–239.

33. Rango Rao, K. V. and P. Buri. 1989. A novel in situmethod to test polymers and coated microparticles forbioadhesion. Int. J. Pharm. 52:265–270.

34. Tobyn, M. J., J. R. Johnson, and P. W. Dettmar. 1996.Factors affecting in vitro gastric mucoadhesion II.Physical properties of polymers. Eur. J. Pharm. Biopharm.42:56–61.

35. Mortazavi, S. A. and J. D. Smart. 1993. An in-vitroevaluation of mucosa-adhesion using tensile and shearstresses. J. Pharm. Pharmacol. 45 (suppl.):1108–1111.

36. Ch’ng, H. S., H. Park, P. Kelly, and J. R. Robinson.1985. Bioadhesive polymers as platforms for oralcontrolled drug delivery II: Synthesis and evaluation ofsome swelling, water-insoluble bioadhesive polymers. J.Pharm. Sci. 74:399–405.

37. Chickering III, D. E., C. A. Santos, and E.Mathiowitz. 1999. Adaptation of a microbalance to measurebioadhesive properties of microspheres Novel Approaches,and Developments, E. Mathiowitz, D. E. Chickering III, and

Page 139: Polymeric Biomaterials - Taylor & Francis eBooks

C.-M. Lehr, eds., pp. 131–147. New York: Marcel Dekker.

38. Hassan, E. E. and J. M. Gallo. 1990. A simplerheological method for the in vitro assessment ofmucinpolymer bioadhesive bond strength. Pharm. Res.7:491–495.

39. Leitner, V., G. F. Walker, and A. Bernkop-Schnürch.2003. Thiolated polymers: Evidence for the formation ofdisulphide bonds with mucus glycoproteins. Eur. J. Pharm.Biopharm. 56:207–214.

40. Kellaway, I. W. 1990. In vitro test methods for themeasurement of mucoadhesion, R. Gurny and H. E. Junginger.eds., pp. 86–97. Stuttgart, Germany: WissenschaftlicheVerlagsgesellschaft.

41. Kerr, L. J., I. W. Kellaway, C. Rowlands, and G. D.Parr. 1990. The in¥uence of poly(acrylic) acids on therheology of glycoprotein gels. Proc. Int. Symp. Control.Release Bioact. Mater. 122–123.

42. Tobyn, M. J., J. R. Johnson, and S. A. Gibson. 1992.Investigations into the role of hydrogen bonding in theinteraction between mucoadhesives and mucin at gastric pH.J. Pharm. Pharmacol. 44 (suppl.):1048–1048.

43. Mortazavi, S. A., B. G. Carpenter, and J. D. Smart.1993. An investigation into the nature of mucoadhesiveinteractions. J. Pharm. Pharmacol. 45 (suppl.): 1141.

44. Mortazavi, S. A. 1995. In vitro assessment ofmucus/mucoadhesive interactions. Int. J. Pharm.124:173–182.

45. Akiy ama, Y. and N. Nagahara. 1999. Novel formulationapproaches to oral mucoadhesive drug delivery systems inBioadhesive Drug Delivery Systems: Fundamentals, NovelApproaches, and Developments, E. Mathiowitz, D. E.Chickering III, and C.-M. Lehr, eds., pp. 477–507. NewYork: Marcel Dekker.

46. Bouckaert, S., R. A. Lefebvre, and J.-P. Remon. 1993.In vitro/in vivo correlation of the bioadhesive propertiesof a buccal bioadhesive miconazole slow-release tablet.Pharm. Res. 10:853–856.

47. Bottenberg, P., R. Cleymaet, C. de Muynck, J.-P.Remon, D. Coomans, Y. Michotte, and D. Slop. 1991.Development and testing of bioadhesive, ¥uoride-containing

Page 140: Polymeric Biomaterials - Taylor & Francis eBooks

slow-release tablets for oral use. J. Pharm. Pharmacol.43:457–464.

48. Khosla, L. and S. S. Davis. 1987. The effect ofpolycarbophil on the gastric emptying of pellets. J. Pharm.Pharmacol. 39:47–49.

49. Harris, D., J. T. Fell, H. L. Sharma, and D. C. Taylor.1990. GI transit of potential bioadhesive formulations inman: A scintigraphic study. J. Control. Release 12:45–53.

50. Grabovac, V ., D. Guggi, and A. Bernkop-Schnürch. 2005.Comparison of the mucoadhesive properties of variouspolymers. Adv. Drug Deliv. Rev. 57:1713–1723.

51. Witschi, C. and R. J. Mrsny. 1999. In vitro evaluationof microparticles and polymer gels for use as nasalplatforms for protein delivery. Pharm. Res. 16:382–390.

52. Evans, I. V . 1989. Mucilaginous substances frommacroalgae: An overview. Symp. Soc. Exp. Biol. 43:455–461.

53. Mortazavi, S. A. and J. D. Smart. 1994. An in-vitromethod for assessing the duration of mucoadhesion. J.Control. Release 31:207–217.

54. El Hameed, M. D. and I. W. Kellaway. 1997. Preparationand in vitro characterization of mucoadhesive polymericmicrospheres as intra-nasal delivery systems. Eur. J.Pharm. Biopharm. 44:53–60.

55. Bernkop-Schnürch, A. and M. E. Krajicek. 1998.Mucoadhesive polymers as platforms for peroral peptidedelivery and absorption: synthesis and evaluation ofdifferent chitosan-EDTA conjugates. J. Control. Release50:215–223.

56. Bernkop-Schnürch, A. and J. Freudl. 1999. Comparativein vitro study of different chitosan-complexing agentconjugates. Pharmazie 54:369–371.

57. Takayama, K., M. Hirata, Y. Machida, T. Masada, T.Sannan, and T. Nagai. 1990. Effect of interpolymer complexformation on bioadhesive property and drug releasephenomenon of compressed tablets consisting of chitosan andsodium hyaluronate. Chem. Pharm. Bull. 38:1993–1997.

58. Hadler, N. M., R. R. Dourmashikin, M. V. Nermut, andL. D. Williams. 1982. Ultrastructure of hyaluronic acidmatrix. Biochemistry 79:307–309.

Page 141: Polymeric Biomaterials - Taylor & Francis eBooks

59. Sanzgiri, Y. D., E. M. Topp, L. Benedetti, and V. J.Stella. 1994. Evaluation of mucoadhesive properties ofhyaluronic acid benzyl esters. Int. J. Pharm. 107:91–97.

60. Madsen, F., K. Eberth, and J. D. Smart. 1998. Arheological assessment of the nature of interactionsbetween mucoadhesive polymers and a homogenised mucus gel.Biomaterials 19:1083–1092.

61. Liu, P. and T. R. Krishnan. 1999.Alginate-pectin-poly-l-lysine particulate as a potentialcontrolled release formulation. J. Pharm. Pharmacol.51:141–149.

62. Smart, J. D., I. W. Kellaway, and H. E. C. Worthington.1984. An in vitro investigation of mucosa-adhesivematerials for use in controlled drug delivery. J. Pharm.Pharmacol. 36:295–299.

63. Longer, M. A., H. S. Ch’ng, and J. R. Robinson. 1985.Bioadhesive polymers as platforms for oral controlled drugdelivery III: Oral delivery of chlorothiazide using abioadhesive polymer. J. Pharm. Sci. 74:406–411.

64. Lehr, C.-M., J. A. Bouwstra, E. H. Schacht, and H. E.Junginger. 1992. In vitro evaluation of mucoadhesiveproperties of chitosan and some other natural polymers.Int. J. Pharm. 78:43–48.

65. Valenta, C., B. Christen, and A. Bernkop-Schnürch.1998. Chitosan-EDTA conjugate: A novel polymer for topicalused gels. J. Pharm. Pharmacol. 50:445–452.

66. Artursson, P., T. Lindmark, S. S. Davis, and L. Illum.1994. Effect of chitosan on the permeability of monolayersof intestinal epithelial cells (Caco-2). Pharm. Res.11:1358–1361.

67. Lueßen, H. L., C.-O. Rentel, A. F. Kotzé, C.-M. Lehr,A. G. de Boer, J. C. Verhoef, and H. E. Junginger. 1997.Mucoadhesive polymers in peroral peptide drug delivery. IV.Polycarbophil and chitosan are potent enhancers of peptidetransport across intestinal mucosae in vitro. J. Control.Release 45:15–23.

68. Thanou, M., B. I. Florea, M. W. Langemeÿer, J. C.Verhoef, and H. E. Junginger. 2000. N-trimethylatedchitosan chloride (TMC) improves the intestinal permeationof the peptide drug buserelin in vitro (Caco-2 cells) and

Page 142: Polymeric Biomaterials - Taylor & Francis eBooks

in vivo (rats). Pharm. Res. 17:27–31.

69. Lehr, C.-M. 1996. From sticky stuff to sweetreceptors—Achievements, limits and novel approaches tobioadhesion. Eur. J. Drug Metabol. Pharmacokinet.21:139–148.

70. Rillosi, M. and G. Buckton. 1995. Modellingmucoadhesion by use of surface energy terms obtained fromthe Lewis acid—Lewis base approach. II. Studies on anionic,cationic, and unionisable polymers, Pharm. Res.12:669–675.

71. Lueßen, H. L., B. J. de Leeuw, M. W. Langemeyer, A. G.de Boer, J. C. Verhoef, and H. E. Junginger. 1996.Mucoadhesive polymers in peroral peptide drug delivery. VI.Carbomer and chitosan improve the intestinal absorption ofthe peptide drug buserelin in vivo. Pharm. Res.13:1668–1672.

72. Matsuda, S., H. Iw ata, N. Se, and Y. Ikada. 1999.Bioadhesion of gelatin �lms crosslinked withglutaraldehyde. J. Biomed. Mater. Res. 45:20–27.

73. Bernkop-Schnürch, A., V . Schwarz, and S. Steininger.1999. Polymers with thiol groups: A new generation ofmucoadhesive polymers? Pharm. Res. 16:876–881.

74. Bernkop-Schnürch, A. 2005. Thiomers: A new generationof mucoadhesive polymers. Adv. Drug Deliv. Rev.57:1569–1582.

75. Snyder, G. H. 1987. Intramolecular disul�de loopformation in a peptide containing two cysteines.Biochemistry 26:688–694.

76. Roldo, M., M. Hornof, P. Caliceti, and A.Bernkop-Schnürch. 2004. Mucoadhesive thiolated chitosans asplatforms for oral controlled drug delivery: Synthesis andin vitro evaluation. Eur. J. Pharm. Biopharm. 57:115–121.

77. Bernkop-Schnürch, A., S. Scholler, and R. G. Biebel.2000. Development of controlled drug release systems basedon polymer-cysteine conjugates. J. Control. Release66:39–48.

78. Bernkop-Schnürch, A., U.-M. Brandt, and A. Clausen.1999. Synthese und in vitro Evaluierung vonChitosan-Cystein Konjugaten. Sci. Pharm. 67:197–208.

Page 143: Polymeric Biomaterials - Taylor & Francis eBooks

79. Kafedjiiski, K., F. Föger, M. Werle, and A.Bernkop-Schnürch. 2005. Synthesis and in vitro evaluationof a novel chitosan-glutathione conjugate. Pharm. Res.22:1480–1488.

80. Bernkop-Schnürch, A., M. Hornof, and T. Zoidl. 2003.Thiolated polymers—Thiomers: Modi�cation of chitosan with2-iminothiolane. Int. J. Pharm. 260:229–237.

81. Kafedjiiski, K., M. Hof fer, M. Werle, and A.Bernkop-Schnürch. 2006. Improved synthesis and in vitrocharacterization of chitosan-thioethylamidine conjugate.Biomaterials 27:127–135.

82. Kast, C. E. and A. Bernkop-Schnürch. 2001. Thiolatedpolymers—Thiomers: Development and in vitro evaluation ofchitosan-thioglycolic acid conjugates. Biomaterials22:2345–2352.

83. Kast, C. E. and A. Bernkop-Schnürch. 2002.Polymer-cystamine conjugates: New mucoadhesive excipientsfor drug delivery? Int. J. Pharm. 234:91–99.

84. Leitner, V., M. Marschütz, and A. Bernkop-Schnürch.2003. Mucoadhesive and cohesive properties of poly(acrylicacid)-cysteine conjugates with regard to their molecularmass. Eur. J. Pharm. Sci. 18:89–96.

85. Bernkop-Schnürch, A. and S. Thaler. 2000.Polycarbophil-cysteine conjugates as platforms for peroralpoly(peptide) delivery systems. J. Pharm. Sci. 89:901–909.

86. Hornof, M. D., W. Weyenberg, A. Ludwig, and A.Bernkop–Schnürch. 2003. A mucoadhesive ocular insert:Development and in vivo evaluation in humans. J. Control.Release 89:419–428.

87. Lueßen, H. L., J. C. Verhoef, G. Borchard, C.-M. Lehr,A. G. de Boer, and H. E. Junginger. 1995. Mucoadhesivepolymers in peroral peptide drug delivery. II. Carbomer andpolycarbophil are potent inhibitors of the intestinalproteolytic enzyme trypsin. Pharm. Res. 12:1293–1298.

88. Walker, G. F., R. Ledger, and I. G. Tucker. 1999.Carbomer inhibits tryptic proteolysis of luteinizinghormone-releasing hormone and N-α-benzoyl-l-arginine ethylester by binding the enzyme. Pharm. Res. 16:1074–1080.

89. Bernkop-Schnürch, A., G. Schwarz, and M. Kratzel.1997. Modi�ed mucoadhesive polymers for the peroral

Page 144: Polymeric Biomaterials - Taylor & Francis eBooks

administration of mainly elastase degradable therapeuticpoly(peptides). J. Control. Release 47:113–121.

90. Bernkop-Schnürch, A. and K. Dundalek. 1996. Novelbioadhesive drug delivery system protecting poly(peptides)from gastric enzymatic degradation. Int. J. Pharm.138:75–83.

91. Bernkop-Schnürch, A., I. Bratengeyer, and C. Valenta.1997. Development and in vitro evaluation of a drugdelivery system protecting from trypsinic degradation. Int.J. Pharm. 157:17–25.

92. Bernkop-Schnürch, A. and A. Scerbe-Saiko. 1998.Synthesis and in vitro evaluation ofchitosan-EDTAprotease-inhibitor conjugates which might beuseful in oral delivery of peptides and proteins. Pharm.Res. 15:263–269.

93. Bernkop-Schnürch, A. and M. Pasta. 1998. Intestinalpeptide and protein delivery: Novel bioadhesive drugcarrier matrix shielding from enzymatic attack. J. Pharm.Sci. 87:430–434.

94. Bernkop-Schnürch, A. and N. C. Göckel. 1997.Development and analysis of a polymer protecting fromluminal enzymatic degradation caused by α-chymotrypsin.Drug Dev. Ind. Pharm. 23:733–740.

95. Bernkop-Schnürch, A. and M. K. Marschütz. 1997.Development and in vitro evaluation of systems to protectpeptide drugs from aminopeptidase N. Pharm. Res.14:181–185.

96. Marschütz, M. K, P . Caliceti, and A. Bernkop-Schnürch.2000. Design and in vivo evaluation of an oral deliverysystem for insulin. Pharm. Res. 17:1468–1474.

97. Caliceti, P., S. Salmaso, G. Walker, and A.Bernkop-Schnürch. 2004. Development and in vivo evaluationof an oral insulin-PEG delivery system. Eur. J. Pharm. Sci.22:315–323.

98. Guggi, D., A. H. Krauland, and A. Bernkop-Schnürch.2003. Systemic peptide delivery via the stomach: In vivoevaluation of an oral dosage form for salmon calcitonin. J.Control. Release 92:125–135.

99. Borchard, G., H. L. Lueßen, J. C. Verhoef, C.-M. Lehr,A. G. de Boer, and H. E. Junginger. 1996. The potential of

Page 145: Polymeric Biomaterials - Taylor & Francis eBooks

mucoadhesive polymers in enhancing intestinal peptide drugabsorption III: Effects of chitosan-glutamate andcarbomer on epithelial tight junctions in vitro. J.Control. Release 39:131–138.

100. Lee, V. H. L. 1990. Protease inhibitors and permeationenhancers as approaches to modify peptide absorption. J.Control. Release 13:213–223.

101. Aungst, B. J., H. Saitoh, D. L. Burcham, S. M. Huang,S. A. Mousa, and M. A. Hussain. 1996. Enhancement of theintestinal absorption of peptides and non-peptides. J.Control. Release 41:19–31.

102. Illum, L., N. F . Farraj, and S. S. Davis. 1994.Chitosan as a novel nasal delivery system for peptidedrugs. Pharm. Res. 11:1186–1189.

103. Rao, R. K., R. D. Baker, S. S. Baker, A. Gupta, andM. Holycross. 1997. Oxidant-induced disruption ofintestinal epithelial barrier function: Role of tyrosinephosphorylation. Am. J. Physiol. 273:G812–G823.

104. Barret, W. C., J. P. DeGnore, S. Konig, H. M. Fales,Y. F. Keng, Y. Zhang, M. B. Yim, and P. B. Chock. 1999.Regulation of PTP1B via glutathionylation of the activesite cysteine 215. Biochemistry 38:6699–6705.

105. Werle, M. and M. Hoffer. 2006. Glutathione andthiolated chitosan inhibit multidrug resistanceP-glycoprotein activity in excised small intestine. J.Control. Release 111:41–46.

106. Föger, F ., T. Schmitz, and A. Bernkop-Schnürch. 2006.In vivo evaluation of polymeric delivery systems forP-glycoprotein substrates. Biomaterials 27:4250–4255.

107. Bernkop-Schnürch, A. and V. Grabovac. 2006. Polymericef¥ux pump inhibitors in oral drug delivery. Am. J. DrugDeliv. 4: 263–272.

108. Föger, F ., S. Malaivijitnond, T. Wannaprasert, C.Huck, A. Bernkop-Schnürch, and M. Werle. 2008. Effect of athiolated polymer on oral paclitaxel absorption and tumorgrowth in rats. J. Drug Target 16:149–155.

109. Shen, Q., Y. L. Lin, T. Handa, M. Doi, M. Sugie, K.Wakayama, N. Okada, T. Fujita, and A. Yamamoto 2006.Modulation of intestinal P-glycoprotein function bypolyethylene glycols and their derivatives by in vitro

Page 146: Polymeric Biomaterials - Taylor & Francis eBooks

transport and in situ absorption studies. Int. J. Pharm.313:49–56.

110. Greindl, M., F. Föger, J. Hombach, and A.Bernkop-Schnürch. 2009. In vivo evaluation of thiolatedpoly(acrylic acid) as a drug absorption modulator for Mpr2ef¥ux pump substrates. Eur. J. Pharm. Biopharm 72:561–566.

111. Gottesman, M. M. and I. Pastan. 1988. The multidrugtransporter, a double-edged sword. J. Biol. Chem.263:12163–12166.

112. Bernkop-Schnürch, A. and B. Gilge. 2000. Anionicmucoadhesive polymers as auxiliary agents for the peroraladministration of poly(peptide) drugs: In¥uence of thegastric ¥uid. Drug Dev. Ind. Pharm. 26:107–113.

113. Skov, O. P., S. S. Poulsen, P. Kirkegaard, and E.Nexo. 1984. Role of submandibular saliva and epidermalgrowth factor in gastric cytoprotection. Gastroenterology87:103–108.

114. Itoh, M. and Y. Matsuo. 1994. Gastric ulcer treatmentwith intravenous human epidermal growth factor: Adouble-blind controlled clinical study. J. Gastroenterol.Hepatol. 9: S78–S83.

115. Slomiany, B. L., H. Nishikawa, J. Bilski, and A.Slomiany. 1990. Colloidal bismuth subcitrate inhibitspeptic degradation of gastric mucus and epidermal growthfactor in vitro. Am. J. Gastroenterol. 85:390–393.

116. Bernkop-Schnürch, A., H. Schuhbauer, and I. Pischel.1999. α-Liponsäure(-Derivate) enthaltende Retardform,Deutsche Patentschrift 1999-09-30.

Page 147: Polymeric Biomaterials - Taylor & Francis eBooks

8 Chapter 8. BiodegradablePolymeric/Ceramic Composite Scaffolds toRegenerate Bone Tissue

1. Kretlow, J.D. and Mikos, A.G., 2007. Review:Mineralization of synthetic polymer scaffolds for bonetissue engineering. Tissue Engineering 13(5): 927–938.

2. Moroni, L., Hamann, D., Paoluzzi, L. et al., 2008.Regenerating articular tissue by converging technologies.PLoS ONE 3(8): e3032.

3. Tadic, D. and Epple, M., 2004. A thoroughphysicochemical characterisation of 14 calciumphosphatebased bone substitution materials in comparison tonatural bone. Biomaterials 25(6): 987–994.

4. Weiner, S. and Traub, W., 1992. Bone structure: Fromangstroms to microns. The FASEB Journal 6(3): 879–885.

5. Rho, J.-Y., Kuhn-Spearing, L., and Zioupos, P., 1998.Mechanical properties and the hierarchical structure ofbone. Medical Engineering and Physics 20(2): 92–102.

6. Weiner, S., Traub, W., and Wagner, H.D., 1999. Lamellarbone: Structure-function relations. Journal of StructuralBiology 126(3): 241–255.

7. Wong, S.-C., Baji, A., and Gent, A.N., 2008. Effect ofspecimen thickness on fracture toughness and adhesiveproperties of hydroxyapatite-�lled polycaprolactone.Composites Part A: Applied Science and Manufacturing39(4): 579–587.

8. Ritchie, R.O., Kinney, J.H., Kruzic, J.J. et al., 2005.A fracture mechanics and mechanistic approach to thefailure of cortical bone. Fatigue and Fracture ofEngineering Materials and Structures 28(4): 345–371.

9. Song, J., Malathong, V., and Bertozzi, C.R., 2005.Mineralization of synthetic polymer scaffolds: A bottom-upapproach for the development of arti�cial bone. Journal ofthe American Chemical Society 127(10): 3366–3372.

10. Rezwan, K., Chen, Q.Z., Blaker, J.J. et al., 2006.Biodegradable and bioactive porous polymer/inorganiccomposite scaffolds for bone tissue engineering.Biomaterials 27(18): 3413–3431.

11. LeGeros, R., 2002. Properties of osteoconductive

Page 148: Polymeric Biomaterials - Taylor & Francis eBooks

biomaterials: Calcium phosphates. Clinical Orthopaedicsand Related Research 395: 81–98.

12. Zhou, Z., Liu, X., Liu, Q. et al., 2009. Evaluation ofthe potential cytotoxicity of metals associated withimplanted biomaterials (I). Preparative Biochemistry andBiotechnology 39: 81–91.

13. Barrabés, M., Michiardi, A., Aparicio, C. et al., 2007.Oxidized nickel–titanium foams for bone reconstructions:Chemical and mechanical characterization. Journal ofMaterials Science: Materials in Medicine 18(11):2123–2129.

14. Khan, Y., Yaszemski, M.J., Mikos, A.G. et al., 2008.Tissue engineering of bone: Material and matrixconsiderations. Journal of Bone and Joint Surgery90(Suppl_1): 36–42.

15. Habraken, W.J.E.M., Wolke, J.G.C., and Jansen, J.A.,2007. Ceramic composites as matrices and scaffolds for drugdelivery in tissue engineering. Advanced Drug DeliveryReviews 59(4–5): 234–248.

16. Bon�eld, W., W ang, M., and Tanner, K.E., 1998.Interfaces in analogue biomaterials. Acta Materialia46(7): 2509–2518.

17. Song, J., Saiz, E., and Bertozzi, C.R., 2003. A newapproach to mineralization of biocompatible hydrogelscaffolds: An ef�cient process toward 3-dimensionalbonelike composites. Journal of the American ChemicalSociety 125(5): 1236–1243.

18. Ho, E., Lowman, A., and Marcolongo, M., 2007. In situapatite forming injectable hydrogel. Journal of BiomedicalMaterials Research 83A(1): 249–256.

19. Hutmacher, D.W., 2000. Scaffolds in tissue engineeringbone and cartilage. Biomaterials 21(24): 2529–2543.

20. Schiller, C. and Epple, M., 2003. Carbonated calciumphosphates are suitable pH-stabilising �llers forbiodegradable polyesters. Biomaterials 24(12): 2037–2043.

21. Kim, S.-S., Sun P ark, M., Jeon, O. et al., 2006.Poly(lactide-co-glycolide)/hydroxyapatite compositescaffolds for bone tissue engineering. Biomaterials 27(8):1399–1409.

Page 149: Polymeric Biomaterials - Taylor & Francis eBooks

22. Castner, D.G. and Ratner, B.D., 2002. Biomedicalsurface science: Foundations to frontiers. Surface Science500(1–3): 28–60.

23. Nair, L. and Laurencin, C.T., 2006. Polymers asbiomaterials for tissue engineering and controlled drugdelivery. Advances Biochemistry Engineering Biotechnology,102: 47–90.

24. Göpferich, A., 1996. Mechanisms of polymer degradationand erosion. Biomaterials 17(2): 103–114.

25. Seal, B.L., Otero, T .C., and Panitch, A., 2001.Polymeric biomaterials for tissue and organ regeneration.Materials Science and Engineering: R: Reports 34(4–5):147–230.

26. Kyle, S., Aggeli, A., Ingham, E. et al., 2009.Production of self-assembling biomaterials for tissueengineering. Trends in Biotechnology 27(7): 423–433.

27. Cen, L., Liu, W ., Cui, L. et al., 2008. Collagentissue engineering: Development of novel biomaterials andapplications. Pediatric Research 63(5): 492.

28. Kuijpers, A., Engbers, G., Krijgsveld, G. et al.,2000. Cross-linking and characterisation of gelatinmatrices for biomedical applications Journal of BiomaterialScience: Polymer Edition 11: 225–243.

29. Campoccia, D., Doherty, P., Radice, M. et al., 1998.Semisynthetic resorbable materials from hyaluronanesteri�cation. Biomaterials 19(23): 2101–2127.

30. Lloyd, L.L., Kennedy, J.F., Methacanon, P. et al.,1998. Carbohydrate polymers as wound management aids.Carbohydrate Polymers 37(3): 315–322.

31. Kuo, C.K. and Ma, P.X., 2001. Ionically crosslinkedalginate hydrogels as scaffolds for tissue engineering:Part 1. Structure, gelation rate and mechanical properties.Biomaterials 22(6): 511–521.

32. Anna Gutowska, B.J.M.J., 2001. Injectable gels fortissue engineering. The Anatomical Record 263(4): 342–349.

33. Maurus, P.B. and Kaeding, C.C., 2004. Bioabsorbableimplant material review. Operative Techniques in SportsMedicine 12(3): 158–160.

Page 150: Polymeric Biomaterials - Taylor & Francis eBooks

34. Heidemann, W., Jeschkeit, S., Ruf�eux, K. et al., 2001.Degradation of poly( D , L )lactide implants with orwithout addition of calcium phosphates in vivo.Biomaterials 22(17): 2371–2381.

35. Middleton, J.C. and Tipton, A.J., 2000. Syntheticbiodegradable polymers as orthopedic devices. Biomaterials21(23): 2335–2346.

36. Ueda, H. and Tabata, Y., 2003. Polyhydroxyalkanonatederivatives in current clinical applications and trials.Advanced Drug Delivery Reviews 55(4): 501–518.

37. Ashammakhi, N., Suuronen, R., Tiainen, J. et al., 2003.Spotlight on naturally absorbable osteo�xation devices.Journal of Craniofacial Surgery 14(2): 247–259.

38. Edlund, U. and Albertsson, A.C., 2003. Polyesters basedon diacid monomers. Advanced Drug Delivery Reviews 55(4):585–609.

39. Sinha, V.R., Bansal, K., Kaushik, R. et al., 2004.Poly-[epsilon]-caprolactone microspheres and nanospheres:An overview. International Journal of Pharmaceutics 278(1):1–23.

40. Wu, X.S. and Wang, N., 2001. Synthesis,characterization, biodegradation, and drug deliveryapplication of biodegradable lactic/glycolic acidpolymers. Part II: Biodegradation. Journal of BiomaterialsScience, Polymer Edition 12: 21–34.

41. Place, E.S., George, J.H., Williams, C.K. et al., 2009.Synthetic polymer scaffolds for tissue engineering.Chemical Society Reviews 38(4): 1139–1151.

42. Peppas, N.A., Keys, K.B., Torres-Lugo, M. et al., 1999.Poly(ethylene glycol)-containing hydrogels in drugdelivery. Journal of Controlled Release 62(1–2): 81–87.

43. Jo, S., Shin, H., Shung, A.K. et al., 2001. Synthesisand characterization of oligo(poly(ethylene glycol)fumarate) macromer. Macromolecules 34(9): 2839–2844.

44. Shin, H., Temenof f, J.S., and Mikos, A.G., 2003. Invitro cytotoxicity of unsaturated oligo[poly(ethyleneglycol)fumarate] macromers and their cross-linkedhydrogels. Biomacromolecules 4(3): 552–560.

45. Teme noff, J.S., Shin, H., Conway, D.E. et al., 2003.

Page 151: Polymeric Biomaterials - Taylor & Francis eBooks

In vitro cytotoxicity of redox radical initiators forcross-linking of oligo(poly(ethylene glycol) fumarate)macromers. Biomacromolecules 4(6): 1605–1613.

46. Kamitakahara, M., Ohtsuki, C., and Miyazaki, T., 2008.Review paper: Behavior of ceramic biomaterials derived fromtricalcium phosphate in physiological condition. Journal ofBiomaterials Applications 23(3): 197–212.

47. Dorozhkin, S., 2007. Calcium orthophosphates. Journalof Materials Science 42(4): 1061–1095.

48. Mirtchi, A.A., Lemaitre, J., and Terao, N., 1989.Calcium phosphate cements: Study of the [beta]tricalciumphosphate—Monocalcium phosphate system. Biomaterials 10(7):475–480.

49. Drie ssens, F.C.M., Boltong, M.G., Bermúdez, O. et al.,1994. Effective formulations for the preparation of calciumphosphate bone cements. Journal of Materials Science:Materials in Medicine 5(3): 164–170.

50. Yamamoto, H., Niw a, S., Hori, M. et al., 1998.Mechanical strength of calcium phosphate cement in vivoand in vitro. Biomaterials 19(17): 1587–1591.

51. Takagi, S., Cho w, L.C., and Ishikawa, K., 1998.Formation of hydroxyapatite in new calcium phosphatecements. Biomaterials 19(17): 1593–1599.

52. Suzuki, O., Kamakura, S., Katagiri, T. et al., 2006.Bone formation enhanced by implanted octacalcium phosphateinvolving conversion into Ca-de�cient hydroxyapatite.Biomaterials 27(13): 2671–2681.

53. Dekker, R.J., de Bruijn, J.D., Stigter, M. et al.,2005. Bone tissue engineering on amorphous carbonatedapatite and crystalline octacalcium phosphate-coatedtitanium discs. Biomaterials 26(25): 5231–5239.

54. Kikawa, T., Kashimoto, O., Imaizumi, H. et al., 2009.Intramembranous bone tissue response to biodegradableoctacalcium phosphate implant. Acta Biomaterialia 5(5):1756–1766.

55. LeGeros, R.Z., 2001. F ormation and transformation ofcalcium phosphates: Relevance to vascular calci�cation.Zeitschrift für Kardiologie 90(15): III116–III124.

56. Sinyaev, V.A., Shustikova, E.S., Levchenko, L.V. et

Page 152: Polymeric Biomaterials - Taylor & Francis eBooks

al., 2001. Synthesis and dehydration of amorphous calciumphosphate. Inorganic Materials 37(6): 619–622.

57. Yoshikawa, H. and Myoui, A., 2005. Bone tissueengineering with porous hydroxyapatite ceramics. Journalof Arti©cial Organs 8(3): 131–136.

58. Hench, L.L., Splinter, R.J., Allen, W.C. et al., 1971.Bonding mechanisms at the interface of ceramic prostheticmaterials. Journal of Biomedical Materials Research 5(6):117–141.

59. Priya, S., Julian, R.J., Russell, S.P. et al., 2003.Bioactivity of gel-glass powders in the CaO-SiO 2 system:A comparison with ternary (CaO-P 2 O 5 -SiO 2 ) andquaternary glasses (SiO 2 -CaO-P 2 O 5 -Na 2 ). Journal ofBiomedical Materials Research Part A 66A(1): 110–119.

60. Priya, S., Julian, R.J., Sophie, V. et al., 2004.Binary CaO-SiO 2 gel-glasses for biomedical applications.Bio-Medical Materials and Engineering 14(4): 467–486.

61. Hench, L.L., 1997. Sol-gel materials for bioceramicapplications. Current Opinion in Solid State and MaterialsScience 2(5): 604–610.

62. Jones, J.R., Ehrenfried, L.M., and Hench, L.L., 2006.Optimising bioactive glass scaffolds for bone tissueengineering. Biomaterials 27(7): 964–973.

63. Navarro, M., Michiardi, A., Castano, O. et al., 2008.Biomaterials in orthopaedics. Journal of the Royal SocietyInterface 5(27): 1137–1158.

64. Wang, M., 2003. Developing bioactive compositematerials for tissue replacement. Biomaterials 24(13):2133–2151.

65. Bon�eld, W., 1988. Composites for bone replacement.Journal of Biomedical Engineering 10(6): 522–526.

66. Bon�eld, W., 1988. Hydroxyapatite-reinforcedpolyethylene as an analogous material for bone replacement.Annals of the New York Academy of Science 523 (Bioceramics:Material Characteristics Versus In Vivo Behavior):173–177.

67. Wahl, D.A. and Czermuszka, J.T., 2006.Collagen-hydroxyapatite composites for hard tissue repair.European Cells and Materials Journal 11: 43–56.

Page 153: Polymeric Biomaterials - Taylor & Francis eBooks

68. Yamauchi, K., Goda, T., Takeuchi, N. et al., 2004.Preparation of collagen/calcium phosphate multilayer sheetusing enzymatic mineralization. Biomaterials 25(24):5481–5489.

69. Leupold, J.A., Bar�eld, W.R., An, Y.H. et al., 2006. Acomparison of ProOsteon, DBX, and collagraft in a rabbitmodel. Journal of Biomedical Materials Research Part B:Applied Biomaterials 79B(2): 292–297.

70. Wang , Y., Cui, F.Z., Hu, K. et al., 2008. Boneregeneration by using scaffold based on mineralizedrecombinant collagen. Journal of Biomedical MaterialsResearch Part B: Applied Biomaterials 86B(1): 29–35.

71. Serre, C.M., Papillard, M., Chavassieux, P. et al.,1993. In vitro induction of a calcifying matrix bybiomaterials constituted of collagen and/or hydroxyapatite:An ultrastructural comparison of three types ofbiomaterials. Biomaterials 14(2): 97–106.

72. Kikuchi, M., Itoh, S., Ichinose, S. et al., 2001.Self-organization mechanism in a bone-likehydroxyapatite/collagen nanocomposite synthesized in vitroand its biological reaction in vivo. Biomaterials 22(13):1705–1711.

73. Kikuchi, M., Matsumoto, H.N., Yamada, T. et al., 2004.Glutaraldehyde cross-linked hydroxyapatite/ collagenself-organized nanocomposites. Biomaterials 25(1): 63–69.

74. Sotome, S., Uemura, T ., Kikuchi, M. et al., 2004.Synthesis and in vivo evaluation of a novelhydroxyapatite/collagen-alginate as a bone �ller and a drugdelivery carrier of bone morphogenetic protein. MaterialsScience and Engineering: C 24(3): 341–347.

75. Song, J.-H., Kim, H.-E., and Kim, H.-W., 2007.Collagen-apatite nanocomposite membranes for guided boneregeneration. Journal of Biomedical Materials Research PartB: Applied Biomaterials 83B(1): 248–257.

76. Wu, T.-J., Huang, H.-H., Lan, C.-W. et al., 2004.Studies on the microspheres comprised of reconstitutedcollagen and hydroxyapatite. Biomaterials 25(4): 651–658.

77. Joseph, E.Z., Sohrab, K., Robert, S. et al., 1992.Fibrillar collagen-biphasic calcium phosphate composite asa bone graft substitute for spinal fusion. Journal of

Page 154: Polymeric Biomaterials - Taylor & Francis eBooks

Orthopaedic Research 10(4): 562–572.

78. Zou, C., Weng, W., Deng, X. et al., 2005. Preparationand characterization of porous [beta]tricalciumphosphate/collagen composites with an integrated structure.Biomaterials 26(26): 5276–5284.

79. Jacqueline, A.S. and Melissa, K.C.B., 1999.Biocompatibility and degradation of collagen bone anchorsin a rabbit model. Journal of Biomedical Materials ResearchPart B: Applied Biomaterials 48(3): 309–314.

80. Jui-Sheng, S., Feng-Huei, L., Yng-Jiin, W. et al.,2003. Collagen-hydroxyapatite/tricalcium phosphatemicrospheres as a delivery system for recombinant humantransforming growth factor-β1. Arti©cial Organs 27(7):605–612.

81. Vicente, V., Meseguer, L., Martinez, F. et al., 1996.Ultrastructural study of the osteointegration ofbioceramics (whitlockite and composite Î 2 -TCP + collagen)in rabbit bone. Ultrastructural Pathology 20(2): 179–188.

82. Shinji, K., Kazuo, S., Takahiro, H. et al., 2007. Theprimacy of octacalcium phosphate collagen composites inbone regeneration. Journal of Biomedical Materials ResearchPart A 83A(3): 725–733.

83. Du, C., Cui, F.Z., Zhang, W. et al., 2000. Formation ofcalcium phosphate/collagen composites throughmineralization of collagen matrix. Journal of BiomedicalMaterial Research 50(4): 518–527.

84. Du, C., Cui, F.Z., Feng, Q.L. et al., 1998. Tissueresponse to nano-hydroxyapatite/collagen compositeimplants in marrow cavity. Journal of Biomedical MaterialsResearch 42(4): 540–548.

85. Pederson, A.W., Ruberti, J.W., and Messersmith, P.B.,2003. Thermal assembly of a biomimetic mineral/ collagencomposite. Biomaterials 24(26): 4881–4890.

86. Eglin, D., Maalheem, S., Livage, J. et al., 2006. Invitro apatite forming ability of type I collagen hydrogelscontaining bioactive glass and silica sol-gel particles.Journal of Materials Science: Materials in Medicine 17(2):161–167.

87. Lin, H.-R. and Yeh, Y.-J., 2004. Porousalginate/hydroxyapatite composite scaffolds for bone tissue

Page 155: Polymeric Biomaterials - Taylor & Francis eBooks

engineering: Preparation, characterization, and in vitrostudies. Journal of Biomedical Materials Research Part B:Applied Biomaterials 71B(1): 52–65.

88. Panzavolta, S., Fini, M., Nicoletti, A. et al., 2009.Porous composite scaffolds based on gelatin and partiallyhydrolyzed α-tricalcium phosphate. Acta Biomaterialia 5(2):636–643.

89. Kim, H.-W., Knowles, J.C., and Kim, H.-E., 2005.Hydroxyapatite and gelatin composite foams processed vianovel freeze-drying and crosslinking for use as temporaryhard tissue scaffolds. Journal of Biomedical MaterialsResearch Part A 72A(2): 136–145.

90. Nazhat, S.N., Kellomäki, M., Törmälä, P. et al., 2001.Dynamic mechanical characterization of biodegradablecomposites of hydroxyapatite and polylactides. Journal ofBiomedical Materials Research Part B: Applied Biomaterials58(4): 335–343.

91. Nenad, I., Edin, S., Jaroslava, B.-S. et al., 2004.Evaluation of hot-pressed hydroxyapatite/polyL -lactidecomposite biomaterial characteristics. Journal ofBiomedical Materials Research Part B: Applied Biomaterials71B(2): 284–294.

92. Hasegaw a, S., Tamura, J., Neo, M. et al., 2005. Invivo evaluation of a porous hydroxyapatite/polyDL lactidecomposite for use as a bone substitute. Journal ofBiomedical Materials Research Part A 75A(3): 567–579.

93. Anita, A.I., Oliver, B., Peter, A. et al., 2001. Invivo investigations on composites made of resorbableceramics and poly(lactide) used as bone graft substitutes.Journal of Biomedical Materials Research Part B: AppliedBiomaterials 58(6): 701–709.

94. Ahmed, I.A., Cronin, P .S., Abou Neel, E.A. et al.,2009. Retention of mechanical properties andcytocompatibility of a phosphate-based glass�ber/polylactic acid composite. Journal of BiomedicalMaterials Research Part B: Applied Biomaterials 89B(1):18–27.

95. Kim, H.-W., Kno wles, J.C., and Kim, H.-E.,Hydroxyapatite/poly(ɛ-caprolactone) composite coatings onhydroxyapatite porous bone scaffold for drug delivery.Biomaterials 25(7–8): 1279–1287.

Page 156: Polymeric Biomaterials - Taylor & Francis eBooks

96. Causa, F., Netti, P.A., Ambrosio, L. et al., 2006.Poly-ɛ-caprolactone/hydroxyapatite composites for boneregeneration: In vitro characterization and humanosteoblast response. Journal of Biomedical MaterialsResearch Part A 76A(1): 151–162.

97. Guarino, V. and Ambrosio, L., 2008. The synergic effectof polylactide �ber and calcium phosphate particlereinforcement in poly [epsilon]-caprolactone-basedcomposite scaffolds. Acta Biomaterialia 4(6): 1778–1787.

98. Kikuchi, M., Koyama, Y., Yamada, T. et al., 2004.Development of guided bone regeneration membrane composedof [beta]-tricalcium phosphate and poly(-lactide-co-glycolide-co-[var epsilon]-caprolactone)composites. Biomaterials 25(28): 5979–5986.

99. Khan, A.S., Ahmed, Z., Edirisinghe, M.J. et al., 2008.Preparation and characterization of a novel bioactiverestorative composite based on covalently coupledpolyurethane-nanohydroxyapatite �bres. Acta Biomaterialia4(5): 1275–1287.

100. Bil, M., Ryszkowska, J., Roether, J.A. et al., 2007.Bioactivity of polyurethane-based scaffolds coated withBioglass. Biomedical Materials 2(2): 93–101.

101. Wang, M., Y ubao, L., Wu, J. et al., 2008. In vitroand in vivo study to the biocompatibility andbiodegradation of hydroxyapatite/poly(vinylalcohol)/gelatin composite. Journal of Biomedical MaterialsResearch Part A 85A(2): 418–426.

102. Leeuwenburgh, S.C., Jansen, J.A., and Mikos, A.G.,2007. Functionalization of oligo(poly(ethyleneglycol)fumarate) hydrogels with �nely dispersed calciumphosphate nanocrystals for bone-substituting purposes.Journal of Biomaterials Science Polymer Edition 18(12):1547–1564.

103. Demirtaş, T.T., Karakeçili, A.G., and Gümüşderelioğlu,M., 2008. Hydroxyapatite containing superporous hydrogelcomposites: Synthesis and in-vitro characterization.Journal of Materials Science: Materials in Medicine 19(2):729–735.

104. Kenny, S.M. and Buggy, M., 2003. Bone cements and�llers: A review. Journal of Materials Science: Materialsin Medicine 14(11): 923–938.

Page 157: Polymeric Biomaterials - Taylor & Francis eBooks

105. Ruhé, P.Q., Boerman, O.C., Russel, F.G.M. et al.,2005. Controlled release of rhBMP-2 loadedpoly(dl-lactic-co-glycolic acid)/calcium phosphate cementcomposites in vivo. Journal of Controlled Release106(1–2): 162–171.

106. Fei, Z., Hu, Y., Wu, D. et al., 2008. Preparation andproperty of a novel bone graft composite consisting ofrhBMP-2 loaded PLGA microspheres and calcium phosphatecement. Journal of Materials Science: Materials inMedicine 19(3): 1109–1116.

107. Tamimi, F., Kumarasami, B., Doillon, C. et al., 2008.Brushite-collagen composites for bone regeneration. ActaBiomaterialia 4(5): 1315–1321.

108. Mai, R., Reinstorf, A., Pilling, E. et al., 2008.Histologic study of incorporation and resorption of a bonecement-collagen composite: An in vivo study in the minipig.Oral Surgery, Oral Medicine, Oral Pathology, OralRadiology, and Endodontology 105(3): e9–e14.

109. Qi, X., Ye, J., and Wang, Y., 2009. Alginate/poly(lactic-co-glycolic acid)/calcium phosphate cement scaffoldwith oriented pore structure for bone tissue engineering.Journal of Biomedical Materials Research Part A 89A(4):980–987.

110. Xu, H.H.K., Eichmiller, F.C., and Giuseppetti, A.A.,2000. Reinforcement of a self-setting calcium phosphatecement with different �bers. Journal of BiomedicalMaterials Research Part A 52(1): 107–114.

111. Zhang, Y. and Zhang, M., 2002. Three-dimensionalmacroporous calcium phosphate bioceramics with nestedchitosan sponges for load-bearing bone implants. Journal ofBiomedical Materials Research Part A 61(1): 1–8.

Page 158: Polymeric Biomaterials - Taylor & Francis eBooks

9 Chapter 9. Amphiphilic Systems asBiomaterials Based on Chitin, Chitosan,and Their Derivatives

1. Braconnot, H. Sur la nature des champignons, AnnalesChimie Physique, 79 (1811): 265–304.

2. Odier, A. Mémoire sur la composition chimique desparties cornées des insectes, Mémoires de la Sociétéd’Histoire Naturelle, 1 (1823): 29–42.

3. Cauchie, H.M. An attempt to estimate crustacean chitinproduction in the hydrosphere, in Advances in Chitinscience, Domard, A., Roberts, G.A.F., Varum, K.M. (Eds.),Jacques Andre Publishers, Lyon, France, Vol. 2, 1998, pp.32–39.

4. Peter, M.G. Chitin and chitosan in fungi, inPolysaccharides II: Polysaccharides from Eukaryotes, Vol.6: Biopolymers, Steinbüchel, A. (Ed.), Wiley-VCH,Weinheim, Germany, 2002, pp. 123–157.

5. Kumar, M.N.V .R. A review of chitin and chitosanapplications, Reactive and Functional Polymers, 46 (2000):1–27.

6. Sashiwa, H., Saimoto, H., Shigemasa, Y., Ogawa, R.,Tokura, S. Lysozyme susceptibility of partiallydeacetylated chitin, International Journal of BiologicalMacromolecules, 12 (1990): 295–296.

7. Shigemasa, Y., Saito, K., Sashiwa, H., Saimoto, H.Enzymatic degradation of chitins and partially deacetylatedchitins, International Journal of BiologicalMacromolecules, 16 (1994): 43–49.

8. Nishimura, K., Nishimura, S., Nishi, N. Immunologicalactivity of chitin and its derivatives, Vaccine, 2 (1984):93–99.

9. Mori, T., Okumura, M., Matsuura, M., Ueno, K., Tokura,S., Okamoto, Y., Minami, S., Fujinaga, T. Effects ofchitin and its derivatives on the proliferation andcytokine production of �broblasts in vitro, Biomaterials,18 (1997): 947–951.

10. Tokura, S., Ueno, K., Miyazaki, S., Nishi, N.Molecular weight dependent antimicrobial activity bychitosan, Macromolecular Symposia, 120 (1997): 1–9.

Page 159: Polymeric Biomaterials - Taylor & Francis eBooks

11. Tanigaw a, T., Tanaka, Y., Sashiwa, H., Saimoto, H.,Shigemasa, Y. Advances in chitin and chitosan, Brine,C.J., Sandford, P.A., Zikakis, J.P. (Eds.), in Proceedingsfrom the 5th International Conference on Chitin andChitosan, London, U.K., Elsevier, the Netherlands, 1992,pp. 206–215.

12. Okamoto, Y., Minami, S., Matsuhashi, A., Sashiwa, H.,Saimoto, H., Shigesama, Y., Tanigawa, T., Tanaka, Y.,Tokura, S. Polymeric N-acetyl-D-glucosamine (chitin)induces histrionic activation in dogs, Journal ofVeterinary Medical Science, 55 (1993): 739–742.

13. Kweon, D.K., Song, S.B., Park, Y.Y. Preparation ofwater-soluble chitosan/heparin complex and its applicationas wound healing accelerator, Biomaterials, 24 (2003):1595–1601.

14. Khor, E., Lim, L. Implantable applications of chitinand chitosan, Biomaterials, 24 (2003): 2339–2349.

15. Ramos, V.M., Rodriguez, N.M., Rodriguez, M.S., Heras,A., Agullo, E. Modi�ed chitosan carrying phosphonic andalkyl groups, Carbohydrate Polymers, 51 (2003): 425–429.

16. Peter, M. Applications and environmental aspects ofchitin and chitosan, Journal of Macromolecular SciencePart A Pure and Applied Chemistry, A32 (1995): 629–640.

17. Muzzarelli, R.A.A. Chitosan-based dietary foods,Carbohydrate Polymers, 29 (1996): 309–316.

18. Fädlt, P., Bergenstahl, B., Claesson, P.M.Stabilization by chitosan of soybean oil emulsions coatedwith phospholipid and glycocholic acid, Colloids andSurfaces A: Physicochemical and Engineering Aspects, 71(1993): 187–195.

19. Lindman, B., Carlsson, A., Gerdes, S., Karlström, G.,Piculell, L., Thalberg, K., Zhang, K. Food Colloids andPolymers: Stability and Mechanical Properties, Dickinson,E., Walstra, P. (Ed.), Royal Society of Chemistry,Cambridge, U.K., 1993, pp. 113–125.

20. Baschong, W., Hüglin, D., Maier, T., Kulik, E. In¥uenceof N-derivatization of chitosan to ist cosmeticactivities, SÖFW Journal, 125 (1999): 22–24.

21. Muzzarelli, R.A.A. Natural Chelating Polymers: AlginicAcid, Chitin and Chitosan, International series of

Page 160: Polymeric Biomaterials - Taylor & Francis eBooks

monographs in analytical chemistry, Belcher, R. (Ed.),Pergamon Press, Oxford, U.K., Vol. 144, 1973.

22. Romoren, K., Thu, B.J., Evensen, O. Immersion deliveryof plasmid DNA. II. A study of the potentials of achitosan based delivery system in rainbow trout(Oncorhynchus mykiss) fry, Journal of Controlled Release,85 (2002): 215–225.

23. Borchard, G. Chitosans for gene delivery, Advances inDrug Delivery Reviews, 52 (2001): 145–150.

24. Rolland, A.P. From genes to gene medicines. Recentadvances in nonviral gene delivery, Critical Reviews inTherapeutic Drug Carrier Systems, 15 (1998): 143–198.

25. Sato, T., Ishii, T., Okahata, Y. In vitro gene deliverymediated by chitosan. Effect of pH, serum and molecularmass of chitosan on the transfer ef�ciency, Biomaterials,22 (2001): 2075–2080.

26. Venkatesh, S., Smith, T.J. Chitosan-membraneinteractions and their probable role in chitosan-mediatedtransfection, Biotechnology and Applied Biochemistry, 27(1998): 265–267.

27. Cui, Z., Mumper, R.J. Chitosan-based nanoparticles fortopical genetic immunization, Journal of ControlledRelease, 75 (2001): 409–419.

28. Illum, L., Jabbal-Gill, I., Hinchcliffe, M., Fisher,A.N., Davis, S.S. Chitosan as a novel nasal deliverysystem for vaccines, Advanced Drug Delivery Reviews, 51(2001): 81–96.

29. Hejazi, R., Amiji, M. Chitosan-based gastrointestinaldelivery systems, Journal of Controlled Release, 89(2003): 151–165.

30. Fang, N., Chan, V., Mao, H.Q., Leong, K.W.Interactions of phospholipid bilayer with chitosan: Effectof molecular weight and pH, Biomacromolecules, 2 (2001):1161–1168.

31. Mansouri, S., Lavigne, P., Corsi, K., Benderdour, M.,Beaumont, E., Fernandes, J.C. Chitosan-DNA nanoparticlesas non-viral vectors in gene therapy: Strategies to improvetransfection ef�cacy, European Journal of Pharmaceuticsand Biopharmaceutics, 57 (2004): 1–8.

Page 161: Polymeric Biomaterials - Taylor & Francis eBooks

32. Corsi, K., Chella, F ., Yahia, L., Fernandes, J.C.Mesenchymal stem cells, MG63 and HEK293 transfection usingchitosan-DNA nanoparticles, Biomaterials, 24 (2003):1255–1264.

33. Erbacher, P., Zou, S., Bettinger, T., Steffan, A.M.,Remy, J.S. Chitosan-based vector/DNA complexes for genedelivery: Biophysical characteristics and transfectionability, Pharmaceutical Research, 15 (1998): 1332–1339.

34. Sashiwa, H., Aiba, S.I. Chemically modi�ed chitin andchitosan as biomaterials, Progress in Polymer Science, 29(2004): 887–908.

35. Wang, K.T., Iliopoulos, I., Audebert, R. Viscometricbehaviour of hydrophobically modi�ed poly(sodiumacrylate), Polymer Bulletin, 20 (1988): 577–582.

36. Bock, J., Pace, S.J., Schulz, D.N. Enhanced oilrecovery with hydrophobically associating polymerscontaining N-vinyl-pyrrolidone functionality, U.S. Patent4, 709, 759, 1987.

37. Hill, A., Candau, F ., Selb, J. Properties ofhydrophobically associating polyacrylamides: In¥uence ofthe method of synthesis, Macromolecules, 26 (1993):4521–4532.

38. Kaczmarski, J.P., Glass, J.E. Synthesis and solutionproperties of hydrophobically-modi�ed ethoxylatedurethanes with variable oxyethylene spacer lengths,Macromolecules, 26 (1993): 5149–5152.

39. Wesslen, B., Wesslen, K.B. Preparation and propertiesof some water-soluble, comb-shaped, amphiphilic polymers,Journal of Polymer Science Part A: Polymer Chemistry, 27(1989): 39153926.

40. Yahya, G.O., Hamad, E.Z. Solution behaviour of sodiummaleate/1-alkene copolymers, Polymer, 36 (1995):3705–3710.

41. Yahya, G.O., Asrof Ali, S.K., Al-Naafa, M.A., Hamad,E.Z. Preparation and viscosity behavior of hydrophobicallymodi�ed poly(vinyl alcohol) (PVA), Journal of AppliedPolymer Science, 57 (1995): 343–352.

42. Shulz, D.N., Kaladas, J.J., Maurer, J.J., Bock, H.,Pace, S.J., Shulz, W.W. Copolymers of acrylamide andsurfactant macromonomers: Synthesis and solution

Page 162: Polymeric Biomaterials - Taylor & Francis eBooks

properties, Polymer, 28 (1987): 2110–2115.

43. Valint, P.L., Jr., Bock, J. Synthesis andcharacterization of hydrophobically associating blockpolymers, Macromolecules, 21 (1988): 175–179.

44. Chang, Y.H., Mc Cormick, C.L. Water-solublecopolymers. 49. Effect of the distribution of thehydrophobic cationic monomerdimethyldodecyl(2-acrylamidoethyl)ammonium bromide on thesolution behavior of associating acrylamide copolymers,Macromolecules, 26 (1993): 6121–6126.

45. Shaw, K.G., Leipold, D.P. New cellulosic polymers forrheology control of latex paints, Journal of CoatingsTechnology, 57 (1985): 63–72.

46. Branham, K.D., Snowdey, H.S., Mc Cormick, C.L.Water-soluble copolymers. 64. Effects of pH and compositionon associative properties of amphiphilic acrylamide/acrylicacid terpolymers, Macromolecules, 29 (1996): 254–262.

47. Taylor, K.C., Nasr-El-Din, H.A. Water-solublehydrophobically associating polymers for improved oilrecovery: A literature review, Journal of Petroleum Scienceand Engineering, 19 (1998): 265–280.

48. Durand, A., Marie, E., Rotureau, E., Leonard, M.,Dellacherie, E. Amphiphilic polysaccharides: Useful toolsfor the preparation of nanoparticles with controlledsurface characteristics, Langmuir, 20 (2004): 6956–6963.

49. Rotureau, E., Leonard, M., Dellacherie, E., Durand, A.Amphiphilic derivatives of dextran: Adsorption atair/water and oil/water interfaces, Journal of Colloid andInterface Science, 279 (2004): 68–77.

50. Langevin, D. Polyelectrolyte and surfactant mixedsolutions. Behavior at surfaces and in thin �lms, Advancesin Colloid and Interface Science, 89–90 (2001): 467–484.

51. Beltran, C.M., Guillot, S., Langevin, D. Strati�cationphenomena in thin liquid �lms containing polyelectrolytesand stabilized by ionic surfactants, Macromolecules, 36(2003): 8506–8512.

52. Guillot, S., McLoughlin, D., Jain, N., Delsanti, M.,Langevin, D. Polyelectrolyte-surfactant complexes atinterfaces and in bulk, Journal of Physics: CondensedMatter, 15 (2003): S219–S224.

Page 163: Polymeric Biomaterials - Taylor & Francis eBooks

53. Alves, N.M., Mano, J.F., Chitosan derivatives obtainedby chemical modi�cations for biomedical and environmentalapplications, International Journal of BiologicalMacromolecules, 43 (2008): 401–414.

54. Hara, M. Polyelectrolytes. Marcel Dekker, New York,1993.

55. Magny, B., Iliopoulos, I., Audebert, R., Aggregation ofhydrophobically modi�ed polyelectrolytes in dilutesolution: ionic strength effects in MacromolecularComplexes in Chemistry and Biology, Dubin, P., Bock, J.,Davies, R.M., Schulz, D.N., Thies, C. (Edts), Springer,Berlin, Germany, 1994, pp. 51–62.

56. Prabaharan, M., Mano, J.F. Stimuli-responsive hydrogelsbased on polysaccharides incorporated withthermo-responsive polymers as novel biomaterials,Macromolecular Bioscience, 6 (2006): 991–1008.

57. Holme, K., Hall, L. Chitosan derivatives bearingC10-alkyl glycoside branches: A temperature-inducedgelling polysaccharide, Macromolecules, 24 (1991):3828–3833.

58. Nishimura, S., Miura, Y ., Ren, L., Sato, M.,Yamagashi, A., Nishi, N., Tokura, S., Kurita, K., Ishii, S.An ef�cient method for the syntheses of novel amphiphilicpolysaccharides by regio- and thermoselective modi�cationsof chitosan, Chemistry Letters, 22 (1993): 1623–1626.

59. Yoshioka, H., Nonaka, K., Fukuda, K., Kazama, S.Chitosan-derived polymer-surfactants and their micellarproperties, Bioscience Biotechnology and Biochemistry, 59(1995): 1901–1904.

60. Mourya, V.K., Inamdar , N.N., Chitosan-modi�cations andapplications: Opportunities galore, Reactive andFunctional Polymers, 68 (2008): 1013–1051.

61. Yalpani, M., Hall, L.D. Some chemical and analyticalaspects of polysaccharide modi�cations. 3. Formation ofbranched-chain, soluble chitosan derivatives,Macromolecules, 17 (1984): 272–281.

62. Desbrieres, J., Martinez, C., Rinaudo, M. Hydrophobicderivatives of chitosan: Characterization and rheologicalbehaviour, International Journal of BiologicalMacromolecules, 19 (1996): 21–28.

Page 164: Polymeric Biomaterials - Taylor & Francis eBooks

63. Lane, C.F. Sodium cyanoborohydride—A highly selectivereducing agent for organic functional groups, Synthesis, 3(1975): 135–146.

64. Auzely-Velty, R., Rinaudo, M. Chitosan derivativesbearing pendant cyclodextrin cavities: Synthesis andinclusion performance, Macromolecules, 34 (2001):3574–2580.

65. Buschmann, H.J., Knittel, D., Schollmeyer, E. Newtextile applications of cyclodextrins, Journal ofInclusion Phenomena, 40 (2001): 169–172.

66. Lainé, V., Sarguet, C.A., Gadelle, A., Defaye, J.,Perly, B., Pilard, D.F. Inclusion and solubilizationproperties of 6-S-glycosyl-6-thio derivatives ofβ-cyclodextrin, Journal of Chemical Society, PerkinTransactions 2, 2 (1995): 1479–1487.

67. Uekama, K. Recent aspects of pharmaceutical applicationof cyclodextrins, Journal of Inclusion Phenomena, 44(2002): 3–7.

68. Liu, G.-Y., Zhai, Y.-L., Wang, X.-L., Wang, W.-T.,Pan, Y.-B., Dong, X.-T., Wang, Y.-Z. Preparation,characterization, and in vitro release behavior ofbiodegradable chitosan-graft-poly(1,4-dioxan-2-one)copolymer, Carbohydrate Polymers, 74 (2008): 862–867.

69. Duan, K., Chen, H., Huang, J., Yu, J., Liu, S., Wang,D., Li, Y. One-step synthesis of amino-reservedchitosan-graft-polycaprolactone as a promising substance ofbiomaterial, Carbohydrate Polymers, 80 (2010): 499–504.

70. Yu, L., He, Y., Bin, L., Yue, F. Study ofradiation-induced graft copolymerization of butyl acrylateonto chitosan in acetic acid aqueous solution, Journal ofApplied Polymer Science, 90 (2003): 2855–2860.

71. Singh, V., Triparthi, D.N., Tiwari, A., Sanghi, R.,Microwave promoted synthesis ofchitosan-graftpoly(acrylonitrile), Journal of AppliedPolymer Science, 95 (2005): 820–825.

72. Nam, H.Y., Kwon, S.M., Chung, H., Lee, S.-Y., Kwon,S.-H., Jeon, H., Kim et al. Cellular uptake mechanism andintracellular fate of hydrophobically modi�ed glycolchitosan particles, Journal of Controlled Release, 135(2009): 259–267.

Page 165: Polymeric Biomaterials - Taylor & Francis eBooks

73. Chen, T., Kumar, G., Harris, M.T., Smith, P.J., Payne,G.F. Enzymatic grafting of hexyloxyphenol onto chitosan toalter surface and rheological properties, Biotechnology andBioengineering, 70 (2000): 564–573.

74. Muzzarelli, C., Muzzarelli, R.A.A. Reactivity ofquinones towards chitosans, Trends in Glycoscience andGlycotechnology, 14 (2002): 223–229.

75. Bordenave, N., Grelier, S., Coma, V. Advances onselective C-6 oxidation of chitosan by TEMPO,Biomacromolecules, 9 (2008): 2377–2382.

76. Hu, Y., Jiang, H., Xu, C., Wang, Y., Zhu, K.Preparation and characterization of poly(ethyleneglycol)chitosan with water- and organosolubility,Carbohydrate Polymers, 61 (2005): 472–479.

77. Xu, Z., Wan, X., Zhang, W., Wang, Z., Peng, R., Tao,F., Cai, L., Li, Y., Jiang, Q., Gao, R. Synthesis andbiodegradable polycationic methoxy poly(ethylene glycol)-polyethylenimine-chitosan and its potential as genecarrier, Carbohydrate Polymers, 78 (2009): 46–53.

78. Yoshiwaza, T., Shin-Ya, Y., Hong, K.J., Kajiuchi, T.pH- and temperature-sensitive release behaviors frompolyelectrolyte complex �lms composed of chitosan and PAOMAcopolymer, European Journal of Pharmaceutics andBiopharmaceutics, 59 (2005): 307–313.

79. Yoshiwaza, T., Shin-Ya, Y., Hong, K.J., Kajiuchi, T.pH- and temperature-sensitive permeation throughpolyelectrolyte complex �lms composed of chitosan andpolyalkyleneoxide-maleic acid copolymer, Journal ofMembrane Science, 241 (2004): 347–354.

80. Strand, S.P., Danielsen, S., Christensen, B.E., Varum,K.M. In¥uence of chitosan structure on the formation andstability of DNA-chitosan polyelectrolyte complexes,Biomacromolecules, 6 (2005): 3357–3366.

81. Mao, H.-Q., Roy , K., Troung-Le, V.L., Janes, K.A.,Lin, K.Y., Wang, Y., August, J.T., Leong, K.W.Chitosan-DNA nanoparticles as gene carriers: Synthesis,characterization and transfection ef�ciency, Journal ofControlled Release, 70 (2001): 399–421.

82. Erce len, S., Zhang, X., Duportail, G., Grand�ls, C.,Desbrieres, J., Karaeva, S., Tikhonov, V., Mely, Y.,

Page 166: Polymeric Biomaterials - Taylor & Francis eBooks

Babak, V. Physicochemical properties of low molecularweight alkylated chitosans: A new class of potentialnonviral vectors for gene delivery, Colloids and SurfacesB: Biointerfaces, 51 (2006): 140–148.

83. Ginsberg, G.L., Pepelk o, W.E., Goble, R.L., Hattis,D.B. Comparison of contact site cancer potency across doseroutes: Case study with epichlorohydrin, Risk Analysis, 16(1996): 667–681.

84. Athawale, V.D., Rathi, S.C. Graft polymerization:Starch as a model substrate, Journal of MacromolecularScience—Reviews in Macromolecular Chemistry and Physics,C39 (1999): 445.

85. Beck, R.H.F., Fitton, M.G., Kricheldorf, H.R. Chemicalmodi�cation of polysaccharides in Handbook of PolymerSynthesis, Part B, Kricheldorf, H.R. (Ed.), Marcel Dekker,New York, Chapter 25, 1992, pp. 1517–1578.

86. Vernon, B., Kim, S.W., Bae, Y.H. Insulin release fromislets of Langerhans entrapped in apoly(Nisopropylacrylamide-co-acrylic acid) polymer gel,Journal of Biomaterials Science, Polymer Edition, 10(1999): 183–198.

87. Ebara, M., Aoyagi, T., Sakai, K., Okano, T.Introducing reactive carboxyl side chains retains phasetransition temperature sensitivity in N-isopropylacrylamidecopolymer gels, Macromolecules, 33 (2000): 8312–8316.

88. Schild, H.G. Poly(N-isopropylacrylamide): Experiment,theory and application, Progress in Polymer Science, 17(1992): 163–249.

89. Bokias, G., Hourdet, D. Synthesis and characterizationof positively charged amphiphilic water soluble polymersbased on poly(N-isopropylacrylamide), Polymer, 42 (2001):6329–6337.

90. Kubota, N., T asumoto, N., Sano, T., Matsukawa, Y.Temperature-responsive properties of poly(acrylicacid-co-acrylamide)-graft-oligo(ethylene glycol) hydrogels,Journal of Applied Polymer Science, 80 (2001): 798–805.

91. Lee, C.F., Wen, C.J., Lin, C.L., Chiu, W.Y. Morphologyand temperature responsiveness-swelling relationship ofpoly(N-isopropylamide-chitosan) copolymers and theirapplication to drug release, Journal of Polymer SciencePart A: Polymer Chemistry, 42 (2004): 3029–3037.

Page 167: Polymeric Biomaterials - Taylor & Francis eBooks

92. Wang, M., Qiang, J., Fang, Y., Hu, D., Cui, Y., Fu, X.Preparation and properties ofchitosan-poly(Nisopropylacrylamide) semi-IPN hydrogels,Journal of Polymer Science A: Polymer Chemistry, 38 (2000):478–481.

93. Goycoolea, F.M., Heras, A., Aranaz, I., Galed, G.,Fernandez-Valle, M.E., Monal, W.A. Effect of chemicalcrosslinking on the swelling and shrinking properties ofthermal and pH-responsive chitosan hydrogels,Macromolecular Bioscience, 3 (2003): 612–619.

94. Kim, S.J., Shin, S.R., Lee, S.M., Kim, I.Y., Kim, S.I.Water and temperature response of semi-IPN hydrogelscomposed of chitosan and polyacrylonitrile, Journal ofApplied Polymer Science, 88 (2003): 2721–2724.

95. Wang, M., F ang, Y., Hu, D. Preparation and propertiesof chitosan-poly(N-isopropylacrylamide) full-IPNhydrogels, Reactive and Functional Polymers, 48 (2001):215–221.

96. Cai, H., Zhang, Z.P ., Sun, P.C., He, B.L., Zhu, X.X.Synthesis and characterization of thermo- and pHsensitivehydrogels based on chitosan-grafted N-isopropylacrylamidevia γ-radiation, Radiation Physics and Chemistry, 74(2005): 26–30.

97. Kim, I.Y., Kim, S.J., Shin, M.S., Lee, Y.M., Shin,D.I., Kim, S.J. pH- and thermal characteristics of grafthydrogels based on chitosan and poly(dimethylsiloxane),Journal of Applied Polymer Science, 85 (2002): 2661–2666.

98. Zhu, A.P., Chan, M.B., Dai, S., Li, L. The aggregationbehavior of O-carboxymethylchitosan in dilute aqueoussolution, Colloid and Surface B: Biointerfaces, 43 (2005):143–149.

99. Glass, J.E. Polymers in Aqueous Media: Performancethrough Association. Advances in Chemistry Series,American Chemical Society, Washington, DC, Vol. 223, 1989.

100. Hall, J.E., Hodgson, P., Krivanek, L., Malizia, P.J.In¥uence of rheology modi�ers on the performancecharacteristics of latex paints, Journal of CoatingsTechnology, 58 (1986): 65–73.

101. Desbrieres, J. Autoassociative natural polymerderivatives: The alkylchitosans. rheological behaviour and

Page 168: Polymeric Biomaterials - Taylor & Francis eBooks

temperature stability, Polymer, 45 (2004): 3285–3295.

102. Hirrien, M., Chevillard, C., Desbrieres, J., Axelos,M.A.V., Rinaudo, M. Thermogelation of methylcelluloses. Newevidence for understanding the gelation mechanism, Polymer,39 (1998): 6251–6259.

103. Hourdet, D., L’Alloret, F., Audebert, R. Reversiblethermothickening of aqueous polymer solutions, Polymer, 35(1994): 2624–2630.

104. Desbrieres, J. Contribution of chitin derivatives tothe modi�cation of physicochemical properties offormulations, Polymer International, 52 (2003): 494–499.

105. Desbrieres, J., Rinaudo, M., Klein, J.M., Mahler, BDérivés du chitosane. Procédé pour sa préparation etcomposition cosmétiques contenant de tels dérivés, FrenchPatent FR 2721933, 1994; European Patent EP 699433, 1995.

106. Marencic, A.P., W u, M.W., Register, R.A., Chaikin,P.M. Orientational order in sphere-forming block copolymerthin �lms aligned under shear, Macromolecules, 40 (2007):7299–7305.

107. Gohy, J.F., Lohmeijer, B.G.G., Alexeev, A., Wang,X.S., Manners, I., Winnik, M.A., Schubert, U.S.Cylindrical micelles from the aqueous self-assembly of anamphiphilic poly(ethylene oxide)-bpoly(ferrocenylsilane)(PEO-b-PFS) block copolymer with a metallo-supramolecularlinker at the block junction, Chemistry—A EuropeanJournal, 10 (2004): 4315–4323.

108. Rodriguez-Hernandez, J., Lecommandoux, S. Reversibleinside-out micellization of pH-responsive andwater-soluble vesicles based on polypeptide diblockcopolymers, Journal of American Chemical Society, 127(2005): 2026–2027.

109. Pochan, D.J., Chen, Z.Y ., Cui, H.G., Hales, K., Qi,K., Wooley, K.L. Toroidal triblock copolymer assemblies,Science, 306 (2004): 94–97.

110. Cameron, N.S., Corbierre, M.K., Eisenberg, A. 1998.E.W.R. Steacie award lecture asymmetric amphiphilic blockcopolymers solution: A morphological wonderland, CanadianJournal of Chemistry, 77 (1999): 1311–1326.

111. Discher, D.E., Eisenberg, A. Polymer v esicles,Science, 297 (2002): 967–973.

Page 169: Polymeric Biomaterials - Taylor & Francis eBooks

112. Yu, K., Bartels, C., Eiesnberg, A. Vesicles withhollow rods in the walls: A trapped intermediate morphologyin the transition of vesicles to inverted hexagonallypacked rods in dilute solutions of PS-b-PEO,Macromolecules, 31 (1998): 9399–9402.

113. Photos, P.J., Bacak ova, L., Discher, B., Bates, F.S.,Discher, D.E.J. Polymer vesicles in vivo: Correlationswith PEG molecular weight, Journal of Controlled Release,90 (2003): 323–334.

114. Mishima, K. Biodegradable particle formation for drugand gene delivery using supercritical ¥uid and dense gas,Advanced Drug Delivery Reviews, 60 (2008): 411–432.

115. Kim, K., Kwon, S., Park, J.H., Chung, H., Jeong, S.Y.,Kwon, I.C. Physicochemical characterizations ofself-assembled nanoparticles of glycol chitosan-deoxycholicacid conjugates, Biomacromolecules, 6 (2005): 1154–1158.

116. Aiping, Z., Tian, C., Lanhua, Y., Hao, W., Ping, L.,Synthesis and characterization of N-succinyl-chitosan andits self-assembly of nanospheres, Carbohydrate Polymers, 66(2006): 274–279.

117. Yoo, H.S., Lee, J.E., Chung, H., Kwon, I.C., Jeong,S.Y. Self-assembled nanoparticles containinghydrophobically modi�ed glycol chitosan for gene delivery,Journal of Controlled Release, 103 (2005): 235–243.

118. Zhang, C., Ping, Q., Zhang, H., Shen, J. Preparationof N-alkyl-O-sulfate chitosan derivatives and micellarsolubilization of taxol, Carbohydrate Polymers, 54 (2003):137–141.

119. Chae, S.Y., Son, S., Lee, M., Jang, M.-K., Nah, J.-W.Deoxycholic acid-conjugated chitosan oligosaccharidenanoparticles for ef�cient gene carrier, Journal ofControlled Release, 109 (2005): 330–344.

120. Zhu, A., Lu, Y., Pan, Y., Dai, S., Wu, H.Self-assembly of N-maleoylchitosan in aqueous media,Colloids and Surfaces B: Biointerfaces, 76 (2010):221–225.

121. Wu, Y., Zheng, Y., Yang, W., Wang, C., Hu, J., Fu, S.Synthesis and characterization of a novel amphiphilicchitosan-polylactids graft copolymer, CarbohydratePolymers, 59 (2005): 165–171.

Page 170: Polymeric Biomaterials - Taylor & Francis eBooks

122. Ishimuro, Y., Ueberreiter K. The surface tension ofpoly(acrylic acid) in aqueous solution, Colloid andPolymer Science, 258 (1980): 928–931.

123. Babak, V.G. Thermodynamic and kinetic aspects of thestabilization of microscopic liquid �lms by the adsorbedlayers of macromolecular surfactants, Langmuir, 3 (1987):612–620.

124. Babak, V., Lukina, I., Vikhoreva, G., Desbrieres, J.,Rinaudo, M. Interfacial properties of dynamic associationbetween chitin derivatives and surfactants, Colloids andSurfaces A: Physicochemical and Engineering Aspects, 147(1999): 139–148.

125. Sui, W., Song, G., Chen, G., Xu, G. Aggregateformation and surface activity property of an amphiphilicderivative of chitosan, Colloids and Surfaces A:Physicochemical and Engineering Aspects, 256 (2005):29–33.

126. Babak, V.G., Desbrieres, J., Tikhonov, V.E. Dynamicsurface tension and dilatational viscoelasticity ofadsorption layers of a hydrophobically modi�ed chitosan,Colloids and Surfaces A: Physicochemical and EngineeringAspects, 255 (2005): 119–130.

127. Babak, V.G., Desbrieres, J. Dynamic surface tensionand dilational viscoelasticity of adsorption layers ofalkylated chitosans and surfactant-chitosan complexes,Colloid and Polymer Science, 284 (2006): 745–754.

128. Desbrieres, J., Babak, V .G., Bousquet, C. Dynamicsurface tension and viscoelastic properties of adsorptionlayers of amphiphilic chitosan derivatives systems, inAdvances in Chitin Science, Domard, A., Guibal, E., Varum,K.M. (Eds.), Vol. 9, 2007, pp. 232–240.

129. Benjamins, J., Cagna, A., Lucassen-Reynderts, E.H.Viscoelastic properties of triacylglycerol/waterinterfaces covered by proteins, Colloids and Surfaces A:Physicochemical and Engineering Aspects, 114 (1996):245–254.

130. Desbrieres, J., Babak, V.G. Interfacial properties ofamphiphilic natural polymer systems based on derivatives ofchitin, Polymer International, 55 (2006): 1177–1183.

131. Zhu, A.-P., Y uan, L.-H., Chen, T., Wu, H., Zhao, F.

Page 171: Polymeric Biomaterials - Taylor & Francis eBooks

Interactions between N-succinyl-chitosan and bovine serumalbumin, Carbohydrate Polymers, 69 (2007): 363–370.

132. Wong, D.W.S., Gastineau, F.A., Gregorski, K.S.,Tillin, S.J., Pavlath, A.E. Chitosan-lipid �lms:Microstructure and surface energy, Journal of Agriculturaland Food Chemistry, 40 (1992): 540–544.

133. Muzzarelli, R.A.A., Human enzymatic activitiesrelated to the therapeutic administration of chitinderivatives, Cellular and Molecular Life Science, 53(1997): 131–140.

134. Bersch, P.C., Nies, B., Liebendörfer, A., Kreuler, J.In vitro evaluation of biocompatibility of different wounddressing materials, Journal of Materials Science, Materialsin Medicine, 6 (1995): 201–205.

135. Park, K., Kim, J.-H., Nam, Y.S., Lee, S., Nam, H.Y.,Kim, K., Park, J.H., Kim, I.-S., Choi, K., Kim, S.Y.,Kwon, I.C. Effect of polymer molecular weight on the tumortargeting characteristics of self-assembled glycolchitosan nanoparticles, Journal of Controlled Release, 122(2007): 305–314.

136. Kim, J.-H., Kim, Y.S., Kim, S., Park, J.H., Kim, K.,Choi, K., Chung et al. Hydrophobically modi�ed glycolchitosan nanoparticles as carriers for paclitaxel, Journalof Controlled Release, 111 (2006): 228–234.

137. Park, J.H., Kw on, S., Nam, J.O., Park, R.W., Chung,H., Seo, S.B., Kim, I.S., Kwon, I.C., Jeong, S.Y.Self-assembled nanoparticles based on glycol chitosanbearing 5β-cholanic acid for RGD peptide delivery, Journalof Controlled Release, 95 (2004): 579–588.

138. Prabaharan, M., Mano, J.F. Hydroxypropyl chitosanbearing β-cyclodextrin cavities: Synthesis and slowrelease of its inclusion complex with a model hydrophobicdrug, Macromolecular Science and Bioscience, 5 (2005):965–973.

139. Krauland, A.H., Alonso, M.J. Chitosan/cyclodextrinnanoparticles as macromolecular drug delivery system,International Journal in Pharmaceutics, 340 (2007):134–142.

140. Li, F., Liu, W.G., Yao, K.D. Preparation of oxidizedglucose-crosslinked N-alkylated chitosan membrane and invitro studies of pH-sensitive drug delivery behaviour,

Page 172: Polymeric Biomaterials - Taylor & Francis eBooks

Biomaterials, 23 (2002): 343–347.

141. Liu, W.G., Li, F. Yao, K.D. Oxidizedglucose-crosslinked alkylated chitosan membrane for thedelivery of Vitamin B2, in Chitosan in Pharmacy andChemistry, Muzzarelli, R.A.A., Muzzarelli, C. (Eds.), Atec,Grottammare, Italy, 2002, pp. 93–99.

142. Liu, W.G., Sun, S.J., Zhang, X., Yao, K.D.Self-aggregation behavior of alkylated chitosan and itseffect on the release of a hydrophobic drug, Journal ofBiomaterials Science Polymer Edition, 14 (2003): 851–859.

143. Cai, K., Liu, W ., Li, F., Yao, K., Yang, Z., Li, X.,Xie, H. Modulation of osteoblast function usingpoly(D,L-lactic acid) surfaces modi�ed with alkylationderivative of chitosan, Biomaterials Science PolymerEdition, 13 (2002): 53–66.

144. Li, J., Gong, Y ., Zhao, N., Zhang, X. Preparation ofN-butyl chitosan and study of its physical and biologicalproperties, Journal of Applied Polymer Science, 98 (2005):1016–1024.

145. Taboada, E., Cabrera, G., Cardenas, G. Synthesis andcharacterization of new arylamine chitosan derivatives,Journal of Applied Polymer Science, 91 (2004): 807–812.

146. Martin, L., Wilson, C.G., Koosha, F., Tetley, L.,Gray, A.I., Senel, S., Uchegbu, I.F. The release of modelmacromolecules may be controlled by the hydrophobicity ofpalmitoyl glycol chitosan hydrogels, Journal of ControlledRelease, 80 (2002): 87–100.

147. McEwan, G.T.A., Jepson, M.A., Hirst, B.H., Simmons,N.L. Polycation-induced enhancement of epithelialparacellular permeability is independent of tightjunctional characteristics, Biochima et BiophysicaActa—Biomembranes, 1148 (1993): 51–60.

148. Artursson, P., Lindmark, T., Davis, S.S., Illum, L.Effect of chitosan on the permeability of monolayers ofintestinal epithelial cells (Caco-2), PharmaceuticalResearch, 11 (1994): 1358–1361.

149. Alvarez-Lorenzo, C., Concheiro, A., Dubovik, A.S.,Grinberg, N.V., Burova, T.V., Grinberg, V.Y.Temperature-sensitive chitosan-poly(N-isopropylacrylamide)interpenetrated networks with enhanced loading capacityand controlled release properties, Journal of Controlled

Page 173: Polymeric Biomaterials - Taylor & Francis eBooks

Release, 102 (2005): 629–641.

150. Bhattarai, N., Ramay, H.R., Gunn, J., Matsen, F.A.,Zhang, M. PEG-grafted chitosan as an injectablethermosensitive hydrogel for sustained protein release,Journal of Controlled Release, 103 (2005): 609–624.

151. Zhang, C., Qu, G., Sun, Y., Yang, T., Yao, Z., Shen,W., Shen, Z., Ding, Q., Zhou, H., Ping, Q. Biologicalevaluation of N-octyl-O-sulfate chitosan as a newnano-carrier of intravenous drugs, European Journal ofPharmaceutical Sciences, 33 (2008): 415–423.

152. Green, S., Roldo, M., Douroumis, D, Bouropoulos, N.,Lamprou, D., Fatouros, D.G. Chitosan derivatives alterrelease pro�les of model compounds from calcium phosphateimplants, Carbohydrate Research, 344 (2009): 901–907.

153. Wang, Y., Tu, S.L., Li, R.S., Yang, X.Y., Liu, L.R.,Zhang, Q.Q. Cholesterol succinyl chitosan anchoredliposomes: Preparation, characterization, physicalstability, and drug release behavior, Nanomedicine:Nanotechnology, Biology and Medicine, 6 (2010): 471–477.

154. Sash iwa, H., Sumi, R., Saimoto, H., Okamoto, Y.,Minami, S., Matsuhashi, A., Shigesama, Y. Evaluation ofchitin and its derivatives as biomaterials, in ChitinWorld, Karnicki, Z.S., Wojtasz-Pajak, A., Brzeski, M.M.,Bykowski, P.J. (Eds.), Wirtschaftsverlag NW, Bremerhaven,Germany, 1994, pp. 382–386.

155. Sui, W., W ang, Y., Dong, S., Chen, Y. Preparation andproperties of an amphiphilic derivative ofsuccinylchitosan, Colloids and Surfaces A: Physicochemicaland Engineering Aspects, 316 (2008): 171–175.

156. Babak, V.G., Sk otnikova, E.A. Lipid and SurfactantDispersed Systems. Fundamentals, Design, Formulation,Production, AGPI, Moscow, Russia, Vol. 73, 1999.

157. Babak, V.G., Merk ovich, E.A., Galbraich, L.S.,Shtykova, E.V., Rinaudo, M. Kinetics of diffusionallyinduced gelation and ordered nanostructure formation insurfactant-polyelectrolyte complexes formed at water/wateremulsion type interfaces, Mendeleev Communications, 3(2000): 94.

158. Babak, V.G., Merk ovich, E.A., Desbrieres, J.,Rinaudo, M. Formation of an ordered nanostructure insurfactant-polyelectrolyte complexes formed by interfacial

Page 174: Polymeric Biomaterials - Taylor & Francis eBooks

diffusion, Polymer Bulletin, 45 (2000): 77–81.

159. Babak, V.G., Rinaudo, M. Physico-chemical propertiesof chitin-surfactant complexes, in Chitosan in Pharmacyand Chemistry, Muzzarelli, R.A.A., Muzzarelli, C. (Eds.),Atec, Grottammare, Italy, 2002, pp. 277–284.

160. Lai, W.-F., Lin, M. C.-M. Nucleic acid delivery withchitosan and its derivatives, Journal of ControlledRelease, 134 (2009): 158–168.

161. Jia, Z., Shen, D., Xu, W. Synthesis and antibacterialactivities of quaternary ammonium salt of chitosan,Carbohydrate Research, 333 (2001): 1–6.

162. Sieval, A.B., Thanou, M., Kotze, A.F., Verhoef, J.C.,Brussee, J., Junginger, H.E. Preparation and NMRcharacterization of highly substituted N-trimethyl chitosanchloride, Carbohydrate Polymers, 36 (1998): 157–165.

163. Thanou, M., Florea, B.I., Geldof, M., Junginger, H.E.,Borchard, G. Quaternized chitosan oligomers as novel genedelivery vectors in epithelial cell lines, Biomaterials, 23(2002), 153–159.

164. Mel’nikov, S.M., Sergeyev, V.G., Yoshikawa, K.Discrete coil—Globule transition of large DNA induced bycationic surfactant, Journal of American Chemical Society,117 (1995): 2401–2408.

165. Liu, W.G., Yao, K.D., Liu, Q.G. Formation of aDNA/N-dodecylated chitosan complex and salt-induced genedelivery, Journal of Applied Polymer Science, 82 (2001):3391–3395.

166. Liu, W.G., Zhang, X., Sun, S.J., Sun, G.J., Yao,K.D., Liang, D.C., Guo, G., Zhang, J.Y. N-alkylatedchitosan as a potential nonviral vector for genetransfection, Bioconjugate Chemistry, 14 (2003): 782–789.

167. Tikhonov, V.E., Stepnova, E.A., Babak, V.G., Yamskov,I.A., Palma-Guerrero, J., Jansson, H.B., LopezLlorca, L.V.et al. Bactericidal and antifungal activities of a lowmolecular weight chitosan and itsN-/2(3)-(dodec-2-enyl)succinoyl/-derivatives, CarbohydratePolymers, 64 (2006): 66–72.

168. Hirano, S., Ohe, Y., Ono, H. Selective N-acylation ofchitosan, Carbohydrate Research, 47 (1976): 315–320.

Page 175: Polymeric Biomaterials - Taylor & Francis eBooks

169. Kim, Y.H., Gim, S.H., Park, C.R., Lee, K.Y., Kim,T.W., Kwon, I.C., Chung, H., Jeong, S.Y. Structuralcharacteristics of size-controlled self-aggregates ofdeoxycholic acid-modi�ed chitosan and their application asa DNA delivery carrier, Bioconjugate Chemistry, 12 (2001):932–938.

170. Yun, Y.H., Jiang, H., Chan, R., Chen, W. Sustainedrelease of PEG-g-chitosan complexed DNA frompoly(lactide-co-glycolide), Journal of Biomaterials SciencePolymer Edition, 16 (2005): 1359–1378.

171. Zhu, D.W., Bo, J.G., Zhang, H.L., Liu, W.G., Leng,X.G., Song, C.X., Yin et al. Synthesis of N-methylenephosphonic chitosan (NMPCS) and its potential as genecarrier, Chinese Chemical Letters 18 (2007): 1407–1410.

172. Zhu, D., Yao, K., Bo, J., Zhang, H., Liu, L., Dong,X., Song, L., Leng, X. Hydrophilic/lipophilic N-methylenephosphonic chitosan as a promising non-viral vector forgene delivery, Journal of Materials Science, Materials inMedicine, 21 (2010): 223–229.

173. Tuzlakoglu, K., Alves, C.M., Mano, J.F., Reis, R.L.Production and characterization of chitosan �bers and 3-D�ber mesh scaffolds for tissue engineering applications,Macromolecular Bioscience, 4 (2004): 811–819.

174. Ding, Z., Chen, J., Gao, S., Chang, J., Zhang, J.,Kang, E.T. Immobilization of chitosan onto poly-l-lacticacid �lm surface by plasma graft polymerization to controlthe morphology of �broblast and liver cells, Biomaterials,25 (2004): 1059–1067.

175. Prabaharan, M., Rodriguez-Perez, M.A., de Saja, J.A.,Mano, J.F. Preparation and characterization ofpoly(l-lactic acid)-chitosan hybrid scaffolds with drugrelease capability, Journal of Biomedical BiomaterialsResearch, Part B: Applied Biomaterials, 81B (2007):427–434.

176. Amornchai, W., Hoven, V.P., Tangpasuthadol, V. Surfacemodi�cation of chitosan �lms-grafting ethylene glycololigomer and its effect on protein adsorption,Macromolecular Symposia, 216 (2004): 99–107.

177. Wang, J., Chen, L., Zhao, Y., Guo, G., Zhang, R. Celladhesion and accelerated detachment on the surface oftemperature-sensitive chitosan andpoly(N-isopropylacrylamide) hydrogels, Journal of

Page 176: Polymeric Biomaterials - Taylor & Francis eBooks

Materials, Materials in Medicine, 20 (2009): 583–590.

178. Li, Y., Liu, L., Fang, Y. Plasma-induced grafting ofhydroxyethyl methacrylate (HEMA) onto chitosan membranesby a swelling method, Polymer International, 52 (2003):285–290.

Page 177: Polymeric Biomaterials - Taylor & Francis eBooks

10 Chapter 10. Biomaterials of NaturalOrigin in Regenerative Medicine

Ahmed, T.A., Dare, E.V., and Hincke, M. 2008. Fibrin: Aversatile scaffold for tissue engineering applications.Tissue Eng Part B Rev 14:199–215.

Akane, T. and Toshikati, N. 2005. Acceleration of woundhealing by gelatin �lm dressings with epidermal growthfactor. J Vet Med Sci 67:909–913.

Albarghouthi, M., Fara, D.A., Saleem, M. et al. 2000.Immobilization of antibodies on alginate-chitosan beads.Int J Pharm 206:23–34.

Albertsson, A.C. and Karlsson, S. 1996. Macromoleculararchitecture-nature as a model for degradable polymers. JMacromol Sci Pure Appl Chem 33:1565–1570.

Alcaide, M., Serrano, M.C., Pagani, R. et al. 2008. L929�broblast and Saos-2 osteoblast response tohydroxyapatite-β-TCP/agarose biomaterial. J Biomed MaterRes A 89:539–549.

Alini, M., Li, W., Markovic, P. et al. 2003. The potentialand limitations of a cell-seeded collagen/hyaluronanscaffold to engineer an intervertebral disc-like matrix.Spine 28:446–454.

Alves, C.M., Yang, Y., Carnes, D.L. et al. 2007. Modulatingbone cells response onto starch-based biomaterials bysurface plasma treatment and protein adsorption.Biomaterials 28: 307–315.

Aoki, H., Taguchi, T., Saito, H. et al. 2004. Rheologicalevaluation of gelatin gels prepared with a citric acidderivative as a novel cross-linker. Mater Sci Eng C24:787–790.

Appelqvist, I.A.M. and Debet, M.R.M. 1997.Starch-biopolymer interactions—A review. Food Rev Int13:163–224.

Artanareeswaran, G., Thanikaivelan, P., Srinivasn, K. etal. 2004. Synthesis, characterization and thermal studieson cellulose acetate membranes with additives. Eur Polym J40:2153–2159.

Atalla, R.H. and VanderHart, D.L. 1984. Native cellulose: Acomposite of two distinct crystalline forms. Science

Page 178: Polymeric Biomaterials - Taylor & Francis eBooks

223:283–285.

Avery, N.C. and Bailey, A.J. 2008. Restraining cross-linksresponsible for the mechanical properties of collagen�bers: Natural and arti�cial. In Collagen: Structure andMechanics, ed. P. Fratzl, pp. 81–110. Boston, MA:Springer.

Azevedo, H.S. and Reis, R.L. 2009. Encapsulation ofα-amylase into starch-based biomaterials: An enzymaticapproach to tailor their degradation rate. Acta Biomater5:3021–3030.

Bach, A.D., Bannasch, H., Galla, T.J. et al. 2001. Fibringlue as matrix for cultured autologous urothelial cells inurethral reconstruction. Tissue Eng 7:45–53.

Bakos, D., Soldan, M., and Hernández-Fuentes, I. 1997.Hydroxyapatite-collagen-hyaluronic acid composite.Biomaterials 20:191–195.

Balgude, A.P., Yu, X., Szymanski, A. et al. 2001. Agarosegel stiffness determines rate of DRG neurite extension in3D cultures. Biomaterials 22:1077–1084.

Barbosa, M.A., Granja, P.L., Barrias, C.C. et al. 2005.Polysaccharides as scaffolds for bone regeneration.ITBM-RBM 26:212–217.

Barker, H.T., Fuller, G.M., Klinger, M.M. et al. 2001.Modi�cation of �brinogen with poly (ethylene glycol) andits effects on �brin clot characteristics. J Biomed MaterRes 56:529–535.

Baron, M., Norman, D.G., and Campbell, I.D. 1991. Proteinmodules. Trends Biochem Sci 16:13–17.

Benedetti, L., Cortivo, R. Berti, T. et al. 1993.Biocompatibility and biodegradation of different hyaluronanderivatives (HYAFF) implanted in rats. Biomaterials14:1154–1160.

Benya, P. D. and Shaffer, J. D. 1982. Dedifferentiatedchondrocytes re-express the differentiated phenotype whencultured in agarose cells. Cell 30:215–224.

Bigi, A., Borghi, M., Cojazzi, G. et al., 2000. Structuraland mechanical properties of crosslinked drawn gelatin�lms. J Therm Anal Calorim 61:451–459.

Page 179: Polymeric Biomaterials - Taylor & Francis eBooks

Boesel, L.F., Mano, J.F., and Reis, R.L. 2004. Optimizationof the formulation and mechanical properties of starchbased partially degradable bone cements. J Mater Sci MaterMed 15:73–83.

Brown, J.C. and Timple, R. 1995. The collagen superfamily.Int Arc Allergy Immunol 107:484–490.

Buckley, C.T., Thorpe, S.D., O’Brien, F.J. et al. 2009. Theeffect of concentration, thermal history and cell seedingdensity on the initial mechanical properties of agarosehydrogels. J Mech Behav Biomed 2:512–521.

Buma, P., Pieper, J.S., van Tienen, T. et al. 2003.Cross-linked type I and type II collagenous matrices forthe repair of full-thickness articular cartilage defects—Astudy in rabbits. Biomaterials 24:3255–3263.

Calonder, C., Matthew, H.W., and Van Tassel, P.R. 2005.Adsorbed layers of oriented �bronectin: A strategy tocontrol cell-surface interactions. J Biomed Mater Res75A:316–323.

Carreira, A.S., Goncalves, F.A.M.M., Mendonça, P.V. et al.2010. Temperature and pH responsive polymers based onchitosan: Applications and new graft copolymerizationstrategies based on living radical polymerization. CarbohydPolym 80:618–630.

Chari, P.S. 2003. Susruta and our heritage. Indian J PlastSurg 36:4–13.

Chen, G., Ito, Y., Imanishi, Y. et al. 1997.Photoimmobilization of sulfated hyaluronic acid forantithrombogenicity. Bioconjug Chem 8:730–734.

Chen, W., Shi, C., Yi, S. et al. 2010. Bladder regenerationby collagen scaffolds with collagen binding human basic�broblast growth factor. J Urol 183:2432–2439.

Chiono, V., Pulieri, E., Vozzi, G. et al. 2008.Genipin-crosslinked chitosan/gelatin blends for biomedicalapplications. J Mater Sci Mater Med 19:889–898.

Chirita, M. 2008. Mechanical properties of collagenbiomimetic �lms formed in the presence of calcium, silicaand chitosan. J Bionic Eng 5:149–158.

Choi, Y.S., Hong, S.R., Lee, Y.M. et al. 1999. Studies ongelatin-containing arti�cial skin: II Preparation and

Page 180: Polymeric Biomaterials - Taylor & Francis eBooks

characterization of cross-linked gelatin-hyaluronatesponge. J Biomed Mater Res 48:631–639.

Choi, Y.S., Lee, S.B., Hong, S.R. et al. 2001. Studies ongelatin-based sponges. Part III: A comparative study ofcross-linked gelatin/alginate, gelatin/hyaluronate andchitosan/hyaluronate sponges and their application as awound dressing in full-thickness skin defect of rat. JMater Sci Mater Med 12:67–73.

Chvapil, M. 1979. Industrial uses of collagen. In FibrousProteins: Scienti©c, Industrial and Medical Aspects, eds.D.A.D. Parry, and L.K. Creamer, pp. 247–629. London, U.K.:Academic Press.

Ciardelli, G., Gentile, P., Chiono, V. et al. 2009.Enzymatically crosslinked porous composite matrices forbone tissue regeneration. J Biomed Mater Res A92A:137–151.

Coburn, J.C. and Pandit, A. 2007. Development ofnaturally-derived biomaterials and optimization of theirbiomechanical properties. In Topics in Tissue Engineering,eds. N. Ashammakhi, R. Reis, and E. Chiellini, Vol. 3, pp.1–32 (Ebook).

Curotto, E. and Aros, F. 1993. Quantitative determinationof chitosan and the percentage of free amino groups. AnalBiochem 211:240–241.

Dal Pozzo, A., Vanini, L., Fagnoni, M., Guerrini, A., DeBenedittis, M., and Muzzarelli, R. A. A. 2000. Preparationand characterization of poly(ethylene glycol) crosslinkedreacetylated chitosans. Carbohydrate Polymers, 42:201–206.

De La Riva, B., Sànchez, E., Hernández, A. et al., 2010.Local controlled release of VEGF and PDGF from a combinedbrushite–chitosan system enhances bone regeneration. JControl Release 143:45–52.

Degenshein, G.A., Hurwitz, A., and Ribacoff, S. 1963.Experience with regenerated oxidized cellulose. NY State JMed 63:2639–2643.

Dias, G.J., Peplow, P.V., and Teixeira, F. 2003. Osseousregeneration in the presence of oxidized cellulose andcollagen. J Mater Sci Mater Med 14:739–745.

Dillon, G.P., Yu, X., Sridharan, A. et al. 1998. The

Page 181: Polymeric Biomaterials - Taylor & Francis eBooks

in¥uence of physical structure and charge polarity onneurite extension in a 3D hydrogel scaffold. J BiomaterSci Polym 9:1049–1069.

Dittrich, R., Despang, F., Bernhardt, A. et al. 2006.Mineralized scaffolds for hard tissue engineering byionotropic gelation of alginate. Adv Sci Technol49:159–164.

Djabourov, M., Leblond, J., and Papon, P. 1988. Gelation ofaqueous gelatin solutions. II. Rheology of the sol–geltransition. J Phys France 49:333–343.

Drury, J.L. and Mooney, D.J. 2003. Hydrogels for tissueengineering: Scaffold design variables and applications.Biomaterials 24:4337–4351.

Duarte, A.R.C., Mano, J.F., and Reis, R.L. 2009.Preparation of starch-based scaffolds for tissueengineering by supercritical immersion precipitation. JSupercrit Fluids 49:279–285.

Elisseeff, J., Puleo, C., Yang, F. et al. 2005. Advances inskeletal tissue engineering with hydrogels. OrthodCraniofac Res 8:150–161.

Elsie, S.P., Nicholas, D.E., and Molly, M.S. 2009.Complexity in biomaterials for tissue engineering. NatMater 8:457–470.

Elvira, C., Mano, J.F., San Roman, J. et al. 2002.Starch-based biodegradable hydrogels with potentialbiomedical applications as drug delivery systems.Biomaterials 23:1955–1966.

Entcheva, E., Bien, H., Yin, L. et al. 2004. Functionalcardiac cell constructs on cellulose-based scaffolding.Biomaterials 25:5753–5762.

Entcheva, E.G. and Yotova, L.K. 1994. Analyticalapplication of membranes with covalently boundglucoseoxidase. Anal Chim Acta 299:171–177.

Ertesvag, H. and Valla, S. 1998. Biosynthesis andapplications of alginates. Polym Degrad Stabil 59:85–91.

Ertesvag, H., Valla, S., and Skjåk-Bræk, G. 1996. Geneticsand biosynthesis of alginates. Carbohyd Eur 14:14–18.

Espigares, I., Elvira, C., and Reis, R.L. 2002. New

Page 182: Polymeric Biomaterials - Taylor & Francis eBooks

partially degradable and bioactive acrylic bone cementsbased on starch blends and ceramic �llers. Biomaterials23:1883–1895.

Exposito, J.Y., Cluzel, C., Garrone, R. et al. 2002.Evolution of collagens. Anat Rec 268:302–316.

Eyrich, D., Brandl, F., Appel, B. et al. 2007. Long-termstable �brin gels for cartilage engineering. Biomaterials28:55–65.

Fa-Ming, C., Yi-Min, Z., Rong, Z. et al. 2007. Periodontalregeneration using novel glycidyl methacrylated dextran(Dex-GMA)/gelatin scaffolds containing microspheres loadedwith bone morphogenetic proteins. J Control Release121:81–90.

Freier, T., Koh, H.S., Kazazian, K. et al. 2005a.Controlling cell adhesion and degradation of chitosan �lmsby N-acetylation. Biomaterials 26:5872–5878.

Freier, T., Montenegro, R., Koh, H.S. et al. 2005b.Chitin-based tubes for tissue engineering in the nervoussystem. Biomaterials 26:4624–4632.

Freile-Pelegrin, Y., Madera-Santana, T., Robledo, D. et al.2007. Degradation of agar �lms in a humid tropicalclimate: Thermal, mechanical, morphological and structuralchanges. Polym Degrad Stabil 92:244–252.

Friess, W. 1998. Collagen: Biomaterial for drug delivery.Eur J Pharm Biopharm 45:113–136.

Gatj, I., Popa, M., and Rinaudo, M. 2005. Role of the pH onhyaluronan behavior in aqueous solution. Biomacromolecules6:61–67.

Gelinsky, M., Eckert, M., and Despang, F. 2007. Biphasicbut monolithic scaffolds for the therapy of osteochondraldefects. Int J Mater Res 8:749–755.

Gentile, P., Chiono, V., Ciardelli, G. et al. 2010.Composite �lms of gelatin and hydroxyapatite/bioactiveglass for tissue-engineering applications. J Biomater SciPolym Ed 21:1207–1226.

Glowacki, J. and Mizuno, S. 2008. Collagen scaffolds fortissue engineering. Biopolymers 89:338–344.

Gomes, M.E., Bossano, C.M., Johnston, C.M. et al. 2006. In

Page 183: Polymeric Biomaterials - Taylor & Francis eBooks

vitro localization of bone growth factors in constructs ofbiodegradable scaffolds seeded with marrow stromal cellsand cultured in a ¥ow perfusion bioreactor. Tissue Eng12:177–188.

Gomes, M.E., Ribeiro, A.S., Malafaya, P.B. et al. 2001. Anew approach based on injection moulding to producebiodegradable starch-based polymeric scaffolds: Morphology,mechanical and degradation behaviour. Biomaterials22:883–889.

Gomez, G.M.C., Turnay, J., and Monter, P. 2002. Structuraland physical properties of gelatine extracted fromdifferent marine species: A comparative study. FoodHydrocolloid 16:25–34.

Gotterbarm, T., Richter, W., Jung, M. et al. 2006. An invivo study of a growth-factor enhanced, cell free,twolayered collagen–tricalcium phosphate in deeposteochondral defects. Biomaterials 27:3387–3395.

Grabarek, Z. and Gergely, J. 1990. Zero-length crosslinkingprocedure with the use of active esters. Anal Biochem18:131–135.

Guo, T., Zhao, J., Chang, J. et al. 2006. Porouschitosan-gelatin scaffold containing plasmid DNA encodingtransforming growth factor-β1 for chondrocytesproliferation. Biomaterials 27:1095–1103.

Hahn, S.K., Park, J.K., Tomimatsu, T. et al. 2007.Synthesis and degradation test of hyaluronic acidhydrogels. Int J Biol Macromol 40:374–380.

Han, W.W. and Misra, R.D.K. 2009. Biomimeticchitosan–nanohydroxyapatite composite scaffolds for bonetissue engineering. Acta Biomater 5:1182–1197.

Han, B., Schwab, I., Madsen, T. et al. 2002. Fibrin-basedbioengineered ocular surface with human corneal epithelialstem cells. Cornea 21:505–510.

Hao, T., Wen, N., Wang, H.B. et al. 2010. The support ofmatrix accumulation and the promotion of sheep articularcartilage defects repair in vivo by chitosan hydrogels.Osteoarthr Cartil 18:257–265.

Herbert, C.B., Bittner, G.D., and Hubbell, J.A. 1996.Effects of �brinolysis on neurite growth from dorsal rootganglia cultured in two- and three-dimensional �brin gels.

Page 184: Polymeric Biomaterials - Taylor & Francis eBooks

J Comp Neurol 365:380–391.

Hieta, K., Kuga, S., and Usuda, M. 1984. Electron stainingof reducing ends evidences a parallel-chain structure invalonia cellulose. Biopolymers 23:1807–1810.

Hirakura, T., Yasugi, K., Nemoto, T. et al. 2010. Hybridhyaluranon hydrogel as a protein nano carrier: New systemfor sustained delivery if protein with a chaperone-likefunction. J Control Release 142:483–489.

Hirota, Y., Tanioka, S., Tanigawa, T. et al. 1996. Clinicalapplications of chitin and chitosan to human decubitus. InAdvances in Chitin Science, eds. A. Domard, C. Jeuniaux, R.Muzzarelli et al., pp. 407–413. Lyon, France: JacquesAndre Ed.

Hofmann, I., Muller, L., Greil, P. et al. 2006. Calciumphosphate nucleation on cellulose fabrics. Surf CoatingTech 201:2392–2398.

Huang, Z.H., Dong, Y.S., Chu, C.L. et al. 2008.Electrochemistry assisted reacting deposition ofhydroxyapatite in porous chitosan scaffolds. Mater Lett62:3376–3378.

Hynes, R. O. 1990. Fibronectins. New York: Springer-Verlag.

Idris, A. and Yet, L.K. 2006. The effect of differentmolecular weight PEG additives on cellulose acetateasymmetric dialysis membrane performance. J Membr Sci280:920–927.

Izydorczyk, M., Cui, S.W., and Wang, Q. 2005. FoodCarbohydrates: Chemistry, Physical Properties, andApplications. Boca Raton, FL: Taylor & Francis Group.

Javerliat, I., Goëau-Brissonnière, O., Sivadon-Tardy, V. etal., 2007. Prevention of Staphylococcus aureus graftinfection by a new gelatin-sealed vascular graft prebondedwith antibiotics. J Vasc Surg 46:1026–1031.

Jiankang, H., Dichen, L., Yiaxiong, L. et al., 2009.Preparation of chitosan–gelatin hybrid scaffolds withwellorganized microstructures for hepatic tissueengineering. Acta Biomater 5:453–461.

Johnson, F.A., Craig, D.Q.M., and Mercer, A.D. 1997.Characterization of the block structure and molecularweight of sodium alginates. J Pharm Pharmacol 49:639–643.

Page 185: Polymeric Biomaterials - Taylor & Francis eBooks

Khor, E. 1997. Methods for the treatment of collagenoustissues for bioprostheses. Biomaterials 18:95–105.

Khor, E. and Lim, L.Y. 2003. Implantable applications ofchitin and chitosan. Biomaterials 24:2339–2349.

Kifune, K. 1992. Clinical application of chitin arti�cialskin. In Advances in Chitin and Chitosan, eds. C.J. Brine,P.A. Sandford, and J.P. Zikakis, pp. 9–15. London, U.K.:Elsevier.

Kim, T.H., Jiang, H.L. Jere, D. et al. 2007. Chemicalmodi�cation of chitosan as a gene carrier in vitro and invivo. Prog Polym Sci 32:726–753.

Kim, I.Y., Seo, S.J., Moon, H.S. et al. 2008. Chitosan andits derivatives for tissue engineering applications.Biotechnol Adv 26:1–21.

Klemm, D., Heublein, B., Fink, H.P. et al. 2005. Cellulose:Fascinating biopolymer and sustainable raw material. AngewChem Int Ed Engl 44:3358–3393.

Knaul, J. Z., Hudson, S.M., and Creber, K.A.M. 1999.Crosslinking of chitosan �bers with dialdehydes: Proposalof a new reaction mechanism. J Polym Sci B Polym Phys 37:1079–1094.

Kobayashi, S., and Uyama, H. 2003. Biomacromolecules andbio-related macromolecules. Macromol Chem Phys204:235–256.

Kodama, K., Doi, O., Higashiyama, M. et al. 1997.Pneumostatic effect of gelatin-resorcinolformaldehydeglutaraldehyde glue on thermal injury of thelung: An experimental study on rats. Eur J CardiothoracSurg 11:333–336.

Kong, H. and Mooney, D.J. 2004. Polysaccharide-basedhydrogels in tissue engineering. In Polysaccharides, 2ndedn, ed. S. Dumitriu, Chapter 36, pp. 817–837. New York:Marcel & Dekker.

Kuo, C.K. and Ma, P.X. 2001. Ionically crosslinked alginatehydrogels as scaffolds for tissue engineering: Part 1.Structure, gelation rate and mechanical properties.Biomaterials 22:511–521.

Kurita, K. 2001. Controlled functionalization of the

Page 186: Polymeric Biomaterials - Taylor & Francis eBooks

polysaccharide chitin. Prog Polym Sci 26:1921–1971.

Lakshmi, S.N. and Cato, T.L. 2007. Biodegradable polymersas biomaterials. Progr Polym Sci 32:762–798.

Lee, S.B., Kim, Y.H., Chong, M.S. et al. 2005. Study ofgelatin-containing arti�cial skin V: Fabrication ofgelatin scaffolds using a salt-leaching method.Biomaterials 26:1961–1968.

Lee, E.J., Shin, D.S., Kim, H.E. et al. 2009. Membrane ofhybrid chitosan–silica xerogel for guided boneregeneration. Biomaterials 30:743–750.

Lee, C.H., Singla, A., and Lee, Y. 2001. Biomedicalapplications of collagen. Int J Pharm 221:1–22.

Lezica, R.P. and Quesada-Allue, L. 1990. Chitin. In Methodsin Plant Biochemistry. Carbohydrates, ed. P.M. Dey, pp.443–481. London, U.K.: Academic Press.

Li, Q., Dunn, E.T., Grandmaison, E.W. et al. 1992.Applications and properties of chitosan. J Bioact CompatPolym 7:370–397.

Liang, S.M., Zhang, L.N., and Xu, J. 2007. Morphology andpermeability of cellulose/chitin blend membranes. J MembrSci 287:19–28.

Lien, S.-M., Chien, C.-H., and Huang, T.-J. 2009. A novelosteochondral scaffold of ceramic–gelatin assembly forarticular cartilage repair. Mater Sci Eng C 29:315–321.

Liu, C.Z. 2008. Biomimetic synthesis ofcollagen/nano-hydroxyapatite scaffold for tissueengineering. J Bionic Eng 5:1–8.

Liu, Y., Lu, Y., Cui, G. et al. 2009a. Segmental boneregeneration using an rhBMP-2-loadedgelatin/nanohydroxyapatite/�brin scaffold in a rabbitmodel. Biomaterials 30:6276–6285.

Liu, X., Smith, L.A., Hu, J. et al. 2009b. Biomimeticnano�brous gelatin/apatite composite scaffolds for bonetissue engineering. Biomaterials 30:2252–2258.

Lin, Y.C., Tan, F.J., Marra, K.G. et al. 2009. Synthesisand characterization of collagen/hyaluronan/chitosancomposite sponges for potential biomedical applications.Acta Biomater 5:2591–2600.

Page 187: Polymeric Biomaterials - Taylor & Francis eBooks

Liu, S.H., Yang, R.S., al-Shaikh, R. et al. 1995. Collagenin tendon, ligament and bone healing. Clin Orthop Res318:265–278.

Lu, J.T., Lee, C.J., Bent, S.F. et al. 2007. Thin collagen�lm scaffolds for retinal epithelial cell culture.Biomaterials 28:1486–1494.

Luo, Y. and Shoichet, M.S. 2004. A photolabile hydrogel forguided three-dimensional cell growth and migration. NatMater 3:249–253.

Luo, L.H., Zhang, Y.F., Wang, X.M. et al. 2010.Preparation, characterization, and in vitro and in vivoevaluation of cellulose/soy protein isolate compositesponges. J Biomater Appl 24:503–526.

Luo, Y., Ziebell, M.R., and Prestwich, G.D. 2000. Ahyaluronic acid-taxol antitumor bioconjugate targeted tocancer cells. Biomacromolecules 1:208–218.

Madhumathi, K., Nair, S.V., and Jayakumar, R. et al. 2009.Preparation and characterization of novel-chitin–hydroxyapatite composite membranes for tissue engineeringapplications. Int J Biol Macromol 44:1–5.

Malafaya, P.B., Elvira, C., Gallardo, A. et al. 2001.Porous starch-based drug delivery systems processed by amicrowave route. J Biomater Sci Polym Ed 12:1227–1241.

Malafaya, P.B., Silva, G.A., and Reis, R.L. 2007.Natural–origin polymers as carriers and scaffolds forbiomolecules and cell delivery in tissue engineeringapplications. Adv Drug Deliv Rev 59:207–233.

Malafaya, P., Stappers, F., and Reis, R.L. 2006.Starch-based microspheres produced by emulsion crosslinkingwith a potential media dependent responsive behaviour to beused as drug delivery carriers. J Mater Sci Mater Med17:371–377.

Maluf, N.S. 1954. History of blood transfusion. J Hist MedAllied Sci 9:59–107.

Mandal, B.B., Mann, J.K., and Kundu, S.C. 2009. Silk�broin/gelatin multilayered �lms as a model system forcontrolled drug release. Eur J Pharm Sci 37:160–171.

Mano, J.F., Silvia, G.A., Reis, R.L. et al. 2007. Natural

Page 188: Polymeric Biomaterials - Taylor & Francis eBooks

origin biodegradable systems in tissue engineering andregenerative medicine: Present status and some movingtrends. J R Soc Interface 4:999–1030.

Mao, J.S. Zhao, L.G., Yin Y.J. et al. 2003. Structure andproperties of bilayer chitosan-gelatin scaffolds.Biomaterials 24:1067–1074.

Marques, A.P., Reis, R.L., and Hunt, J.A. 2002. Thebiocompatibility of novel starch-based polymers andcomposites: In vitro studies. Biomaterials 23:1471–1478.

Martins, A., Chung, S., and Pedro, A.J. et al. 2009.Hierarchical starch-based �brous scaffold for bone tissueengineering applications. J Tissue Eng Regen Med 3:37–42.

Martson, M., Viljanto, J., and Hurme, T. et al. 1998.Biocompatibility of cellulose sponge with bone. Eur SurgRes 30:426–432.

Mathew, P., Binulal, N.S., Nair, S.V. et al. 2010. Novelbiodegradable chitosan–gelatin/nano-bioactive glassceramic composite scaffolds for alveolar bone tissueengineering. Chem Eng J 158:353–361.

Mauck, R.L., Seyhan, S.L., Ateshian, G.A. et al. 2002.In¥uence of seeding density and dynamic deformationalloading on the developing structure/function relationshipsof chondrocyte-seeded agarose hydrogels. Ann Biomed Eng30(8):1046–1056.

del Mel, A., Bolvin, C., Edirisinghe, M. et al. 2008.Development of cardiovascular bypass grafts:Endothelialization and applications of nanotechnology.Expert Rev Cardiovasc Ther 6:1259–1277.

Michon, C., Cuvelier, G., Relkin, P. et al. 1997. In¥uenceof thermal history on the stability of gelatin gels.Int J Biol Macromol 20:259–264.

Miyamoto, T., Takahashi, S., Ito, H. et al. 1989. Tissuebiocompatibility of cellulose and its derivatives.J Biomed Mater Res 23:125–133.

Morrison, W.R. and Karkalas, J. 1990. Carbohydrates.London, U.K.: Academic Press.

Mosesson, M.W., Siebenlist, K.R., and Meh, D.A. 2001. Thestructure and biological features of �brinogen and �brin.Ann N Y Acad Sci 936:11–30.

Page 189: Polymeric Biomaterials - Taylor & Francis eBooks

Mouw, J.K., Case, N.D., Guldberg, R.E. et al. 2005.Variations in matrix composition and GAG �ne structureamong scaffolds for cartilage tissue engineering.Osteoarthr Cartil 13:828–836.

Muller, F.A., Muller, L., Hofmann, I. et al. 2006.Cellulose-based scaffold materials for cartilage tissueengineering. Biomaterials 27:3955–3963.

Murphy, C.M., Haugh, M.G., and O’Brien, F.J. 2010. Theeffect of mean pore size on cell attachment, proliferationand migration in collagen–glycosaminoglycan scaffolds forbone tissue engineering. Biomaterials 31:461–466.

Neidert, M. R., Lee, E. S., Oegema, T.R. et al. 2002.Enhanced �brin remodeling in vitro with TGF-β1, insulinand plasmin for improved tissue-equivalents. Biomaterials23:3717–3731.

Nisbet, D. R., Crompton, K.E., Horne, M.K. et al. 2008.Neural tissue engineering of the CNS using hydrogels. JBiomed Mater Res B Appl Biomater 87B:251–263.

Nishiyama, P., Langan H., and Chanzy, H. 2002. Crystalstructure and hydrogen-bonding system in cellulose I β fromsynchrotron X-ray and neutron �ber diffraction. J Am ChemSoc 124:9074–9082.

Nishiyama, Y., Sugiyama, J., Chanzy, H. et al. 2003.Crystal structure and hydrogen bonding system in celluloseI α from synchrotron x-ray and neutron �ber diffraction. JAm Chem Soc 125:14300–14306.

Oakenfull, D. and Scott A. 2003. Gelatin gels in deuteriumoxide. Food Hydrocolloid 17:207–210.

Okuyama, K., Wu, G., Jiravanichanun, N. et al. 2006.Helical twists of collagen model peptides. Biopolymers84:421–432.

Olde, L.H.H.D., Dijkstra, P.J., van Luyn, M.J.A. et al.1996. In vitro degradation of dermal sheep collagencrosslinked using a water-soluble carbodiimide.Biomaterials 17:679–684.

Olsen, D., Yang, C., Bodo, M. et al. 2003. Recombinantcollagen and gelatin for drug delivery. Adv Drug Deliv Rev55:1547–1567.

Page 190: Polymeric Biomaterials - Taylor & Francis eBooks

Onsoyen, E. 1992. Alginates. In Thickening and GellingAgents for Food, ed. A. Imeson, pp. 1–24. London, U.K.:Blackie Academic & Professional.

Osathanon, T., Linnes, M.L. Rajachar, R.M. et al. 2008.Microporous nano�brous �brin-based scaffolds for bonetissue engineering. Biomaterials 29:4091–4099.

Pacaccio, D. 2005. Demineralized bone matrix: Basic scienceand clinical applications. Clin Podiatr Med Surg22:599–606.

Painter, T.J. 1983. Algal polysaccharides. In ThePolysaccharides, ed. G.O. Aspinall, pp. 195–285. New York:Academic Press.

Pankov, R. and Yamada, K.M. 2002. Fibronectin at a glance.J Cell Sci 115:861–863.

Pavlov, M.P., Mano, J.F., and Reis, R.L. 2004. Fibers and3D mesh scaffolds from biodegradable starch-based blends:Production and characterization. Macromol Biosci 4:776–784.

Pek, Y.S., Shujun, G., Arshad, M.S.M. et al. 2008. Porouscollagen-apatite nanocomposite foams as bone regenerationscaffolds. Biomaterials 29:4300–4305.

Peppas, N.A. 1986. Hydrogel in Medicine and Pharmacy. BocaRaton, FL: CRC Press.

Pereira, C.S., Cunha, A.M., Reis, R.L. et al. 1998. Newstarch-based thermoplastic hydrogels for use as bonecements or drug-delivery carriers. J Mater Sci Mater Med9:825–833.

Perng, C.K., Wang, Y.J., Tsi, C.H. et al. 2009. In vivoangiogenesis effect of porous collagen scaffold withhyaluronic acid oligosaccharides. J Surg Res(doi.org/10.1016/j.jss. 2009. 09. 052).

Peter, M., Binulal, N.S., Nair, S.V. et al. 2010a. Novelbiodegradable chitosan–gelatin/nano-bioactive glassceramic composite scaffolds for alveolar bone tissueengineering. Chem Eng J 158:353–361.

Peter, M., Ganesh, N. Selvamurugan, N. et al. 2010b.Preparation and characterization of chitosan–gelatin/nanohydroxyapatite composite scaffolds for tissueengineering applications. Carbohyd Polym 80:687–694.

Page 191: Polymeric Biomaterials - Taylor & Francis eBooks

Petite, H., Duval, J.L., Frei, V. et al. 1995.Cytocompatibilty of calf pericardium treated by glutar-aldehyde and by the acyl azide methods in an organotypicculture model. Biomaterials 16:1003–1008.

Petite, H., Rault, I., Huc, A. et al. 1990. Use of the acylazide method for crosslinking collagen-rich tissues suchas pericardium. J Biomed Mater Res 24:179–187.

Pieper, J.S., Hafmans, T., Veerkamp, J.H. et al. 2000.Development of tailor-made collagen–glycosaminoglycanmatrices: EDC/NHS crosslinking, and ultrastructuralaspects. Biomaterials 21:581–593.

Piez, K.A. 1985. Collagen. In Encyclopedia of PolymerScience and Engineering, ed. J.I. Kroschwitz, pp. 699–627.New York: Wiley.

Poustis, J., Baquey, C., and Chauveaux, D. 1994. Mechanicalproperties of cellulose in orthopaedic devices and relatedenvironments. Clin Mater 16:119–124.

Pouyani, T., Harbison, G.S., and Prestwich, G.D. 1994.Novel hydrogels of hyaluronic acid: Synthesis, surfacemorphology, and solid-state NMR. J Am Chem Soc116:7515–7522.

Prabaharan, M. 2008. Chitosan derivatives as promisingmaterials for controlled drug delivery. J Biomater Appl23:5–36.

Prabaharan, M. and Jayakumar R. 2009.Chitosan-graft-β-cyclodextrin scaffolds with controlleddrug release capability for tissue engineeringapplications. Int J Biol Macromol 44:320–325.

Puppi, D., Chiellini, F., Piras, A.M. et al. 2010.Polymeric materials for bone and cartilage repair. ProgPolym Sci 35:403–440.

Quinn, T.M., Schmid, P., Hunziker, E.B. et al. 2002.Proteoglycan deposition around chondrocytes in agaroseculture: Construction of a physical and biologicalinterface for mechanotransduction in cartilage.Biorheology 39:27–37.

Ramshaw, J.A.M., Werkmeister, J.A., and Glattauer, V. 1995.Collagen based biomaterials. Biotechnol Genet Eng Rev13:335–382.

Page 192: Polymeric Biomaterials - Taylor & Francis eBooks

Rao, K.P. 1995. Recent developments of collagen-basedmaterials for medical applications and drug delivery. JBiomater Sci 7:623–645.

Rassis, D.K., Saguy, I.S., and Nussinovitch, A. 2002.Collapse, shrinkage and structural changes in driedalginate gels containing �lles. Food Hydrocolloid16:139–151.

Rehakova, M., Bakos, D., Vizarova, K. et al. 1996.Properties of collagen and hyaluronic acid compositematerials and their modi�cation by chemical cross linking.J Biomed Mater Res 30:369–372.

Reis, R.L. and Cunha, A.M. 1995. Characterization of twobiodegradable polymers of potential application within thebiomaterials �eld. J Mater Sci Mater Med 6:786–792.

Rhee, S.H. and Tanaka, J. 2000. Hydroxyapatite formation oncellulose cloth induced by citric acid. J Mater Sci MaterMed 11:449–452.

Rinaudo, M. 2006. Chitin and chitosan: Properties andapplications. Prog Polym Sci 31:603–632.

Rinaudo, M. 2008. Main properties and current applicationsof some polysaccharides as biomaterials. Polym Int57:397–430.

Rindlava, A., Hulleman, S.D.H., and Gatenholma, P. 1997.Formation of starch �lms with varying crystallinity.Carbohyd Polym 34:25–30.

Rodriguez-Cabello, J.C., Reguera, J., and Girotti, A. 2005.Developing functionality in elastin-like polymers byincreasing their molecular complexity: The power of thegenetic engineering approach. Prog Polym Sci 30:1119–1145.

Roman, J., Cabañas, M.V., and Vallet-Regi, M. 2008. Anoptimized β-tricalcium phosphate and agarose scaffoldfabrication technique. J Biomed Mater Res Part A84A:99–107.

Rowley, J.A., Madlambayan, G., and Mooney, D.J. 1999.Alginate hydrogels as synthetic extracellular matrixmaterials. Biomaterials 20:45–53.

Saito, H., Murabayashi, S., Mitamura, Y. et al. 2007.Characterization of alkali-treated collagen gels preparedby different crosslinkers. J Mater Sci Mater Med

Page 193: Polymeric Biomaterials - Taylor & Francis eBooks

19:1297–1305.

Salgado, A.J., Coutinho, O.P., and Reis, R.L. 2004. Novelstarch-based scaffolds for bone tissue engineering:Cytotoxicity, cell culture, and protein expression. TissueEng 10:465–474.

Samuel, C.S., Coghlan, J.P., and Bateman, J.F. 1998.Effects of relaxin, pregnancy and parturition on collagenmetabolism in the rat public symphysis. J Endocrinol159:117–125.

Santoni-Rugiu, P. and Sykes, P.J. 2007. A History ofPlastic Surgery. Chapter 7. Heidelberg: Springer.

Santosa, M.I., Sabine, F., and James, K. 2007. Response ofmicro- and macrovascular endothelial cells to starch-based�ber meshes for bone tissue engineering. Biomaterials28:240–248.

Sarkar, N. and Walker, L.C. 1995. Hydration–dehydrationproperties of methylcellulose and hydroxyl propyl methylcellulose. Carbohyd Polym 7:177–185.

Sashiwa, H. and Aiba, S. 2004. Chemically modi�ed chitinand chitosan as biomaterials. Prog Polym Sci 29:887–808.

Sawyer, A.A., Song, S.J., Susanto, E. et al. 2009. Thestimulation of healing within a rat calvarial defect bymPCL–TCP/collagen scaffolds loaded with rhBMP-2.Biomaterials 30:2479–2488.

Schrieber, R. and Gareis, H. 2007. Gelatin Handbook.Weinhem, Germany: Wiley-VCH GmbH & Co.

Seal, B.L., Otero, T.C., and Panitch, A. 2001.Polymericbiomaterials for tissue and organ regeneration. Mater SciEng R 34:147–230.

Segura, T., Anderson, B.C., Chung, P.H. et al. 2005.Crosslinked hyaluronic acid hydrogels: A strategy tofunctionalize and pattern. Biomaterials 26:359–371.

Sevillano, G., Rodriguez-Puyol, M., Martos, R. et al. 1990.Cellulose acetate membrane improves some aspects of redblood cell function in haemodialysis patients. Nephrol DialTransplant 5:497–499.

Shalumon, K.T., Binulal, N.S., Selvamurugan, N. et al.2009. Electrospinning of carboxy methylchitin/poly (vinyl

Page 194: Polymeric Biomaterials - Taylor & Francis eBooks

alcohol) nano �brous scaffolds for tissue engineeringapplications. Carbohyd Polym 77:863–869.

Shigemasa, Y. and Minami, S. 1995. Applications of chitinand chitosan for biomaterials. Biotech Gen Eng Rev13:383–415.

Shinji, S., Hashimoto, I., and Kawakami, K. 2007.Agarose-gelatin conjugate for adherent cell-enclosingcapsules. Biotechnol Lett 29:731–735.

Shoulders, M.D. and Raines, R.T. 2009. Collagen structureand stability. Annu Rev Biochem 78:929–958.

Silva, G.A., Pedro, A., Costa, F.J. et al. 2005. Solublestarch and composite starch Bioactive Glass 45S5particles: Synthesis, bioactivity, and interaction with ratbone marrow cells. Mater Sci Eng C 25:237–246.

Skoog, T. 1967. The use of periosteum and Surgicel ® forbone restoration in congenital clefts of the maxilla.Scand J Plast Reconstr Surg 1:113–130.

Smidsrod, O. and Draget, K.I. 1996. Chemistry and physicalproperties of alginates. Carbohyd Eur 14:6–13.

Soon, A.S.C., Stabenfeldt, S.E., Brown, W.E. et al. 2010.Engineering �brin matrices: The engagement ofpolymerization pockets through �brin knob technology forthe delivery and retention of therapeutic proteins.Biomaterials 31:1944–1954.

Sousa, R.A., Kalay, G., Reis, R.L. et al. 2000. Injectionmolding of a starch/EVOH blend aimed as an alternativebiomaterial for temporary applications. J Appl Polym Sci77:1303–1315.

Sousa, R.A., Reis, R.L., Cunha, A.M. et al. 2003.Processing and properties of bone-analogue biodegradableand bioinert polymeric composites. Comp Sci Tech63:389–402.

Stevens, M.M., Mayerb, M., Anderson, D.G. et al. 2005.Direct patterning of mammalian cells onto porous tissueengineering substrates using agarose stamps. Biomaterials26:7636–7641.

Sundaram, J., Durance, T.D., and Wang, R. 2008. Porousscaffold of gelatin-starch with nano hydroxy apatitecomposite processed via novel microwave vacuum drying. Acta

Page 195: Polymeric Biomaterials - Taylor & Francis eBooks

Biomater 4:932–942.

Sung, H.W., Huang, D.M., Chang, W.H. et al. 1999.Evaluation of gelatin hydrogel crosslinked with variouscrosslinking agents as bioadhesives: In vitro study. JBiomed Mater Res 46:520–530.

Svegmark, K. and Hermansson, A. M. 1993. Microstructure andrheological properties of composites of potato starchgranules and amylose: A comparison of observed andpredicted structures. Food Struct 12:181–193.

Svensson, A. Nicklasson, E., Harrah, T. et al. 2005.Bacterial cellulose as a potential scaffold for tissueengineering of cartilage. Biomaterials 26:419–431.

de Taillac, L.B., Porté-Durrieua, M.C., Labrugere, C. etal. 2004. Grafting of RGD peptides to cellulose to enhancehuman osteoprogenitor cells adhesion and proliferation.Compos Sci Technol 64:827–837.

Tan, S.C., Khor, E., Tan, T. K. et al. 1998. The degree ofdeacetylation of chitosan: Advocating the �rst derivativeUV-spectrophotometry method of determination. Talanta45:713–719.

Tavares-Dias, M. and Oliveira, S.R. 2009. A review of theblood coagulation system of �sh. Braz J Biosci 7:205–244.

Tiwari, A., Salacinski, H.J., Punshon, G. et al. 2002.Development of a hybrid cardiovascular graft using a tissueengineering approach. FASEB J 16:791–796.

Todhunter, R.J., Wooton, J.A.M., Lust, G. et al. 1994.Structure of equine type I and type II collagens. Am J VetRes 55:425–431.

Tolaimate, A., Desbrieres, J., Rhazi, M. et al. 2000. Onthe in¥uence of deacetylation process on thephysicochemical characteristics of chitosan from squidchitin. Polymer 41:2463–2469.

Tortelli, F. and Cancedda, F. 2009. Three-dimensionalcultures of osteogenic and chondrogenic cells: A tissueengineering approach to mimic bone and cartilage in vitro.Eur Cell Mater 17:1–14.

Touyama, R., Inoue, K. Takeda, Y. et al. 1994. Studies onthe blue pigments produced from genipin and methylamine.II. On the formation mechanisms of brownish-red

Page 196: Polymeric Biomaterials - Taylor & Francis eBooks

intermediates leading to the blue pigment formation. ChemPharm Bull 42:1571.

Traver, M.A. and Assimos, G. 2006. New generation tissuesealants and haemostatic agents: Innovative urologicalapplications. Rev Urol 8:104–111.

Tuan, T.L., Song, A.K., Chang, S. et al. 1996. In vitro�broplasia: Matrix contraction, cell growth, and collagenproduction of �broblasts cultured in �brin gels. Exp CellRes 223:127–134.

Tuovinen, L., Peltonen, S., and Jarvinen, K. 2003. Drugrelease from starch acetate �lms. J Control Release91:345–354.

Tuovinen, L, Ruhanen, L., Kinnarinen, T. et al. 2004.Starch acetate microparticles for drug delivery intoretinal pigment epithelium-in vitro study. J ControlRelease 98:407–413.

Tuzlakoglu, K., Bolgen, N., Salgado, A.J. et al. 2005. Nanoand micro-�ber combined scaffolds: A new architecture forbone tissue engineering. J Mater Sci Mater Med16:1099–1104.

Ulubayram, K., Cakar, A.N., Korkusuz, P. et al. 2001. EGFcontaining gelatin-based wound dressings. Biomaterials22:1345–1356.

Utpal, B., Pragya, S., Krishnamoorthy, K. et al. 2006.Photoreactive cellulose membranes—A novel matrix forcovalent immobilization of biomolecules. J Biotech126:220–229.

Van Vlierberghe, S., Cnudde, V., Jacobs, P.J.S. et al.2006. Porous gelatin cryogels as cell delivery tool intissue engineering. J Control Release 116: e95–e98.

Voet, D., Voet, J.G., and Pratt, C.W. 1999. Fundamentals ofBiochemistry. New York: Wiley.

Walker, M., Hobot, J.A., Newman, G.R. et al., 2003.Scanning electron microscopic examination of bacterialimmobilization in a carboxy methyl cellulose (AQUACEL) andalginate dressings. Biomaterials 24:883–890.

Wang, J., Fu, W., Zhang, D. et al. 2010. Evaluation ofnovel alginate dialdehyde cross-linkedchitosan/calciumpolyphosphate composite scaffolds for meniscus tissue

Page 197: Polymeric Biomaterials - Taylor & Francis eBooks

engineering. Carbohyd Polym 79:705–710.

Wang, S., Liu, W., Han, B. et al. 2009. Study on ahydroxypropyl chitosan–gelatin based scaffold for cornealstroma tissue engineering. Appl Surf Sci 255:8701–8705.

Wang, L. and Stegemann, J.P. 2010. Thermogelling chitosanand collagen composite hydrogels initiated withβ-glycerophosphate for bone tissue engineering.Biomaterials 31:3976–3785.

Watanabe, K., Takahashi, H. Habu, Y. et al. 2000.Interaction with heparin and matrix metalloproteinase 2cleavage expose a cryptic anti-adhesive site of �bronectin.Biochem 39:7138–7144.

Weadock, K.S., Miller, E.J., and Bellincampi, L.D. et al.1995. Physical crosslinking of collagen �bers: Comparisonof ultraviolet irradiation and dehydrothermal treatment. JBiomed Mater Res 29:1373–1379.

Weadock, K.S., Miller, E.J., Keuffel, E.L. et al. 1996.Effect of physical crosslinking methods on collagen-�berdurability in proteolytic solutions. J Biomed Mater Res32:221–226.

Whistler, R.L. and Daniel, J.R. 2005. Starch. In KirkOthmer Encyclopedia of Chemical Technology, ed. A. Seidel,Hoboken, NJ, pp. 699–719. John Wiley & Sons, Inc.

Williams, D.F. 1987. De�nitions in biomaterials. InProgress in Biomedical Engineering, ed. D.F. Williams,Vol. 54, Amsterdam, the Netherlands: Elsevier.

de Wolf, F.A. 2003. Collagen and gelatin. In Progress inBiotechnology, eds. W.Y. Aalbersberg, R.J. Hamer,P. Jasperse et al., pp. 133–218. Amsterdam, theNetherlands: Elsevier Science B.V.

Wongpanit, P., Sanchavanakit, N., Pavasant, P. et al. 2005.Preparation and characterization of microwavetreatedcarboxymethyl chitin and carboxymethyl chitosan �lms forpotential use in wound care application. Macromol Biosci5:1001–1012.

Wu, X., Liu, Y., Li X. et al. 2010. Preparation of alignedporous gelatin scaffolds by unidirectional freezedryingmethod. Acta Biomater 6:1167–1177.

Wu, J. and Yuan, Q. 2002. Gas permeability of a novel

Page 198: Polymeric Biomaterials - Taylor & Francis eBooks

cellulose membrane. Journal of Membrane Science204:185–194.

Xu, H.H.K., Weir, M.D., and Simon, C.G. 2008. Injectableand strong nano-apatite scaffolds for cell/growth factordelivery and bone regeneration. Dent Mater 24:1212–1222.

Yamane, T., Yamaguchi, N., Yoshida, Y. et al. 2004.Regulation of the extracellular matrix production anddegradation of endothelial cells by shear stress. Int CongrSer 1262:407–410.

Yannas, I.V. and Tobolksy, A.V. 1967. Crosslinking ofgelatin by dehydration. Nature 215:509–510.

Ye, Q., Zünd, G., Benedikt, P. et al., 2000. Fibrin gel asa three dimensional matrix in cardiovascular tissueengineering. Eur J Cardiothorac Surg 17:587–591.

Yeom, C.K. and Lee, K.H. 1998. Characterization of sodiumalginate membrane crosslinked with glutaraldehyde inpervaporation separation. J Appl Polym Sci 67:209–219.

Young, S., Wong, M., Tabata, Y. et al. 2005. Gelatin as adelivery vehicle for the controlled release of bioactivemolecules. J Control Release 109:256–274.

Zaborowska, M., Bodin, A., Bäckdahl, H. et al. 2010.Microporous bacterial cellulose as a potential scaffold forbone regeneration. Acta Biomater 6:2540–2547.

Zhang, Y. and Zhang, M. 2001. Synthesis andcharacterization of macroporous chitosan/calcium phosphatecomposite scaffolds for tissue engineering. J Biomed MaterRes 55:304–312.

Zheng, J.P., Wang, C.Z., Wang, X.X. et al. 2007.Preparation of biomimetic three-dimensionalgelatin/montmorillonite-chitosan scaffold for tissueengineering. React Funct Polym 67:780–788.

Zhou, P. and Regenstein, J.M. 2005. Effects of alkaline andacid pretreatments on Alaska Pollock skin gelatinextraction. J Food Sci 70:C392–C396.

Zimmerman, L.M. and Veith, I. 1993. Great Ideas in theHistory of Surgery. New York: Norman Publishers.

Page 199: Polymeric Biomaterials - Taylor & Francis eBooks

11 Chapter 11. Natural Polymers asComponents of Blends for BiomedicalApplications

1. Vert M. Polymeric biomaterials: Strategies of the pastvs. strategies of the future. Prog. Polym. Sci. 2007; 32:755–761.

2. Howard MWT. Polymers for tissue engineering scaffolds.In: S Dumitriu, ed., Polymeric Biomaterials, 2nd edn.,Marcel Dekker Inc., New York, 2002, p. 167.

3. Kohn J, Welsh WJ, and Knight D. A new approach to therationale discovery of polymeric biomaterials.Biomaterials 2007; 28: 4171–4177.

4. Nair LS and Laurencin CT. Biodegradable polymers asbiomaterials. Prog. Polym. Sci. 2007; 32: 762–798.

5. Sionkowska A. Current research on the blends of naturaland synthetic polymers as new biomaterials: Review. Prog.Polym. Sci. 2011; 36: 1254–1276.

6. Cascone MG. Dynamic-mechanical properties ofbioarti�cial polymeric materials. Polym. Int. 1997; 43:55–69.

7. Giusti P, Lazzeri L, Petris S, Palla M, and Cascone MG.Collagen-based new bioarti�cial polymeric materials.Biomaterials 1994; 15: 1229–1233.

8. Giusti P, Lazzeri L, and Lelli L. Bioarti�cialpolymeric materials: A new method to design biomaterialsby using both biological and synthetic polymers. TRIP 1993;1(9): 261–267.

9. Werk meister JA, Edwards GA, Casagranda F, White JF, andRamshaw JAM. Evaluation of a collagen-based biosyntheticmaterials for the repair of abdominal wall defects. J.Biomed. Mater. Res. 199; 39(3): 429–436.

10. Suh JKF and Matthe w HWT. Application of chitosan-basedpolysaccharide biomaterials in cartilage tissueengineering: A review. Biomaterials 2000; 21(24):2589–2598.

11. Leclerc E, Furukaw a KS, Miyata F, Sakai Y, Ushida T,and Fujii T. Fabrication of microstructures inphotosensitive biodegradable polymers for tissueengineering applications. Biomaterials 2004; 25(19):

Page 200: Polymeric Biomaterials - Taylor & Francis eBooks

4683–4690.

12. Sionkowska A. Interaction of collagen and poly(vinylpyrrolidone) in blends. Eur. Polym. J. 2003; 39:2135–2140.

13. Sionkowska A, Wisniewski M, Skopinska J, Kennedy CJ,and Wess TJ. Molecular interactions in collagen andchitosan blends. Biomaterials 2004; 25: 795–801.

14. Sionkowska A, Wisniewski M, Skopinska J, Kennedy CJ,and Wess TJ. The photochemical stability ofcollagen-chitosan blends. J. Photochem. Photobiol. Part A;Chem. 2004; 162: 545–554.

15. Marsano E, Vicini S, Skopińska J, and Sionkowska A.Chitosan and poly(vinyl pyrrolidone): Compatibility andmiscibility of blends. Macromol. Symp. 2004; 218: 251–260.

16. Sionkowska A, Kaczmarek H, Kowalonek J, Wisniewski M,and Skopinska J. Surface state of UV irradiatedcollagen/PVP blends. Surf. Sci. 2004; 566–568: 608–612.

17. Sionkowska A, Wisniewski M, and Skopinska J.Photochemical stability of collagen/poly (vinyl alcohol)blends. Polym. Degrad. Stab. 2004; 83: 117–125.

18. Sionkowska A, Kaczmarek H, Wisniewski M, ElFeninat F,and Mantovani D. Ultraviolet irradiation of syntheticpolymer/collagen blends: Preliminary results of atomicforce microscopy. In: D. Mantovani, ed., AdvancedMaterials for Biomedical Applications, COM 2002, Quebec,Canada, p. 27.

19. Shanmugasundaram N, Ra vichandran P, Neelakanta PR,Nalini R, Subrata P, and Rao KP. CollagenChitosan polymericscaffolds for the in vitro culture of human epidermoidcarcinoma cells. Biomaterials 2001; 22: 1943–1951.

20. Salome Machado AA, Martins VCA, and Plepis AMG. Thermaland rheological behaviour of collagen chitosan blends. J.Therm. Anal. Calorim. 2002; 67: 491–498.

21. Cascone MG, Di Pasquale G, La Rosa AD, Cristallini C,Barbani N, and Recca A. Blends of synthetic and naturalpolymers as drug delivery systems for growth hormon.Biomaterials 1995; 16(7): 569–574.

22. Yang JM, Su WY, Leu TL, and Yang MC. Evaluation ofchitosan/PVA blended hydrogel membranes. J. Memb. Sci.

Page 201: Polymeric Biomaterials - Taylor & Francis eBooks

2004; 236(1–2): 39–51.

23. Da Cruz AGB, Góes JC, Figueiró SD, Feitosa JPA, andRicardo NMPS. On the piezoelectricity of collagen/naturalrubber blend �lms. Eur. Polym. J. 2003; 39(6): 1267–1272.

24. Coombes AGA, Verderio E, Shaw B, Li X, Grif�n M, andDownes S. Biocomposites of non-crosslinked natural andsynthetic polymers. Biomaterials 2002; 23(10): 2113–2118.

25. Piza MA, Constantino CJL, Venancio EC, and Mattoso LHC.Interaction mechanism of poly (oethoxyaniline) andcollagen blends. Polymer 2003; 44(19): 5663–5670.

26. Yang Y, Porté MCh, Marmey P, El Haj AJ, and Amédée J.Covalent bonding of collagen on poly(L-lactic acid) bygamma irradiation. Nucl. Instrum. Methods Phys. Res. Sec.B: Beam Interact. Mater. Atoms 2003; 207(2): 165–174.

27. Lee PC, Huang LLH, Chen LW, Hsieh KH, and Tsai CL.Effect of forms of collagen linked to polyurethane onendothelial cell growth. J. Biomed. Mater. Res. 1996;32(4): 645–653.

28. Goissis G, Piccirili L, Goes JC, Plepis AMD, andDas-Gupta DK. Anionic collagen: Polymer composites withimproved dielectric and rheological properties. Artif.Organs 1998; 22(3): 203–209.

29. Lee SD, Hsiue GH, Chang PCT, and Kao CY. Plasma-inducedgrafted polymerization of acrylic acid and subsequentgrafting of collagen onto polymer �lm as biomaterials.Biomaterials 1996; 17(16): 1599–1608.

30. Dufrene YF, Marchal TG, and Rouxhet PG. In¥uence ofsubstratum surface properties on the organization ofabsorbed collagen �lms: In situ characterisation by atomicforce microscopy. Langmuir 1999; 15(8): 2871–2878.

31. Naqvi A and Nahar P. Photochemical immobilization ofproteins on microwave-synthesized photoreactive polymers.Anal. Biochem. 2004; 327(1): 68–73.

32. Cheng Z and Teoh SH. Surface modi�cation of ultra thinpoly(ɛ-caprolactone) �lms using acrylic acid and collagen.Biomaterials 2004; 25(11): 1991–2001.

33. Van Wachem PB, Hendriks M, Blaauw EH, Dijk F,Verhoeven MLPM, Cahalan PT, and van Luyn MJA. (Electron)microscopic observations on tissue integration of

Page 202: Polymeric Biomaterials - Taylor & Francis eBooks

collagen-immobilized polyurethane. Biomaterials 2002;23(6): 1401–1409.

34. Tyan YC, Liao JD, Klauser R, Wu ID, and Weng CC.Assessment and characterization of degradation effect forthe varied degrees of ultra-violet radiation ontocollagen-bonded polypropylene non-woven fabric surfaces.Biomaterials 2002; 23: 65–76.

35. De Cupere VM and Rouxhet PG. Collagen �lms adsorbed onnative and oxidized poly(ethylene terephthalate):Morphology after drying. Surf. Sci. 2001; 491: 395–404.

36. Giusti P, Lazzeri L, Barbani N, Narducci P, BonarettiA, Palla M, and Lelli L. Hydrogels of poly(vinyl alcohol)and collagen as new bioarti�cial materials: Physical andmorphological study. J. Mater. Sci.: Mater. Med. 1993;4(6): 538–542.

37. Barbani N, Lazzeri L, Bonaretti A, Seggiani M,Nerducci P, Polacco G, Pizzirani G, and Giusti P. Physicaland biological stability of dehydro-thermally crosslinkedcollagen-poly(vinyl alcohol) blands. J. Mater. Sci.:Mater. Med. 1994; 5(12): 882–888.

38. Barbani N, Cascone MG, Giusti P, Lazzeri L, Polacco G,and Pizzirani G. Bioarti�cial materials based on collagen:2. Mixtures of soluble collagen and poly(vinyl alcohol)cross-linked with gaseous glutaraldehyde. J. Biomater. Sci.Polym. Ed. 1995; 7(6): 471–484.

39. Sionkowska A, Skopińska J, and Wiśniewski M. Collagensynthetic polymer interactions in solution and thin �lms.J. Mol. Liq. 2009; 145: 135–138.

40. Cascone MG, Giusti P, Lazzeri L, Pollicino A, and ReccaA. Surface characterisation of collagen-based bioarti�cialpolymeric materials. J. Biomater. Sci. Polym. Ed. 1996;7(10): 917–924.

41. Rao KP. Recent developments of collagen-basedmaterials for medical applications and drug deliverysystems. J. Biomater. Sci. Polym. Ed. 1995; 7(7): 623–631.

42. Shenoy V and Rosenblatt J. Diffusion of macromoleculesin collagen and hyaluronic acid, rigid-rod¥exible polymer,composite matrices. Macromolecules 1995; 28(26): 8751–8756.

43. Barbani N, Lazzeri L, Cristallini C, Cascone MG,Polacco G, and Pizzirani G. Bioarti�cial materials based

Page 203: Polymeric Biomaterials - Taylor & Francis eBooks

on blends of collagen and poly(acrylic acid). J. Appl.Polym. Sci. 1999; 72: 971–975.

44. Taravel MN and Domard A. Collagen and its interactionwith chitosan. Some biological and mechanical properties.Biomaterials 1996; 17(4): 451–455.

45. Taniguchi T and Okamura K. New �lms produced frommicro�brillated natural �bres. Polym. Int. 1998; 47:291–294.

46. Chen XG, Wang Z, Liu WS, and Park HJ. The effect ofcarboxymethyl-chitosan on proliferation and collagensecretion of normal and keloid skin �broblasts.Biomaterials 2002; 23(23): 4609–4614.

47. Alexy P, Bakoš D, Hanzelová S, Kukolíková L, and KupecJ. Poly(vinyl alcohol)–collagen hydrolysate thermoplasticblends: I. Experimental design optimisation andbiodegradation behaviour. Polym. Test. 2003; 22(7):801–809.

48. Mao JSh, Cui YL, Wang XH, Sun Y, Yin YJ, and Zhao HM. Apreliminary study on chitosan and gelatin polyelectrolytecomplex cytocompatibility by cell cycle and apoptosisanalysis. Biomaterials 2004; 25(18): 3973–3981.

49. Quek ChH, Li J, Sun T, Chan MLH, Mao HQ, Gan LM, andLeong KW. Photo-crosslinkable microcapsules formed bypolyelectrolyte copolymer and modi�ed collagen for rathepatocyte encapsulation. Biomaterials 2004; 25(17):3531–3540.

50. Shan Y, Zhou Y, Cao Y, Xu Q, Ju Huangxian, and Wu Z.Preparation and infrared emissivity study ofcollagen-g-PMMA/In 2 O 3 nanocomposite. Mater. Lett. 2004;58(10): 1655–1660.

51. Lee SB, Kim YH, Chong MS, and Lee YM. Preparation andcharacteristics of hybrid scaffolds composed of β-chitinand collagen. Biomaterials 2004; 25(12): 2309–2317.

52. Wong Po Foo Ch and Kaplan DL. Genetic engineering of�brous proteins: Spider dragline silk and collagen. Adv.Drug Delivery Rev. 2002; 4(8): 1131–1143.

53. Daamen WF, van Moerkerk HThB, Hafmans T, Buttafoco L,Poot AA, and Veerkamp JH. Preparation and evaluation ofmolecularly-de�ned collagen–elastin–glycosaminoglycanscaffolds for tissue engineering. Biomaterials 2003;

Page 204: Polymeric Biomaterials - Taylor & Francis eBooks

24(22): 4001–4009.

54. Ma L, Gao Ch, Mao Z, Zhou J, Shen J, Hu X, and Han Ch.Collagen/chitosan porous scaffolds with improvedbiostability for skin tissue engineering. Biomaterials2003; 24(26): 4833–4841.

55. Dai NT, Williamson MR, Khammo N, Adams EF, and CoombesAGA. Composite cell support membranes based on collagenand polycaprolactone for tissue engineering of skin.Biomaterials 2004; 25(18): 4263–4271.

56. Lopes CMA and Felisberti MI. Mechanical behaviour andbiocompatibility of poly(1-vinyl-2pyrrolidone)-gelatin IPNhydrogels. Biomaterials 2003; 24: 1279–1284.

57. Dutoya S, Lefeb vre F, Deminières C, Rouais F, Verna A,Kozluca A, and Le Bugle A. Unexpected original property ofelastin derived proteins:spontaneous tight coupling withnatural and synthetic polymers. Biomaterials 1998; 19(1–3): 147–155.

58. Scot chford CA, Cascone MG, Downes S, and Giusti P.Osteoblast responses to collagen-PVA bioarti�cial polymersin vitro: The effects of cross-linking method and collagencontent. Biomaterials 1998; 19: 1–11.

59. Sarti B and Scandola M. Viscoelastic and thermalproperties of collagen/poly(vinyl alcohol) blends.Biomaterials 1995; 16: 785–792.

60. Nezu T and W innik FM. Interaction of water-solublecollagen with poly(acrylic acid). Biomaterials 2000; 21:415–419.

61. Thacharodi D and Rao KP. Collagen-chitosan compositemembranes for controlled release of propranololhydrochloride. Int. J. Pharm. 1995;120(1): 115–118.

62. Hirano S, Zhang M, Nakagawa M, and Miyata T. Wet spunchitosan–collagen �bers, their chemical N-modi�cations,and blood compatibility. Biomaterials 2000; 21(10):997–1003.

63. Bailey AJ and Paul RG. Collagen - Is not so simpleprotein. J. Soc. Leather Technol. Chem. 1998; 82: 104–108.

64. Van der Rest R and Garrone M. Collagen family ofproteins. F ASEB J. 1991; 5: 2814–2823.

Page 205: Polymeric Biomaterials - Taylor & Francis eBooks

65. Ellis DO and McGa vin S. The structure of collagen- onX-ray study. J. Ultrastruct. Res. 1970; 32: 191–211.

66. Prockop J and Fertala A. The collagen �bril: Thealmost crystalline structure. J. Struct. Biol. 1998; 122:111–118.

67. Bella J, Eaton M, Brodsky B, and Berman HM. Crystal andmolecular structure of a collagen-like peptide at 1.9 Aresolution. Science 1994; 266: 75–81.

68. Piez KA. Molecular and aggregate structures of thecollagen. In: KA Piez and AH Reddi, eds., ExtracellularMatrix Biochemistry, Elsevier Science Publishing, New York,1994, p. 1.

69. Silver FH. Connecti ve tissue structure. In: BiologicalMaterials: Structure Mechanical Properties and Modellingof Soft Tissues, New York University Press, New York, 1987,p. 7.

70. Miyahara T, Murai A, Tanaka T, Shiozawa S, and KameyamaM. Age-related differences in human skin collagen:Solubility in solvent, susceptibility to pepsin digestion,and the spectrum of the solubilized polymeric collagenmolecules. J. Gerontol. 1982; 37: 651.

71. Sionkowska A, Kaminska A, Miles CA, and Bailey AJ. Theeffect of UV radiation on the structure and properties ofcollagen. Polimery 2001; 6: 379–389.

72. Rich A and Crick FHC. The molecular structure ofcollagen. J. Mol. Biol. 1961; 3: 483–506.

73. Fraser RDB, MacRea TP, and Suzuki E. Chain conformationin the collagen molecule. J. Mol. Biol. 1979; 129:463–481.

74. Privalov PL. Stability of proteins which do not presenta single co-operative system. Adv. Protein Chem. 1982; 25:1–104.

75. Burjanadze TV. Thermodynamic substantiation ofwater-bridged collagen structure. Biopolymers 1992; 32:941–949.

76. Flory PJ and Garrett RR. Phase transition in collagenand gelatin systems. J. Am. Chem. Soc. 1958; 80:4836–4845.

Page 206: Polymeric Biomaterials - Taylor & Francis eBooks

77. Bigi A, Cojazzi, G, Roveri N, and Koch MHJ.Differential scanning calorimetry and X-ray diffractionstudy of tendon collagen thermal denaturation. Int. J.Biol. Macromol. 1987; 9: 363–367.

78. Luescher M, Ruegg M, and Scjindler P. Effect ofhydration on thermal stability of tropocollagen and itseffect of hydration on thermal stability of tropocollagenand its dependence on the presents of neutral salts.Biopolymers 1974; 13: 2489–2503.

79. Sionkowska A and Kamińska A. Thermal helix-coiltransition in UV irradiated collagen from rat tail tendon.Int. J. Biol. Macromol. 1999; 24: 337–340.

80. Usha R and Ramasami T. The effects of urea andn-propanol on collagen denaturation: Using DSC, circulardichroism and viscosity. Termochim. Acta 2004; 409:2001–206.

81. Lee CH, Singla A, and Lee Y. Biomedical applications ofcollagen. Int. J. Pharm. 2001; 221(1–2): 1–22.

82. Seal BL, Otero TC, and Panitch A. Polymericbiomaterials for tissue and organ regeneration. Mater. Sci.Eng.: R. Reports 2001; 34(4–5): 147–230.

83. Fischbach C, Tessmar J, Lucke A, Schnell E, Schmeer G,and Blunk T. Does UV irradiation affect polymer propertiesrelevant to tissue engineering? Surf. Sci. 2001; 491(3):333–345.

84. Struszczyk, MH. Chitin and Chitosan: Part II:Applications of chitosan. Polimery 2002; 47(6): 396–403.

85. Muzzarelli R, Baldassarre V, Conti F, Ferrara P,Biagini G, Gazzanelli G, and Vasi V. Biological activityof chitosan: Ultrastructural study. Biomaterials 1988;9(3): 247–252.

86. Rinaudo M and Domard A. In: G Skiåk-Break, T Anthonsen,and P Sandford, eds., Chitin and Chitosan, ElsevierApplied Science, London, U.K., 1989, pp. 71–86.

87. Terbojevich M, Cosani A, Conio G, Marsano E, andBianchi E. Chitosan: Chain rigidity and mesophaseformation. Carbohydr. Res. 1991; 209: 251–260.

88. Gerrit B. Chitosans for gene delivery. Adv. DrugDelivery Rev. 2001; 52: 145–150.

Page 207: Polymeric Biomaterials - Taylor & Francis eBooks

89. Chunmeng S, Ying Z, Xinze R, Meng W, Yongping S, andTianmin C. Therapeutic potential of chitosan and itsderivatives in regenerative medicine. J. Surg. Res. 2006;133: 185–192.

90. Berg er J, Reist M, Mayer JM, Felt O, and Gurny R.Structure and interactions in chitosan hydrogels formed bycomplexation or aggregation for biomedical applications.Eur. J. Pharm. Biopharm. 2004; 57: 35–52.

91. Sevda S and McClure SJ. Potential applications ofchitosan in veterinary medicine. Adv. Drug Deliv. Rev.2004; 56: 1467–1480.

92. Di Martino A, Sittinger M, and Risbud MV. Chitosan: Aversatile biopolymer for orthopaedic tissueengineering.Biomaterials 2005; 26: 5983–5990.

93. Kim TH, Jiang H, Jere D, Park IK, Cho MH, and Nah JW.Chemical modi�cation of chitosan as a gene carrier invitro and in vivo. Prog. Polym. Sci. 2007; 32: 726–753.

94. Khor E and Lim LY. Implantable applications of chitinand chitosan. Biomaterials 2003; 24: 2339–2349.

95. Dodane V and V ilivalam VD. Pharmaceutical applicationsof chitosan. Pharm. Sci. Technol. Today 1998; 1: 246–253.

96. Sinha, VR, Singla AK, Wadhawan S, Kaushik R, Kumria R,Bansal K, and Dhawan S. Chitosan microspheres as apotential carrier for drugs. Int. J. Pharm. 2004; 274:1–33.

97. Berger J, Reist M, Mayer JM, Felt O, Peppas NA, andGurny R. Structure and interactions in covalently andionically crosslinked chitosan hydrogels for biomedicalapplications. Eur. J. Pharm. Biopharm. 2004; 57: 19–34.

98. Kim IY, Seo SJ, Moon HS, Yoo MK, Park IY, Kim BC, andCho CS. Chitosan and its derivatives for tissue engineeringapplications. Biotech. Adv. 2008; 26: 1–21.

99. Krajewska B. Application of chitin- and chitosan-basedmaterials for enzyme immobilizations: A review. EnzymeMicrob. Technol. 2004; 35: 126–139.

100. Ta HT, Dass CR, and Dunstan DE. Injectable chitosanhydrogels for localised cancer therapy. J. Control.Release 2008; 126: 205–216.

Page 208: Polymeric Biomaterials - Taylor & Francis eBooks

101. Grant J, Lee H, Soo P, Lim CJ, Piquette-Miller M, andAllen C. In¥uence of molecular organization andinteractions on drug release for an injectablepolymer-lipid blend. Int. J. Pharma. 2008; 360: 83–90.

102. Wischke C, Borchert HH, Zimmermann J, Siebenbrodt I,and Lorenzen DR. Stable cationic microparticles forenhanced model antigen delivery to dendritic cells. J.Control. Release 2006; 114: 359–368.

103. Rogovina SZ and Vikhoreva GA. Polysaccharide-basedpolymer blends: Methods of their production. Glycoconj. J.2006; 23: 611–618.

104. Karavas E, Georgarakis E, and Bikiaris D. Adjustingdrug release by using miscible polymer blends as effectivedrug carries. J. Therm. Anal. Calorim. 2006; 84: 125–133.

105. Khoo CGL, Frantzich S, Rosinski A, Sjöström M,Hoogstraate J. Oral gingival delivery systems fromchitosan blends with hydrophilic polymers. Eur. J. Pharm.Biopharm. 2003; 55: 47–56.

106. Sakurai K, Maegawa T, and Takahashi T. Glasstransition temperature of chitosan and miscibility ofchitosan/poly(N-vinyl pyrrolidone) blends. Polymer 2000;41: 7051–7056.

107. Sionkowska A, W isniewski M, Skopinska J, Vicini S,and Marsano E. The in¥uence of UV irradiation on themechanical properties of chitosan/poly(vinyl pyrrolidone)blends. Polym. Degrad. Stab. 2005; 88: 261–267.

108. Risb ud MV, Hardikar AA, Bhat SV, and Bhonde RR.pH-sensitive freeze-dried chitosan–polyvinyl pyrrolidonehydrogels as controlled release system for antibioticdelivery. J. Control. Release 2000; 68: 23–30.

109. Zhao L, Xu L, Mitomo H, and Yoshii F. Synthesis ofpH-sensitive PVP/CM-chitosan hydrogels with improvedsurface property by irradiation. Carbohydr. Polym. 2006;64: 473–480.

110. Smitha B, Sridhar S, and Khan AA. Chitosan–poly(vinylpyrrolidone) blends as membranes for direct methanol fuelcell applications. J. Power Sources 2006; 159: 846–854.

111. Marsano E, Bianchi E, Vicini S, Compagnino L,Sionkowska A, Skopińska J, and Wiśniewski M. Stimuli

Page 209: Polymeric Biomaterials - Taylor & Francis eBooks

responsive gels based on interpenetrating network ofchitosan and poly(vinylpyrrolidone). Polymer 2005; 46:1595–1600.

112. Don TM, King CF, Chiu WY, and Peng CA. Preparation andcharacterization of chitosan-g-poly(vinylalcohol)/poly(vinyl alcohol) blends used for the evaluationof blood-contacting compatibility. Carbohydr. Polym. 2006;63: 331–339.

113. Minoura N, Koyano T, Koshizaki N, Umehara H, Nagura M,and Kobayashi K. Preparation, properties, and cellattachment/growth behavior of PVA/chitosan-blendedhydrogels. Mater. Sci. Eng. C 1998; 6: 275–280.

114. Sajeev US, Anoop AK, Menon D, and Nair S. Control ofnanostructures in PVA, PVA/chitosan blends and PCL throughelectrospinning. Bull. Mater. Sci. 2008; 31: 343–351.

115. Patel VR and Amiji MM. Preparation andcharacterization of freeze-dried chitosan-poly(ethyleneoxide) hydrogels for site-speci�c antibiotic delivery inthe stomach. Pharm. Res. 1996; 13: 588–593.

116. Amiji MM. Permeability and blood compatibilityproperties of chitosan-poly(ethylene oxide) blendmembranes for haemodialysis. Biomaterials 1995; 16:593–599.

117. Kuo PC, Sahu D, and Yu Hsin H. Properties andbiodegradability of chitosan/nylon 11 blending �lms. Pol.Degrad. Stab. 2006; 91: 3097–3102.

118. Shieh JJ and Huang RYM. Chitosan/N-methylol nylon 6blend membranes for the pervaporation separation ofethanol–water mixtures. J. Membr. Sci. 1998; 148: 243–255.

119. Desai K and Kit K. Effect of spinning temperature andblend ratios on electrospun chitosan/ poly(acrylamide)blends �bers. Polymer 2008; 49: 4046–4050.

120. Suyatma NE, Copinet A, Tighzert L, and Coma V.Mechanical and barrier properties of biodegradable �lmsmade from chitosan and poly (lactic acid) blends. J. Polym.Environ. 2004; 12: 1–6.

121. Strachota A, Tishchenk o G, Matejka L, and Bleha M.Chitosan–oligo(silsesquioxane) blend membranes:Preparation, morphology, and diffusion permeability. J.Inorg. Organometal. Polym. 2001; 11: 165–182.

Page 210: Polymeric Biomaterials - Taylor & Francis eBooks

122. Haas J, Ravi K, Borchard G, Bakowsky U, and Lehr CM.Preparation and characterization of chitosan andtrimethyl-chitosanmodi�ed poly-(ɛ-caprolactone)nanoparticles as DNA carriers. AAPS PharmSciTech 2005; 6:E22–E30.

123. Sarasam A and Madihally SV. Characterization ofchitosan–polycaprolactone blends for tissue engineeringapplications. Biomaterials 2005; 26: 5500–5508.

124. Olabarrieta I, Forsström D, Gedde UW, and HedenqvistMS. Transport properties of chitosan and whey blended withpoly(ɛ-caprolactone) assessed by standard permeabilitymeasurements and microcalorimetry. Polymer 2001; 42:4401–4408.

125. Zeng M, Fang Z, and Xu C. Effect of compatibility onthe structure of the microporous membrane prepared byselective dissolution of chitosan/synthetic polymer blendmembrane. J. Membr. Sci. 2004; 230: 175–181.

126. Dufresne A, Cavaillé JY, Dupeyre D, and Garcia-RamirezM. Morphology, phase continuity and mechanical behaviour ofpolyamide 6/chitosan blends. Polymer 1999; 40: 1657–1666.

127. Peesan M, Supaphol P, and Rujiravanit R. Preparationand characterization of hexanoyl chitosan/ polylactideblend �lms. Carbohydr. Polym. 2005; 60: 343–350.

128. Wu H, W an Y, Cao X, and Wu Q. Interlockedchitosan/poly(DL-lactide) blends. Mater. Lett. 2008; 62:330–334.

129. Zhang X, Hua H, Shen X, and Yang Q. In vitrodegradation and biocompatibility of poly(L-lactic acid)/chitosan �ber composites. Polymer 2007; 48: 1005–1011.

130. Thanpitcha T, Sirivat A, Jamieson AM, and RujiravanitR. Preparation and characterization of polyaniline/chitosanblend �lm. Carbohydr. Polym. 2006; 64: 560–568.

131. Sang YN and Young ML. Pervaporation and properties ofchitosan-poly(acrylic acid) complex membranes. J. Membr.Sci. 1997; 135: 161–171.

132. Abou-Aiad THM, Abd-El-Nour KN, Hakim IK, and ElsabeeMZ. Dielectric and interaction behavior ofchitosan/polyvinyl alcohol and chitosan/polyvinylpyrrolidone blends with some antimicrobial activities.

Page 211: Polymeric Biomaterials - Taylor & Francis eBooks

Polymer 2006; 47: 379–389.

133. Rao V and Johns J. Thermal behavior ofchitosan/natural rubber latex blends TG and DSC analysis.J. Therm. Anal. Calorim. 2008; 92: 801–806.

134. Ye Y, Dan W, Zeng R, Lin H, Dan N, Guan L, and Mi Z.Miscibility studies on the blends of collagen/ chitosan bydilute solution viscometry. Eur. Polym. J. 2007; 43:2066–2071.

135. Sionkowska A. New materials based on the blends ofcollagen and other polymers. In: RK Bregg, ed., CurrentTopics in Polymer Research, Nova Science Publisher, NewYork, 2005, pp. 125–168.

136. Sionkowska A, Wisniewski M, Skopinska J, Poggi GF,Marsano E, Maxwell CA, and Wess TJ. Thermal and mechanicalproperties of UV irradiated collagen/chitosan thin �lms.Polym. Degrad. Stab. 2006; 91: 3026–3032.

137. Chen Z, Mo X, He C, and Wang H. Intermolecularinteractions in electrospun collagen–chitosan complexnano�bers. Carbohydr. Polym. 2008; 72: 410–418.

138. Chen T, Embree HD, Brown EM, Taylor MM, and Payne GF.Enzyme-catalyzed gel formation of gelatin and chitosan:Potential for in situ applications. Biomaterials 2003; 24:2831–2841.

139. Gao X, Liu W, Han B, Wei X, and Yang C. Preparationand properties of a chitosan-based carrier of cornealendothelial cells. J. Mater. Sci.: Mater. Med. 2008; 19:3611–3619.

140. Chiono V, Pulieri E, Vozzi G, Ciardelli G, AhluwaliaA, and Giusti P. Genipin-crosslinked chitosan/ gelatinblends for biomedical applications. J. Mater. Sci.: Mater.Med. 2008; 19: 889–898.

141. Huang Y, On yeri S, Siewe M, Moshfeghian A, andMadihally SV. In vitro characterization of chitosan–gelatin scaffolds for tissue engineering. Biomaterials2005; 26: 7616–7627.

142. Chen CH, Wang FY, Mao CF, Liao WT, and Hsieh CD.Studies of chitosan: II. Preparation and characterizationof chitosan/poly(vinyl alcohol)/gelatin ternary blend �lms.Int. J. Biol. Macromol. 2008; 43: 37–42.

Page 212: Polymeric Biomaterials - Taylor & Francis eBooks

143. Silva SS, Goodfello w BJ, Benesch J, Rocha J, Mano JF,and Reis RL. Morphology and miscibility of chitosan/soyprotein blended membranes. Carbohydr. Polym. 2007; 70:25–30.

144. Sashina ES and No voselov NP. Polyelectrolytecomplexes of �broin with chitosan. Russ. J. Appl. Chem.2005; 78: 487–491.

145. Lu Q, Feng Q, Hu K, and Cui F. Preparation ofthree-dimensional �broin/collagen scaffolds in various pHconditions. J. Mater. Sci.: Mater. Med. 2008; 19: 629–634.

146. Sashina ES, Janowska G, Zaborski M, and Vnuchkin AV.Compatibility of �broin/chitosan and �broin/ celluloseblends studied by thermal analysis. J. Therm. Anal.Calorim. 2007; 89: 887–891.

147. Park WH, Jeong L, Yoo DI, and Hudson S. Effect ofchitosan on morphology and conformation of electrospun silk�broin nano�bers. Polymer 2004; 45: 7151–7157.

148. Zhai M, Zhao L, Yoshii F, and Kume T. Study onantibacterial starch/chitosan blend �lm formed under theaction of irradiation. Carbohydr. Polym. 2004; 57: 83–88.

149. Wang Q, Zhang N, Hu X, Yang J, and Du Y.Chitosan/starch �bers and their properties for drugcontrolled release. Eur. J. Pharm. Biopharm. 2007; 66:398–404.

150. Wu YB, Y u SH, Mi FL, Wu CW, Shyu SS, Peng CK, andChao AC. Preparation and characterization on mechanicaland antibacterial properties of chitsoan/cellulose blends.Carbohydr. Polym. 2004; 57: 435–440.

151. Veerapur RS, Gudasi KB, and Aminabhavi TM.Pervaporation dehydration of isopropanol using blendmembranes of chitosan and hydroxypropyl cellulose. J.Membr. Sci. 2007; 304: 102–111.

152. Xu Y, Zhan C, Fan L, Wang L, and Zheng H. Preparationof dual crosslinked alginate–chitosan blend gel beads andin vitro controlled release in oral site-speci�c drugdelivery system. Int. J. Pharm. 2007; 336: 329–337.

153. Fan L, Du Y, Zhang B, Yang J, Zhou J, and Kennedy JF.Preparation and properties of alginate/carboxymethylchitosan blend �bers. Carbohydr. Polym. 2006; 65: 447–452.

Page 213: Polymeric Biomaterials - Taylor & Francis eBooks

154. Dornish M, Aarnold M, and Skaugrud Ø. Alginate andchitosan: Biodegradable biopolymers in drug deliverysystems. Eur. J. Pharm. Sci. 1996; 4: S153.

155. Lazaridou A and Biliaderis CG. Thermophysicalproperties of chitosan, chitosan–starch and chitosan–pullulan �lms near the glass transition. Carbohydr. Polym.2002; 48: 179–190.

156. Wittaya-areekul S and Prahsarn C. Development and invitro evaluation of chitosan–polysaccharides compositewound dressings. Int. J. Pharm. 2006; 313: 123–128.

157. Croyle MA, Cheng X, Sandhu A, and Wilson JM.Development of novel formulations that enhanceadenoviral-mediated gene expression in the lung in vitroand in vivo. Mol. Ther. 2001; 4: 22–28.

158. Samouillan V, Dandurand J, Lacabanne C, and HornebeckW. Molecular mobility of elastin: Effect of moleculararchitecture. Biomacromolecules 2002; 3: 531–537.

159. Debelle L and Alix AJP. The structures of elastins andtheir function. Biochimie 1999; 81: 981–994.

160. Bonzon N, Carrat X, Daminiere C, Daculsi G, LefebvreF, and Rabaud M. New arti�cial connective matrix made of�brin monomers, elastin peptides and type I + IIIcollagens: Structural study, biocompatibility and use astympanic membranes in rabbit. Biomaterials 1995; 16:881–885.

161. Klein B, Schiffer R, Hafemann B, Klosterhalfen B, andZwadlo-Klarwasser G. In¥ammatory response to a porcinemembrane composed of �brous collagen and elastin as dermalsubstitute. J. Mater. Sci.: Mater. Med. 2001; 12: 419–424.

162. Mithieux SM, Rasko JE, and Weiss AS. Synthetic elastinhydrogels derived from massive elastic assemblies ofself-organized human protein monomers. Biomaterials 2004;25: 4921–4927.

163. Skopinska-Wisniewska J, Sionkowska A, Kaminska A,Kaznica A, Jachimiak R, and Drewa T. Surface properties ofcollagen/elastin based biomaterials for tissueregeneration. Appl. Surf. Sci. 2009; 225: 8286–8292.

164. Reiersen H, Clarke AR, and Rees AR. Short elastin-likepeptides exhibit the same temperature induced structuraltransitions as elastin polymer: Implications for protein

Page 214: Polymeric Biomaterials - Taylor & Francis eBooks

engineering. J. Mol. Biol. 1998; 283: 255–264.

165. Sionkowska A, Skopinska J, Wisniewski M, Leznicki A,and Fisz JJ. Spectroscopic studies into the in¥uence of UVradiation on elastin hydrolysates in water solution. J.Photochem. Photobiol. B: Biol. 2006; 85: 79–84.

166. Sionkowska A, Skopińska J, Wiśniewski M, and LeżnickiA. Spectroscopic studies into the in¥uence of UV radiationon elastin hydrolysates in the presence of collagen. J.Photochem. Photobiol. B Biol. 2007; 86: 186–191.

167. Liu Y, Liu H, Qian J, Deng J, and Yu T. Two papersdealing with the use of a regenerated silk �broin membranein a biosensor. Biosens. Bioelectron. 1996; 11: x.

168. Qian J, Liu Y , Liu H, Yu T, and Deng J.Characteristics of regenerated silk �broin membrane in itsapplication to the immobilization of glucose oxidase andpreparation of a p-benzoquinone mediating sensor forglucose. Fresenius’ J. Anal. Chem. 1996; 354: 173–178.

169. Boschi A, Arosio C, Cucchi I, Bertini F, andCatellani M. Properties and performance of polypyrrole(PPy)-coated silk �bers. Fibers Polym. 2008; 9: 698–707.

170. Baek DH, Ki CS, Um IC, and Park YH. Metal ionadsorbability of electrospun wool keratose/silk �broinblend nano�ber mats. Fibers Polym. 2007; 8: 271–277.

171. Chen H, Hu X, and Cebe P. Thermal properties and phasetransitions in blends of Nylon-6 with silk �broin. J.Therm. Anal. Calorim. 2008; 93: 201–206.

172. Liu H, Xu W , Zou H, Ke G, Li W, and Ouyang C.Feasibility of wet spinning of silk-inspired polyurethaneelastic bio�ber. Mater. Lett. 2008; 62: 1949–1952.

173. Marsano E, Corsini P , Canetti M, and Freddi G.Regenerated cellulose-silk �broin blends �bers. Int. J.Biol. Macromol. 2008; 43: 106–114.

174. Hirano S, Nakahira T , Zhang M, Nakagawa M, YoshikawaM, and Midorikawa T. Wet-spun blend bio�bers ofcellulose–silk �broin and cellulose–chitin–silk �broin.Carbohydr. Polym. 2002; 47: 121–124.

175. Yang G, Zhang L, and Liu Y. Structure and microporousformation of cellulose/silk �broin blend membranes: I.Effect of coagulants. J. Membr. Sci. 2000; 177: 153–161.

Page 215: Polymeric Biomaterials - Taylor & Francis eBooks

176. Yang G, Zhang L, Cao X, and Liu Y. Structure andmicroporous formation of cellulose/silk �broin blendmembranes: Part II. Effect of post-treatment by alkali. J.Membr. Sci. 2002; 210: 379–387.

177. Lee KY and Ha WS. DSC studies on bound water in silk�broin/S-carboxymethyl kerateine blend �lms. Polymer 1999;40: 4131–4134.

178. Park KE, Jung SY, Lee SJ, Min BM, and Park WH.Biomimetic nano�brous scaffolds: Preparation andcharacterization of chitin/silk �broin blend nano�bers.Int. J. Biol. Macromol. 2006; 38: 165–173.

179. Yoo CR, Y eo IS, Park KE, Park JH, Lee S, Park WH, andMin BM. Effect of chitin/silk �broin nano�brous bicomponentstructures on interaction with human epidermalkeratinocytes. Int. J. Biol. Macromol. 2008; 42: 324–334.

180. Yongcheng L, Zhang X, Liu H, Tongying Y, and Jiaqi D.Immobilization of glucose oxidase onto the blend membraneof poly(vinyl alcohol) and regenerated silk �broin:Morphology and application to glucose biosensor. J.Biotechnol. 1996; 46: 131–138.

181. Kweon HY, Um IC, and Park YH. Structural and thermalcharacteristics of Antheraea pernyi silk �broin/ chitosanblend �lm. Polymer 2001; 42: 6651–6656.

182. Liu YS, Zhengzhong Z, and Chen X. Thermal andcrystalline behavior of silk �borin/nylon 66 blend �lms.Polymer 2004; 45: 7705–7710.

183. Lee KH, Baek DH, Ki CS, and Park YH. Preparation andcharacterization of wet spun silk �broin/ poly(vinylalcohol) blend �laments. Int. J. Biol. Macromol. 2007; 41:168–172.

184. Li M, Lu S, Wu Z, Tan K, Minoura N, and Kuga S.Structure and properties of silk �broin–poly(vinylalcohol) gel. Int. J. Biol. Macromol. 2002; 30: 89–94.

185. Yoo MK, Kweon HY, Lee KG, Lee HC, and Cho CS.Preparation of semi-interpenetrating polymer networkscomposed of silk �broin and poloxamer macromer. Int. J.Biol. Macromol. 2004; 34: 263–270.

186. Niamsa N, Srisuwan Y, Baimark Y, Phinyocheep P, andKittipoom S. Preparation of nanocomposite chitosan/silk

Page 216: Polymeric Biomaterials - Taylor & Francis eBooks

�broin blend �lms containing nanopore structures.Carbohydr. Polym . 2009; 78: 60–65.

187. Salminem F and Rintala J. Anaerobic digestion oforganic solid poultry slaughterhouse waste – A review.Bioresour. Technol. 2002; 83: 13–26.

188. Moncrieff RW. Man Made Fibres, Vol. 11, 6th edn,Butterworths Scienti�c, London, U.K., 1975, p. 231.

189. Aluigi A, Zoccola M, Vineis C, Tonin C, Ferrero F, andCanetti M. Study on the structure and properties of woolkeratin regenerated from formic acid. Int. J. Biol.Macromol. 2007; 41: 266–273.

190. Millington KR and Church JS. The photodegradation ofwool keratin II. Proposed mechanisms involving cystine. J.Photochem. Photobiol. B: Biol. 1997; 39: 204–212.

191. Smith GJ. New trends in photobiology (invited review)photodegradation of keratin and other structural proteins.Photochem. Photobiol. B: Biol. 1995; 27: 187–198.

192. Tanabe T, Okitsu N, and Yamauchi K. Fabrication andcharacterization of chemically crosslinked keratin �lms.Mater. Sci. Eng. C 2004; 24: 441–446.

193. Aluigi A, Vineis C, Varesano A, Tonin C, Ferrero F,Canetti M, Mazzuchetti G, Ferrero F, and Tonin C.Structure and properties of keratin/PEO blend nano�bres.Eur. Polym. J. 2008; 44: 2465–2475.

194. Tonin C, Aluigi A, Vineis C, Varesano A, Montarsolo A,and Ferrero F. Thermal and structural characterization ofpoly(ethylene-oxide)/keratin blend �lms. J. Therm. Anal.Calorim. 2007; 89: 601–608.

195. Tanabe T, Okitsu N, Tachibana A, and Yamauchi K.Preparation and characterization of keratin–chitosancomposite �lm. Biomaterials 2002; 23: 817–825.

196. Pingping Z. A ne w criterion of polymer-polymermiscibility detected by viscometry. Eur. Polym. J. 1997;33: 411–414.

197. Meyers M, Chen PY, Lin A, and Seki Y. Biologicalmaterials: Structure and mechanical properties. Prog.Mater. Sci. 2008; 53: 1–206.

198. Olszta MJ, Cheng X, Sang S, and Kumar R. Bone

Page 217: Polymeric Biomaterials - Taylor & Francis eBooks

structure and formation: A new perspective. Mater. Sci.Eng. R 2007; 58: 77–116.

199. Almer JD and Stock SR. Micromechanical response ofmineral and collagen phases in bone. J. Struct. Biol.2007; 157: 365–370.

200. Chang MC, Ikoma T, Kikuchi M, and Tanaka J. Thecross-linkage effect of hydroxyapatite/collagennanocomposites on a self-organization phenomenon. J. Mater.Sci.: Mater. Med. 2002; 13: 993–997.

201. Gerber T, Holzhuter G, and Gotz W. Nanostructuring ofbiomaterials—A pathway to bone grafting substitute. Eur. J.Trauma 2006; 32: 132–140.

202. Chen G, Ushida T , and Tateishi T. Development ofbiodegradable porous scaffolds for tissue engineering.Mater. Sci. Eng. C 2001; 17: 63–69.

203. Yunoki S, Maruka wa E, Ikoma T, Sotome S, Fan H, andZhang X. Effect of collagen �bril formation onbioresorbability of hydroxyapatite/collagen composites. J.Mater. Sci.: Mater. Med. 2007; 18: 2179–2183.

204. Degirmenbasi N, Kalyon DM, and Birinci E.Biocomposites of nanohydroxyapatite with collagen andpoly(vinyl alcohol). Colloids Surf. B Biointerfaces 2006;48: 42–49.

205. Kweon H, Ha HC, Um IC, and Park YH. Physicalproperties of silk �broin/chitosan blend �lms. J. Appl.Polym. Sci. 2001; 80: 928–934.

206. Wang L and Li C. Preparation and physicochemicalproperties of a novel hydroxyapatite/chitosan–silk �broincomposite. Carbohydr. Polym. 2007; 68: 740–745.

207. Sionkowska A. Photochemical stability ofcollagen/poly(ethylene oxide) blends. J. Photochem.Photobiol. A Chem. 2006; 177: 61–67.

208. Sionkowska A. The in¥uence of UV light oncollagen/poly(ethylene glycol) blends. Polym. Degrad.Stab. 2006; 91: 305–312.

209. Sionkowska A, Wiśniewski M, Kaczmarek H, Skopińska J,Chevallier P, Mantovani D, Lazare S, and Tokarev V. Thein¥uence of UV irradiation on surface composition ofcollagen/pvp blended �lms. Appl. Surf. Sci. 2006; 253:

Page 218: Polymeric Biomaterials - Taylor & Francis eBooks

1970–1977.

210. Sionkowska A, Wiśniewski M, Skopińska J, and MantovaniD. Effects of solar radiation on collagen basedbiomaterials. Int. J. Photoenergy 2006, article ID 29196,pp. 1–9.

211. Skopińska-Wiśniewska J, Sionkowska A, Joachimiak R,Kaźnica A, Drewa T, Bajer K, and Dzwonkowski J. Themodi�cation of new collagen-elastin hydrolysatesbiomaterials by ultraviolet irradiation. Eng. Biomater.2007; 69–72: 67–69.

212. Drewa T, Joachimiak R, Kaźnica A, Wiśniewska-SkopińskaJ, and Sionkowska A. The comparison study on collagenscaffolds seeded with hair follicle epithelial cells andurothelials cells. Tissue Eng. 2007; 13: 1762–1763.

213. Rajan N, Couet F, Pennock W, Lagueux J, Sionkowska A,and Mantovani D. Low doses of UV radiation stimulate cellactivity in collagen-based scaffolds. Biotechnol. Prog.2008; 24(4): 884–889.

214. Sionkowska A, Kozlowska J, Planecka A, andSkopinska-Wisniewska J. Photochemical stability ofpoly(vinyl pyrrolidone) in the presence of collagen. Polym.Degrad. Stab. 2008; 93: 2127–2132.

215. Sionkowska A, Kozlowska J, Planecka A, andSkopinska-Wisniewska J. Collagen �brils in UV irradiatedpoly(vinyl pyrrolidone) �lms. Appl. Surf. Sci. 2008; 255:2030–2039.

216. Sionkowska A, Planecka A, Kozlowska J, andSkopinska-Wisniewska J. Collagen �brils formationin poly(vinyl alcohol) and poly(vinyl pyrrolidone) �lms. J.Mol. Liq. 2009; 144: 71–74.

217. Sionkowska A, Planecka A, Kozlowska J, andSkopinska-Wisniewska J. Surface propertiesof UV-irradiated poly(vinyl alcohol) �lms containing smallamount of collagen. Appl. Surf. Sci. 2009; 255: 4135–4139.

218. Sionkowska A, Planecka A, Kozlowska J, andSkopinska-Wisniewska J. Photochemical stabilityof poly(vinyl alcohol) in the presence of collagen. Polym.Degrad. Stab. 2009; 94: 383–388.

Page 219: Polymeric Biomaterials - Taylor & Francis eBooks

12 Chapter 12. Metal–Polymer CompositeBiomaterials

1. Ratner, B. D., Hoffman, A. S., Schoen, F. J., and J. E.Lemons. 2004. Biomaterials Science: An Introduction toMaterials in Medicine. Amsterdam, the Netherlands:Elsevier.

2. Yang, Y., Kim, K. H., and J. Ong. 2005. A review oncalcium phosphate coatings produced using a sputteringprocess—An alternative to plasma spraying. Biomaterials 26:327–337.

3. Kim, K. H. and N. Ramaswany. 2009. Electrochemicalsurface modi�cation of titanium in dentistry. Dent Mater J28: 20–36.

4. Asami, K., Chen, S.C., Habazaki, H., and K. Hashimoto.1993. The surface characterization of titanium andtitanium-nickel alloys in sulfuric acid. Corros Sci 35:43–49.

5. Hanawa, T ., Asami, K., and K. Asaoka. 1998.Repassivation of titanium and surface oxide �lm regeneratedin simulated bioliquid. J Biomed Mater Res 40: 530–538.

6. Hanawa T . and M. Ota. 1991. Calcium phosphate naturallyformed on titanium in electrolyte solution. Biomaterials12: 767–774.

7. Hanawa T . 1991. Titanium and its oxide �lm: a substratefor formation of apatite. In: J. E. Davies, ed., TheBone-Biomaterial Interface, pp. 49–61. Toronto, Ontario,Canada: University of Toronto Press.

8. Hanawa, T., Okuno, O., and H. Hamanaka. 1992.Compositional change in surface of Ti-Zr alloys inarti�cial bioliquid. J Jpn Inst Met 56: 1168–1173.

9. Bruesch, P., Muller, K., Atrens, A., and H. Neff. 1985.Corrosion of stainless-steels in chloride solutionan XPSinvestigation of passive �lms bruesch. Appl Phys 38: 1–18.

10. Jin, S. and A. Atrens. 1987. ESCA-studies of thestructure and composition of the passive �lm formed onstainless steels by various immersion times in 0.1 M NaClsolution. Appl Phys A42: 149–165.

11. Hanawa, T., Hiromoto, S., Yamamoto, A., Kuroda, D., andK. Asami. 2002. XPS characterization of the surface oxide

Page 220: Polymeric Biomaterials - Taylor & Francis eBooks

�lm of 316L stainless samples that were located inquasi-biological environments. Mater Trans 43: 3088–3092.

12. Smith, D. C., Pilliar , R. M., Metson, J. B., and N. S.McIntyre. 1991. Preparative procedures and surfacespectroscopic studies. J Biomed Mater Res 25: 1069–1084.

13. Hanawa, T ., Hiromoto, S., and K. Asami. 2001.Characterization of the surface oxide �lm of a Co-Cr-Moalloy after being located in quasi-biological environmentsusing XPS. Appl Surf Sci 183: 68–75.

14. Nagai, A., Tsutsumi, Y., Suzuki, Y., Katayama, K.,Hanawa, T., and K. Yamashita. 2012. Characterization ofair-formaed surface oxide �lm on a Co-Ni-Cr-Mo alloy(MP35N) and its change in Hanks’ solution. Appl Surf Sci258: 5490–5498.

15. Endo, K., Araki, Y ., and H. Ohno. 1989. In vitro andin vivo corrosion of dental Ag-Pd-Cu alloys. In: T. Okabeand S. Takahashi, eds., Transaction of InternationalCongress on Dental Materials, November 1–4, 1989,Honolulu, Hawaii, The Academy of Dental Materials and TheJapanese Society for Dental Materials and Devices, pp.226–227.

16. Par�tt, G. D. 1976. The surface of titanium dioxide.Prog Surf Membr Sci 11: 181–226.

17. Westall, J. and H. Hohl. 1980. A comparison ofelectrostatic models for the oxide/solution interface. AdvColloid Interface Sci 12: 265–294.

18. Healy, T. W. and D. W. Fuerstenau. 1965. Theoxide-water interface–Interreaction of the zero point ofcharge and the heat of immersion. J Colloid Sci 20:376–386.

19. Boehm, H. P. 1971. Acidic and basic properties ofhydroxylated metal oxide surfaces. Discuss Faraday Soc 52:264–289.

20. Takeyama, M., Kashibuti, S., Nakabayashi, N., and E.Masuhara. 1978. Studies on dental self-curingresins(17)—Adhesion of PMMA with bovine enamel or dentalalloys. J Jpn Soc Dent Appar Mater 19: 179–185.

21. Omura, I., Yamauchi, J., Nagase, Y., and F. Uemura.1983. Jpn Published Unexamined Patent Application,58-21607.

Page 221: Polymeric Biomaterials - Taylor & Francis eBooks

22. Ikemura, K. and T. Endo. 2010. A review of ourdevelopment of dental adhesives –Effects of radicalpolymerization initiators and adhesive monomers onadhesion. Dent Mater J 29: 109–121.

23. Tanaka, T., Nagata, K., Takeyama, M., Atsuta, M.,Nakabayashi, N., and E. Masuhara. 1981. 4-META opaqueresin—A new resin strongly adhesive to nickel-chromiumalloy. J Dent Res 60: 1697–1707.

24. Tanaka, T., Nagata, K., Takeyama, M., Nakabayashi, N.,and E. Masuhara. 1980. Heat treatment of gold alloys toget adhesion with resin. J Jpn Soc Dent Appar Mater 21:95–102.

25. Varga, J., Matsumura, H., Tabata, T., and E. Masuhara.1985. Adhesive behavior of the alloys ‘ALBABOND E’containing large percentage of Pd after various surfacetreatments. Dent Mater J 4: 181–190.

26. Ohno, H., Araki, Y., and M. Sagara. 1986. The adhesionmechanism of dental adhesive resin to thealloy—Relationship between Co-Cr alloy surface structureanalyzed by ESCA and bonding strength of adhesive resin.Dent Mater J 5: 46–65.

27. Ohno, H., Araki, Y., Sagara, M., and Y. Yamane. 1986.The adhesion mechanism of dental adhesive resin to thealloy—Experimental evidence of the deterioration of bondingability due to adsorbed water on the oxide layer. DentMater J 5: 211–216.

28. Ohno, H., Araki, Y ., Endo, K., and K. Kawashima. 1989.The adhesion mechanism of dental adhesive resin to thealloy—Adhesive ability of dental adhesive resin to theclean metal surface obtained by hydrogen gas reductionmethod. Dent Mater J 8: 1–8.

29. Brewis, D. M., Comyn, J., and J. L. Tegg. 1980. Thedurability of some epoxide adhesive-bonded joints onexposure to moist warm air. Int J Adhes Adhes 1: 35–39.

30. Ko, C. U. and J. P. Wightman. 1988. Experimentalanalysis of moisture intrusion into the Al/Li-polysulfoneinterface. J Adhes 25: 23–29.

31. Ohno, H., Endo, K., Araki, Y., and S. Asakura. 1992.Destruction of metal-resin adhesion due to waterpenetrating through the resin. J Mater Sci 27: 5149–5153.

Page 222: Polymeric Biomaterials - Taylor & Francis eBooks

32. Ohno, H., Endo, K., Araki, Y., and Y. Asakura. 1993.ESCA study on the destruction mechanism of metalresinadhesion due to water penetrating through the resin. JMater Sci 28: 3764–3768.

33. Ohno, H., Araki, K., Endo, K., Yamane, Y., and I.Kawashima. 1996. Evaluation of water durability atadhesion interface by peeling test of resin �lm. Dent MaterJ 15: 183–192.

34. Musil, R. 1987. Clinical veri�cation of the Silicoatertechnique, results of three-years’ experience. Dent Lab35: 1709–1715.

35. Tanaka, T., Hirano, M., Kawahara, H., Matsumura, H.,and M. Atsuta. 1988. A new io-coating surface treatment ofalloys for dental adhesive resins. J Dent Res 67:1376–1380.

36. Ohno, H., Araki, K., and K. Endo. 1992. A new methodfor promoting adhesion between precious metal allo ys anddental adhesives. J Dent Res 71: 1326–1331.

37. Ohno, H., Endo, K., Yamane, Y., and I. Kawashima. XPSstudy on the weakest zone in the adhesion structurebetween resin containing 4-META and precious metal alloystreated with different surface modi�cation methods. DentMater J 20: 330–337.

38. Dotter, C. T. and M. P. Judkins. 1964. Transluminaltreatment of arteriosclerotic obstruction of a newtechnique and preliminary report of its application.Circulation 30: 654–670.

39. Palmaz, J. C., Sibbitt, R. R., Tio, F. O., Reuter, S.R., Peters, J. E., and F. Garcia. 1986. Expandableintraluminal vascular graft. A feasibility study. Surgery99: 199–205.

40. Roubin, G. S., Robinson, K. A., King, S. B.,Gianturco, C., Black, A. J., Brown, J. E., Siegel, R. J.,and J. S. Douglas. 1987. Early and late results ofintracoronary arterial stenting after coronary angioplastyin dog. Circulation 76: 891–897.

41. Sigwart, U., Puel, J., Mirkovitch, V., Joffre, F., andL. Kappenberger. 1987. Intravascular stents to preventocclusion and restenosis after trans-luminal angioplasty. NEng J Med 316: 701–706.

Page 223: Polymeric Biomaterials - Taylor & Francis eBooks

42. Phatouros, C. C., Higashida, R. T., and A. M. Malek.2000. Endovascular stenting for carotid artery stenosis:Preliminary experience using theshape-memory-alloy-recoverable-technology (SMART) stent.Am J Neuroradiol 21: 732–738.

43. Roubin, G. S., Yadav, S., Iyer, S. S., and J. Vitek.1996. Carotid stent-supported angioplasty: A neurovascularintervention to prevent stroke. Am J Cardiol 78: 8–12.

44. Dietrich, E. B. 1996. Aortic endografting: Visions ofthings to come. J Endovasc Surg 3: R21–R23.

45. Wholey, M. H., Wholey, M., Bergeron, P., Diethrich, E.B., Henry, M., Laborde, J. C., Mathias, K. et al. 1998.Current global status of carotid artery stent placement.Cathet Cardiovasc Diagn 44: 1–6.

46. Richter, G. M., Palmaz, J. C., Allenberg, J.R., and G.W. Kauffmann. Percutaneous stent grafts foraorticaneurysms–preliminary experience with a newprocedure. Radiology 34: 511–518.

47. Fattori, R. and T. Pi va. 2003. Drug-eluting stents invascular intervention. Lancet 362: 247–249.

48. Sous a, J. E., Serruys, P. W., and M. A. Costa. 2003.New frontiers in cardiology: Drug-eluting stents – Pt. I.Circulation 107: 2274–2279.

49. Sousa, J. E., Serruys, P. W., and M. A. Costa. 2003.New frontiers in cardiology: Drug-eluting stents – Pt. II.Circulation 107: 2283–2289.

50. Nakayama, Y., Kim, J. Y., Nishi, S., Ueno, H., and T.Matsuda. 2001. Development of high-performance stent:Gelatinous photogel-coated stent that permits drug deliveryand gene transfer. J Biomed Mater Res 57: 559–566.

51. Ishihara, K., Ueda, T., and N. Nakabayashi. 1990.Preparation of phospholipids polymers and their propertiesas hydrogel membrane. Polym J 30: 355–360.

52. Huang, N. P., Michel, R., Voros, J., Textor, M., Hofer,R., Rossi, A., Elbert, D. L., Hubbell, J. A., and N. D.Spencer. 2001. Poly(L-lysine)-g-poly(ethylene glycol)layers on metal oxide surfaces: Surface-analyticalcharacterization and resistance to serum and �brinogenadsorption. Langmuir 17: 489–498.

Page 224: Polymeric Biomaterials - Taylor & Francis eBooks

53. Sianos, G., Hofma, S., Lighthart, J. M. R., Saia, F.,Hoye, A., Lemos, P. A., and P. W. Serruys. 2004. Stentfracture and restenosis in the drug-eluting stent era.Catheter Cardiovasc Interv 61: 111–116.

54. Consgny, P . M. 2000. Endotherial cell seeding onprosthetic surfaces. J Long Term Eff Med Implants 10:79–95.

55. Seifalian, A. M., Tiwari, A., Hamilton, G., and H. J.Salacinski. 2001. Improving the clinical patency ofprostetic vascular and coronary artery bypass grafts: Therole of seeding and tissue engineering. Artif Organs 26:489–495.

56. Heintz, C., Riepe, G., Birken, L., Kaiser, E., Chakfe,N., Morlock, M., Delling, G., and H. Imig. 2001. CorrodedNitinol wires in explanted aortic endografts. J EndovascTher 8: 248–253.

57. Mahato, R. I. 2005. Biomaterials for Delivery andTargeting of Proteins and Nucleic Acids. Boca Raton, FL:CRC Press (Ald. Cat. No. Z705102).

58. Kenausis, G. L., Vörös, J., Elbert, D. L., Huang, N.,Hofer, R., Ruiz-Taylor, L., Textor, M., Hubbell, J.A., andN. D. Spencer. 2000. Poly(L-lysine)-g-poly(ethylene glycol)layers on metal oxide surfaces: Attachment mechanism andeffects of polymer architecture on resistance to proteinadsorption. J Phys Chem B104: 3298–3309.

59. Huang, N. P., Csucs, G., Emoto, K., Nagasaki, Y.,Kataoka, K., Textor, M., and N. D. Spencer. 2002. Covalentattachment of novel poly(ethylene glycol)-poly(DL-lacticacid) copolymeric micelles to TiO 2 surfaces. Langmuir 18:252–258.

60. Zhang, F., Kang, E. T., Neoh, K. G., Wang, P., and K.L. Tan. 2001. Surface modi�cation of stainless steel bygrafting of poly(ethylene glycol) for reduction in proteinadsorption. Biomaterials 22: 1541–1548.

61. To, Y., Hasuda, H., Sakuragi, M., and S. Tsuzuki. 2007.Surface modi�cation of plastic, glass and titanium byphotoimmobilization of polyethylene glycol forantibiofouling. Ast Biomater 3: 1024–1032.

62. Tanaka, Y., Doi, H., Iwasaki, Y., Hiromoto, S.,Yoneyama, T., Asami, K., Imai, H., and T. Hanawa. 2007.

Page 225: Polymeric Biomaterials - Taylor & Francis eBooks

Electrodeposition of amine-terminated-poly(ethylene glycol)to Ti surface. Mater Sci Eng C27: 206–212.

63. Tanaka, Y., Doi, H., Kobayashi, E., Yoneyama, T., andT. Hanawa. 2007. Determination of the immobilization mannerof amine-terminated poly(ethylene glycol) electrodepositedon a Ti surface with XPS and GD-OES. Mater Trans 48:287–292.

64. Tanaka, Y., Saito, H., Tsutsumi, Y., Doi, H., Imai, H.,and T. Hanawa. 2008. Active hydroxyl groups on surfaceoxide �lm of Ti, 316l stainless steel, andcobalt-chromium-molybdenum alloy and its effect on theimmobilization of poly(ethylene glycol). Mater Trans 49:805–811.

65. Tanaka, Y., Matsuo, Y., Komiya, T., Tsutsumi, Y., Doi,H., Yoneyama, T., and T. Hanawa. 2010. Characterization ofthe spatial immobilization manner of poly(ethylene glycol)to a titanium surface with immersion and electrodepositionand its effects on platelet adhesion. J Biomed Mater Res92A: 350–358.

66. Tanaka, Y., Matin, K., Gyo, M., Okada, A., Tsutsumi,Y., Doi, H., Nomura, N., Tagami, J., and T. Hanawa. 2010.Effects of electrodeposited poly(ethylene glycol) on bio�lmadherence to titanium. J Biomed Mater Res 95A: 1105–1113.

67. Balachander, N. and C. N. Sukenik. 1990. Monolayertransformation by nucleophilic substitution: Applicationsto the creation of new monolayer assemblies. Langmuir 6:1621–1627.

68. Bain, C. D., Troughton, Y., Tao, Y. T., Evall, J.,Whitesides, G. M., and R. G. Nuzzo. 1989. Formation ofmonolayer �lms by the spontaneous assembly of organicthiols from solution onto gold. J Am Chem Soc 111:437–335.

69. Dubo is, L. H. and R. G. Nuzzo. 1992. Synthesis,structure, and properties of model organic surfaces. AnnRev Phys Chem 43: 437–463.

70. UlMan, A. 1996. Formation and structure ofself-assembled monolayers. Chem Re v 96: 1533–1554.

71. Xiao, S. J., Textor, M., and N. D. Spencer. 1998.Covalent attachment of cell-adhesive,(Arg-Gly-Asp)containing peptides to titanium surfaces.Langmuir 14: 5507–5516.

Page 226: Polymeric Biomaterials - Taylor & Francis eBooks

72. Gawalt, E. S., Avaltroni, M. J., Danahy, M. P.,Silverman, B. M., Hanson, E. L., Midwood, K. S.,Schwarzbauer, J. E., and J. Schwartz. 2003. Bondingorganics to Ti alloys: Facilitating human osteoblastattachment and spreading on surgical implant materials.Langmuir 19: 200–204.

73. Brovelli, D., Hahner, G., Ruis, L., Hofer, R., Kraus,G., Waldner, A., Schlosser, J., Oroszlan, P., Ehart, M.,and N. D. Spencer. 1999. Highly oriented, self-assembledalkanephosphate monolayers on tantalum(V) oxide surfaces.Langmuir 15: 4324–4327.

74. Textor, M., Ruiz, L., Hofer, R., Rossi, K., Feldman,K., Hahner, G., and N. D. Spencer. 2000. Structuralchemistry of self-assembled monolayers ofoctadecylphosphoric acid on tantalum oxide surfaces.Langmuir 16: 3257–3271.

75. Fang, J. L., Wu, N. J., Wang, Z. W., and Y. Li. 1991.XPS, AES and Raman studies of an antitarnish �lm on tin.Corrosion 47: 169–173.

76. Van Alsten, J. G. 1999. Self-Assembled monolayers onengineering metals: structure, derivatization, andutility. Langmuir 15: 7605–7614.

77. Gawalt, E. S., Avaltroni, M. J., Koch, N., and J.Schwartz. 2001. Self-assembly and bonding ofalkanephosphonic acids on the native oxide surface oftitanium. Langmuir 17: 5736–5738.

78. Verrier, S., Pallu, S., Bareille, R., Jonczyk, A.,Meyer, J., Dard, M., and J. Amedee. 2002. Function oflinear and cyclic RGD-containing peptides inosteoprogenitor cells adhesion process. Biomaterials 23:585–596.

79. Reyes, C. D., Petrie, T. A., Burns, K. L., Schwartz,Z., and A. J. Garcia. 2007. Biomolecular surface coating toenhance orthopaedic tissue healing and integration.Biomaterials 28: 3228–3235.

80. Hynes, R. O. 2002. Integrins: bidirectional, allostericsignaling machines. Cell 110: 673–687.

81. Bagn o, A., Piovan, A., Dettin, M., Chiarion, A., Brun,P., Gambaretto, R., Fontana, G., Di Bello, C., Palu, G.,and I. Castagliuolo. 2007. Human osteoblast-like cell

Page 227: Polymeric Biomaterials - Taylor & Francis eBooks

adhesion on titanium substrates covalently functionalizedwith synthetic peptides. Bone 40: 693–699.

82. Elmengaard, B., Bechtold, J. E., and K. Soballe. 2005.In vivo study of the effect of RGD treatment on boneongrowth on press-�t titanium alloy implants. Biomaterials26: 3521–3526.

83. Ramm elt, S., Illert, T., Bierbaum, S., Scharnweber,D., Zwipp, H., and W. Schneiders. 2006. Coating oftitanium implants with collagen. RGD peptide andchondroitin sulfate. Biomaterials 27: 5561–5571.

84. Auernheimer, J., Zuk owski, D., Dahmen, C., Kantlehner,M., Enderle, A., Goodman, S. L., and H. Kessker. 2005.Titanium implant materials with improved biocompatibilitythrough coating with phosphate-anchored cyclic RGDpeptides. ChemBiochem 6: 2034–2040.

85. Ferr is, D. M., Moodie, G. D., Dimond, P. M., Gioranni,C. W., Ehrlich, M. G., and R. F. Valentini. 1999.RGD-coated titanium implants stimulate increased boneformation in vivo. Biomaterials 20: 2323–2331.

86. Xiao, S. J., T extor, M., Spencer, N. D., Wieland, M.,Keller, B., and H. Sigrist. 1997. Immobilization of thecell-adhesive peptide Arg-Gly-Asp-Cys (RGDC) on titaniumsurfaces by covalent chemical attachment. J Mater Sci MaterMed 8: 867–872.

87. Silverman, B. M., Wieghaus, K. A., and J. Schwartz.2005. Comparative properties of siloxane vs phosphonatemonolayers on a key titanium alloy. Langmuir 21: 225–228.

88. Schwartz, J., A valtroni, M. J., Danahy, M. P.,Silverman, B. M., Hanson, E. L., Schwarzbauer, J. E.,Midwood, K. S., and E. S. Gawalt. 2003. Cell attachment andspreading on metal implant materials. Mater Sci Eng C23:395–400.

89. Tanaka, Y., Saito, H., Tsutsumi, Y., Doi, H., Nomura,N., Imai, H., and T. Hanawa. 2009. Effect of pH on theinteraction between zwitterion and titanium oxide. JColloid Interface Sci 330: 138–143.

90. Oya, K., Tanaka, Y., Saito, H., Kurashima, K., Nogi,K., Tsutsumi, H., Tsutsumi, Y., Doi, H., Nomura, N., andT. Hanawa. 2009. Calci�cation by MC3T3-E1 cells on RGDpeptide immobilized on titanium through electrodepositedPEG. Biomaterials 30: 1281–1286.

Page 228: Polymeric Biomaterials - Taylor & Francis eBooks

91. Yamanouchi, N., Pugdee, K., Chang, W. J., Lee, S. Y.,Yoshinari, M., Hayakawa, T., and Y. Abiko. 2008. Geneexpression monitoring in osteoblasts on titanium coatedwith �bronectin-derived peptide. Dent Mater J 27: 744–750.

92. Urist, M. R. 1965. Bone: Formation by autoinduction.Science 150: 893–899.

93. Lee, Y. M., Nam, S. H., Seol, Y. J., Kim, T. I., Lee,S. J., Ku, Y., Rhyu, I. C., Chung, C. P., Han, S. B., andS. M. Choi. 2003. Enhanced bone augmentation by controlledrelease of recombinant human bone morphogenetic protein-2from bioabsorbable membranes. J Periodontol 74: 865–872.

94. Wikesjo, U. M., Lim, W. H., Thomson, R. C., Cook, A.D., Wozney, J. M., and W. R. Hardwick. 2003. Periodontalrepair in dogs: Evaluation of a bioabsorbablespace-providing macroporous membrane with recombinanthuman bone morphogenetic protein-2. J Periodontol 74:635–647.

95. Seol, Y. J., Park, Y. J., Lee, S. C., Kim, K. H., Lee,J. Y., Kim, T. I., Lee, Y. M., Ku, Y., Rhyu, I. C., Han, S.B., and C. P. Chung. 2006. Enhanced osteogenic promotionaround dental implants with synthetic binding motifmimicking bone morphogenetic protein (BMP)-2. J BiomedMater Res 77A: 599–607.

96. Puleo, D. A., Kissling, R. A., and M. S. Sheu. 2002. Atechnique to immobilize bioactive proteins, including bonemorphogenetic protein-4 (BMP-4), on titanium alloy.Biomaterials 23: 2079–2087.

97. Nanci, A., Wuest, J. D., Peru, L., Brunet, P., Sharma,V., Zalzal, S., and M. D. McKee. 1998. Chemicalmodi�cation of titanium surfaces for covalent attachment ofbiological molecules. J Biomed Mater Res 40: 324–335.

98. Nagai, M., Hayakawa, T., Fukatsu, A., Yamamoto, M.,Fukumoto, M., Nagahama, F., Mishima, H., Yoshinari, M.,Nemoto, K., and T. Kato. 2002. In vitro study of collagencoating of titanium implants for initial cell attachment.Dent Mater J 21: 250–260.

99. Viornery, C., Guenther, H. L., Aronsson, B. O., Péchy,P., Descouts, P., and M. Grätzel. 2002. Osteoblast cultureon polished titanium disks modi�ed with phosphonic acids. JBiomed Mater Res 62: 149–155.

Page 229: Polymeric Biomaterials - Taylor & Francis eBooks

100. Chang, W. J., Qu, K. L., Lee, S. Y., Chen, J. Y.,Abiko, Y., Lin, C. T., and H. M. Huang. 2008. Type Icollagen grafting on titanium surfaces usinglow-temperature grow discharge. Dent mater J 27: 340–346.

101. Kamata, H., Suzuki, S., Tanaka, Y., Tsutsumi, Y.,Doi, H., Nomura N., Hanawa, T., and K. Moriyama. 2011.Effects of pH, potential, and deposition time on thedurability of collagen electrodeposited to titanium. MaterTrans 52: 81–89.

102. Pugdee, K., Shibata, Y ., Yamamichi, N., Tsutsumi, H.,Yoshinari, M., Abiko, Y., and T. Hayakawa. 2007. Geneexpression of MC3T3-E1 cells on bibronectin-immobilizedtitanium using tresyl chloride activation technique. DentMater J 26: 647–655.

103. Abe, Y., Hiasa, K., Takeuchi, M., Yoshida, Y.,Suzuki, K., and Y. Akagawa. 2005. New surface modi�cationof titanium implant with phosphor-amino acid. Dent mater J24: 536–540.

104. Cadotte, A. J. and T. B. DeMarse. 2005. Poly-HEMA as adrug delivery device for in vitro neutral network onmicro-electrode arrays. J Neural Eng 2: 114–122.

105. Belkasm J. S., Munro, C. A., Shoichet, M. S.,Johnston, M., and R. Midha. 2005. Long-term in vivobiochemical properties and biocompatibility ofpoly(2-hydroxyethyl methacrylate-co-methyl methacrylate)nerve conduits. Biomaterials 26: 1741–1749.

106. Indol�, L., Causa, F ., and P. A. Netti. 2009. Coatingprocess and early stage adhesion evaluation ofpoly(2hydroxy-ethyl-methacrylate) hydrogel coating of 316Lsteel surface for stent applications. J Mater Sci: MaterMed 20: 1541–1551.

107. Fenelon, A. M. and C. B. Breslin. 2003. Theelectropolymerization of pryrole at a CuNi electrode:Corrosion protection properties. Corros Sci 45: 2837–2850.

108. Mengoli, G. 1979. Feasibility of polymer �lm coatingsthrough electroinitiated polymerization in aqueous medium.Adv Polym Sci 33: 1–31.

109. De Giglio, E., Guascito, M. R., Sabbatini, L., and G.Zambonin. 2001. Electropolymerization of pyrrole ontitanium substrates for the future development of newbiocompatible surfaces. Biomaterials 22: 2609–2616.

Page 230: Polymeric Biomaterials - Taylor & Francis eBooks

110. Rammelt, U., Nguyen, P . T., and W. Plieth. 2003.Corrosion protection by ultrathin �lms of conductingpolymers. Electrochem Acta 48: 1257–1262.

111. De Giglio, E., Gennaro, I., Sabbatini, L., and G.Zambonin. 2001. Analytical characterization of collagen-and/or hydroxyapatite-modi�ed polypyrrole �lmselectrosynthesized on Ti-substrates for the development ofnew bioactive surfaces. J Biomater Sci Polym Ed 12: 63–76.

112. De Giglio, E., Cometa, S., Satriano, C., Sabbatini,L., and G. Zambonin. 2009. Electrosynthesis of hydrogel�lms on metal substrates for the development of coatingswith tunable drug delivery performance. J Biomed Mater Res88A: 1048–1057.

113. Taira, Y. and Y. Imai. 1995. Primer for bonding resinto metal. Dent Mater 11: 2–6.

114. Smith, N. A., Antoun, G. G., Ellis, A. B., and W. C.Crone. 2004. Improved adhesion between nickeltitanium shapememory alloy and polymer matrix via silane coupling agents.Compos Part A-Apply S 35: 1307–1312.

115. Abboud, M., Casaubieilh, L., Morval, F., Fontanille,M., and E. Duguet. 2000. PMMA-based composite materialswith reactive ceramic �llers: IV. Radiopacifying particlesembedded in PMMA beads for acrylic bone cements. J BiomedMater Res 53: 728–736.

116. Yoshida, K., T anagawa, M., and M. Atsuta. 2001.Effects of �ller composition and surface treatment on thecharacteristics of opaque resin composites. J Biomed MaterRes 58: 525–530.

117. Kanie, T., Arika wa, H., Fujii, K., and K. Inoue.2004. Physical and mechanical properties of PMMA resinscontaining γ-methacryloxypropyltrimethoxysilane. J OralRehabil 31: 161–171.

118. Ferracane, J. L., Berge, H. X., and J. R. Condon.1998. In vitro aging of dental composites in water-effectof degree of conversion, �ller volume, and �ller matrixcoupling. J Biomed Mater Res 42: 465–472.

119. Bexell, U., Olsson, M., Jhansson, M., Samuelsson, J.,and P. E. Sundell. 2003. A tribological study of a novelpre-treatment with linseed oil bonded tomercaptosilane-treated aluminum. Surf Coat Tech 166:

Page 231: Polymeric Biomaterials - Taylor & Francis eBooks

141–152.

120. Bexell, U., Olsson, M., Sundell, P. E., Jhansson, M.,Carlsson, P., and M. A. Hellsing 2004. ToF-SIMS study oflinseed oil bonded to mercaptosilane-treated aluminum. ApplSurf Sci 231–232: 362–365.

121. Jayaseelan, S. K. and W. J. V. Ooji. 2001.Rubber-to-metal bonding by silanes. J Adhes Sci Technol 15:967–991.

122. Sakamoto, H., Doi, H., Kobayashi, E., Yoneyama, T.,Suzuki, Y., and T. Hanawa. 2007. Structure and strength atthe bonding interface between a titanium-segmentatedpolyurethane composite through 3-(trimethoxysilyl) propylmethacrylate for arti�cial organs. J Biomed Mater Res 82A:52–61.

123. Sakamoto, H., Hirohashi, Y., Saito, H., Doi, H.,Tsutsumi, Y., Suzuki, Y., Noda, K., and T. Hanawa. 2008.Effect of active hydroxyl groups on the interfacial bondstrength of titanium with segmented polyurethane throughγ-mercaptopropyl trimethoxysilane. Dent Mater J 27: 81–92.

124. Sakamoto, H., Hirohashi, Y ., Doi, H., Tsutsumi, Y.,Suzuki, Y., Noda, K., and T. Hanawa. 2008. Effect of UVirradiation on the shear bond strength of titanium withsegmented polyurethane through γ-mercapto propyltrimethoxysilane. Dent Mater J 27: 124–132.

125. Nomura, N., Baba, Y ., Kawamura, A., Fujinuma, S.,Chiba, A., Masahashi, N., and S. Hanada. 2007. Mechanicalproperties of porous titanium compacts reinforced byUHMWPE. Mater Sci Forum 539– 543: 1033–1037.

126. Nakai, M., Niinomi, M., Akahori, T., Yamanoi, H.,Itsuno, S., Haraguchi, N., Itoh, Y., Ogasawara, T.,Onishi, T., and T. Shindo. Effect of silane couplingtreatment on mechanical properties of porous pure titanium�lled with PMMA for biomedical applications. J Jpn InstMetal 72: 839–845.

127. Possart, W. 1998. Adhesion of polymers. In: J. A.Hansen and H. J. Breme, eds., Metals as Biomaterials, pp.197–218. New York: Wiley.

128. Worch, H. 1998. Special thin organic �lm. In: J. A.Hansen and H. J. Breme, eds., Metals as Biomaterials, pp.177–196. New York: Wiley.

Page 232: Polymeric Biomaterials - Taylor & Francis eBooks

129. Xiao, S. J., K enausis, G., and M. Textor. 2001.Biochemical modi�cation of titanium surfaces. In: D. M.Brunrtte, P. Tenvall, M. Textor, and P. Thomsen, eds.,Titanium in Medicine, pp. 417–455. Amsterdam, theNetherlands: Springer.

Page 233: Polymeric Biomaterials - Taylor & Francis eBooks

13 Chapter 13. Evolution of Current andFuture Concepts of BiocompatibilityTesting

1. Williams, D. 2003. Revisiting the de�nition ofbiocompatibility. Med Device Technol 14:10–12.

2. Williams, D. J. 1999. The Williams Dictionary ofBiomaterials. Liverpool, U.K.: Liverpool University Press.

3. Anderson, J. M., Rodriguez, A., and Chang, D. T. 2008.Foreign body reaction to biomaterials. Semin Immunol20:86–100.

4. Williams, D. F. 2008. On the mechanisms ofbiocompatibility. Biomaterials 29:2941–2953.

5. Nixon, M., Taylor, G., Sheldon, P., Iqbal, S. J., andHarper, W. 2007. Does bone quality predict loosening ofdemented total hip replacements? J Bone Joint Surg89-B:1303–1308.

6. Gurbel, P. A. and Tantry, U. S. 2007. Stent thrombosis:Role of compliance and nonresponsiveness to antiplatelettherapy. Rev Cardiovasc Med 8(Suppl):S19–S26.

7. McFadden, E. P., Stabile, E., Regar, E. et al. 2004.Late thrombosis in drug-eluting coronary stents afterdiscontinuation of antiplatelet therapy. Lancet364:1519–1521.

8. Dhert, W. J. 1994. Retrieval studies on calciumphosphate-coated implants. Med Prog Technol 20:143–154.

9. Geesink, R. G., deGroot, K., and Klein, C. P. 1987.Chemical implant �xation using hydroxyl- apatitecoatings. The development of a human total hip prosthesisfor chemical �xation using hydroxyl-apatite coatings ontitanium substrates. Clin Orthop Relat Res 225:147–170.

10. Bessa, P. C., Casai, M., and Reis, R. L. 2008. Bonemorphogenic proteins in tissue engineering: The road fromlaboratory to clinic, part II (BMP delivery). J Tissue EngRegen Med 2:81–96.

11. Cowan, C. M., Soo, C., Ting, K., and Wu, B. 2005.Evolving concepts in bone tissue engineering. Curr TopicsDev Biol 66:239–285.

12. Cranenburg, E. C. M., Schurgers, L. J., and Vermeer, C.

Page 234: Polymeric Biomaterials - Taylor & Francis eBooks

2007. Vitamin K: Coagulation vitamin that becameomnipotent. Thromb Haemost 98:120–125.

13. Irish, J. D. 2004. A 5,500 year old arti�cial humantooth from Egypt: A historical note. Int J Oral MaxillofacImplants 19:645–647.

14. Sanan, A. and Haines, S. J. 1997. Repairing holes inthe head: A history of cranioplasty. Neurosurgery40:588–603.

15. Balls, M. 1985. Scienti�c procedures on living animals:Proposals for reform of the 1876 cruelty to animals act.Altern Lab Anim 12:225–242.

16. Zimmer, H. G. 2001. Perfusion of isolated organs andthe �rst heart-lung machine. Can J Cardiol 17:963–969.

17. Kaplan, J. and Hukku, B. 1998. Cell linecharacterization and authentication. Methods Cell Biol57:203–216.

18. Braybrook, J. H. 1997. Biocompatibility assessment ofmedical devices and materials. Chichester, U.K.: Wiley.

19. Schneider, W. H. 1996. The history of research onblood group genetics: Initial discovery and diffusion.Hist Philos Life Sci 18:277–303.

20. Malda, J., Rouwkema, J., Leeuwenbergh, S., Dhert, W.J., and Kirkpatrick, C. J. 2008. Crossing frontiers inbiomaterials and regenerative medicine. Regen Med3:765–768.

21. Zilla, P., Bezuidenhout, D., and Human, P. 2007.Prosthetic vascular grafts: Wrong models, wrong questionsand no healing. Biomaterials 28:5009–5027.

22. Belanger, M. C. and Marois, Y. 2001. Hemocompatibility,biocompatibility, in¥ammatory and in vivo studies ofprimary reference materials low-density polyethylene andpolydimethylsiloxane: A review. J Biomed Mater Res (ApplBiomater) 58:467–477.

23. Knetsch, M. L. W ., Olthof, N., and Koole, L. H. 2007.Polymers with tunable toxicity: A reference scale forcytotoxicity testing of biomaterial surfaces. J BiomedMater Res 82:947–957.

24. Mosmann, T. 1983. Rapid colorimetric assay for

Page 235: Polymeric Biomaterials - Taylor & Francis eBooks

cellular growth and survival: Application to proliferationand cytotoxicity assays. J Immunol Methods 65:55–63.

25. Johnson, I. 1998. Fluorescent probes for living cells.Histochem J 30:123–140.

26. Kroczek, R. A. 1993. Southern and northern analysis. JChromato gr 618:133–145.

27. Fido, R. J., T atham, A. S., and Shewry, P. R. 1995.Western blotting analysis. Methods Mol Biol 49:423–437.

28. Butler, J. E. 2000. Enzyme-linked immunosorbent assay.J Immunoassay 21:165–209.

29. Malling, H. V. 1970. Chemical mutagens as a possiblegenetic hazard in human populations. Am Ind Hyg Assoc J31:657–666.

30. Ames, B. N., Lee, F. D., and Durston, W. E. 1973. Animproved test system for the detection and classi�cation ofmutagens and carcinogens. Proc Natl Acad Sci USA70:782–786.

31. Møller, P. 2006. The alkaline comet assay: Towardsvalidation in biomonitoring of DNA damaging exposures.Basic Clin Pharmacol Toxicol 98:336–345.

32. Burlinson, B., Tice, R. R., Speit, G. et al. 2007.Fourth international workgroup on genotoxicity testing:Results in the in vivo comet assay workgroup. Mutat Res627:31–35.

33. Gerberick, G. F., Ryan, C. A., Dearman, R. J., andKimber, I. 2007. Local lymph node assay (LLNA) fordetection of sensitization capacity of chemicals. Methods41:54–60.

34. McGarry, H. F. 2007. The murine local lymph node assay:Regulatory and potency considerations under REACH.Toxicology 238:71–89.

35. Basketter, D. A., McFadden, J. F., Gerberick, F.,Cockshott, A., and Kimber, I. 2009. Nothing is perfect,not even the local lymph node assay: A commentary and theimplications for REACH. Contact Dermat 60(2):65–69.

36. Vinardell, M. P. and Mitjans, M. 2008. Alternativemethods for eye and skin irritation tests: An overview. JPharm Sci 97:46–59.

Page 236: Polymeric Biomaterials - Taylor & Francis eBooks

37. Hartung, T. 2002. Comparison and validation of novelpyrogens tests based on the human fever reaction. AlternLab Anim 30(Suppl 2):49–51.

38. Fennrich, S., Fischer, M., Hartung, T., Lexa, P.,Montag-Lessing, T., Sonntag, H. G., Weigandt, M., andWendel, A. 1999. Detection of endotoxins and other pyrogensusing human whole blood. Dev Biol Stand 101:131–139.

39. van Tienho ven, E. A. E., Korbee, D., Schipper, L.,Verharen, H. W., and De Jong, W. H. 2006. In vitro and invivo (cyto)toxicity assays using PVC and LDPE as modelmaterials. J Biomed Mater Res 78:175–182.

40. Katsnelson, A. 2009. The scientists: Newsblog: Are labstandards harmful? http://www.the-scientist.com/blog/print/55552/ (accessed July 27, 2009).

41. Richter, S. H., Garner, J. P., and Würbel, H. 2009.Environmental standardization: Cure or cause of poorreproducibility in animal experiments? Nat. Methods6:257–261.

42. El Ghalzbzouri, A., Commandeur, S., Rietveld, M. H.,Mulder, A. A., and Willemze, R. 2008. Replacement ofanimal-derived collagen matrix by human �broblast-deriveddermal matrix for human skin equivalent products.Biomaterials 30:71–78.

43. Walles, T., Weimer, M., Linke, K., Michaelis, J., andMertsching, H. 2007. The potential of bioarti�cial tissuesin oncology research and treatment. Onkologie 30:388–394.

44. Yliperttula, M., Cung, B. G., Navaladi, A., Manchabi,A., and Urtti, A. 2008. High-throughput screening of cellresponses to biomaterials. Eur J Pharm Sci 35:151–160.

45. Anderson, D. G., Levenberg, S., and Langer, R. 2004.Nanoliter-scale synthesis of arrayed biomaterials andapplication to human embryonic stem cells. Nat. Biotechnol.22:863–866.

Page 237: Polymeric Biomaterials - Taylor & Francis eBooks

14 Chapter 14. Biocompatibility ofElastomers

Ai, H., H. Meng, I. Ichinose et al. 2003. Biocompatibilityof layer-by-layer self-assembled nano�lm on siliconerubber for neurons. J Neurosci Methods 128:1–8.

Albanese, A., R. Barbucci, J. Belleville et al. 1994. Invitro biocompatibility evaluation of a heparinizablematerial (PUPA), based on polyurethane andpoly(amido-amine) components. Biomaterials 15:129–136.

Anderson, J. M., A. Hiltner, Q. H. Zhao et al. 1992.Cell/polymer interactions in the biodegradation ofpolyurethanes. In Biodegradable Polymers and Plastics, eds.Vert, M., Feijen, J., Albertson, A., Scott, G., Chiellini,E., pp. 122–136. Cambridge, U.K.: Royal Society ofChemistry.

Anderson, J. M. and K. M. Miller. 1984. Biomaterialbiocompatibility and the macrophage. Biomaterials 5:5–10.

Anderson, J. M., A. Rodriguez, and D. T. Chang. 2008.Foreign body reaction to biomaterials. Semin Immunol20:86–100.

Asberg, A. E. and V. Videm. 2005. Activation of neutrophilgranulocytes in an in vitro model of a cardiopulmonarybypass. Artif Organs 29:927–936.

Ashar, B., R. S. Ward, Jr., and L. R. Turcotte. 1981.Development of a silica-free silicone system for medicalapplications. J Biomed Mater Res 15:663–672.

Ashby, R. D., A. M. Cromwick, and T. A. Foglia. 1998.Radiation crosslinking of a bacterial medium-chainlengthpoly(hydroxyalkanoate) elastomer from tallow. Int J BiolMacromol 23:61–72.

Asplund, J. O., T. Bowden, T. Mathisen, and J. Hilborn.2007. Synthesis of highly elastic biodegradablepoly(urethane urea). Biomacromolecules 8:905–911.

Auroy, P., P. Duchatelard, N. E. Zmantar, and M. Hennequin.1996. Hardness and shock absorption of silicone rubber formouth guards. J Prosthet Dent 75:463–471.

Autian, J. 1974. Biological models for the testing of thetoxicity of biomaterials. In Polymers in Medicine andSurgery, ed. Kronenthal, R., pp. 181–203. New York: Plenum

Page 238: Polymeric Biomaterials - Taylor & Francis eBooks

Press.

Bacakova, L., V. Svorcik, V. Rybka et al. 1996. Adhesionand proliferation of cultured human aortic smooth musclecells on polystyrene implanted with N+, F+ and Ar+ ions:Correlation with polymer surface polarity andcarbonization. Biomaterials 17:1121–1126.

Backovic, A., H. L. Huang, B. Del Frari, H. Piza, L. A.Huber, and G. Wick. 2007. Identi�cation and dynamics ofproteins adhering to the surface of medical silicones invivo and in vitro. J Proteome Res 6:376–381.

Bakker, D., C. A. Van Blitterswijk, W. T. Daems, and J. J.Grote. 1988. Biocompatibility of six elastomers in vitro.J Biomed Mater Res 22:423–439.

Bakker, D., C. A. van Blitterswijk, S. C. Hesseling, W. T.Daems, W. Kuijpers, and J. J. Grote. 1990a. The behaviorof alloplastic tympanic membranes in Staphylococcusaureus-induced middle ear infection. I. Quantitativebiocompatibility evaluation. J Biomed Mater Res 24:669–688.

Bakker, D., C. A. van Blitterswijk, S. C. Hesseling, H. K.Koerten, W. Kuijpers, and J. J. Grote. 1990b.Biocompatibility of a polyether urethane, polypropyleneoxide, and a polyether polyester copolymer. A qualitativeand quantitative study of three alloplastic tympanicmembrane materials in the rat middle ear. J Biomed MaterRes 24:489–515.

Bakker, W. W., B. van der Lei, P. Nieuwenhuis, P. Robinson,and H. L. Bartels. 1991. Reduced thrombogenicity ofarti�cial materials by coating with ADPase. Biomaterials12:603–606.

Bal, B. T., H. Yilmaz, C. Aydin, S. Karakoca, and S.Yilmaz. 2009. In vitro cytotoxicity of maxillofacialsilicone elastomers: Effect of accelerated aging. J BiomedMater Res B Appl Biomater 89:122–126.

Balabanian, C. A., J. Coutinho-Netto, T. L.Lamano-Carvalho, S. A. Lacerda, and L. G. Brentegani. 2006.Biocompatibility of natural latex implanted into dentalalveolus of rats. J Oral Sci 48:201–205.

Balagadde, F. K., L. You, C. L. Hansen, F. H. Arnold, andS. R. Quake. 2005. Long-term monitoring of bacteriaundergoing programmed population control in amicrochemostat. Science 309:137–140.

Page 239: Polymeric Biomaterials - Taylor & Francis eBooks

Bambauer, R., R. Latza, S. Bambauer, and E. Tobin. 2004.Large bore catheters with surface treatments versusuntreated catheters for vascular access in hemodialysis.Artif Organs 28:604–610.

Barak, P., Y. Coquet, T. R. Halbach, and J. A. E. Molina.1991. Biodegradability of polyhydroxybutyrate ( co-hydroxyvalerate) and starch-incorporated polyethyleneplastic �lms in soils. J Environ Qual 20:173–179.

Baumann, M., O. Witzke, R. Dietrich et al. 2003. Prolongedcatheter survival in intermittent hemodialysis using aless thrombogenic micropatterned polymer modi�cation. ASAIOJ 49:708–712.

Baumgartner, J. N., C. Z. Yang, and S. L. Cooper. 1997.Physical property analysis and bacterial adhesion on aseries of phosphonated polyurethanes. Biomaterials18:831–837.

Berkland, C., D. W. Pack, and K. K. Kim. 2004. Controllingsurface nano-structure using ¥ow-limited �eldinjectionelectrostatic spraying (FFESS) ofpoly(D,L-lactide-co-glycolide). Biomaterials 25:5649–5658.

Bettinger, C. J., J. P. Bruggeman, J. T. Borenstein, and R.S. Langer. 2008. Amino alcohol-based degradable poly(esteramide) elastomers. Biomaterials 29:2315–2325.

Bilbao, R., D. P. Reay, B. M. Koppanati, and P. R. Clemens.2004. Biocompatibility of adenoviral vectors in poly(vinylchloride) tubing catheters with presence or absence ofplasticizer di-2-ethylhexyl phthalate. J Biomed Mater ResA 69:91–96.

Bini, T. B., S. J. Gao, T. C. Tan et al. 2004. Electrospunpoly(L-lactide-co-glycolide) biodegradable polymernano�bre tubes for peripheral nerve regeneration.Nanotechnology 15:1459–1464.

Bischoff, F. 1972. Organic polymer biocompatibility andtoxicology. Clin Chem 18:869–894.

Blass, C. R. 1992. PVC as a biomedical polymer—Plasticizerand stabilizer toxicity. Med Device Technol 3:32–40.

Blum, U., M. Langer, G. Spillner et al. 1996. Abdominalaortic aneurysms: Preliminary technical and clinicalresults with transfemoral placement of endovascular

Page 240: Polymeric Biomaterials - Taylor & Francis eBooks

self-expanding stent-grafts. Radiology 198:25–31.

Boelens, J. J., S. A. Zaat, J. Meeldijk, and J. Dankert.2000. Subcutaneous abscess formation around cathetersinduced by viable and nonviable Staphylococcus epidermidisas well as by small amounts of bacterial cell wallcomponents. J Biomed Mater Res 50:546–556.

Boldin, I., A. Klein, E. M. Haller-Schober, and J.Horwath-Winter. 2008. Long-term follow-up of punctal andproximal canalicular stenoses after silicone punctal plugtreatment in dry eye patients. Am J Ophthalmol146:968–972.

Bonart, R. 1968. X-ray investigations concerning thephysical structure of crosslinking in segmented urethaneelastomers. J Macromol Sci Phys B7:115–138.

Bon�eld, T. L. and J. M. Anderson. 1993. Functional versusquantitative comparison of IL 1 beta frommonocytes/macrophages on biomedical polymers. J BiomedMater Res 27:1195–1199.

Boone, J. L. and S. A. Braley. 1966. Resistance of siliconerubbers to body ¥uids. Rubber Chem Technol 39:1293–1297.

Boretos, J. W. and W. S. Pierce. 1967. Segmentedpolyurethane: A new elastomer for biomedical applications.Science 158:1481–1482.

Boswald, M., M. Girisch, J. Greil et al. 1995.Antimicrobial activity and biocompatibility of polyurethaneand silicone catheters containing low concentrations ofsilver: A new perspective in prevention ofpolymerassociated foreign-body-infections. ZentralblBakteriol 283:187–200.

Boswald, M., K. Mende, W. Bernschneider et al. 1999.Biocompatibility testing of a new silver-impregnatedcatheter in vivo. Infection 27:S38–S42.

Bouchemal, K., S. Briancon, E. Perrier, H. Fessi, I.Bonnet, and N. Zydowicz. 2004. Synthesis andcharacterization of polyurethane and poly(ether urethane)nanocapsules using a new technique of interfacialpolycondensation combined to spontaneous emulsi�cation. IntJ Pharm 269:89–100.

Brand, K. G., L. C. Buoen, K. H. Johnson, and I. Brand.1975. Etiological factors, stages, and the role of the

Page 241: Polymeric Biomaterials - Taylor & Francis eBooks

foreign body in foreign body tumorigenesis. Cancer Res35:279–286.

Branger, B., M. Garreau, G. Baudin, and J. C. Gris. 1990.Biocompatibility of blood tubings. Int J Artif Organs13:697–703.

Briganti, E., P. Losi, A. Raf�, M. Scoccianti, A. Munao,and G. Soldani. 2006. Silicone based polyurethanematerials: A promising biocompatible elastomericformulation for cardiovascular applications. J Mater SciMater Med 17:259–266.

Brinton, L. A. and S. L. Brown. 1997. Breast implants andcancer. J Natl Cancer Inst 89:1341–1349.

de Brito Alves, S., A. A. de Queiroz, and O. Z. Higa. 2003.Digital image processing for biocompatibility studies ofclinical implant materials. Artif Organs 27:444–446.

Brodbeck, W. G., M. Macewan, E. Colton, H. Meyerson, and J.M. Anderson. 2005. Lymphocytes and the foreign bodyresponse: Lymphocyte enhancement of macrophage adhesion andfusion. J Biomed Mater Res A 74:222–229.

Brown, J. M. 1995. Polyurethane and silicone: Myths andmisconceptions. J Intraven Nurs 18:120–122.

Bruck, S. D. 1980. Problems and artefacts in the evaluationof polymeric materials for medical uses. Biomaterials1:103–107.

Bschorer, R., G. B. Koveker, G. Gehrke, M. Jeschke, and V.Hermanutz. 1994. Experimental improvement of microvascularallografts with the new material polyurethane andmicrovessel endothelial cell seeding. Int J OralMaxillofac Surg 23:389–392.

Caballero, M., M. Bernal-Sprekelsen, C. Calvo, X. Farre, L.Quinto, and L. Alos. 2003. Polydimethylsiloxane versuspolytetra¥uoroethylene for vocal fold medialization:Histologic evaluation in a rabbit model. J Biomed MaterRes B Appl Biomater 67:666–674.

Cabanlit, M., D. Maitland, T. Wilson et al. 2007.Polyurethane shape-memory polymers demonstrate functionalbiocompatibility in vitro. Macromol Biosci 7:48–55.

Capone, C. D. 1992. Biostability of a non-etherpolyurethane. J Biomater Appl 7:108–129.

Page 242: Polymeric Biomaterials - Taylor & Francis eBooks

Carroll, J. C., S. D. Schwaitzberg, A. A. Ucci, Jr., R. M.Schlesinger, D. Lauritzen, and G. R. Sant. 1993. Newmatrix material for potential use in “reversible”vasectomy. Preliminary animal biocompatibility studies.Urology 41:34–37.

Casenave, J. P. 1986. Interaction of platelets withsurfaces. In Blood Surface Interactions, BiologicalPrinciples Underlying Hemocompatibility with Arti©cialSurfaces, eds. Casenave, J. P., Davies, J. A., Kazatchkine,M. D.,Van Aken, W. G., pp. 89–105. Amsterdam, theNetherlands: Elsevier.

Castner, D. G. and B. D. Ratner. 2002. Biomedical surfacescience: Foundations to frontiers. Surf Sci 500:28–60.

Cavallini, G., M. Lanfredi, M. Lodi, M. Govoni, and M.Pampolini. 1987. Detection and measurement of a cellularimmune-reactivity towards polyester andpolytetra¥uoroethylene grafts. Leukocyte adherenceinhibition test. Acta Chir Scand 153:179–184.

Chapiro, A. 1983. Radiation grafting of hydrogels toimprove the thromboresistance of polymers. Eur Polym J19:859.

Chauvel-Lebret, D. J., P. Pellen-Mussi, P. Auroy, and M.Bonnaure-Mallet. 1999. Evaluation of the in vitrobiocompatibility of various elastomers. Biomaterials20:291–299.

Chen, Q. Z., A. Bismarck, U. Hansen et al. 2008.Characterisation of a soft elastomer poly(glycerolsebacate) designed to match the mechanical properties ofmyocardial tissue. Biomaterials 29:47–57.

Chen, J. H., J. Wei, C. Y. Chang, R. F. Laiw, and Y. D.Lee. 1998. Studies on segmented polyetherurethane forbiomedical application: Effects of composition andhard-segment content on biocompatibility. J Biomed MaterRes 41:633–648.

Chesmel, K. D. and J. Black. 1995. Cellular responses tochemical and morphologic aspects of biomaterial surfaces.I. A novel in vitro model system. J Biomed Mater Res29:1089–1099.

Chou, C. W., S. H. Hsu, and P. H. Wang. 2008. Biostabilityand biocompatibility of poly(ether)urethane containing gold

Page 243: Polymeric Biomaterials - Taylor & Francis eBooks

or silver nanoparticles in a porcine model. J Biomed MaterRes A 84:785–794.

Christenson, E. M., J. M. Anderson, and A. Hiltner. 2004a.Oxidative mechanisms of poly(carbonate urethane) andpoly(ether urethane) biodegradation: In vivo and in vitrocorrelations. J Biomed Mater Res A 70:245–255.

Christenson, E. M., J. M. Anderson, and A. Hiltner. 2006a.Antioxidant inhibition of poly(carbonate urethane) in vivobiodegradation. J Biomed Mater Res A 76:480–490.

Christenson, E. M., M. Dadsetan, and A. Hiltner. 2005.Biostability and macrophage-mediated foreign body reactionof silicone-modi�ed polyurethanes. J Biomed Mater Res A74:141–155.

Christenson, E. M., M. Dadsetan, M. Wiggins, J. M.Anderson, and A. Hiltner. 2004b. Poly(carbonate urethane)and poly(ether urethane) biodegradation: In vivo studies. JBiomed Mater Res A 69:407–416.

Christenson, E. M., S. Patel, J. M. Anderson, and A.Hiltner. 2006b. Enzymatic degradation of poly(etherurethane) and poly(carbonate urethane) by cholesterolesterase. Biomaterials 27:3920–3926.

Collier, T., J. Tan, M. Shive, S. Hasan, A. Hiltner, and J.Anderson. 1998. Biocompatibility of poly(etherurethaneurea) containing dehydroepiandrosterone. J Biomed Mater Res41:192–201.

Colter, K. D., M. Shen, and A. T. Bell. 1977. Reduction ofprogesterone release rate through silicone membranes byplasma polymerization. Biomater Med Devices Artif Organs5:13–24.

Conconi, M. T., S. Lora, A. M. Menti, P. Carampin, and P.P. Parnigotto. 2006. In vitro evaluation of poly[bis(ethylalanato)phosphazene] as a scaffold for bone tissueengineering. Tissue Eng 12:811–819.

Cooper, G. L. and C. C. Hopkins. 1985. Rapid diagnosis ofintravascular catheter-associated infection by direct Gramstaining of catheter segments. New Eng J Med 312:1142–1147.

Cooper, S. and A. Toblosky. 1966. Properties of linearelastomeric polyurethanes. J Appl Polym Sci 10:1837–1844.

Corea-Tellez, K. S., P. Bustamante-Montes, M.

Page 244: Polymeric Biomaterials - Taylor & Francis eBooks

Garcia-Fabila, M. A. Hernandez-Valero, and F.VazquezMoreno. 2008. Estimated risks of water and salivacontamination by phthalate diffusion from plasticizedpolyvinyl chloride. J Environ Health 71:34–39, 45.

Cormio, L., K. Turjanmaa, M. Talja, L. C. Andersson, and M.Ruutu. 1993. Toxicity and immediate allergenicity of latexgloves. Clin Exp Allergy 23:618–623.

Coury, A., K. Cobian, P. Cahalan, and A. Jevne. 1984.Biomedical uses of polyurethanes. In Advances in UrethaneScience and Technology, eds. Frisch, K., Klempner, D., pp.133–139. Lancaster, PA: Technomic Publishing Co, Inc.

Coury, A. J. and C. N. Hobot. 1991. Method for producingpolyurethanes form poly-(hydroxyalkyl urethane). U.S.Patent 5, 001, 210.

Coury, A. J., C. M. Hobot, P. C. Slaikeu, K. B. Stokes, andP. T. Cahalan. 1990. A new family of implantable biostablepolyurethanes. Transactions of the 16th Annual Meeting forthe Society for Biomaterials, Charleston, SC, p. 158.

Coury, A. J., P. C. Slaikeu, P. T. Cahalan, K. B. Stokes,and C. M. Hobot. 1988. Factors and interactions affectingthe performance of polyurethane elastomers in medicaldevices. J Biomater Appl 3:130–179.

Coury, A. J., K. B. Stokes, P. T. Cahalan, and P. C.Slaikeu. 1987. Biostability considerations for implantablepolyurethanes. Life Support Syst 5:25–39.

Crommen, J., J. Vandorpe, and E. Schacht. 1993. Degradablepoly-phazenes for biomedical applications. J ControlRelease 24:167–180.

D’Arrigo, P., C. Giordano, P. Macchi, L. Malpezzi, G.Pedrocchi-Fantoni, and S. Servi. 2007. Synthesis, plateletadhesion and cytotoxicity studies of newglycerophosphoryl-containing polyurethanes. Int J ArtifOrgans 30:133–143.

De Scheerder, I. K., K. L. Wilczek, E. V. Verbeken et al.1995a. Biocompatibility of biodegradable andnonbiodegradable polymer-coated stents implanted in porcineperipheral arteries. Cardiovasc Intervent Radiol18:227–232.

De Scheerder, I. K., K. L. Wilczek, E. V. Verbeken et al.1995b. Biocompatibility of polymer-coated oversized

Page 245: Polymeric Biomaterials - Taylor & Francis eBooks

metallic stents implanted in normal porcine coronaryarteries. Atherosclerosis 114:105–114.

Defrere, J. and A. Franckart. 1992. Te¥on/polyurethanearthroplasty of the knee: The �rst 2 years preliminaryclinical experience in a new concept of arti�cialresurfacing of full thickness cartilage lesions of theknee. Acta Chir Belg 92:217–227.

Deisler, P. F., Jr. 1987. New silicone modi�ed TPEs formedical applications. Rubber World 196:24–29.

Deng, M., L. S. Nair, S. P. Nukavarapu et al. 2010.Biomimetic, bioactive ethericpolyphosphazene-poly(lactideco-glycolide) blends for bonetissue engineering. J Biomed Mater Res A 92:114–125.

Diebold, J., J. P. Camilleri, M. Reynes, and P. Callard.1977. Anatomie Pathologique Générale. Paris, France:Baillière.

Dobrovolskaia, M. A., J. D. Clogston, B. W. Neun, J. B.Hall, A. K. Patri, and S. E. McNeil. 2008. Method foranalysis of nanoparticle hemolytic properties in vitro.Nano Lett 8:2180–2187.

Donawa, M. 2006a. New efforts to harmonise clinicalevaluation. Med Device Technol 17:28, 30, 32.

Donawa, M. 2006b. Proposed amendments to the medicaldevices Directives. Med Device Technol 17:22–25.

Donawa, M. 2006c. Managing clinical data for worldwideacceptance. Med Device Technol 17:26–28.

Dopico-Garcia, M. S., J. M. Lopez-Vilarino, and M. V.Gonzalez-Rodriguez. 2007. Antioxidant content of andmigration from commercial polyethylene, polypropylene, andpolyvinyl chloride packages. J Agric Food Chem55:3225–3231.

Dumitriu, S. and D. Dumitriu. 1990. Biocompatibility ofpolymers. In Polymeric Biomaterials, ed. Dumitriu, S., pp.100–158. New York: Dekker Inc.

Duvernoy, O., T. Malm, J. Ramstrom, and S. Bowald. 1995. Abiodegradable patch used as a pericardial substitute aftercardiac surgery: 6- and 24-month evaluation with CT. ThoracCardiovasc Surg 43:271–274.

Page 246: Polymeric Biomaterials - Taylor & Francis eBooks

El Fray, M., P. Prowans, J. E. Puskas, and V. Altstadt.2006. Biocompatibility and fatigue properties ofpolystyrene-polyisobutylene-polystyrene, an emergingthermoplastic elastomeric biomaterial. Biomacromolecules7:844–850.

Elespuru, R., R. Agarwal, A. Atrakchi et al. 2009. Currentand future application of genetic toxicity assays: Therole and value of in vitro mammalian assays. Toxicol Sci109:172–179.

Everaert, E. P., H. C. Van Der Mei, J. De Vries, and H. J.Busscher. 1995. Hydrophobic recovery of repeatedlyplasma-treated silicone rubber. I. Storage in air. J AdhesSci Technol 9:1263.

Fabre, T., J. Bertrand-Barat, G. Freyburger et al. 1998.Quanti�cation of the in¥ammatory response in exudates tothree polymers implanted in vivo. J Biomed Mater Res39:637–641.

Feldman, D. S., S. M. Hultman, R. S. Colaizzo, and A. F.von Recum. 1983. Electron microscope investigation of softtissue ingrowth into Dacron velour with dogs. Biomaterials4:105–111.

Feynmann, R. F. 1992. There’s plenty of room at the bottom[data storage]. J Microelectromech Syst 1:60–66.

Feynmann, R. F. 1993. In�nitesimal machinery. JMicroelectromech Syst 2:4–14.

Fidkowski, C., M. R. Kaazempur-Mofrad, J. Borenstein, J. P.Vacanti, R. Langer, and Y. Wang. 2005. Endothelializedmicrovasculature based on a biodegradable elastomer. TissueEng 11:302–309.

Fishbein, L. 1984. Toxicity of the components ofpoly(vinylchloride) polymers additives. Prog Clin Biol Res141:113–136.

Fountain, S. W., J. Duf�n, C. A. Ward, H. Osada, B. A.Martin, and J. D. Cooper. 1979. Biocompatibility ofstandard and silica-free silicone rubber membraneoxygenators. Am J Physiol 236:H371–H375.

Freij-Larsson, C., M. Kober, B. Wesslen, E. Willquist, andP. Tengvall. 1993. Effects of a polymeric additive in abiomedical poly(ether urethaneurea). J Appl Polym Sci49:815–821.

Page 247: Polymeric Biomaterials - Taylor & Francis eBooks

Frisch, K. and J. Saunders. 1962. Polyurethanes: Chemistryand Technology. New-York: Interscience Publishers.

Fu, A. Y., H. P. Chou, C. Spence, F. H. Arnold, and S. R.Quake. 2002. An integrated microfabricated cell sorter.Anal Chem 74:2451–2457.

Gagnon, K. D., R. W. Lenz, R. J. Farris, and R. C. Fuller.1994a. Chemical modi�cation of bacterial elastomers: 1Peroxide crosslinking. Polymer 35:4358.

Gagnon, K. D., R. W. Lenz, R. J. Farris, and R. C. Fuller.1994b. Chemical modi�cation of bacterial elastomers: 2sulfur vulcanization. Polymer 35:4368.

Ganning, A. E., U. Brunk, and G. Dallner. 1984. Phthalateesters and their effect on the liver. Hepatology4:541–547.

Geary, C., C. Birkinshaw, and E. Jones. 2008.Characterisation of Bionate polycarbonate polyurethanes fororthopaedic applications. J Mater Sci Mater Med19:3355–3363.

Gerecht, S., S. A. Townsend, H. Pressler et al. 2007. Aporous photocurable elastomer for cell encapsulation andculture. Biomaterials 28:4826–4835.

Gogolewski, S. 1991. in vitro and in vivo molecularstability of medical polyurethanes: A review. Trends PolymSci 1:47–61.

Gottenbos, B., H. C. Van Der Mei, H. J. Busscher, D. W.Grijpma, and J. Feijen. 1999. Initial adhesion and surfacegrowth of Pseudomonas aeruginosa on negatively andpositively charged poly(methacrylates). J Mater Sci MaterMed 10:853–855.

Granstroem, L., L. Backam, and S. E. Dahlgren. 1986. Tissuereaction to polypropylene and polyester in obese patients.Biomaterials 7:455–458.

Grasel, T. G. and S. L. Cooper. 1989. Properties andbiological interactions of polyurethane anionomers: Effectof sulfonate incorporation. J Biomed Mater Res 23:311–338.

Grasel, T. G., D. C. Lee, A. Z. Okkema, T. J. Slowinski,and S. L. Cooper. 1988. Extraction of polyurethane blockcopolymers: Effects on bulk and surface properties and

Page 248: Polymeric Biomaterials - Taylor & Francis eBooks

biocompatibility. Biomaterials 9:383–392.

Grasel, T. G., J. A. Pierce, and S. L. Cooper. 1987.Effects of alkyl grafting on surface properties and bloodcompatibility of polyurethane block copolymers. J BiomedMater Res 21:815–842.

Greil, J., T. Spies, M. Boswald et al. 1999. Analysis ofthe acute cytotoxicity of the Erlanger silver catheter.Infection 27 Suppl 1:S34–S37.

Gu, S. Y. and J. Ren. 2005. Process optimization andempirical modeling for electrospun poly(D, L-lactide)�bers using response surface methodology. Macromol MaterEng 290:1097–1105.

Guelcher, S. A. 2008. Biodegradable polyurethanes:Synthesis and applications in regenerative medicine.Tissue Eng Part B Rev 14:3–17.

Guidoin, R., M. Sigot, M. King, and M. F. Sigot-Luizard.1992. Biocompatibility of the Vascugraft: Evaluation of anovel polyester urethane vascular substitute by anorganotypic culture technique. Biomaterials 13:281–288.

Han, D. K., K. D. Park, and Y. H. Kim. 1998. Sulfonatedpoly(ethylene oxide)-grafted polyurethane copolymer forbiomedical applications. J Biomater Sci Polym Ed 9:163–174.

Han, D. K., K. Park, K. D. Park, K. D. Ahn, and Y. H. Kim.2006. In vivo biocompatibility of sulfonated PEOgraftedpolyurethanes for polymer heart valve and vascular graft.Artif Organs 30:955–959.

Hansen, O. G. 2007. Phthalate labelling of medical devices.Med Device Technol 18:10–12.

Hansen, O. G. 2008. New developments in PVC. Med DeviceTechnol 19:17–19.

Hansen, C. L., E. Skordalakes, J. M. Berger, and S. R.Quake. 2002. A robust and scalable micro¥uidic meteringmethod that allows protein crystal growth by free interfacediffusion. Proc Natl Acad Sci USA 99:16531–16536.

Haugen, H., J. Aigner, M. Brunner, and E. Wintermantel.2006. A novel processing method for injectionmoldedpolyether-urethane scaffolds. Part 2: Cellularinteractions. J Biomed Mater Res B Appl Biomater 77:73–78.

Page 249: Polymeric Biomaterials - Taylor & Francis eBooks

Henry, T. J. 1985. Guidelines for the Preclinical SafetyEvaluation of Materials Used in Medical Devices.Washington, DC: Health Industry Manufacturers Association.

Hergenrother, R. W., X. H. Yu, and S. L. Cooper. 1994.Blood-contacting properties of polydimethylsiloxanepolyurea-urethanes. Biomaterials 15:635–640.

Hess, F., R. Jerusalem, O. Reijnders et al. 1992. Seedingof enzymatically derived and subcultivated canineendothelial cells on �brous polyurethane vascularprostheses. Biomaterials 13:657–663.

Heyde, M., M. Moens, L. Van Vaeck, K. M. Shakesheff, M. C.Davies, and E. H. Schacht. 2007. Synthesis andcharacterization of novel poly[(organo)phosphazenes] withcell-adhesive side groups. Biomacromolecules 8:1436–1445.

Hill, S. S., B. R. Shaw, and A. H. Wu. 2001. The clinicaleffects of plasticizers, antioxidants, and othercontaminants in medical polyvinylchloride tubing duringrespiratory and non-respiratory exposure. Clin Chim Acta304:1–8.

Hirt, T. D., P. Neuenschwander, and U. W. Suter. 1996.Telechelic diols from poly(r)-3hydroxybutyric acid andpoly(r)-3-hydroxybutyric acid-co-(r)-3-hydroxyvaleric acid.Macromol Chem Phys 197:1609–1614.

Hocking, P. J. and R. H. Marchessault. 1994. Chemistry andTechnology of Biodegradable Polymers. London, U.K.:Chapman and Hall.

Hodgins, D., J. M. Wasikiewicz, M. F. Grahn et al. 2007.Biocompatible materials developments for new medicalimplants. Med Device Technol 18:30, 32–35.

Hoenich, N. A., R. Levin, and C. Pearce. 2005. Clinicalwaste generation from renal units: Implications andsolutions. Semin Dial 18:396–400.

Hollick, E. J., D. J. Spalton, and P. G. Ursell. 1999.Surface cytologic features on intraocular lenses: Canincreased biocompatibility have disadvantages? ArchOphthalmol 117:872–878.

Hollick, E. J., D. J. Spalton, P. G. Ursell, and M. V.Pande. 1998. Biocompatibility of poly(methyl methacrylate),silicone, and AcrySof intraocular lenses: Randomizedcomparison of the cellular reaction on the anterior lens

Page 250: Polymeric Biomaterials - Taylor & Francis eBooks

surface. J Cataract Refract Surg 24:361–366.

Holmes, D. R., A. R. Camrud, M. A. Jorgenson, W. D.Edwards, and R. S. Schwartz. 1994. Polymeric stenting inthe porcine coronary artery model: Differential outcome ofexogenous �brin sleeves versus polyurethane-coated stents.J Am Coll Cardiol 24:525–531.

Hong, J., K. Nilsson Ekdahl, H. Reynolds, R. Larsson, andB. Nilsson. 1999. A new in vitro model to studyinteraction between whole blood and biomaterials. Studiesof platelet and coagulation activation and the effect ofaspirin. Biomaterials 20:603–611.

Hong, J. W., V. Studer, G. Hang, W. F. Anderson, and S. R.Quake. 2004. A nanoliter-scale nucleic acid processor withparallel architecture. Nat Biotechnol 22:435–439.

Hotta, A., E. Cochran, J. Ruokolainen et al. 2006.Semicrystalline thermoplastic elastomeric polyole�ns:Advances through catalyst development and macromoleculardesign. Proc Natl Acad Sci USA 103:15327–15332.

Hsiue, G. H., S. D. Lee, and P. C. Chang. 1996. Surfacemodi�cation of silicone rubber membrane by plasma inducedgraft copolymerization as arti�cial cornea. Artif Organs20:1196–1207.

Hsu, S. H., Y. C. Kao, and Z. C. Lin. 2004. Enhancedbiocompatibility in biostable poly(carbonate)urethane.Macromol Biosci 4:464–470.

Hsu, S. H., C. M. Tang, and H. J. Tseng. 2006.Biocompatibility of poly(ether)urethane-goldnanocomposites. J Biomed Mater Res A 79:759–770.

Hsu, S. H., C. M. Tang, and H. J. Tseng. 2008. Biostabilityand biocompatibility of poly(ester urethane)-goldnanocomposites. Acta Biomater 4:1797–1808.

Hu, W. J., J. W. Eaton, T. P. Ugarova, and L. Tang. 2001.Molecular basis of biomaterial-mediated foreign bodyreactions. Blood 98:1231–1238.

Huang, B., Y. Marois, R. Roy, M. Julien, and R. Guidoin.1992. Cellular reaction to the Vascugraft polyesterurethanevascular prosthesis: In vivo studies in rats. Biomaterials13:209–216.

Huijberts, G. N., G. Eggink, P. de Waard, G. W. Huisman,

Page 251: Polymeric Biomaterials - Taylor & Francis eBooks

and B. Witholt. 1992. Pseudomonas putida KT2442 cultivatedon glucose accumulates poly(3-hydroxyalkanoates) consistingof saturated and unsaturated monomers. Appl EnvironMicrobiol 58:536–544.

Hung, W. C., M. D. Shau, H. C. Kao, M. F. Shih, and J. Y.Cherng. 2009b. The synthesis of cationic polyurethanes tostudy the effect of amines and structures on their DNAtransfection potential. J Control Release 133:68–76.

Hunt, J. A., B. F. Flanagan, P. J. McLaughlin, I.Strickland, and D. F. Williams. 1996. Effect of biomaterialsurface charge on the in¥ammatory response: Evaluation ofcellular in�ltration and TNF alpha production. J BiomedMater Res 31:139–144.

Hunter, S. K., J. R. Scott, D. Hull, and R. L. Urry. 1988.The gamete and embryo compatibility of various syntheticpolymers. Fertil Steril 50:110–116.

Ifkovits, J. L. and J. A. Burdick. 2007. Review:Photopolymerizable and degradable biomaterials for tissueengineering applications. Tissue Eng 13:2369–2385.

Imam, S. H., L. Chen, S. H. Gordon, R. L. Shogren, D.Weisleder, and R. V. Greene. 1998. Biodegradation ofinjection molded starch-poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blends in anatural compost environment. J Polym Environ 6:91–98.

ISO. 1995. ISO 10993-7: Biological evaluation of medicaldevices. Part 7: Ethylene oxide sterilisation residuals.

ISO. 1998. ISO 10993-13: Biological evaluation of medicaldevices. Part 13: Identi�cation and quanti�cation ofdegradation products from medical polymeric medicaldevices.

ISO. 1999a. ISO 10993-5: Biological evaluation of medicaldevices. Part 5: Tests for in vitro cytotoxicity.

ISO. 1999b. ISO 10993-9: Biological evaluation of medicaldevices. Part 9: Framework for identi�cation andquanti�cation of potential degradation products.

ISO. 2002a. ISO 10993-4: Biological evaluation of medicaldevices. Part 4: Selection of tests for interaction withblood.

ISO. 2002b. ISO 10993-17: Biological evaluation of medical

Page 252: Polymeric Biomaterials - Taylor & Francis eBooks

devices. Part 7: Establishment of allowable limits forleachable substances.

ISO. 2003a. ISO 10993-1: Biological evaluation of medicaldevices. Part 1: Evaluation and testing.

ISO. 2003b. ISO 10993-3: Biological evaluation of medicaldevices. Part 3: Test for genotoxicity, carcinogenicity andreproductive toxicity.

ISO. 2008. ISO 7405: Preclinical evaluation ofbiocompatibility of biomedical devices used in dentistry -Test methods for dental materials.

Ives, C. L., J. L. Zamora, S. G. Eskin et al. 1984. In vivoinvestigation of a new elastomeric vascular graft(Mitrathane). Trans Am Soc Artif Intern Organs 30:587–590.

Iwamoto, R., K. Ohta, T. Matsuda, and K. Imachi. 1986.Quantitative surface analysis of Cardiothane 51 byFT-IR-ATR spectroscopy. J Biomed Mater Res 20:507–520.

Jaakkola, J. J. and T. L. Knight. 2008. The role ofexposure to phthalates from polyvinyl chloride products inthe development of asthma and allergies: A systematicreview and meta-analysis. Environ Health Perspect116:845–853.

Jahangir, A. R., W. G. McClung, R. M. Cornelius, C. B.McCloskey, J. L. Brash, and J. P. Santerre. 2002.Fluorinated surface-modifying macromolecules: Modulatingadhesive protein and platelet interactions on apolyether-urethane. J Biomed Mater Res 60:135–147.

Jansen, B., M. Rinck, P. Wolbring, A. Strohmeier, and T.Jahns. 1994. In vitro evaluation of the antimicrobialef�cacy and biocompatibility of a silver-coated centralvenous catheter. J Biomater Appl 9:55–70.

Jayabalan, M., N. S. Kumar, K. Rathinam, and T. V. Kumari.1991. In vivo biocompatibility of an aliphatic crosslinkedpolyurethane in rabbit. J Biomed Mater Res 25:1431–1432.

Jeschke, M. G., V. Hermanutz, S. E. Wolf, and G. B.Koveker. 1999. Polyurethane vascular prostheses decreasesneointimal formation compared with expandedpolytetra¥uoroethylene. J Vasc Surg 29:168–176.

Jiang, X., J. M. Ng, A. D. Stroock, S. K. Dertinger, and G.M. Whitesides. 2003. A miniaturized, parallel, serially

Page 253: Polymeric Biomaterials - Taylor & Francis eBooks

diluted immunoassay for analyzing multiple antigens. J AmChem Soc 125:5294–5295.

Jiao, Y. P. and F. Z. Cui. 2007. Surface modi�cation ofpolyester biomaterials for tissue engineering. BiomedMater 2:R24–R37.

Johnell, M., R. Larsson, and A. Siegbahn. 2005. Thein¥uence of different heparin surface concentrations andantithrombin-binding capacity on in¥ammation andcoagulation. Biomaterials 26:1731–1739.

Johnson, H. J., S. J. Northup, P. A. Seagraves, P. J.Garvin, and R. F. Wallin. 1983. Biocompatibility testprocedures for materials evaluation in vitro. I.Comparative test system sensitivity. J Biomed Mater Res17:571–586.

Jones, D. P. 1988. High quality silicones still dominatebiomedical market after three decades. Elastomerics120:12–16.

Jongebloed, W. L., G. van der Veen, D. Kalicharan, M. V.van Andel, G. Bartman, and J. G. Worst. 1994. New materialfor low-cost intraocular lenses. Biomaterials 15:766–773.

Kalicharan, D., W. L. Jongebloed, G. van der Veen, L. I.Los, and J. G. Worst. 1991. Cell-ingrowth in a siliconeplombe. Interactions between biomaterial and scleral tissueafter 8 years in situ: A SEM and TEM investigation. DocOphtalmol 78:307–315.

Kalman, P. G., C. A. Ward, N. B. McKeown, D. McCullough,and A. D. Romaschin. 1991. Improved biocompatibility ofsilicone rubber by removal of surface entrapped air nuclei.J Biomed Mater Res 25:199–211.

Kaluzny, J. J., W. Jozwicki, and H. Wisniewska. 2007.Histological biocompatibility of new, non-absorbableglaucoma deep sclerectomy implant. J Biomed Mater Res BAppl Biomater 81:403–409.

Kannan, R. Y., H. J. Salacinski, D. S. Vara, M. Odlyha, andA. M. Seifalian. 2006. Review paper: Principles andapplications of surface analytical techniques at thevascular interface. J Biomater Appl 21:5–32.

Kao, W. J., A. Hiltner, J. M. Anderson, and G. A. Lodoen.1994. Theoretical analysis of in vivo macrophage adhesionand foreign body giant cell formation on strained

Page 254: Polymeric Biomaterials - Taylor & Francis eBooks

poly(etherurethane urea) elastomers. J Biomed Mater Res28:819–829.

Kao, W. J., J. A. Hubbell, and J. M. Anderson. 1999.Protein-mediated macrophage adhesion and activation onbiomaterials: A model for modulating cell behavior. J MaterSci Mater Med 10:601–605.

Karabanova, L. V., A. W. Lloyd, S. V. Mikhalovsky et al.2006. Polyurethane/poly(hydroxyethyl methacrylate)semi-interpenetrating polymer networks for biomedicalapplications. J Mater Sci Mater Med 17:1283–1296.

Kartalov, E. P., W. F. Anderson, and A. Scherer. 2006. Theanalytical approach to polydimethylsiloxane micro¥uidictechnology and its biological applications. J NanosciNanotechnol 6:2265–2277.

Kartalov, E. P. and S. R. Quake. 2004. Micro¥uidic devicereads up to four consecutive base pairs in DNAsequencing-by-synthesis. Nucleic Acids Res 32:2873–2879.

Kasemo, B. 1998. Biological surface science. Curr OpinSolid State Mater 3:451–459.

Katbab, A. A., R. P. Burford, and J. L. Garnett. 1992.Radiation graft modi�cation of EPDM rubber. Int J RadiatAppl Instrum C Radiat Phys Chem 39:293–302.

Kaur, I. P. and R. Smitha. 2002. Penetration enhancers andocular bioadhesives: Two new avenues for ophthalmic drugdelivery. Drug Dev Ind Pharm 28:353–369.

Kawashima, K. and H. Sato. 1997. Calcium effect on themembrane preparation of segmented poly(ether/urethane/amide) (PEUN) as a biomedical material. J BiomaterSci Polym Ed 8:467–480.

K eogh, J. R. and J. W. Eaton. 1994. Albumin bindingsurfaces for biomaterials. J Lab Clin Med 124:537–545.

Keogh, J. R., M. F. Wolf, M. E. Overend, L. Tang, and J. W.Eaton. 1996. Biocompatibility of sulphonated polyurethanesurfaces. Biomaterials 17:1987–1994.

Khan, A. S., Z. Ahmed, M. J. Edirisinghe, F. S. Wong, andI. U. Rehman. 2008. Preparation and characterization of anovel bioactive restorative composite based on covalentlycoupled polyurethane-nanohydroxyapatite �bres. ActaBiomater 4:1275–1287.

Page 255: Polymeric Biomaterials - Taylor & Francis eBooks

Kim, K., M. Yu, X. Zong et al. 2003. Control of degradationrate and hydrophilicity in electrospun non-wovenpoly(D,L-lactide) nano�ber scaffolds for biomedicalapplications. Biomaterials 24:4977–4985.

Kirkpatrick, C. J. and C. Mittermayer. 1990. Theoreticaland practical aspects of testing potential biomaterials invitro. J Mater Sci Mater Med 1:9–13.

Kleinsasser, N. H., K. Schmid, A. W. Sassen et al. 2006.Cytotoxic and genotoxic effects of resin monomers in humansalivary gland tissue and lymphocytes as assessed by thesingle cell microgel electrophoresis (Comet) assay.Biomaterials 27:1762–1770.

Kockro, R. A., J. A. Hampl, B. Jansen et al. 2000. Use ofscanning electron microscopy to investigate theprophylactic ef�cacy of rifampin-impregnated CSF shuntcatheters. J Med Microbiol 49:441–450.

de Koning, G. J. M., H. M. M. van Bilsen, P. J. Lemstra etal. 1991. A biodegradable rubber by crosslinkingpoly(hydroxyalkanoate) from Pseudomonas oleovorans. Polymer35:2090.

Kossovsky, N. 1995. Can the silicone controversy beresolved with rational certainty? J Biomater Sci Polym Ed7:97–100.

Kossovsky, N. and C. J. Freiman. 1995. Physicochemical andimmunological basis of silicone pathophysiology. JBiomater Sci Polym Ed 7:101–113.

Kuncova-Kallio, J. and P. J. Kallio. 2006. PDMS and itssuitability for analytical micro¥uidic devices. Conf ProcIEEE Eng Med Biol Soc 1:2486–2489.

Kwon, I. K., S. Kidoaki, and T. Matsuda. 2005. Electrospunnano- to micro�ber fabrics made of biodegradablecopolyesters: Structural characteristics, mechanicalproperties and cell adhesion potential. Biomaterials26:3929–3939.

Labow, R. S., J. P. Santerre, and G. Waghray. 1997. Theeffect of phospholipids on the biodegradation ofpolyurethanes by lysosomal enzymes. J Biomater Sci Polym Ed8:779–795.

Lafferty, R. M., B. Korsatko, and W. Korsatko. 1988.

Page 256: Polymeric Biomaterials - Taylor & Francis eBooks

Biotechnology. Weinheim, Germany: VCH Verlagsgesellschaft.

Lansman, S., P. Paakko, J. Ryhanen et al. 2005. Histologicanalysis of bioabsorbable scleral buckling implants: Anexperimental study on rabbits. Retina 25:1032–1038.

Lee, P. C., L. L. Huang, L. W. Chen, K. H. Hsieh, and C. L.Tsai. 1996a. Effect of forms of collagen linked topolyurethane on endothelial cell growth. J Biomed Mater Res32:645–653.

Lee, S. D., G. H. Hsiue, C. Y. Kao, and P. C. Chang. 1996b.Arti�cial cornea: Surface modi�cation of silicone rubbermembrane by graft polymerization of pHEMA via glowdischarge. Biomaterials 17:587–595.

Leeper, H. M. and R. M. Wright. 1983. Elastomers inmedicine. Rubber Chem Technol 56:523–556.

Lehle, K., M. Stock, T. Schmid, S. Schopka, R. H. Straub,and C. Schmid. 2009. Cell-type speci�c evaluation ofbiocompatibility of commercially available polyurethanes. JBiomed Mater Res 90:312–318.

Lelah, M. D. and S. L. Cooper. 1986. Polyurethanes inMedicine. Boca Raton, FL: CRC Press.

Lelah, M. D., T. G. Grasel, J. A. Pierce, and S. L. Cooper.1986. Ex vivo interactions and surface propertyrelationships of polyetherurethanes. J Biomed Mater Res20:433–468.

Lelah, M. D., J. A. Pierce, L. K. Lambrecht, and S. L.Cooper. 1985. Polyetherurethane ionomers: Surfaceproperty/ex vivo blood compatibility relationships. JColloid Interface Sci 104:422–439.

de Lemos, M. L., L. Hamata, and T. Vu. 2005. Leaching ofdiethylhexyl phthalate from polyvinyl chloride materialsinto etoposide intravenous solutions. J Oncol Pharm Pract11:155–157.

Li, D. and J. Zhao. 1995. Surface biomedical effects ofplasma on polyetherurethane. J Adhes Sci Technol9:1249–1261.

Lim, F., C. Z. Yang, and S. L. Cooper. 1994. Synthesis,characterization and ex vivo evaluation ofpolydimethylsiloxane polyurea-urethanes. Biomaterials15:408–416.

Page 257: Polymeric Biomaterials - Taylor & Francis eBooks

Lim, F., X. H. Yu, and S. L. Cooper. 1993. Effects ofoligoethylene oxide monoalkyl(aryl) alcohol ether graftingon the surface properties and blood compatibility of apolyurethane. Biomaterials 14:537–545.

Lin-Gibson, S., S. Bencherif, J. A. Cooper et al. 2004.Synthesis and characterization of PEG dimethacrylates andtheir hydrogels. Biomacromolecules 5:1280–1287.

Lindner, E., V. V. Cosofret, S. Ufer et al. 1994.Ion-selective membranes with low plasticizer content:Electroanalytical characterization and biocompatibilitystudies. J Biomed Mater Res 28:591–601.

Link, J., B. Feyerabend, M. Grabener et al. 1996.Dacron-covered stent-grafts for the percutaneous treatmentof carotid aneurysms: Effectiveness andbiocompatibility-experimental study in swine. Radiology200:397–401.

Lipatov, Y. S. 1990. Peculiarities of self-organization inthe production of interpenetrating polymer networks.J Macromol Sci Rev Macromol Chem Phys C30:209–231.

Liu, J., M. Enzelberger, and S. Quake. 2002. A nanoliterrotary device for polymerase chain reaction.Electrophoresis 23:1531–1536.

Liu, J., C. Hansen, and S. R. Quake. 2003. Solving the“world-to-chip” interface problem with a micro¥uidicmatrix. Anal Chem 75:4718–4723.

Lloyd, A. W. 2002. Interfacial bioengineering to enhancesurface biocompatibility. Med Device Technol 13:18–21.

Lobler, M., M. Sass, P. Michel, U. T. Hopt, C. Kunze, andK. P. Schmitz. 1999. Differential gene expression afterimplantation of biomaterials into rat gastrointestine. JMater Sci Mater Med 10:797–799.

Lodi, M., G. Cavallini, A. Susa, and M. Lanfredi. 1988.Biomaterials and immune system: Cellular reactivitytowards PTFE and Dacron vascular substitutes pointed out bythe leukocyte adherence inhibition (LAI) test. Int Angiol7:344–348.

Loff, S., T. Hannmann, U. Subotic, F. M. Reinecke, H.Wischmann, and J. Brade. 2008. Extraction ofdiethylhexylphthalate by home total parenteral nutrition

Page 258: Polymeric Biomaterials - Taylor & Francis eBooks

from polyvinyl chloride infusion lines commonly used inthe home. J Pediatr Gastroenterol Nutr 47:81–86.

Loh, X. J., S. H. Goh, and J. Li. 2007. Hydrolyticdegradation and protein release studies of thermogellingpolyurethane copolymers consisting ofpoly[(R)-3-hydroxybutyrate], poly(ethylene glycol), andpoly(propylene glycol). Biomaterials 28:4113–4123.

Loh, X. J., K. K. Tan, X. Li, and J. Li. 2006. The in vitrohydrolysis of poly(ester urethane)s consisting ofpoly[(R)-3-hydroxybutyrate] and poly(ethylene glycol).Biomaterials 27:1841–1850.

Lorenz, M. R., V. Holzapfel, A. Musyanovych et al. 2006.Uptake of functionalized, ¥uorescent-labeled polymericparticles in different cell lines and stem cells.Biomaterials 27:2820–2828.

Luu, Y. K., K. Kim, B. S. Hsiao, B. Chu, and M.Hadjiargyrou. 2003. Development of a nanostructured DNAdelivery scaffold via electrospinning of PLGA and PLA-PEGblock copolymers. J Control Release 89:341–353.

Ma, Z., Z. Mao, and C. Gao. 2007. Surface modi�cation andproperty analysis of biomedical polymers used for tissueengineering. Colloids Surf B Biointerfaces 60:137–157.

Macocinschi, D., D. Filip, M. Butnaru, and C. D. Dimitriu.2009. Surface characterization of biopolyurethanes basedon cellulose derivatives. J Mater Sci Mater Med 20:775–783.

Mahdavi, A., L. Ferreira, C. Sundback et al. 2008. Abiodegradable and biocompatible gecko-inspired tissueadhesive. Proc Natl Acad Sci USA 105:2307–2312.

Maki, D. G., C. E. Weise, and H. W. Sara�n. 1977. Asemiquantitative culture method for identifyingintravenous-catheter-related infection. New Engl J Med296:1305–1309.

Maki, D. G., S. J. Wheeler, and S. M. Stolz. 1991. Study ofa novel antiseptic-coated central venous catheter. CritCare Med 19:99.

Marchant, R. E., J. M. Anderson, K. Phua, and A. Hiltner.1984a. in vivo biocompatibility studies. II. Biomer:Preliminary cell adhesion and surface characterizationstudies. J Biomed Mater Res 18:309–315.

Page 259: Polymeric Biomaterials - Taylor & Francis eBooks

Marchant, R., A. Hiltner, C. Hamlin, A. Rabinovitch, R.Slobodkin, and J. M. Anderson. 1983. In vivobiocompatibility studies. I. The cage implant system and abiodegradable hydrogel. J Biomed Mater Res 17:301–325.

Marchant, R. E., K. M. Miller, and J. M. Anderson. 1984b.In vivo biocompatibility studies. V. in vivo leukocyteinteractions with Biomer. J Biomed Mater Res 18:1169–1190.

Mardis, H. K., R. M. Kroeger, J. J. Morton, and J. M.Donovan. 1993. Comparative evaluation of materials usedfor internal ureteral stents. J Endourol 7:105–115.

Marois, Y., R. Guidoin, D. Boyer et al. 1989. In vivoevaluation of hydrophobic and �brillar microporouspolyetherurethane urea graft. Biomaterials 10:521–531.

Martin, D. J., L. A. Warren, P. A. Gunatillake, S. J.McCarthy, G. F. Meijs, and K. Schindhelm. 2000.Polydimethylsiloxane/polyether-mixed macrodiol-basedpolyurethane elastomers: Biostability. Biomaterials21:1021–1029.

Martz, H., R. Paynter, J. C. Forest, A. Downs, and R.Guidoin. 1987. Microporous hydrophilic polyurethanevascular grafts as substitutes in the abdominal aorta ofdogs. Biomaterials 8:3–11.

Massa, T. M., M. L. Yang, J. Y. Ho, J. L. Brash, and J. P.Santerre. 2005. Fibrinogen surface distribution correlatesto platelet adhesion pattern on ¥uorinated surface-modi�edpolyetherurethane. Biomaterials 26:7367–7376.

Mathur, A. B., T. O. Collier, W. J. Kao et al. 1997. Invivo biocompatibility and biostability of modi�edpolyurethanes. J Biomed Mater Res 36:246–257.

Maturri, L., A. Azzolini, G. L. Campiglio, and E. Tardito.1991. Are synthetic prostheses really inert? Preliminaryresults of a study on the biocompatibility of Dacronvascular prostheses and Silicone skin expanders. Int Surg76:115–118.

McCoy, T. J., H. D. Wabers, and S. L. Cooper. 1990. Seriesshunt evaluation of polyurethane vascular graft materialsin chronically AV-shunted canines. J Biomed Mater Res24:107–129.

McCulley, J. P. 2003. Biocompatibility of intraocularlenses. Eye Contact Lens 29:155–163.

Page 260: Polymeric Biomaterials - Taylor & Francis eBooks

McMillin, C. R. 1994. Elastomers for biomedicalapplication. Rubber Chem Technol 67:417.

Menconi, M. J., T. Owen, K. A. Dasse, G. Stein, and J. B.Lian. 1992. Molecular approaches to the characterization ofcell and blood/biomaterial interactions. J Card Surg7:177–187.

Miller, K. M. and J. M. Anderson. 1989. In vitrostimulation of �broblast activity by factors generated fromhuman monocytes activated by biomedical polymers. J BiomedMater Res 23:911–930.

van Minnen, B., M. B. van Leeuwen, B. Stegenga et al. 2005.Short-term in vitro and in vivo biocompatibility of abiodegradable polyurethane foam based on1,4-butanediisocyanate. J Mater Sci Mater Med 16:221–227.

Mirzadeh, H., A. A. Katbab, and R. P. Burford. 1993.CO-pulsed laser induced surface grafting of acrylamideonto ethylene-propylene rubber. Int J Radiat Appl Instrum CRadiat Phys Chem 42:53–56.

Mo, X. M., C. Y. Xu, M. Kotaki, and S. Ramakrishna. 2004.Electrospun P(LLA-CL) nano�ber: A biomimetic extracellularmatrix for smooth muscle cell and endothelial cellproliferation. Biomaterials 25:1883–1890.

Moharamzadeh, K., I. M. Brook, R. Van Noort, A. M. Scutt,K. G. Smith, and M. H. Thornhill. 2008. Development,optimization and characterization of a full-thicknesstissue engineered human oral mucosal model for biologicalassessment of dental biomaterials. J Mater Sci Mater Med19:1793–1801.

Moreira Pda, L., P. R. Marreco, A. M. Moraes, M. L. Wada,and S. C. Genari. 2004. Analysis of cellular morphology,adhesion, and proliferation on uncoated and differentlycoated PVC tubes used in extracorporeal circulation (ECC).J Biomed Mater Res B Appl Biomater 69:38–45.

Morrison, C., R. Macnair, C. MacDonald, A. Wykman, I.Goldie, and M. H. Grant. 1995. In vitro biocompatibilitytesting of polymers for orthopaedic implants using cultured�broblasts and osteoblasts. Biomaterials 16:987–992.

Murakami, Y., T. Endo, S. Yamamura, N. Nagatani, Y.Takamura, and E. Tamiya. 2004. On-chip micro-¥owpolystyrene bead-based immunoassay for quantitative

Page 261: Polymeric Biomaterials - Taylor & Francis eBooks

detection of tacrolimus (FK506). Anal Biochem 334:111–116.

Murty, M. S. and H. Sugiyama. 2004. Biology ofN-methylpyrrole-N-methylimidazole hairpin polyamide. BiolPharm Bull 27:468–474.

Nadeenko, V. G., I. R. Gol’dina, Z. D’Iachenko O, and L. V.Pestova. 1997. Comparative informative value of chromosomeaberrations and sister chromatid exchanges in theevaluation of metals in the environment. Gig Sanit3:10–13.

Naim, J. O., R. J. Lanzafame, and C. J. van Oss. 1995. Theeffect of silicone-gel on the immune response. J BiomaterSci Polym Ed 7:123–132.

Nakabayashi, N. and D. F. Williams. 2003. Preparation ofnon-thrombogenic materials using 2-methacryloyloxyethylphosphorylcholine. Biomaterials 24:2431–2435.

Nakamura, A., Y. Ikarashi, T. Tsuchiya et al. 1990.Correlations among chemical constituents, cytotoxicitiesand tissue responses: In the case of natural rubber latexmaterials. Biomaterials 11:92–94.

Nakamura, A., Y. Kawasaki, K. Takada et al. 1992.Difference in tumor incidence and other tissue responsesto polyetherurethanes and polydimethylsiloxane in long-termsubcutaneous implantation into rats. J Biomed Mater Res26:631–650.

Nakaoka, R., T. Tsuchiya, K. Kato, Y. Ikada, and A.Nakamura. 1997. Studies on tumor-promoting activity ofpolyethylene: Inhibitory activity of metabolic cooperationon polyethylene surfaces is markedly decreased by surfacemodi�cation with collagen but not with RGDS peptide. JBiomed Mater Res 35:391–397.

National Heart and Lung Institute. 1971. Annual Report ofthe Medical Devices Applications Program of the NationalHeart and Lung Institute, Bethesda, MD, U.S. Department ofHealth, Education, and Welfare, Public Health Service,National Institutes of Health.

Nijst, C. L., J. P. Bruggeman, J. M. Karp et al. 2007.Synthesis and characterization of photocurable elastomersfrom poly(glycerol-co-sebacate). Biomacromolecules8:3067–3073.

Nitschke, M., G. Schmack, A. Janke, F. Simon, D. Pleul, and

Page 262: Polymeric Biomaterials - Taylor & Francis eBooks

C. Werner. 2002. Low pressure plasma treatment ofpoly(3-hydroxybutyrate): Toward tailored polymer surfacesfor tissue engineering scaffolds. J Biomed Mater Res59:632–638.

Nukavarapu, S. P., S. G. Kumbar, J. L. Brown et al. 2008.Polyphosphazene/nano-hydroxyapatite composite microspherescaffolds for bone tissue engineering. Biomacromolecules9:1818–1825.

Nyilas, E. and R. S. Ward, Jr. 1977. Development ofblood-compatible elastomers. V. Surface structure andblood compatibility of avcothane elastomers. J Biomed MaterRes 11:69–84.

Okkema, A. Z., T. A. Giroux, T. G. Grasel, and S. L.Cooper. 1987. Ionic polyurethanes: Surface and bloodcontacting properties. MRS Symposium on BiomedicalMaterials and Devices, Boston, MA.

Oloffs, A., C. Grosse-Siestrup, S. Bisson, M. Rinck, R.Rudolph, and U. Gross. 1994. Biocompatibility ofsilver-coated polyurethane catheters and silver-coatedDacron material. Biomaterials 15:753–758.

Oshima, H. and M. Nakamura. 1994. A study on referencestandard for cytotoxicity assay of biomaterials. BiomedMater Eng 4:327–332.

Owen, G. R., D. O. Meredith, I. ap Gwynn, and R. G.Richards. 2005. Focal adhesion quanti�cation - A new assayof material biocompatibility? Review. Eur Cell Mater9:85–96; discussion 85–96.

Ozdemir, K. G., H. Yilmaz, and S. Yilmaz. 2009. In vitroevaluation of cytotoxicity of soft lining materials onL929 cells by MTT assay. J Biomed Mater Res B Appl Biomater90:82–86.

Pangman, W. J. 1958. U.S. Patent N° 2, 842, 775.

Pariente, J. L., L. Bordenave, R. Bareille et al. 1998.First use of cultured human urothelial cells forbiocompatibility assessment: Application to urinarycatheters. J Biomed Mater Res 40:31–39.

Park, H. and K. Park. 1996. Biocompatibility issues ofimplantable drug delivery systems. Pharm Res 13:1770–1776.

Peek, G. J., R. Scott, H. M. Killer, and R. K. Firmin.

Page 263: Polymeric Biomaterials - Taylor & Francis eBooks

2002. An in vitro method for comparing biocompatibility ofmaterials for extracorporeal circulation. Perfusion17:125–132.

Pernagallo, S., J. J. Diaz-Mochon, and M. Bradley. 2009. Acooperative polymer-DNA microarray approach to biomaterialinvestigation. Lab Chip 9:397–403.

Phillips, R. E., M. C. Smith, and R. J. Thoma. 1988.Biomedical applications of polyurethanes: Implications offailure mechanisms. J Biomater Appl 3:207–227.

Pinchuk, L. 1994. A review of the biostability andcarcinogenicity of polyurethanes in medicine and the newgeneration of ‘biostable’ polyurethanes. J Biomater SciPolym Ed 6:225–267.

Pinchuk, L., Y. P. Kato, M. L. Eckstein, G. J. Wilson, andD. C. MacGregor. 1993. Polycarbonate urethanes aselastomeric materials for long-term implant applications.Transactions of the 16th Annual Meeting for the Societyfor Biomaterials, Charleston, SC. p. 22.

Pinchuk, L., G. J. Wilson, J. J. Barry, R. T.Schoephoerster, J. M. Parel, and J. P. Kennedy. 2008.Medical applications ofpoly(styrene-block-isobutylene-block-styrene) (“SIBS”).Biomaterials 29:448–460.

Piskin, E. 1994. Review of biodegradable polymers asbiomaterials. J Biomater Sci Polymer Ed 6:775–795.

Pizzoferrato, A., C. R. Arciola, E. Cenni, G. Ciapetti, andS. Sassi. 1995. In vitro biocompatibility of a polyurethanecatheter after deposition of ¥uorinated �lm. Biomaterials16:361–367.

Poirier, Y., C. Nawrath, and C. Somerville. 1995.Production of polyhydroxyalkanoates, a family ofbiodegradable plastics and elastomers, in bacteria andplants. Biotechnology 13:142–150.

Pollock, E., E. J. Andrews, D. Lentz, and K. Sheikh. 1981.Tissue ingrowth and porosity of biomer. Trans Am Soc ArtifIntern Organs 27:405–409.

Pomerantseva, I., N. Krebs, A. Hart, C. M. Neville, A. Y.Huang, and C. A. Sundback. 2009. Degradation behavior ofpoly(glycerol sebacate). J Biomed Mater Res 91:1038–1047.

Page 264: Polymeric Biomaterials - Taylor & Francis eBooks

Pritchett, J. W. 2008. Curved-stem hip resurfacing: Minimum20-year followup. Clin Orthop Relat Res 466:1177–1185.

Quake, S. R. and A. Scherer. 2000. From micro- tonanofabrication with soft materials. Science 290:1536–1540.

Rakhorst, G., H. C. Van der Mei, W. Van Oeveren, H. T.Spijker, and H. J. Busscher. 1999. Time-related contactangle measurements with human plasma on biomaterialsurfaces. Int J Artif Organs 22:35–39.

Rambour, R. P. 1973. A review of crazing and fracture inthermoplastics. J Polym Sci Macromol Rev 7:1–154.

Ratner, B. D. 1983. Surface characterization ofbiomaterials by electron spectroscopy for chemicalanalysis. Ann Biomed Eng 11:313–336.

Ratner, B. D., T. Horbett, A. S. Hoffman, and S. D.Hauschka. 1975. Cell adhesion to polymeric materials:Implications with respect to biocompatibility. J BiomedMater Res 9:407–422.

Razzak, M. T., K. Otsuhata, Y. Tabata, F. Ohashi, and A.Takeuchi. 1988. Modi�cation of natural rubber tubes forbiomaterials. I. radiation induced grafting of N,N dimethylacrylamide onto natural rubber tubes. J Appl Polym Sci36:645.

Razzak, M. T., K. Otsuhata, Y. Tabata, F. Ohashi, and A.Takeuchi. 1989. Modi�cation of natural rubber tubes forbiomaterials. II. Radiation induced grafting of N,Ndimethylaminoethylacrylate (DMAEA) onto natural rubber (NR)tubes. J Appl Polym Sci 38:829.

Rechavia, E., F. Litvack, M. C. Fishbien, M. Nakamura, andN. Eigler. 1998. Biocompatibility of polyurethanecoatedstents: Tissue and vascular aspects. Cathet CardiovascDiagn 45:202–207.

Reed, A. M., J. Potter, and M. Szycher. 1994. A solutiongrade biostable polyurethane elastomer: ChronoFlex AR. JBiomater Appl 8:210–236.

Ren, Y. and D. Mahon. 2007. Evaluation of microwaveirradiation for analysis of carbonyl sul�de, carbondisul�de, cyanogen, ethyl formate, methyl bromide, sulfuryl¥uoride, propylene oxide, and phosphine in hay. J AgricFood Chem 55:32–37.

Page 265: Polymeric Biomaterials - Taylor & Francis eBooks

Ren, T. B., T. Weigel, T. Groth, and A. Lendlein. 2008.Microwave plasma surface modi�cation of silicone elastomerwith allylamine for improvement of biocompatibility. JBiomed Mater Res A 86:209–219.

Richard, R., M. Schwarz, K. Chan, N. Teigen, and M. Boden.2009. Controlled delivery of paclitaxel from stentcoatings using novel styrene maleic anhydride copolymerformulations. J Biomed Mater Res A 90:522–532.

Roach, P., D. Eglin, K. Rohde, and C. C. Perry. 2007.Modern biomaterials: A review - Bulk properties andimplications of surface modi�cations. J Mater Sci Mater Med18:1263–1277.

Rodrigues, L., I. M. Banat, J. Teixeira, and R. Oliveira.2007. Strategies for the prevention of microbial bio�lmformation on silicone rubber voice prostheses. J BiomedMater Res B Appl Biomater 81:358–370.

Rogers, J. A. and R. G. Nuzzo. 2005. Recent progress insoft lithography. Mater Today 8:50–56.

Rose, S. F., S. Okere, G. W. Hanlon, A. W. Lloyd, and A. L.Lewis. 2005. Bacterial adhesion to phosphorylcholine-basedpolymers with varying cationic charge and the effect ofheparin pre-adsorption. J Mater Sci Mater Med16:1003–1015.

Rosenbluth, S. A., G. R. Weddington, W. L. Guess, and J.Autian. 1965. Tissue culture method for screening toxicityof plastic materials to be used in medical practice. JPharm Sci 54:156–159.

Rosengren, A., L. Faxius, N. Tanaka, M. Watanabe, and L. M.Bjursten. 2005. Comparison of implantation andcytotoxicity testing for initially toxic biomaterials. JBiomed Mater Res A 75:115–122.

Rubin, J. P. and M. J. Yaremchuk. 1997. Complications andtoxicities of implantable biomaterials used in facialreconstructive and aesthetic surgery: A comprehensivereview of the literature. Plast Reconstr Surg100:1336–1353.

Saad, B., T. D. Hirt, M. Welti, G. K. Uhlschmid, P.Neuenschwander, and U. W. Suter. 1997. Development ofdegradable polyesterurethanes for medical applications: Invitro and in vivo evaluations. J Biomed Mater Res36:65–74.

Page 266: Polymeric Biomaterials - Taylor & Francis eBooks

Saad, B., S. Matter, G. Ciardelli et al. 1996. Interactionsof osteoblasts and macrophages with biodegradable andhighly porous polyesterurethane foam and its degradationproducts. J Biomed Mater Res 32:355–366.

Santerre, J. P., K. Woodhouse, G. Laroche, and R. S. Labow.2005. Understanding the biodegradation of polyurethanes:From classical implants to tissue engineering materials.Biomaterials 26:7457–7470.

Santos, L., D. Rodrigues, M. Lira et al. 2008. Bacterialadhesion to worn silicone hydrogel contact lenses. OptomVis Sci 85:520–525.

Sato, O., Y. Tada, and A. Takagi. 1986. The biologic fateof Dacron double velour vascular prostheses: Aclinicopathological study. Japan J Surg 19:301–311.

Satoh, K., R. Nonaka, K. Ohyama, F. Nagai, A. Ogata, and M.Iida. 2008. Endocrine disruptive effects of chemicalseluted from nitrile-butadiene rubber gloves using reportergene assay systems. Biol Pharm Bull 31:375–379.

Schellhammer, F., M. Walter, A. Berlis, H. G. Bloss, E.Wellens, and M. Schumacher. 1999. Polyethyleneterephthalate and polyurethane coatings for endovascularstents: Preliminary results in canine experimentalarteriovenous �stulas. Radiology 211:169–175.

Schendel, K. U., L. Erdinger, G. Komposch, and H. G.Sonntag. 1995. Neon-colored plastics for orthodonticappliances. Biocompatibility studies. Fortschr Kieferorthop56:41–48.

Schmalz, G. and D. Arenholt-Bindslev. 2009. Basic aspects.In Biocompatibility of Dental Materials, eds. Schmalz, G.,Arenholt-Bindslev, D., pp. 1–12. Berlin, Germany:Springer-Verlag.

Schmidt, D. R. and W. J. Kao. 2007. The interrelated roleof �bronectin and interleukin-1 in biomaterialmodulatedmacrophage function. Biomaterials 28:371–382.

Schoen, F. J., H. Harasaki, K. M. Kim, H. C. Anderson, andR. J. Levy. 1988. Biomaterial-associated calci�cation:Pathology, mechanisms, and strategies for prevention. JBiomed Mater Res 22:11–36.

Schubert, M. A., M. J. Wiggins, J. M. Anderson, and A.

Page 267: Polymeric Biomaterials - Taylor & Francis eBooks

Hiltner. 1997. Role of oxygen in biodegradation ofpoly(etherurethane urea) elastomers. J Biomed Mater Res34:519–530.

Schubert, M. A., M. J. Wiggins, K. M. DeFife, A. Hiltner,and J. M. Anderson. 1996. Vitamin E as an antioxidant forpoly(etherurethane urea): In vivo studies. Student ResearchAward in the Doctoral Degree Candidate Category, FifthWorld Biomaterials Congress (22nd Annual Meeting of theSociety for Biomaterials), Toronto, Canada, May 29–June 2,1996. J Biomed Mater Res 32:493–504.

Schubert, M. A., M. J. Wiggins, M. P. Schaefer, A. Hiltner,and J. M. Anderson. 1995. Oxidative biodegradationmechanisms of biaxially strained poly(etherurethane urea)elastomers. J Biomed Mater Res 29:337–347.

Schweikl, H., K. A. Hiller, A. Eckhardt et al. 2008.Differential gene expression involved in oxidative stressresponse caused by triethylene glycol dimethacrylate.Biomaterials 29:1377–1387.

Shintani, H. 1995. Formation and elution of toxic compoundsfrom sterilized medical products: Methylenedianilineformation in polyurethane. J Biomater Appl 10:23–58.

Shukla, P. G., B. Kalidhass, A. Shah, and D. V. Palaskar.2002. Preparation and characterization of microcapsules ofwater-soluble pesticide monocrotophos using polyurethane ascarrier material. J Microencapsul 19:293–304.

Sigler, M., T. Paul, and R. G. Grabitz. 2005.Biocompatibility screening in cardiovascular implants. ZKardiol 94:383–391.

Sigot-Luizard, M. F., M. Sigot, R. Guidoin et al. 1993. Anovel microporous polyurethane blood conduit:Biocompatibility assessment of the UTA arterial prosthesisby an organo-typic culture technique. J Invest Surg6:251–271.

Simmons, A., J. Hyvarinen, R. A. Odell et al. 2004.Long-term in vivo biostability of poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-basedpolyurethane elastomers. Biomaterials 25:4887–4900.

Singh, J. and K. K. Agrawal. 1992. Modi�cation ofpoly(vinyl chloride) for biocompatibility improvement andbiomedical application. Polymer-Plastics Technology andEngineering 31:203–212.

Page 268: Polymeric Biomaterials - Taylor & Francis eBooks

Singh, M., A. R. Ray, P. Vasudevan, K. Verma, and S. K.Guha. 1979. Potential biosoluble carriers: Biocompatibilityand biodegradability of oxidized cellulose. Biomater MedDevices Artif Organs 7:495–512.

Sohn, L. L., O. A. Saleh, G. R. Facer, A. J. Beavis, R. S.Allan, and D. A. Notterman. 2000. Capacitance cytometry:Measuring biological cells one by one. Proc Natl Acad SciUSA 97:10687–10690.

Sokolowski, W., A. Metcalfe, S. Hayashi, L. Yahia, and J.Raymond. 2007. Medical applications of shape memorypolymers. Biomed Mater 2:S23–S27.

Sperling, L. H. and R. Hu. 2002. In Polymer BlendsHandbook, ed. Utracki, L. A., Vol. 56. Dordrecht, theNetherlands: Kluwer.

Sperling, L. H. and V. Misra. 1997. In IPNs around theWorld: Science and Engineering, eds. Kim, S. C., Sperling,L. H., Vol. 16. New York: Wiley.

Spiller, D., P. Losi, E. Briganti et al. 2007. PDMS contentaffects in vitro hemocompatibility of synthetic vasculargrafts. J Mater Sci Mater Med 18:1097–1104.

Sprague, E. A. and J. C. Palmaz. 2005. A model system toassess key vascular responses to biomaterials. J EndovascTher 12:594–604.

Stang, A. and I. Witte. 2009. Performance of the cometassay in a high-throughput version. Mutat Res 675:5–10.

Stokes, K. B. 1983. The biostability of various polyetherpolyurethanes under stress. Medtronic, Inc., Minneapolis,MN.

Stokes, K. B. 1988. Polyether polyurethanes: Biostable ornot? J Biomater Appl 3:228–259.

Stokes, K. and K. Cobian. 1982. Polyether polyurethanes forimplantable pacemaker leads. Biomaterials 3:225–231.

Stokes, K., R. McVenes, and J. M. Anderson. 1995.Polyurethane elastomer biostability. J Biomater Appl9:321–354.

Stokes, K. B., P. Urbanski, and R. Cobian. 1987. New testmethods for the evaluation of stress cracking and metal

Page 269: Polymeric Biomaterials - Taylor & Francis eBooks

catalysed oxidation in implanted polymers. In Polyurethanesin Biomedical Engineering II, ed. Planck, H., pp. 109–127.Amsterdam, the Netherlands: Elsevier.

Sundback, C. A., J. Y. Shyu, Y. Wang et al. 2005.Biocompatibility analysis of poly(glycerol sebacate) as anerve guide material. Biomaterials 26:5454–5464.

Szelest-Lewandowska, A., B. Masiulanis, A. Klocke, and B.Glasmacher. 2003. Synthesis, physical properties andpreliminary investigation of hemocompatibility ofpolyurethanes from aliphatic resources with castor oilparticipation. J Biomater Appl 17:221–236.

Szelest-Lewandowska, A., B. Masiulanis, M. Szymonowicz, S.Pielka, and D. Paluch. 2007. Modi�ed polycarbonateurethane: Synthesis, properties and biologicalinvestigation in vitro. J Biomed Mater Res A 82:509–520.

Szycher, M. 1988. Biostability of polyurethane elastomers:A critical review. J Biomater Appl 3:297–402.

Szycher, M. and A. M. Reed. 1992. Biostable polyurethaneelastomers. Med Device Technol 3:42–51.

Szycher, M. and A. A. Siciliano. 1991. Polyurethane-coveredmammary prosthesis: A nine year follow-up assessment. JBiomater Appl 5:282–322.

Takahara, A., A. J. Coury, R. W. Hergenrother, and S. L.Cooper. 1991. Effect of soft segment chemistry on thebiostability of segmented polyurethanes. I. In vitrooxidation. J Biomed Mater Res 25:341–356.

Tang, L. and J. W. Eaton. 1995. In¥ammatory responses tobiomaterials. Am J Clin Pathol 103:466–471.

Tare, R. S., F. Khan, G. Tourniaire, S. M. Morgan, M.Bradley, and R. O. Oreffo. 2009. A microarray approach tothe identi�cation of polyurethanes for the isolation ofhuman skeletal progenitor cells and augmentation ofskeletal cell growth. Biomaterials 30:1045–1055.

Tarnok, A., A. Mahnke, M. Muller, and R. J. Zotz. 1999.Rapid in vitro biocompatibility assay of endovascularstents by ¥ow cytometry using platelet activation andplatelet-leukocyte aggregation. Cytometry 38:30–39.

Tice, R. R., E. Agurell, D. Anderson et al. 2000. Singlecell gel/comet assay: Guidelines for in vitro and in vivo

Page 270: Polymeric Biomaterials - Taylor & Francis eBooks

genetic toxicology testing. Environ Mol Mutagen 35:206–221.

Tickner, J. A., T. Schettler, T. Guidotti, M. McCally, andM. Rossi. 2001. Health risks posed by use of Di-2ethylhexylphthalate (DEHP) in PVC medical devices: A critical review.Am J Ind Med 39:100–111.

Toub, M. R. 1987. Technical innovations enhance commercialvalue of silicone rubber. Elastomerics 119:20–22.

Trevisani, L., S. Sartori, M. R. Rossi et al. 2005.Degradation of polyurethane gastrostomy devices: What isthe role of fungal colonization? Dig Dis Sci 50:463–469.

Trowbridge, H. O. and R. C. Emling. 1997. In¯ammation. AReview of the Process. Carol Stream, IL: QuintessenceBooks.

Tsai, C. C., M. L. Dollar, A. Constantinescu, P. V.Kulkarni, and R. C. Eberhart. 1991. Performance evaluationof hydroxylated and acylated silicone rubber coatings.Transactions of the American Society for Arti©cialInternal Organs Meeting 37(3):M192–193.

Tsai, C. C., H. H. Huo, P. Kulkarni, and R. C. Eberhart.1990. Biocompatible coating with high albumin af�nity.Transactions of the American Society for Arti©cial InternalOrgans Meeting, pp. 307–310.

Tsuchiya, T., K. Fukuhara, H. Hata et al. 1995a. Studies onthe tumor-promoting activity of additives in biomaterials:Inhibition of metabolic cooperation by phenolicantioxidants involved in rubber materials. J Biomed MaterRes 29:121–126.

Tsuchiya, T., H. Hata, and A. Nakamura. 1995b. Studies onthe tumor-promoting activity of biomaterials: Inhibitionof metabolic cooperation by polyetherurethane and silicone.J Biomed Mater Res 29:113–119.

Tucci, M. G., M. Mattioli Belmonte, E. Toschi et al. 1996.Structural features of latex gloves in dental practice.Biomaterials 17:517–522.

Van der Kamp, K. W. and W. Van Oeveren. 1994. Factor XIIfragment and kallikrein generation in plasma duringincubation with biomaterials. J Biomed Mater Res28:349–352.

Vasita, R., I. K. Shanmugam, and D. S. Katt. 2008. Improved

Page 271: Polymeric Biomaterials - Taylor & Francis eBooks

biomaterials for tissue engineering applications: Surfacemodi�cation of polymers. Curr Top Med Chem 8:341–353.

Vignon, D. 1995. Physiologie de l’hémostase. EncyclopédieMédico Chirurgicale Stomatologie–Odontologie 1:1–8.Elsevier Masson.

Vijayasekaran, S., T. V. Chirila, Y. Hong et al. 1996.Poly(1-vinyl-2-pyrrolidinone) hydrogels as vitreoussubstitutes: Histopathological evaluation in the animaleye. J Biomater Sci Polym Ed 7:685–696.

Von Recum, A. F. and M. LaBerge. 1995. Educational goalsfor biomaterials science and engineering: Prospectiveview. J Biomater Appl 6:137–144.

Von Recum, A. F. and T. G. Van Kooten. 1995. The in¥uenceof micro-topography on cellular response and theimplications for silicone implants. J Biomater Sci Polym Ed7:181–198.

Vondracek, P. 1981. Some aspects of the medical applicationof silicone rubber. Int Polymer Sci Technol 8:16.

Wacaser, B. A., M. J. Maughan, I. A. Mowat, T. L.Niederhauser, M. R. Linford, and R. C. Davis. 2003.Chemomechanical surface patterning and functionalization ofsilicon surfaces using an atomic force microscope. ApplPhys Lett 82:808–810.

Wagner, J. L. and T. E. Hugli. 1984. Radioimmunoassay foranaphylatoxins: A sensitive method for determiningcomplement activation products in biological ¥uids. AnalBiochem 136:75–88.

Wang, Y., G. A. Ameer, B. J. Sheppard, and R. Langer. 2002.A tough biodegradable elastomer. Nat Biotechnol20:602–606.

Wang, D. A., L. X. Feng, J. Ji, Y. H. Sun, X. X. Zheng, andJ. H. Elisseeff. 2003. Novel human endothelialcell-engineered polyurethane biomaterials forcardiovascular biomedical applications. J Biomed Mater ResA 65:498–510.

Wang, J. H., C. H. Yao, W. Y. Chuang, and T. H. Young.2000. Development of biodegradable polyesterurethanemembranes with different surface morphologies for theculture of osteoblasts. J Biomed Mater Res 51:761–770.

Page 272: Polymeric Biomaterials - Taylor & Francis eBooks

Ward, R. S. 1995. Surface modi�cation prior to surfaceformation: Control of polymer surface properties via bulkcomposition. Med Plastics Biomater 2:34–41.

Ward, R. S., K. A. White, R. S. Gill, and F. Lim. 1996. Theeffect of phase separation and endgroup chemistry on thein vivo biostability of polyurethanes. Transactions of theAmerican Society for Arti©cial Internal Organs Meeting,Washington, DC. p. 17.

Ward, R. S., K. A. White, R. S. Gill, and C. A. Wolcott.1995. Development of biostable thermoplastic polyurethaneswith oligomeric polydimethylsiloxane end groups.Transactions of the 21st Meeting of the Society forBiomaterials (March 18–22, 1995), San Francisco, CA.

Weber, N., H. P. Wendel, and G. Ziemer. 2001. Genemonitoring of surface-activated monocytes in circulatingwhole blood using duplex RT-PCR. J Biomed Mater Res 56:1–8.

Welsing, R. T., T. G. van Tienen, N. Ramrattan et al. 2008.Effect on tissue differentiation and articular cartilagedegradation of a polymer meniscus implant: A 2-yearfollow-up study in dogs. Am J Sports Med 36:1978–1989.

Werner, C. and H. J. Jacobasch. 1999. Surfacecharacterization of polymers for medical devices. Int JArtif Organs 22:160–176.

White, L. 1991. Clean TPEs �nd medical uses. Eur Rubber J173:26–29.

White, R. A. 1988. The effect of porosity on thevariability of the neointima. An histological investigationon implanted synthetic vascular prostheses. Trans Am SocArtif Intern Organs. pp. 95–100.

Whitesides, G. M., E. Ostuni, S. Takayama, X. Jiang, and D.E. Ingber. 2001. Soft lithography in biology andbiochemistry. Annu Rev Biomed Eng 3:335–373.

Whitford, M. J. 1984. The chemistry of silicone materialsfor biomedical devices and contact lenses. Biomaterials5:298–300.

Wilkes, G. L. and S. L. Samuels. 1973. Porous segmentedpolyurethanes—Possible candidates as biomaterials. JBiomed Mater Res 7:541–544.

Williams, D. F. 2003. Biomaterials and tissue engineering

Page 273: Polymeric Biomaterials - Taylor & Francis eBooks

in reconstructive surgery. Sadhana 28:563–574.

Williams, S. K., T. Carter, P. K. Park, D. G. Rose, T.Schneider, and B. E. Jarrell. 1992. Formation of amultilayer cellular lining on a polyurethane vascular graftfollowing endothelial cell sodding. J Biomed Mater Res26:103–117.

Williams, S. F., D. P. Martin, D. M. Horowitz, and O. P.Peoples. 1999. PHA applications: Addressing the priceperformance issue: I. Tissue engineering. Int J BiolMacromol 25:111–121.

Wilson, C. J., R. E. Clegg, D. I. Leavesley, and M. J.Pearcy. 2005. Mediation of biomaterial-cell interactionsby adsorbed proteins: A review. Tissue Eng 11:1–18.

Wolfaardt, J. F., P. Cleaton-Jones, J. Lownie, and G.Ackermann. 1992. Biocompatibility testing of a siliconemaxillofacial prosthetic elastomer: Soft tissue study inprimates. J Prosthet Dent 68:331–338.

Wortman, R. S., K. Merritt, and S. A. Brown. 1983. The useof the mouse peritoneal cavity for screening forbiocompatibility of polymers. Biomater Med Devices ArtifOrgans 11:103–114.

Wu, H., A. Wheeler, and R. N. Zare. 2004. Chemicalcytometry on a picoliter-scale integrated micro¥uidicchip. Proc Natl Acad Sci USA 101:12809–12813.

Wutticharoenmongkol, P., N. Sanchavanakit, P. Pavasant, andP. Supaphol. 2006a. Novel bone scaffolds of electrospunpolycaprolactone �bers �lled with nanoparticles. J NanosciNanotechnol 6:514–522.

Wutticharoenmongkol, P., N. Sanchavanakit, P. Pavasant, andP. Supaphol. 2006b. Preparation and characterization ofnovel bone scaffolds based on electrospun polycaprolactone�bers �lled with nanoparticles. Macromol Biosci 6:70–77.

Xie, X., H. Tan, J. Li, and Y. Zhong. 2008. Synthesis andcharacterization of ¥uorocarbon chain end-cappedpoly(carbonate urethane)s as biomaterials: A novelbilayered surface structure. J Biomed Mater Res A84:30–43.

Xinming, L., C. Yingde, A. W. Lloyd et al. 2008. Polymerichydrogels for novel contact lens-based ophthalmic drugdelivery systems: A review. Cont Lens Anterior Eye

Page 274: Polymeric Biomaterials - Taylor & Francis eBooks

31:57–64.

Xiong, X. Y., K. C. Tam, and L. H. Gan. 2006. Polymericnanostructures for drug delivery applications based onPluronic copolymer systems. J Nanosci Nanotechnol6:2638–2650.

Xu, H., H. Toghiani, and C. U. Pittman, Jr. 2000. Modelingdomain mixing in semi-interpenetrating polymer networkscomposed of poly(vinyl chloride) and 5% to 15% ofcrosslinked thermosets. Polym Eng Sci 40:2027–2036.

Yang, F., R. Murugan, S. Wang, and S. Ramakrishna. 2005.Electrospinning of nano/micro scale poly(L-lactic acid)aligned �bers and their potential in neural tissueengineering. Biomaterials 26:2603–2610.

Yannas, I. V., M. Zhang, and M. H. Spilker. 2007.Standardized criterion to analyze and directly comparevarious materials and models for peripheral nerveregeneration. J Biomater Sci Polym Ed 18:943–966.

Yasuda, H. 2006. Biocompatibility of nano�lm-encapsulatedsilicone and silicone-hydrogel contact lenses. MacromolBiosci 6:121–138.

Yim, E. S., B. Zhao, D. Myung et al. 2009. Biocompatibilityof poly(ethylene glycol)/poly(acrylic acid)interpenetrating polymer network hydrogel particles in RAW264.7 macrophage and MG-63 osteoblast cell lines. J BiomedMater Res A 91:894–902.

Yoda, R. 1998. Elastomers for biomedical applications. JBiomater Sci Polym Ed 9:561–626.

Zhang, Z., M. W. King, R. Guidoin et al. 1994.Morphological, physical and chemical evaluation of theVascugraft arterial prosthesis: Comparison of a novelpolyurethane device with other microporous structures.Biomaterials 15:483–501.

Zhao, Q., M. P. Agger, M. Fitzpatrick et al. 1990. Cellularinteractions with biomaterials: In vivo cracking ofpre-stressed Pellethane 2363–80A. J Biomed Mater Res24:621–637.

Zhao, O. H., J. M. Anderson, A. Hiltner, G. A. Lodoen, andC. R. Payet. 1992. Theoretical analysis on cell sizedistribution and kinetics of foreign-body giant cellformation in vivo on polyurethane elastomers. J Biomed

Page 275: Polymeric Biomaterials - Taylor & Francis eBooks

Mater Res 26:1019–1038.

Zhao, G. and S. E. Stevens, Jr. 1998. Multiple parametersfor the comprehensive evaluation of the susceptibility ofEscherichia coli to the silver ion. Biomaterials 11:27–32.

Zhao, Q., N. Topham, J. M. Anderson, A. Hiltner, G. Lodoen,and C. R. Payet. 1991. Foreign-body giant cells andpolyurethane biostability: In vivo correlation of celladhesion and surface cracking. J Biomed Mater Res25:177–183.

Zia, K. M., M. Barikani, M. Zuber, I. A. Bhatti, and M.Barmar. 2009a. Surface characteristics of polyurethaneelastomers based on chitin/1,4-butane diol blends. Int JBiol Macromol 44:182–185.

Zia, K. M., M. Zuber, I. A. Bhatti, M. Barikani, and M. A.Sheikh. 2009b. Evaluation of biocompatibility andmechanical behavior of polyurethane elastomers based onchitin/1,4-butane diol blends. Int J Biol Macromol44:18–22.

Page 276: Polymeric Biomaterials - Taylor & Francis eBooks

15 Chapter 15. Preparation andApplications of Modulated Surface EnergyBiomaterials

Aguilar, M. R., A. Gallardo et al. (2004). Modulation ofproteins adsorption onto the surface of chitosan complexedwith anionic copolymers. Real time analysis by surfaceplasmon resonance. Macromolecular Bioscience 4(7):631–638.

Aksoy, A. E., V. Hasirci et al. (2008). Surface modi�cationof polyurethanes with covalent immobilization of heparin.Macromolecular Symposia 269(1): 145–153.

Alessandrini, A. and P. Facci (2005). AFM: A versatile toolin biophysics. Measurement Science and Technology 16(6):R65–R92.

Alferiev, I. S., J. M. Connolly et al. (2006). Surfaceheparinization of polyurethane via bromoalkylation of hardsegment nitrogens. Biomacromolecules 7(1): 317–322.

Anderson, J. M. (2001). Biological responses to materials.Annual Review of Materials Science 31: 81–110.

Anderson, D. G., J. A. Burdick et al. (2004). MATERIALSSCIENCE: Smart Biomaterials. Science 305(5692): 1923–1924.

Anderson, J. M., A. Rodriguez et al. (2008). Foreign bodyreaction to biomaterials. Seminars in Immunology 20(2):86–100.

Andersson, A. S., K. Glasmastar et al. (2003). Celladhesion on supported lipid bilayers. Journal of BiomedicalMaterials Research Part A 64A(4): 622–629.

Andrady, A. L., H. S. Hamid et al. (2003). Effects ofclimate change and UV-B on materials. Photochemical andPhotobiological Sciences 2(1): 68–72.

Archambault, J. G. and J. L. Brash (2004a). Proteinrepellent polyurethane-urea surfaces by chemical graftingof hydroxyl-terminated poly(ethylene oxide): Effects ofprotein size and charge. Colloids and Surfaces B:Biointerfaces 33(2): 111–120.

Archambault, J. G. and J. L. Brash (2004b). Proteinresistant polyurethane surfaces by chemical grafting ofPEO: Amino-terminated PEO as grafting reagent. Colloids andSurfaces B: Biointerfaces 39(1–2): 9–16.

Page 277: Polymeric Biomaterials - Taylor & Francis eBooks

Arnaout, M. A., B. Mahalingam et al. (2005). Integrinstructure, allostery, and bidirectional signaling. AnnualReview of Cell and Developmental Biology 21(1): 381–410.

Arnau, A. (2008). A review of interface electronic systemsfor AT-cut quartz crystal microbalance applications inliquids. Sensors 8(1): 370–411.

Barber, T. A., S. L. Golledge et al. (2003).Peptide-modi�ed p(AAm-co-EG/AAc) IPNs grafted to bulktitanium modulate osteoblast behavior in vitro. Journal ofBiomedical Materials Research Part A 64A(1): 38–47.

Barclay, A. N. (2003). Membrane proteins withimmunoglobulin-like domains—A master superfamily ofinteraction molecules. Seminars in Immunology 15(4):215–223.

Behravesh, E. and A. G. Mikos (2003). Three-dimensionalculture of differentiating marrow stromal osteoblasts inbiomimetic poly(propylene fumarate-co-ethyleneglycol)-based macroporous hydrogels. Journal of BiomedicalMaterials Research Part A 66A(3): 698–706.

Belu, A. M., D. J. Graham et al. (2003). Time-of-¥ightsecondary ion mass spectrometry: Techniques andapplications for the characterization of biomaterialsurfaces. Biomaterials 24(21): 3635–3653.

Bhadriraju, K. and L. K. Hansen (2000). Hepatocyteadhesion, growth and differentiated function onRGDcontaining proteins. Biomaterials 21(3): 267–272.

Bhargava, R. and I. W. Levin (2001). Fourier transforminfrared imaging: Theory and practice. AnalyticalChemistry 73(21): 5157–5167.

Bi, H., S. Meng et al. (2006). Deposition of PEG onto PMMAmicrochannel surface to minimize nonspeci�c adsorption.Lab on a Chip 6(6): 769–775.

Biran, R., K. Webb et al. (2001). Surfactant-immobilized�bronectin enhances bioactivity and regulates sensoryneurite outgrowth. Journal of Biomedical Materials Research55(1): 1–12.

Boerakker, M. J., J. M. Hannink et al. (2002). Giantamphiphiles by cofactor reconstitution13. AngewandteChemie International Edition 41(22): 4239–4241.

Page 278: Polymeric Biomaterials - Taylor & Francis eBooks

Börner, H. G. (2009). Strategies exploiting functions andself-assembly properties of bioconjugates for polymer andmaterials sciences. Progress in Polymer Science 34(9):811–851.

Bosker, W. T. E., P. A. Iakovlev et al. (2005). BSAadsorption on bimodal PEO brushes. Journal of Colloid andInterface Science 286(2): 496–503.

Boulmedais, F., B. Frisch et al. (2004). Polyelectrolytemultilayer �lms with pegylated polypeptides as a new typeof anti-microbial protection for biomaterials. Biomaterials25(11): 2003–2011.

Bowen, W. R., R. W. Lovitt et al. (2000). Application ofatomic force microscopy to the study of micromechanicalproperties of biological materials. Biotechnology Letters22(11): 893–903.

Brown, L., T. Koerner et al. (2006). Fabrication andcharacterization of poly(methylmethacrylate) micro¥uidicdevices bonded using surface modi�cations and solvents. Labon a Chip—Miniaturisation for Chemistry and Biology 6(1):66–73.

Byun, J.-W., J.-U. Kim et al. (2004). Surface-graftedpolystyrene beads with comb-like poly(ethylene glycol)chains: Preparation and biological application.Macromolecular Bioscience 4(5): 512–519.

Carlisle, E. S., M. R. Mariappan et al. (2000). Enhancinghepatocyte adhesion by pulsed plasma deposition andpolyethylene glycol coupling. Tissue Engineering 6(1):45–52.

Castner, D. G. and B. D. Ratner (2002). Biomedical surfacescience: Foundations to frontiers. Surface Science500(1–3): 28–60.

Cavalli, S., A. R. Tipton et al. (2006). The chemicalmodi�cation of liposome surfaces via a copper-mediated [3+ 2] azide-alkyne cycloaddition monitored by a colorimetricassay. Chemical Communications (30): 3193–3195.

Cen, L., K. G. Neoh et al. (2004). Assessment of in vitrobioactivity of hyaluronic acid and sulfated hyaluronicacid functionalized electroactive polymer.Biomacromolecules 5(6): 2238–2246.

Page 279: Polymeric Biomaterials - Taylor & Francis eBooks

Chan, K. L. and S. G. Kazarian (2004a). FTIR spectroscopicimaging of dissolution of a solid dispersion of nifedipinein poly(ethylene glycol). Molecular Pharmaceutics 1(4):331–335.

Chan, K. L. A. and S. G. Kazarian (2004b). Visualisation ofthe heterogeneous water sorption in a pharmaceuticalformulation under controlled humidity via FT-IR imaging.Vibrational Spectroscopy 35(1–2): 45–49.

Chapman, R. G., E. Ostuni et al. (2000). Surveying forsurfaces that resist the adsorption of proteins. Journalof the American Chemical Society 122(34): 8303–8304.

Chen, H., M. A. Brook et al. (2004a). Silicone elastomersfor reduced protein adsorption. Biomaterials 25(12):2273–2282.

Chen, H., M. A. Brook et al. (2005a). Surface properties ofPEO-silicone composites: Reducing protein adsorption.Journal of Biomaterials Science, Polymer Edition 16:531–548.

Chen, H., M. A. Brook et al. (2006). Generic bioaf�nitysilicone surfaces. Bioconjugate Chemistry 17(1): 21–28.

Chen, P. R., M. H. Chen et al. (2004b). Biocompatibility ofNGF-grafted GTG membranes for peripheral nerve repairusing cultured Schwann cells. Biomaterials 25: 5667–5673.

Chen, Q., R. Förch et al. (2004c). Characterization ofpulsed plasma polymerization allylamine as an adhesionlayer for DNA adsorption/hybridization. Chemistry ofMaterials 16(4): 614–620.

Chen, H., L. Yuan et al. (2008). Biocompatible polymermaterials: Role of protein-surface interactions. Progressin Polymer Science 33(11): 1059–1087.

Chen, H., Z. Zhang et al. (2005b). Protein repellantsilicone surfaces by covalent immobilization ofpoly(ethylene oxide). Biomaterials 26(15): 2391–2399.

Cheng, T. S., H. T. Lin et al. (2004). Surface ¥uorinationof polyethylene terephthalate �lms with RF plasma.Materials Letters 58(5): 650–653.

Cheng, Z. and S. H. Teoh (2004). Surface modi�cation ofultra thin poly(ε-caprolactone) �lms using acrylic acidand collagen. Biomaterials 25(11): 1991–2001.

Page 280: Polymeric Biomaterials - Taylor & Francis eBooks

Chilkoti, A., B. D. Ratner et al. (1991). Plasma-depositedpolymeric �lms prepared from carbonyl-containing volatileprecursors: XPS chemical derivatization and static SIMSsurface characterization. Chemistry of Materials 3(1):51–61.

Choi, H. S., Y. Kim Young-Sun et al. (2004). Plasma-inducedgraft co-polymerization of acrylic acid onto thepolyurethane surface. Surface and Coatings Technology182(1): 55–64.

Ciof�, M. O. H., H. J. C. Voorwald et al. (2003). Surfaceenergy increase of oxygen-plasma-treated PET. MaterialsCharacterization 50(2–3): 209–215.

Clare, T. L., B. H. Clare et al. (2005). Functionalmonolayers for improved resistance to protein adsorption:Oligo(ethylene glycol)-modi�ed silicon and diamondsurfaces. Langmuir 21(14): 6344–6355.

Combellas, C., A. Fuchs et al. (2004). Surface modi�cationof halogenated polymers. 6. Graft copolymerization ofpoly(tetra¥uoroethylene) surfaces by polyacrylic acid.Polymer 45(14): 4669–4675.

Cornelius, R. M., J. G. Archambault et al. (2002).Adsorption of proteins from infant and adult plasma tobiomaterial surfaces. Journal of Biomedical MaterialsResearch 60(4): 622–632.

Croll, T. I., A. J. O’Connor et al. (2004). Controllablesurface modi�cation of poly(lactic-co-glycolic acid)(PLGA) by hydrolysis or aminolysis I: Physical, chemical,and theoretical aspects. Biomacromolecules 5(2): 463–473.

Croyle, M. A., S. M. Callahan et al. (2004). PEGylation ofa vesicular stomatitis virus G pseudotyped lentivirusvector prevents inactivation in serum. Journal of Virology78(2): 912–921.

Cui, F. Z., Y. P. Jiao et al. (2008). Functionalization ofpolymer surface for nerve repair. Journal of PhotopolymerScience and Technology 21(2): 231–244.

Cui, F. Z. and Z. S. Luo (1999). Biomaterials modi�cationby ion-beam processing. Surface and Coating Technology112(1–3): 278–285.

Currie, E. P. K., W. Norde et al. (2003). Tethered polymer

Page 281: Polymeric Biomaterials - Taylor & Francis eBooks

chains: Surface chemistry and their impact on colloidal andsurface properties. Advances in Colloid and InterfaceScience 100–102: 205–265.

Dalsin, J. L., B. H. Hu et al. (2003). Mussel adhesiveprotein mimetic polymers for the preparation of nonfoulingsurfaces. Journal of the American Chemical Society 125(14):4253–4258.

Dalton, B. A., C. D. McFarland et al. (1998). Polymersurface chemistry and bone cell migration. Journal ofBiomaterials Science, Polymer Edition 9(8): 781–799.

Daria, V. R., P. J. Rodrigo et al. (2002). Dynamicformation of optically trapped microstructure arrays forbiosensor applications. Presented at Conference onBiomedical Applications of Micro-and-Nano Engineering,Melbourne, Victoria, Australia, Published in theproceedings of International Society for OpticalEngineering, Bellingham, WA, pp. 41–48.

Davis, F. F. (2002). The origin of pegnology. Advanced DrugDelivery Reviews 54(4): 457–458.

De, S., R. Sharma et al. (2004). Enhancement of bloodcompatibility of implants by helium plasma treatment. 39thIEEE/IAS Annual Meeting (IEEE Industry ApplicationsSociety), Seattle, Washington, October, 2004.

De, S., R. Sharma et al. (2005). Plasma treatment ofpolyurethane coating for improving endothelial cell growthand adhesion. Journal of Biomaterials Science, PolymerEdition 16(8): 973–989.

De Silva, M. N., R. Desai et al. (2004). Micro-patterningof animal cells on PDMS substrates in the presence ofserum without use of adhesion inhibitors. BiomedicalMicrodevices 6(3): 219–222.

Deiters, A., T. A. Cropp et al. (2003). Adding amino acidswith novel reactivity to the genetic code of Saccharomycescerevisiae. Journal of the American Chemical Society125(39): 11782–11783.

Desai, S., D. Bodas et al. (2003). Tailor-made functionalsurfaces: Potential elastomeric biomaterials I. Journal ofBiomaterials Science, Polymer Edition 14(12): 1323–1338.

Dettin, M., M. T. Conconi et al. (2002). Novelosteoblast-adhesive peptides for dental/orthopedic

Page 282: Polymeric Biomaterials - Taylor & Francis eBooks

biomaterials. Journal of Biomedical Materials Research60(3): 466–471.

DeVolder R. J., K. H.-J. (2010). Three dimensionally¥occulated proangiogenic microgels for neovascularization.Biomaterials 31(25): 6494–6501.

Ding, Z., J. Chen et al. (2004). Immobilization of chitosanonto poly-L-lactic acid �lm surface by plasma graftpolymerization to control the morphology of �broblast andliver cells. Biomaterials 25(6): 1059–1067.

Dirks, A. J., S. S. Van Berkel et al. (2005). Preparationof biohybrid amphiphiles via the copper catalysed Huisgen[3 + 2] dipolar cycloaddition reaction. ChemicalCommunications (33): 4172–4174.

Dixon, M. C. (2008). Quartz crystal microbalance withdissipation monitoring: Enabling real-time characterizationof biological materials and their interactions. Journal ofBiomolecular Techniques: JBT 19(3): 151–158.

Dubas, S. T., P. Kittitheeranun et al. (2009). Coating ofpolyelectrolyte multilayer thin �lms on nano�brousscaffolds to improve cell adhesion. Journal of AppliedPolymer Science 114(3): 1574–1579.

Dufresne, M.-H. and J.-C. Leroux (2004). Study of themicellization behavior of different order amino blockcopolymers with heparin. Pharmaceutical Research 21(1):160–169.

Dupas-Bruzek, C., O. Robbe et al. (2009). Transformation ofmedical grade silicone rubber under Nd:YAG and excimerlaser irradiation: First step towards a new miniaturizednerve electrode fabrication process. Applied SurfaceScience 255(21): 8715–8721.

Dwek, R. A. (1996). Glycobiology: Toward understanding thefunction of sugars. Chemical Reviews 96(2): 683–720.

Ebara, M., M. Yamato et al. (2004). Immobilization ofcell-adhesive peptides to temperature-responsive surfacesfacilitates both serum-free cell adhesion and noninvasivecell harvest. Tissue Engineering 10(7–8): 1125–1135.

E�menko, K., J. A. Crowe et al. (2005). Rapid formation ofsoft hydrophilic silicone elastomer surfaces. Polymer46(22): 9329–9341.

Page 283: Polymeric Biomaterials - Taylor & Francis eBooks

Ehrhardt, C., C. Kneuer, et al. (2004). Selectins—anemerging target for drug delivery. Advanced Drug DeliveryReviews 56(4): 527–549.

Elbert, D. L. and J. A. Hubbell (1996). Surface treatmentsof polymers for biocompatibility. Annual Review ofMaterials Science 26(1): 365–394.

Etienne, O., C. Picart et al. (2006). Polyelectrolytemultilayer �lm coating and stability at the surfaces oforal prosthesis base polymers: An in vitro and in vivostudy. Journal of Dental Research 85(1): 44–48.

Falconnet, D., G. Csucs et al. (2006). Surface engineeringapproaches to micropattern surfaces for cell-based assays.Biomaterials 27(16): 3044–3063.

Feng, W., J. Brash et al. (2004). Atom-transfer radicalgrafting polymerization of 2-methacryloyloxyethylphosphorylcholine from silicon wafer surfaces. Journal ofPolymer Science Part A: Polymer Chemistry 42(12):2931–2942.

Feng, W., S. Zhu et al. (2005). Adsorption of �brinogen andlysozyme on silicon grafted withpoly(2-methacryloyloxyethyl phosphorylcholine) viasurface-initiated atom transfer radical polymerization.Langmuir 21(13): 5980–5987.

Fernandez-Megia, E., J. Correa et al. (2006). A clickapproach to unprotected glycodendrimers. Macromolecules39(6): 2113–2120.

van der Flier, A. and A. Sonnenberg (2001). Function andinteractions of integrins. Cell and Tissue Research305(3): 285–298.

Flores, S. M., A. Shaporenko et al. (2006). Control ofsurface properties of self-assembled monolayers by tuningthe degree of molecular asymmetry. Surface Science 600(14):2847–2856.

Furuzono, T., K. Sonoda et al. (2001). A hydroxyapatitecoating covalently linked onto a silicone implant material.Journal of Biomedical Materials Research 56(1): 9–16.

Gallant, N. D., K. E. Michael et al. (2005). Cell adhesionstrengthening: Contributions of adhesive area, integrinbinding, and focal adhesion assembly. Molecular Biology ofthe Cell 16(9): 4329–4340.

Page 284: Polymeric Biomaterials - Taylor & Francis eBooks

Geiger, B. and A. Bershadsky (2001). Assembly andmechanosensory function of focal contacts. Current Opinionin Cell Biology 13(5): 584–592.

Geng, Y., D. E. Discher et al. (2006). Grafting shortpeptides onto polybutadiene-block-poly(ethylene oxide):A platform for self-assembling hybrid amphiphiles13.Angewandte Chemie International Edition 45(45): 7578–7581.

George, A. and W. G. Pitt (2002). Comparison of cornealepithelial cellular growth on synthetic cornea materials.Biomaterials 23(5): 1369–1373.

Gobin, A. S. and J. L. West (2003). Effects of epidermalgrowth factor on �broblast migration through biomimetichydrogels. Biotechnology Progress 19(6): 1781–1785.

Goda, T., T. Konno et al. (2006). Biomimeticphosphorylcholine polymer grafting frompolydimethylsiloxane surface using photo-inducedpolymerization. Biomaterials 27(30): 5151–5160.

Goddard, J. M. and J. H. Hotchkiss (2007). Polymer surfacemodi�cation for the attachment of bioactive compounds.Progress in Polymer Science 32(7): 698–725.

Goddard, J. M. and J. H. Hotchkiss (2008). Tailoredfunctionalization of low-density polyethylene surfaces.Journal of Applied Polymer Science 108(5): 2940–2949.

Goldberg, M., R. Langer et al. (2007). Nanostructuredmaterials for applications in drug delivery and tissueengineering. Journal of Biomaterials Science, PolymerEdition 18(3): 241–268.

Goncalves, I. C., M. C. L. Martins et al. (2009). Proteinadsorption and clotting time of pHEMA hydrogels modi�edwith C18 ligands to adsorb albumin selectively andreversibly. Biomaterials 30(29): 5541–5551.

González-Benito, J. and J. L. Koenig (2006). Nature of PMMAdissolution process by mixtures of acetonitrile/ alcohol(poor solvent/nonsolvent) monitored by FTIR-imaging.Polymer 47(9): 3065–3072.

Gottschalk, K. E., P. D. Adams et al. (2002). Transmembranesignal transduction of the α IIb β 3 integrin. ProteinScience 11(7): 1800–1812.

Page 285: Polymeric Biomaterials - Taylor & Francis eBooks

de Graaf, A. J., M. Kooijman et al. (2009). Nonnaturalamino acids for site-speci�c protein conjugation.Bioconjugate Chemistry 20(7): 1281–1295.

Green, R. J., M. C. Davies et al. (1999). Competitiveprotein adsorption as observed by surface plasmonresonance. Biomaterials 20(4): 385–391.

Green, R. J., R. A. Frazier et al. (2000). Surface plasmonresonance analysis of dynamic biological interactions withbiomaterials. Biomaterials 21(18): 1823–1835.

Griesser, H. J., R. C. Chatelier et al. (1994). Growth ofhuman cells on plasma polymers: Putative role of amine andamide groups. Journal of Biomaterials Science. PolymerEdition 5(6): 531–554.

Griesser, H. J., P. G. Hartley et al. (2002). Interfacialproperties and protein resistance of nano-scalepolysaccharide coatings. Smart Materials and Structures11(5): 652–661.

Grif�ths, P. R., J. A. de Haseth. (2006). Fourier TransformInfrared Spectrometry, pp. 303–320. Hoboken, NJ: J. W.sons.

Gristina, A. G. (1987). Biomaterial-centered infection:Microbial adhesion versus tissue integration. Science237(4822): 1588–1595.

Gümüşderelioğlu, M. and A. G. Karakeçili (2003). Uses ofthermoresponsive and RGD/insulinmodi�ed poly(vinylether)-based hydrogels in cell cultures. Journal ofBiomaterials Science, Polymer Edition 14: 199–211.

Gupper, A., K. L. A. Chan et al. (2004). FT-IR imaging ofsolvent-induced crystallization in polymers.Macromolecules 37(17): 6498–6503.

Gupper, A. and S. G. Kazarian (2005). Study of solventdiffusion and solvent-induced crystallization insyndiotactic polystyrene using FT-IR spectroscopy andimaging. Macromolecules 38(6): 2327–2332.

Gupta, B., C. Plummer et al. (2002). Plasma-induced graftpolymerization of acrylic acid onto poly(ethyleneterephthalate) �lms: Characterization and human smoothmuscle cell growth on grafted �lms. Biomaterials 23(3):863–871.

Page 286: Polymeric Biomaterials - Taylor & Francis eBooks

Ha, S. W., R. Hauert et al. (1997). Surface analysis ofchemically-etched and plasma-treated polyetheretherketone(PEEK) for biomedical applications. Surface and CoatingsTechnology 96(2–3): 293–299.

Hahn, S. K. and A. S. Hoffman (2005). Preparation andcharacterization of biocompatible polyelectrolyte complexmultilayer of hyaluronic acid and poly-L-lysine.International Journal of Biological Macromolecules 37(5):227–231.

Halperin, A. (1999). Polymer brushes that resist adsorptionof model proteins: Design parameters. Langmuir 15(7):2525–2533.

Hamano, T., D. Chiba et al. (2002). Evaluation of apolyelectrolyte complex (PEC) composed of chitinderivatives and chitosan, which promotes the rat calvarialosteoblast differentiation. Polymers for AdvancedTechnologies 13(1): 46–53.

Hasegawa, T., Y. Iwasaki et al. (2002). Preparation ofblood-compatible hollow �bers from a polymer alloy composedof polysulfone and 2-methacryloyloxyethyl phosphorylcholinepolymer. Journal of Biomedical Materials Research 63(3):333–341.

Hashimoto, K., H. Saito et al. (2006). Glycopolymericinhibitors of beta-glucuronidase. III. Con�gurationaleffects of hydroxy groups in pendant glyco-units inpolymers upon inhibition of beta-glucuronidase. Journal ofPolymer Science Part A: Polymer Chemistry 44(16):4895–4903.

Hassane, F. S., B. Frisch et al. (2006). Targetedliposomes: Convenient coupling of ligands to preformedvesicles using “click chemistry”. Bioconjugate Chemistry17(3): 849–854.

He, P. and L. He (2009). Synthesis of surface-anchoredDNA-polymer bioconjugates using reversibleadditionfragmentation chain transfer polymerization.Biomacromolecules 10(7): 1804–1809.

He, J., X. Lü et al. (2007). Study of protein adsorption onbiomaterial surfaces by SPR. Key Engineering Materials342–343: 825–828.

Heiden, A. P. v. d., G. M. Willems et al. (1998).Adsorption of proteins onto poly(ether urethane) with a

Page 287: Polymeric Biomaterials - Taylor & Francis eBooks

phosphorylcholine moiety and in¥uence of preadsorbedphospholipid. Journal of Biomedical Materials Research40(2): 195–203.

Hench, L. L. and J. M. Polak (2002). Third-generationbiomedical materials. Science 295(5557): 1014–1017.

Hermanson, G. T., Ed. (1996). Bioconjugate Techniques. NewYork, Academic Press.

Hermanson, G. T. (2008). Bioconjugate Techniques. Oxford,U.K.: Elsevier’s Science & Tecnology.

Hernández, L., B. Vázquez et al. (2007). Acrylic bonecements with bismuth salicylate: Behavior in simulatedphysiological conditions. Journal of Biomedical MaterialsResearch Part A 80(2): 321–332.

Heurtault, B., P. Saulnier et al. (2003). Physico-chemicalstability of colloidal lipid particles. Biomaterials24(23): 4283–4300.

Higuchi, A., K. Shirano et al. (2002). Chemically modi�edpolysulfone hollow �bers with vinylpyrrolidone havingimproved blood compatibility. Biomaterials 23(13):2659–2666.

Hoffart, V., Ubrich, N., Lamprecht, A., Bachelier, K.,Vigneron, C., Lecompte, T., Hoffman, M., and P. Maincent(2003). Microencapsulation of low molecular weight heparininto polymeric particles designed with biodegradable andnonbiodegradable polycationic polymers. Drug Delivery 10:1–7.

Hoffman, A. S. and B. D. Ratner (2004). Nonfoulingsurfaces. In: B. D. Ratner, A. S. Hoffman, F. J. Schoenand J. E. Lemons, Eds., Biomaterials Science: AnIntroduction to Materials in Medicine, pp. 197–201.Oxford, U.K,: Elsevier’s Science & Tecnology.

Hook A. L., A. D., Langer R., Williams P., Davies M. C.,and M. R. Alexander (2010). High throughput methods appliedin biomaterial development and discovery. Biomaterials31(2): 187–198.

Hook, F. F., J. Vörös et al. (2002). A comparative study ofprotein adsorption on titanium oxide surfaces using insitu ellipsometry, optical waveguide lightmodespectroscopy, and quartz crystal microbalance/dissipation.Colloids and Surfaces B: Biointerfaces 24(2): 155–170.

Page 288: Polymeric Biomaterials - Taylor & Francis eBooks

Hu, Y., S. R. Winn et al. (2003). Porous polymer scaffoldssurface-modi�ed with arginine-glycine-aspartic acidenhance bone cell attachment and differentiation in vitro.Journal of Biomedical Materials Research Part A 64(3):583–590.

Huang, C.-J., T. P.-Y., and Y.-C. Chang (2010). Effects ofextracellular matrix protein functionalized ¥uid membraneon cell adhesion and matrix remodelling.. Biomaterials31(27): 7183–7195.

Huang, J. and W. Xu (2010). Zwitterionic monomer graftcopolymerization onto polyurethane surface through a PEGspacer. Applied Surface Science 256(12): 3921–3927.

Huang, H., Y. Zhao et al. (2003). Enhanced osteoblastfunctions on RGD immobilized surface. Journal of OralImplantology 29(2): 73–79.

Hylton, D. M., S. W. Shalaby et al. (2005). Directcorrelation between adsorption-induced changes in proteinstructure and platelet adhesion. Journal of BiomedicalMaterials Research Part A 73A(3): 349–358.

Ishihara, K., T. Hasegawa et al. (2002). Proteinadsorption-resistant hollow �bers for blood puri�cation.Arti©cial organs 26(12): 1014–1019.

Ishihara, K., D. Nishiuchi et al. (2004).Polyethylene/phospholipid polymer alloy as an alternativeto poly(vinylchloride)-based materials. Biomaterials25(6): 1115–1122.

Ishihara, K., H. Nomura et al. (1998). Why do phospholipidpolymers reduce protein adsorption? Journal of BiomedicalMaterials Research 39(2): 323–330.

Ishihara, K., T. Ueda et al. (1990). Preparation ofphospholipid polymers and their properties as polymerhydrogel membranes. Polymer Journal 22(5): 355–360.

Israelachvili, J. and H. Wennerstrom (1996). Role ofhydration and water structure in biological and colloidalinteractions. Nature 379(6562): 219–225.

Itoh, D., S. Yoneda et al. (2002). Enhancement ofosteogenesis on hydroxyapatite surface coated withsynthetic peptide (EEEEEEEPRGDT) in vitro. Journal ofBiomedical Materials Research 62(2): 292–298.

Page 289: Polymeric Biomaterials - Taylor & Francis eBooks

Iwasaki, Y., S. Uchiyama et al. (2002). A nonthrombogenicgas-permeable membrane composed of a phospholipid polymerskin �lm adhered to a polyethylene porous membrane.Biomaterials 23(16): 3421–3427.

Iwata, R., P. Suk-In et al. (2004). Control ofnanobiointerfaces generated from well-de�ned biomimeticpolymer brushes for protein and cell manipulations.Biomacromolecules 5(6): 2308–2314.

Jackeray, R., S. Jain et al. (2010). Surface modi�cation ofnylon membrane by glycidyl methacrylate graftcopolymerization for antibody immobilization. Journal ofApplied Polymer Science 116(3): 1700–1709.

Jandt, K. D. (2001). Atomic force microscopy ofbiomaterials surfaces and interfaces. Surface Science491(3): 303–332.

Janorkar, A. V., S. E. Proulx et al. (2006).Surface-con�ned photopolymerization of single- andmixed-monomer systems to tailor the wettability ofpoly(L-lactide) �lm. Journal of Polymer Science Part A:Polymer Chemistry 44(22): 6534–6543.

Jaturanpinyo, M., A. Harada et al. (2004). Preparation ofbionanoreactor based on core-shell structured polyioncomplex micelles entrapping trypsin in the corecross-linked with glutaraldehyde. Bioconjugate Chemistry15(2): 344–348.

Jee, K. S., H. D. Park et al. (2004). Heparin conjugatedpolylactide as a blood compatible material.Biomacromolecules 5(5): 1877–1881.

Joralemon, M. J., R. K. O’Reilly et al. (2005). Shellclick-crosslinked (SCC) nanoparticles: A new methodologyfor synthesis and orthogonal functionalization. Journal ofthe American Chemical Society 127(48): 16892–16899.

Joshi, J. M. and V. K. Sinha (2006). Graft copolymerizationof 2-hydroxyethylmethacrylate onto carboxymethyl chitosanusing CAN as an initiator. Polymer 47(6): 2198–2204.

Jung, D., S. Yeo et al. (2006). Formation of amine groupsby plasma enhanced chemical vapor deposition and itsapplication to DNA array technology. Surface and CoatingsTechnology 200(9): 2886–2891.

Page 290: Polymeric Biomaterials - Taylor & Francis eBooks

Junkar, I., A. Vesel et al. (2009). In¥uence of oxygen andnitrogen plasma treatment on polyethylene terephthalate(PET) polymers. Vacuum 84(1): 83–85.

Kao, W. J. and J. A. Hubbell (1998). Murine macrophagebehavior on peptide-grafted polyethyleneglycol-containing networks. Biotechnology and Bioengineering59(1): 2–9.

Kazarian, S. G. and K. L. A Chan (2003). “Chemicalphotography” of drug release. Macromolecules 36(26):9866–9872.

Kazarian, S. G. and K. L. A. Chan (2006). Applications ofATR-FTIR spectroscopic imaging to biomedical samples.Biochimica et Biophysica Acta—Biomembranes 1758(7):858–867.

Kazarian, S. G., K. W. T. Kong et al. (2005). Spectroscopicimaging applied to drug release. Food and BioproductsProcessing 83(2 C): 127–135.

Kenawy, E. R., F. I. Abdel-Hay et al. (2005). Biologicallyactive polymers: Modi�cation and anti-microbial activityof chitosan derivatives. Journal of Bioactive andCompatible Polymers 20(1): 95–111.

Kenawy, E. R., F. Imam Abdel-Hay et al. (2006). Synthesisand antimicrobial activity of some polymers derived frommodi�ed amino polyacrylamide by reacting it with benzoateesters and benzaldehyde derivatives. Journal of AppliedPolymer Science 99(5): 2428–2437.

Kim, Y. H., D. K. Han et al. (2003). Enhanced bloodcompatibility of polymers grafted by sulfonated PEO via anegative cilia concept. Biomaterials 24(13): 2213–2223.

Kim, Y. J., I. K. Kang et al. (2000). Surfacecharacterization and in vitro blood compatibility ofpoly(ethylene terephthalate) immobilized with insulinand/or heparin using plasma glow discharge. Biomaterials21(2): 121–130.

Kim, D. K., Y. K. Park et al. (2005). Removal ef�ciency oforganic contaminants on Si wafer surfaces by the N2O ECRplasma technique. Materials Chemistry and Physics 91(2–3):490–493.

Kingshott, P., J. Wei et al. (2003). Covalent attachment ofpoly(ethylene glycol) to surfaces, critical for reducing

Page 291: Polymeric Biomaterials - Taylor & Francis eBooks

bacterial adhesion. Langmuir 19(17): 6912–6921.

Kirby, B. J. and E. F. Hasselbrink Jr (2004). Zetapotential of micro¥uidic substrates: 1. Theory,experimental techniques, and effects on separations.Electrophoresis 25(2): 187–202.

Kirsebom, H., M. R. Aguilar et al. (2007). Macroporousscaffolds based on chitosan and bioactive molecules.Journal of Bioactive and Compatible Polymers 22(6):621–636.

Klee, D., Z. Ademovic et al. (2003). Surface modi�cation ofpoly(vinylidene¥uoride) to improve the osteoblastadhesion. Biomaterials 24(21): 3663–3670.

Klenkler, B. J., M. Grif�th et al. (2005). EGF-grafted PDMSsurfaces in arti�cial cornea applications. Biomaterials26(35): 7286–7296.

Klok, H.-A. (2005). Biological-synthetic hybrid blockcopolymers: Combining the best from two worlds. Journal ofPolymer Science Part A: Polymer Chemistry 43(1): 1–17.

Koenig, A. L., V. Gambillara et al. (2003). Correlating�bronectin adsorption with endothelial cell adhesion andsignaling on polymer substrates. Journal of BiomedicalMaterials Research Part A 64A(1): 20–37.

Kolb, H. C., M. G. Finn et al. (2001). Click chemistry:Diverse chemical function from a few good reactions.Angewandte Chemie—International Edition 40(11): 2005–2021.

Koo, L. Y., D. J. Irvine et al. (2002). Co-regulation ofcell adhesion by nanoscale RGD organization and mechanicalstimulus. Journal of Cell Science 115(7): 1423–1433.

Korematsu, A., Y. Takemoto et al. (2002). Synthesis,characterization and platelet adhesion of segmentedpolyurethanes grafted phospholipid analogous vinyl monomeron surface. Biomaterials 23(1): 263–271.

Kubies, D., L. Machová et al. (2003). Functionalizedsurfaces of polylactide modi�ed by Langmuir-Blodgett �lmsof amphiphilic block copolymers. Journal of MaterialsScience: Materials in Medicine 14(2): 143–149.

Kulbokaite, R., G. Ciuta et al. (2009). N-PEG’ylation ofchitosan via “click chemistry” reactions. Reactive andFunctional Polymers 69(10): 771–778.

Page 292: Polymeric Biomaterials - Taylor & Francis eBooks

Kwang, H. L., H. K. Gu et al. (2009). Hydrophilicelectrospun polyurethane nano�ber matrices for hMSCculture in a micro¥uidic cell chip. Journal of BiomedicalMaterials Research Part A 90(2): 619–628.

Kwok, C. S., T. A. Horbett et al. (1999). Design ofinfection-resistant antibiotic-releasing polymersII.Controlled release of antibiotics through aplasma-deposited thin �lm barrier. Journal of ControlledRelease 62(3): 301–311.

Ladam, G., P. Schaaf et al. (2002). Protein adsorption ontoauto-assembled polyelectrolyte �lms. BiomolecularEngineering 19(2–6): 273–280.

Ladd, J., Z. Zhang et al. (2008). Zwitterionic polymersexhibiting high resistance to nonspeci�c protein adsorptionfrom human serum and plasma. Biomacromolecules 9(5):1357–1361.

Ladmiral, V., E. Melia et al. (2004). Syntheticglycopolymers: An overview. European Polymer Journal 40(3):431–449.

Lamers, E., X. Frank Walboomers et al. (2010). The in¥uenceof nanoscale grooved substrates on osteoblast behavior andextracellular matrix deposition. Biomaterials 31(12):3307–3316.

Langer, R. and D. A. Tirrell (2004). Designing materialsfor biology and medicine. Nature 428(6982): 487–492.

Lazos, D., S. Franzka et al. (2005). Size-selective proteinadsorption to polystyrene surfaces by self-assembledgrafted poly(ethylene glycols) with varied chain lengths.Langmuir 21(19): 8774–8784.

Lebaron, R. G. and K. A. Athanasiou (2000). Extracellularmatrix cell adhesion peptides: Functional applications inorthopedic materials. Tissue Engineering 6(2): 85–103.

Leckband, D. and A. Prakasam (2006). Mechanism and dynamicsof cadherin adhesion. Annual Review of BiomedicalEngineering 8(1): 259–287.

Lee, G. K., N. Maheshri et al. (2005). PEG conjugationmoderately protects adeno-associated viral vectors againstantibody neutralization. Biotechnology and Bioengineering92(1): 24–34.

Page 293: Polymeric Biomaterials - Taylor & Francis eBooks

Lee, D. Y., S. J. Park et al. (2006). A new strategy towardimproving immunoprotection in cell therapy for diabetesmellitus: Long-functioning PEGylated islets in vivo. TissueEngineering 12(3): 615–623.

Lee, K. B., K. R. Yoon et al. (2003). Surface modi�cationof poly(glycolic acid) (PGA) for biomedical applications.Journal of Pharmaceutical Sciences 92(5): 933–937.

Leonard, D., Y. Chevolot et al. (1998). ToF-SIMS and XPSstudy of photoactivatable reagents designed for surfaceglycoengineering: Part 2.

Levenberg, S., R. Langer et al. (2004). Advances in tissueengineering. Current Topics in Developmental Biology, Vol.61, pp. 113–134, San Diego, CA, Academic Press..

Lewis, A. L. (2000). Phosphorylcholine-based polymers andtheir use in the prevention of biofouling. Colloids andSurfaces B: Biointerfaces 18(3–4): 261–275.

Li, L., S. Chen et al. (2005). Protein adsorption onoligo(ethylene glycol)-terminated alkanethiolateselfassembled monolayers: The molecular basis fornonfouling behavior. Journal of Physical Chemistry B109(7): 2934–2941.

Li, Y., K. G. Neoh et al. (2003). Physicochemical and bloodcompatibility characterization of polypyrrole surfacefunctionalized with heparin. Biotechnology andBioengineering 84(3): 305–313.

Li, Z. F. and E. Ruckenstein (2004). Grafting ofpoly(ethylene oxide) to the surface of polyaniline �lmsthrough a chlorosulfonation method and thebiocompatibility of the modi�ed �lms. Journal of Colloidand Interface Science 269(1): 62–71.

Link, A. J., M. K. S. Vink et al. (2004). Presentation anddetection of azide functionality in bacterial cell surfaceproteins. Journal of the American Chemical Society 126(34):10598–10602.

Linnola, R. J., L. Werner et al. (2000). Adhesion of�bronectin, vitronectin, laminin, and collagen type IV tointraocular lens materials in pseudophakic human autopsyeyes: Part 1: Histological sections. Journal of Cataract &Refractive Surgery 26(12): 1792–1806.

Page 294: Polymeric Biomaterials - Taylor & Francis eBooks

Liu, X. and P. Ma (2004). Polymeric scaffolds for bonetissue engineering. Annals Biomedical Engineering 32:477–486.

Liu, J., T. Pan et al. (2004). Surface-modi�ed poly(methylmethacrylate) capillary electrophoresis microchips forprotein and peptide analysis. Analytical Chemistry 76(23):6948–6955.

López Donaire, M. L., J. Parra-Cáceres et al. (2009).Polymeric drugs based on bioactive glycosides for thetreatment of brain tumours. Biomaterials 30(8): 1613–1626.

Lu, L., P. Zhang et al. (2009). Study on partially oxidizedsodium alginate with potassium permanganate as theoxidant. Journal of Applied Polymer Science 113(6):3585–3589.

Luk, Y. Y., M. Kato et al. (2000). Self-assembledmonolayers of alkanethiolates presenting mannitol groupsare inert to protein adsorption and cell attachment.Langmuir 16(24): 9604–9608.

Lutz, J. F. (2007). 1,3-Dipolar cycloadditions of azidesand alkynes: A universal ligation tool in polymer andmaterials science. Angewandte Chemie, International Edition46(7): 1018–1025.

Lutz, J. F., H. G. Börner et al. (2006). Combining ATRP and“click” chemistry: A promising platform toward functionalbiocompatible polymers and polymer bioconjugates.Macromolecules 39(19): 6376–6383.

Lutz, J. F. and H. G. Börner (2008). Modern trends inpolymer bioconjugates design. Progress in Polymer Science33: 1–39.

Lutz, J. F., S. Pfeifer et al. (2007). In situfunctionalization of thermoresponsive polymeric micellesusing the “click” cycloaddition of azides and alkynes.QSAR and Combinatorial Science 26(11–12): 1151–1158.

Lutz, J.-F. and Z. Zarafshani (2008). Ef�cient constructionof therapeutics, bioconjugates, biomaterials and bioactivesurfaces using azide-alkyne “click” chemistry. AdvancedDrug Delivery Reviews 60(9): 958–970.

Ma, Z., Z. Mao et al. (2007). Surface modi�cation andproperty analysis of biomedical polymers used for tissueengineering. Colloids and Surfaces B: Biointerfaces 60(2):

Page 295: Polymeric Biomaterials - Taylor & Francis eBooks

137–157.

Ma, W. X., C. Zhao et al. (2010). A novel method ofmodifying poly(ethylene terephthalate) fabric usingsupercritical carbon dioxide. Journal of Applied PolymerScience 117(4): 1897–1907.

Macmanus, L. F., M. J. Walzak et al. (1999). Study ofultraviolet light and ozone surface modi�cation ofpolypropylene. Journal of Polymer Science Part A: PolymerChemistry 37(14): 2489–2501.

Manju, S. and S. Kunnatheeri (2010). Layer-by-Layermodi�cation of poly(methyl methacrylate) intra ocularlens: Drug delivery applications. PharmaceuticalDevelopment and Technology 15(4): 379–385.

Mann, B. K., R. H. Schmedlen et al. (2001).Tethered-TGF-[beta] increases extracellular matrixproduction of vascular smooth muscle cells. Biomaterials22(5): 439–444.

Mapili, G., Y. Lu et al. (2005). Laser-layeredmicrofabrication of spatially patterned functionalizedtissueengineering scaffolds. Journal of BiomedicalMaterials Research Part B: Applied Biomaterials 75(2): 414.

Marchand-Brynaert, J., E. Detrait et al. (1999). Biologicalevaluation of RGD peptidomimetics, designed for thecovalent derivatization of cell culture substrata, aspotential promotors of cellular adhesion. Biomaterials20(19): 1773–1782.

Martins, G. V., J. F. Mano et al. (2010). Nanostructuredself-assembled �lms containing chitosan fabricated atneutral pH. Carbohydrate Polymers 80(2): 570–573.

Martins, M. C. L., B. D. Ratner et al. (2003a). Proteinadsorption on mixtures of hydroxyl- and methylterminatedalkanethiols self-assembled monolavers. Journal ofBiomedical Materials Research Part A 67A(1): 158–171.

Martins, M. C. L., D. Wang et al. (2003b). Albumin and�brinogen adsorption on PU-PHEMA surfaces. Biomaterials24(12): 2067–2076.

Marx, K. A. (2003). Quartz crystal microbalance: A usefultool for studying thin polymer �lms and complexbiomolecular systems at the solution—Surface interface.Biomacromolecules 4(5): 1099–1120.

Page 296: Polymeric Biomaterials - Taylor & Francis eBooks

Maskarinec, S. A. and D. A. Tirrell (2005). Proteinengineering approaches to biomaterials design. CurrentOpinion in Biotechnology 16(4): 422–426.

Mathieu, H. J., Y. Chevolot et al. (2003). Engineering andcharacterization of polymer surfaces for biomedicalapplications. Advances in Polymer Science 162: 1–34.

McArthur, S. L. (2006). Applications of XPS inbioengineering. Surface and Interface Analysis 38(11):1380–1385.

McConachie, A., D. Newman et al. (1999). The effect onbioadhesive polymers either freely in solution orcovalently attached to a support on human macrophages.Biomedical Sciences Instrumentation 35: 45–50.

Merrett, K., R. M. Cornelius et al. (2002). Surfaceanalysis methods for characterizing polymeric biomaterials.Journal of Biomaterials Science, Polymer Edition 13(6):593–621.

Michael, M. N., N. A. El-Zaher et al. (2004). Investigationinto surface modi�cation of some polymeric fabrics byUV/ozone treatment. Polymer—Plastics Technology andEngineering 43(4): 1041–1052.

Miller, D. C., A. Thapa et al. (2004). Endothelial andvascular smooth muscle cell function onpoly(lactic-coglycolic acid) with nano-structured surfacefeatures. Biomaterials 25(1): 53–61.

Miller-Chou, B. A. and J. L. Koenig (2002). FT-IR imagingof polymer dissolution by solvent mixtures. 3. Entangledpolymer chains with solvents. Macromolecules 35(2):440–444.

Milton Harris, J. and R. B. Chess (2003). Effect ofpegylation on pharmaceuticals. Nature Reviews DrugDiscovery 2(3): 214–221.

Mitchell, S. A., A. H. C. Poulsson et al. (2005).Orientation and con�nement of cells on chemically patternedpolystyrene surfaces. Colloids and Surfaces B:Biointerfaces 46(2): 108–116.

Morimoto, N., Y. Iwasaki et al. (2002). Physical propertiesand blood compatibility of surface-modi�ed segmentedpolyurethane by semi-interpenetrating polymer networks with

Page 297: Polymeric Biomaterials - Taylor & Francis eBooks

a phospholipid polymer. Biomaterials 23(24): 4881–4887.

Morimoto, N., A. Watanabe et al. (2004). Nano-scale surfacemodi�cation of a segmented polyurethane with aphospholipid polymer. Biomaterials 25(23): 5353–5361.

Moro, T., Y. Takatori et al. (2004). Surface grafting ofarti�cial joints with a biocompatible polymer forpreventing periprosthetic osteolysis. Nature Materials3(11): 829–836.

Morra, M. (2000). On the molecular basis of foulingresistance. Journal of Biomaterials Science, PolymerEdition 11: 547–569.

Mosqueira, V. C. F., P. Legrand et al. (2000).Poly(d,l-lactide) nanocapsules prepared by a solventdisplacement process: In¥uence of the composition onphysicochemical and structural properties. Journal ofPharmaceutical Sciences 89(5): 614–626.

Mouhib, T., D. A., Poleunis, C., Henry, M., and P. Bertrand(2010). C60 SIMS depth pro�ling of bovine serum albuminprotein-coating �lms: A conformational study. Surface andInterface Analysis 42(6–7): 641–644.

Muscariello, L., F. Rosso et al. (2005). A criticaloverview of ESEM applications in the biological �eld.Journal of Cellular Physiology 205(3): 328–334.

Muthukrishnan, S., M. Zhang et al. (2005). Molecular sugarsticks: Cylindrical glycopolymer brushes. Macromolecules38(19): 7926–7934.

Nagahata, M., R. Nakaoka et al. (2005). The response ofnormal human osteoblasts to anionic polysaccharidepolyelectrolyte complexes. Biomaterials 26(25): 5138–5144.

Nam, Y. S., J. J. Yoon et al. (1999). Adhesion behavioursof hepatocytes cultured onto biodegradable polymer surfacemodi�ed by alkali hydrolysis process. Journal ofBiomaterials Science, Polymer Edition 10(11): 1145–1158.

Navarro, M., C. Aparicio et al. (2006). Development of abiodegradable composite scaffold for bone tissueengineering: Physicochemical, topographical, mechanical,degradation, and biological properties. Ordered PolymericNanostructures at Surfaces 200: 209–231.

Niemeyer, C. M. (2001). Nanoparticles, proteins, and

Page 298: Polymeric Biomaterials - Taylor & Francis eBooks

nucleic acids: Biotechnology meets materials science.Angewandte Chemie International Edition 40(22): 4128–4158.

Niu, X., Y. Wang et al. (2005). Arg-Gly-Asp (RGD) modi�edbiomimetic polymeric materials. Journal of MaterialsScience and Technology 21(4): 571–576.

Noh, H. and E. A. Vogler (2006). Volumetric interpretationof protein adsorption: Mass and energy balance for albuminadsorption to particulate adsorbents with incrementallyincreasing hydrophilicity. Biomaterials 27(34): 5801–5812.

Øiseth, S. K., A. Krozer et al. (2004). Ultraviolet lighttreatment of thin high-density polyethylene �lms monitoredwith a quartz crystal microbalance. Journal of AppliedPolymer Science 92(5): 2833–2839.

Okamura, Y., I. Maekawa et al. (2005). Hemostatic effectsof phospholipid vesicles carrying �brinogen γ-chaindodecapeptide in vitro and in vivo. Bioconjugate Chemistry16(6): 1589–1596.

Olsson, A. L. J. V. D. M. H., Busscher, H. J., and P. K.Sharma (2010). Novel analysis of bacterium-substratum bondmaturation measured using a quartz crystal microbalance.Langmuir 26(13): 11113–11117.

Öner, D. and T. J. McCarthy (2000). Ultrahydrophobicsurfaces. Effects of topography length scales onwettability. Langmuir 16(20): 7777–7782.

O’Reilly, R. K., M. J. Joralemon et al. (2006). Facilesyntheses of surface-functionalized micelles and shellcross-linked nanoparticles. Journal of Polymer Science PartA: Polymer Chemistry 44(17): 5203–5217.

Ortega-Vinuesa, J. L., P. Tengvall et al. (1998). Molecularpacking of HSA, IgG, and �brinogen adsorbed on silicon byAFM imaging. Thin Solid Films 324(1–2): 257–273.

O’Sullivan, C. K. and G. G. Guilbault (1999). Commercialquartz crystal microbalances—Theory and applications.Biosensors and Bioelectronics 14(8–9): 663–670.

Ostuni, E., R. G. Chapman et al. (2001). A survey ofstructure-property relationships of surfaces that resistthe adsorption of protein. Langmuir 17(18): 5605–5620.

Otsuka, H., Y. Nagasaki et al. (2000). Surfacecharacterization of functionalized polylactide through the

Page 299: Polymeric Biomaterials - Taylor & Francis eBooks

coating with heterobifunctional poly(ethyleneglycol)/polylactide block copolymers. Biomacromolecules1(1): 39–48.

Oyane, A., M. Uchida et al. (2005). Simple surfacemodi�cation of poly(ε-caprolactone) to induce itsapatiteforming ability. Journal of Biomedical MaterialsResearch Part A 75(1): 138–145.

Pande, G. (2000). The role of membrane lipids in regulationof integrin functions. Current Opinion in Cell Biology12(5): 569–574.

Park, K.-H. (2002). Arg-Gly-Asp (RGD) sequence conjugatedin a synthetic copolymer bearing a sugar moiety forimproved culture of parenchymal cells (hepatocytes).Biotechnology Letters 24(17): 1401–1406.

Park, K.-H., K. Na et al. (2004). Immobilization ofArg-Gly-Asp (RGD) sequence in sugar containing copolymerfor culturing of pheochromocytoma (PC12) cells. Journal ofBioscience and Bioengineering 97(3): 207–211.

Parker, A. P., P. A. Reynolds et al. (2005). Investigationinto potential mechanisms promoting biocompatibility ofpolymeric biomaterials containing the phosphorylcholinemoiety: A physicochemical and biological study. Colloidsand Surfaces B: Biointerfaces 46(4): 204–217.

Parrish, B., R. B. Breitenkamp et al. (2005). PEG- andpeptide-grafted aliphatic polyesters by click chemistry.Journal of the American Chemical Society 127(20):7404–7410.

Pasche, S., J. Vörös et al. (2005). Effects of ionicstrength and surface charge on protein adsorption atPEGylated surfaces. The Journal of Physical Chemistry. B109(37): 17545–17552.

Perez-Luna, V. H., K. A. Hooper et al. (1997). Surfacecharacterization of tyrosine-derived polycarbonates.Journal of Applied Polymer Science 63(11): 1467–1479.

Petit, V. and J.-P. Thiery (2000). Focal adhesions:Structure and dynamics. Biology of the Cell 92(7): 477–494.

Pippig, F., S. Sarghini et al. (2009). TFAA chemicalderivatization and XPS. Analysis of OH and NHx polymers.Surface and Interface Analysis 41(5): 421–429.

Page 300: Polymeric Biomaterials - Taylor & Francis eBooks

Plow, E. F., T. A. Haas et al. (2000). Ligand binding tointegrins. Journal of Biological Chemistry 275(29):21785–21788.

Porter, A. E. (2006). Nanoscale characterization of theinterface between bone and hydroxyapatite implants and theeffect of silicon on bone apposition. Micron 37(8):681–688.

Poulsson, A. H. C., S. A. Mitchell et al. (2009).Attachment of human primary osteoblast cells to modi�edpolyethylene surfaces. Langmuir 25(6): 3718–3727.

Prescher, J. A., D. H. Dube et al. (2004). Chemicalremodelling of cell surfaces in living animals. Nature430(7002): 873–877.

Qu, X.-H., Q. Wu et al. (2005). Enhanced vascular-relatedcellular af�nity on surface modi�ed copolyesters of3-hydroxybutyrate and 3-hydroxyhexanoate (PHBHHx).Biomaterials 26(34): 6991–7001.

Quirk, R. A., W. C. Chan et al. (2001). Poly(-lysine)-GRGDSas a biomimetic surface modi�er for poly(lactic acid).Biomaterials 22(8): 865–872.

Raja, K. S., Q. Wang et al. (2003). Hybrid virus-polymermaterials. 1. Synthesis and properties of PEG-decoratedcowpea mosaic virus. Biomacromolecules 4(3): 472–476.

Rajagopalan, P., W. A. Marganski et al. (2004). Directcomparison of the spread area, contractility, and migrationof balb/c 3T3 �broblasts adhered to �bronectin- andRGD-modi�ed substrata. Biophysical Journal 87(4):2818–2827.

Rao, G. R., Z. L. Wang et al. (1993). Microstructuraleffects on surface mechanical-properties of ion-implantedpolymers. Journal of Materials Research 8(4): 927–933.

Ratner, B. D. and S. J. Bryan (2004). Biomaterials: Wherewe have been and where we are going. Annual Review ofBiomedical Engineering 6: 41–75.

Reyes, C. D. and A. J. Garcia (2003). Engineeringintegrin-speci�c surfaces with a triple-helicalcollagenmimetic peptide. Journal of Biomedical MaterialsResearch Part A 65A(4): 511–523.

Reyes, C. D. and A. J. Garcia (2004). Alpha(2)beta(1)

Page 301: Polymeric Biomaterials - Taylor & Francis eBooks

integrin-speci�c collagen-mimetic surfaces supportingosteoblastic differentiation. Journal of BiomedicalMaterials Research Part A 69A(4): 591–600.

Reynhout, I. C., J. J. L. M. Cornelissen et al. (2007).Self-assembled architectures from biohybrid triblockcopolymers. Journal of the American Chemical Society129(8): 2327–2332.

Rezania, A. and K. E. Healy (1999). Biomimetic peptidesurfaces that regulate adhesion, spreading, cytoskeletalorganization, and mineralization of the matrix deposited byosteoblast-like cells. Biotechnology Progress 15(1):19–32.

Richey, T., H. Iwata et al. (2000). Surface modi�cation ofpolyethylene balloon catheters for local drug delivery.Biomaterials 21(10): 1057–1065.

Rinckenbach, S., J. Hemmerlé et al. (2008).Characterization of polyelectrolyte multilayer �lms onpolyethylene terephtalate vascular prostheses undermechanical stretching. Journal of Biomedical MaterialsResearch Part A 84(3): 576–588.

Roach, P., D. Eglin et al. (2007). Modern biomaterials: Areview—Bulk properties and implications of surfacemodi�cations. Journal of Materials Science: Materials inMedicine 18(7): 1263–1277.

Roach, P., D. Farrar et al. (2005). Interpretation ofprotein adsorption: Surface-induced conformational changes.Journal of the American Chemical Society 127(22):8168–8173.

Rodrigues, S. N., I. C. Gonçalves et al. (2006). Fibrinogenadsorption, platelet adhesion and activation on mixedhydroxyl-/methyl-terminated self-assembled monolayers.Biomaterials 27(31): 5357–5367.

Rodriguez Emmenegger, C., E. Brynda et al. (2009).Interaction of blood plasma with antifouling surfaces.Langmuir 25(11): 6328–6333.

Rodríguez-Lorenzo, L. M., R. García-Carrodeguas et al.(2006).Wollastonite-poly(ethylmethacrylateco-vinylpyrrolydone)nanostructured materials: Mechanical properties andbiocompatibility. Key Engineering Materials 309–311 II:1149–1152.

Page 302: Polymeric Biomaterials - Taylor & Francis eBooks

Rodríguez-Lorenzo, L. M., R. García-Carrodeguas et al.(2009). Synthesis, characterization, bioactivity andbiocompatibility of nanostructured materials based on thewollastonite-poly(ethylmethacrylate-co- vinylpyrrolidone)system. Journal of Biomedical Materials Research Part A88(1): 53–64.

Roger, P., L. Renaudie et al. (2010). Surfacecharacterizations of poly(ethylene terephthalate) �lmmodi�ed by a carbohydrate-bearing photoreactive azidegroup. European Polymer Journal 46(7): 1594–1603.

Rojo, L., J. M. Barcenilla et al. (2008). Intrinsicallyantibacterial materials based on polymeric derivatives ofeugenol for biomedical applications. Biomacromolecules9(9): 2530–2535.

Romero-Sánchez, M. D., M. M. Pastor-Blas et al. (2001).Surface modi�cations of a vulcanized rubber using coronadischarge and ultraviolet radiation treatments. Journal ofMaterials Science 36(24): 5789–5799.

Rostovtsev, V. V., L. G. Green et al. (2002). A stepwisehuisgen cycloaddition process: Copper(I)-catalyzedregioselective “ligation” of azides and terminal alkynes.Angewandte Chemie—International Edition 41(14): 2596–2599.

Rowley, J. A. and D. J. Mooney (2002). Alginate type andRGD density control myoblast phenotype. Journal ofBiomedical Materials Research 60(2): 217–223.

Sabbatini, L. and P. G. Zambonin (1996). XPS and SIMSsurface chemical analysis of some important classes ofpolymeric biomaterials. Journal of Electron Spectroscopyand Related Phenomena 81(3): 285–301.

Sagnella, S., E. Anderson et al. (2005). Human endothelialcell interaction with biomimetic surfactant polymerscontaining peptide ligands from the heparin binding domainof �bronectin. Tissue Engineering 11(1–2): 226–236.

Sahlin, J. J. and N. A. Peppas (1997). Near-�eld FTIRimaging: A technique for enhancing spatial resolution inFTIR microscopy. Journal of Applied Polymer Science 63(1):103–110.

Sajeesh, S., K. Bouchemal et al. (2010).Surface-functionalized polymethacrylic acid based hydrogelmicroparticles for oral drug delivery. European Journal of

Page 303: Polymeric Biomaterials - Taylor & Francis eBooks

Pharmaceutics and Biopharmaceutics 74(2): 209–218.

Salvagnini, C. and J. Marchand-Brynaert (2006).Immobilization of thrombin inhibitors on polyesterssurface: An original approach towards materials bloodcompatibilization. Advanced Materials Forum Iii Parts 1and 2 514–516: 961–965.

Sánchez, J., G. Elgue et al. (1997). Inhibition of theplasma contact activation system of immobilized heparin:Relation to surface density of functional antithrombinbinding sites. Journal of Biomedical Materials Research37(1): 37–42.

Sanchis, M. R., V. Blanes et al. (2006). Surfacemodi�cation of low density polyethylene (LDPE) �lm by lowpressure O2 plasma treatment. European Polymer Journal42(7): 1558–1568.

Satriano, C., G. M. L. Messina et al. (2010). Surfaceimmobilization of �bronectin-derived PHSRN peptide onfunctionalized polymer �lms—Effects on �broblast spreading.Journal of Colloid and Interface Science 341(2): 232–239.

Schneider, S. W., M. E. Egan et al. (1999). Continuousdetection of extracellular ATP on living cells by usingatomic force microscopy. Proceedings of the NationalAcademy of Sciences of the USA 96(21): 12180–12185.

Schwartz, M. A. and M. H. Ginsberg (2002). Networks andcrosstalk: Integrin signalling spreads. Nature CellBiology 4(4): E65–E68.

Scott, M. D. and A. M. Chen (2004). Beyond the red cell:Pegylation of other blood cells and tissues. TransfusionClinique et Biologique 11(1): 40–46.

Sebra, R. P., K. S. Masters et al. (2005). Surface graftedantibodies: Controlled architecture permits enhancedantigen detection. Langmuir 21(24): 10907–10911.

Seo, J.-H., R. Matsuno et al. (2008). Surface tethering ofphosphorylcholine groups onto poly(dimethylsiloxane)through swelling-deswelling methods with phospholipidsmoiety containing ABA-type block copolymers. Biomaterials29(10): 1367–1376.

Servoli, E., D. Maniglio et al. (2008). Quantitativeanalysis of protein adsorption via atomic force microscopyand surface plasmon resonance. Macromolecular Bioscience

Page 304: Polymeric Biomaterials - Taylor & Francis eBooks

8(12): 1126–1134.

Servoli, E., D. Maniglio et al. (2009). Comparative methodsfor the evaluation of protein adsorption. MacromolecularBioscience 9(7): 661–670.

Sessler, J. L. and J. Jayawickramarajah (2005).Functionalized base-pairs: Versatile scaffolds forself-assembly. Chemical Communications (15): 1939–1949.

Sham, M. L., J. Li et al. (2009). Cleaning andfunctionalization of polymer surfaces and nanoscale carbon�llers by uv/ozone treatment: A review. Journal ofComposite Materials 43(14): 1537–1564.

Shchipunov, Y. A., O. G. Mukhaneva et al. (2003).Polyelectrolyte complexes of naturally occurring fucoidanswith cationically and hydrophobically modi�ed hydroxyethylcellulose. Polymer Science Series A 45(3): 295–303.

Sheardown, H., M. A. Brook et al. (2007). Cell Interactionswith PDMS surfaces modi�ed with cell adhesion peptidesusing a generic method. Materials Science Forum539–543(Part 1): 704–709.

Shen, M., M. S. Wagner et al. (2003). Multivariate surfaceanalysis of plasma-deposited tetraglyme for reduction ofprotein adsorption and monocyte adhesion. Langmuir 19(5):1692–1699.

Sheng, Q., K. Schulten et al. (1995). Molecular dynamicsimulation of immobilized arti�cial membranes. Journal ofPhysical Chemistry 99(27): 11018–11027.

Shi, Q., Y. Huang et al. (2009). Hemoglobin conjugatedmicelles based on triblock biodegradable polymers asarti�cial oxygen carriers. Biomaterials 30(28): 5077–5085.

Shin, H., S. Jo et al. (2002). Modulation of marrow stromalosteoblast adhesion on biomimetic oligo[poly(ethyleneglycol) fumarate] hydrogels modi�ed with Arg-Gly-Asppeptides and a poly(ethylene glycol) spacer. Journal ofBiomedical Materials Research 61(2): 169–179.

Shin, H., K. Zygourakis et al. (2004). Attachment,proliferation, and migration of marrow stromal osteoblastscultured on biomimetic hydrogels modi�ed with anosteopontin-derived peptide. Biomaterials 25(5): 895–906.

Sivakova, S. and S. J. Rowan (2005). Nucleobases as

Page 305: Polymeric Biomaterials - Taylor & Francis eBooks

supramolecular motifs. Chemical Society Reviews 34(1):9–21.

Smeenk, J. M., M. B. J. Otten et al. (2005). Controlledassembly of macromolecular beta-sheet �brils13. AngewandteChemie International Edition 44(13): 1968–1971.

Smith, E., J. Yang et al. (2005). RGD-graftedthermoreversible polymers to facilitate attachment of BMP-2responsive C2C12 cells. Biomaterials 26(35): 7329–7338.

Stamm, M. (2008). Polymer Surfaces and Interfaces.Characterization, Modi©cation and Applications, pp. 1–16.Springer-Verlag, Berlin, Germany.

Strola, S. C. G., Gilliand, D., Valsesia, A., Lisboa, P.,and F. Rossi (2010). Comparison of surface activationprocesses for protein immobilization on plasma-polymerizedacrylic acid �lms. Surface and Interface Analysis 42(6–7):1311–1315.

Sviridov, D. V. (2002). Chemical aspects of implantation ofhigh-energy ions into polymeric materials. RussianChemical Reviews 71(4): 315–327.

Tai, B. C. U., A. C. A. Wan et al. (2010). Modi�edpolyelectrolyte complex �brous scaffold as a matrix for 3Dcell culture. Biomaterials 31(23): 5927–5935.

Tanzi, M. C. (2005). Bioactive technologies forhemocompatibility. Expert Review of Medical Devices 2(4):473–492.

Teare, D. O. H., C. Ton-That et al. (2000). Surfacecharacterization and ageing of ultraviolet-ozone-treatedpolymers using atomic force microscopy and x-rayphotoelectron spectroscopy. Surface and Interface Analysis29(4): 276–283.

Thom, V. H., G. Altankov et al. (2000). Optimizingcell-surface interactions by photografting of poly(ethyleneglycol). Langmuir 16(6): 2756–2765.

Thome, J., A. Holländer et al. (2003). Ultrathinantibacterial polyammonium coatings on polymer surfaces.Surface and Coatings Technology 174–175: 584–587.

Tirrell, M., E. Kokkoli et al. (2002). The role of surfacescience in bioengineered materials. Surface Science500(1–3): 61–83.

Page 306: Polymeric Biomaterials - Taylor & Francis eBooks

Toworfe, G. K., R. J. Composto et al. (2004). Fibronectinadsorption on surface-activated poly(dimethylsiloxane) andits effect on cellular function. Journal of BiomedicalMaterials Research Part A 71A(3): 449–461.

Travan, A., I. Donati et al. (2010). Surface modi�cationand polysaccharide deposition on BisGMA/TEGDMA thermoset.Biomacromolecules 11(3): 583–592.

Tziampazis, E., J. Kohn et al. (2000). PEG-variantbiomaterials as selectively adhesive protein templates:Model surfaces for controlled cell adhesion and migration.Biomaterials 21(5): 511–520.

Van Kooten, T. G., H. T. Spijker et al. (2004).Plasma-treated polystyrene surfaces: Model surfaces forstudying cell-biomaterial interactions. Biomaterials25(10): 1735–1747.

Vandencasteele, N., B. Nisol et al. (2008). Plasma-modi�edPTFE for biological applications: Correlation betweenprotein-resistant properties and surface characteristics.Plasma Processes and Polymers 5(7): 661–671.

VandeVondele, S., J. Vörös et al. (2003). RGD-graftedpoly-l-lysine-graft-(polyethylene glycol) copolymers blocknon-speci�c protein adsorption while promoting celladhesion. Biotechnology and Bioengineering 82(7): 784–790.

Vasita, R., K. Shanmugam et al. (2008). Improvedbiomaterials for tissue engineering applications: Surfacemodi�cation of polymers. Current Topics in MedicinalChemistry 8(4): 341–353.

Vepari, C., D. Matheson et al. (2010). Surface modi�cationof silk �broin with poly(ethylene glycol) for antiadhesionand antithrombotic applications. Journal of BiomedicalMaterials Research Part A 93(2): 595–606.

Verma, I. M. and N. Somia (1997). Gene therapy—Promises,problems and prospects. Nature 389(6648): 239–242.

Vermette, P. and L. Meagher (2003). Interactions ofphospholipid- and poly(ethylene glycol)-modi�ed surfaceswith biological systems: Relation to physico-chemicalproperties and mechanisms. Colloids and Surfaces B:Biointerfaces 28(2–3): 153–198.

Vesel, A., I. Junkar et al. (2008). Surface modi�cation of

Page 307: Polymeric Biomaterials - Taylor & Francis eBooks

polyester by oxygen- And nitrogen-plasma treatment.Surface and Interface Analysis 40(11): 1444–1453.

Vicente, T., Mota, J. P. B., Peixoto, C., Alves, P. M., andM. J. T. Carrondo (2010). Modeling protein binding andelution over a chromatographic surface probed by surfaceplasmon resonance. Journal of Chromatography A 1217(13):2032–2041.

Vogler, E. A. (1998). Structure and reactivity of water atbiomaterial surfaces. Advances in Colloid and InterfaceScience 74(1–3): 69–117.

Wan, Y., X. Qu et al. (2004). Characterization of surfaceproperty of poly(lactide-co-glycolide) after oxygen plasmatreatment. Biomaterials 25(19): 4777–4783.

Wan, L.-S., Z.-K. Xu et al. (2005). Copolymerization ofacrylonitrile with N-vinyl-2-pyrrolidone to improve thehemocompatibility of polyacrylonitrile. Polymer 46(18):7715–7723.

Wan, Y., J. Yang et al. (2003). Cell adhesion on gaseousplasma modi�ed poly-(L-lactide) surface under shear stress�eld. Biomaterials 24(21): 3757–3764.

Wang, D.-a., C. G. Williams et al. (2003). Synthesis andcharacterization of a novel degradable phosphatecontaininghydrogel. Biomaterials 24(22): 3969–3980.

Webb, K., K. D. Caldwell et al. (2001). A novelsurfactant-based immobilization method for varyingsubstratebound �bronectin. Journal of Biomedical MaterialsResearch 54(4): 509–518.

Weder, G. G.-G. O., Matthey, N., Montagne, F., Heinzelmann,H., Vörös, J., and M. Liley (2010). The quanti�cation ofsingle cell adhesion on functionalized surfaces for cellsheet engineering. Biomaterials 31(25): 6436–6443.

Wendel, H. P., N. Weber et al. (1999). Increased adsorptionof high molecular weight kininogen to heparincoatedarti�cial surfaces and correlation to hemocompatibility.Immunopharmacology 43(2–3): 149–153.

Wendel, H. P. and G. Ziemer (1999). Coating-techniques toimprove the hemocompatibility of arti�cial devices usedfor extracorporeal circulation. European Journal ofCardio-Thoracic Surgery 16(3): 342–350.

Page 308: Polymeric Biomaterials - Taylor & Francis eBooks

Whitesides, George M. (2005). Nanoscience, nanotechnology,and chemistry13. Small 1(2): 172–179.

Wierzbicka-Patynowski, I. and J. E. Schwarzbauer (2003).The ins and outs of �bronectin matrix assembly. Journal ofCell Science 116(16): 3269–3276.

Willemsen, O. H., M. M. E. Snel et al. (2000). Biomolecularinteractions measured by atomic force microscopy.Biophysical Journal 79(6): 3267–3281.

Williams, D. F. (2008). On the mechanisms ofbiocompatibility. Ratner Symposium 2006, Maui, HI.Biomaterials 29(20): 2941–2953.

Wu, P., M. Malkoch et al. (2005a). Multivalent,bifunctional dendrimers prepared by click chemistry.Chemical Communications (46): 5775–5777.

Wu, Y. G., F. I. Simonovsky et al. (2005b). The role ofadsorbed �brinogen in platelet adhesion to polyurethanesurfaces: A comparison of surface hydrophobicity, proteinadsorption, monoclonal antibody binding, and plateletadhesion. Journal of Biomedical Materials Research Part A74A(4): 722–738.

Wu, W. J., H. Z. Zhuang et al. (1997). Heterogeneousnucleation of calcium phosphates on solid surfaces inaqueous solution. Journal of Biomedical Materials Research35(1): 93–99.

Xiong, X. L. Q., Lu, J.-W., Guo, Z.-X., and J. Yu (2010).Poly(lactic acid)/soluble eggshell membrane protein blend�lms: Preparation and characterization. Journal of AppliedPolymer Science 117(4): 1955–1959.

Xu, Z. K., Q. W. Dai et al. (2004). Covalent attachment ofphospholipid analogous polymers to modify a polymericmembrane surface: A novel approach. Langmuir 20(4):1481–1488.

Xu, L.-C. and C. A. Siedlecki (2007). Effects of surfacewettability and contact time on protein adhesion tobiomaterial surfaces. Biomaterials 28(22): 3273–3283.

Xu, L. C. and C. A. Siedlecki (2009). Atomic forcemicroscopy studies of the initial interactions between�brinogen and surfaces. Langmuir 25(6): 3675–3681.

Xu, J., Y. Yuan et al. (2003). Ozone-induced grafting

Page 309: Polymeric Biomaterials - Taylor & Francis eBooks

phosphorylcholine polymer onto silicone �lm grafting2-methacryloyloxyethyl phosphorylcholine onto silicone �lmto improve hemocompatibility. Colloids and Surfaces B:Biointerfaces 30(3): 215–223.

Yamada, K. M. and S. Even-Ram (2002). Integrin regulationof growth factor receptors. Nature Cell Biology 4(4):E75–E76.

Yang, S. Y., D. Y. Kim et al. (2008). Stimuli-responsivehybrid coatings of polyelectrolyte multilayers andnanopatterned polymer brushes. Macromolecular RapidCommunications 29(9): 729–736.

Yang, M. C. and W. C. Lin (2003). Protein adsorption andplatelet adhesion of polysulfone membrane immobilized withchitosan and heparin conjugate. Polymers for AdvancedTechnologies 14(2): 103–113.

Yang, Y., M. C. Porté et al. (2003). Covalent bonding ofcollagen on poly(l-lactic acid) by gamma irradiation.Nuclear Instruments and Methods in Physics Research,Section B: Beam Interactions with Materials and Atoms207(2): 165–174.

Ye, H., Z. Gu et al. (2006). Kinetics of ultraviolet andplasma surface modi�cation of poly(dimethylsiloxane)probed by sum frequency vibrational spectroscopy. Langmuir22(4): 1863–1868.

Yoo, H. S., T. G. Kim et al. (2009) Surface-functionalizedelectrospun nano�bers for tissue engineering and drugdelivery. Advanced Drug Delivery Reviews 61: 1033–1042.

Yoon, R. H., D. H. Flinn et al. (1997). Hydrophobicinteractions between dissimilar surfaces. Journal ofColloid and Interface Science 185(2): 363–370.

Yoshida, T. (2001). Synthesis of polysaccharides havingspeci�c biological activities. Progress in Polymer Science26(3): 379–441.

Yoshida, T., T. Akasaka et al. (1999). Synthesis ofpolymethacrylate derivatives having sulfated maltoheptaoseside chains with anti-HIV activities. Journal of PolymerScience Part A: Polymer Chemistry 37(6): 789–800.

Yoshinari, M., T. Kato et al. (2006). Adsorption behaviorof antimicrobial peptide histatin 5 on PMMA. Journal ofBiomedical Materials Research Part B: Applied Biomaterials

Page 310: Polymeric Biomaterials - Taylor & Francis eBooks

77(1): 47–54.

You, L.-C., F.-Z. Lu et al. (2002). Glucose-sensitiveaggregates formed by poly(ethyleneoxide)-blockpoly(2-glucosyl-oxyethyl acrylate) withconcanavalin A in dilute aqueous Medium. Macromolecules36(1): 1–4.

Yuan, Y., F. Ai et al. (2004a). Polyurethane vascularcatheter surface grafted with zwitterionic sulfobetainemonomer activated by ozone. Colloids and Surfaces B:Biointerfaces 35(1): 1–5.

Yuan, J., L. Chen et al. (2004b). Chemical graftpolymerization of sulfobetaine monomer on polyurethanesurface for reduction in platelet adhesion. Colloids andSurfaces B: Biointerfaces 39(1–2): 87–94.

Yuan, J., C. Mao et al. (2003a). Chemical grafting ofsulfobetaine onto poly(ether urethane) surface forimproving blood compatibility. Polymer International52(12): 1869–1875.

Yuan, Y., J. Zhang et al. (2003b). Surface modi�cation ofSPEU �lms by ozone induced graft copolymerization toimprove hemocompatibility. Colloids and Surfaces B:Biointerfaces 29(4): 247–256.

Yuan, Y., X. Zang et al. (2004c). Grafting sulfobetainemonomer onto silicone surface to improvehaemocompatibility. Polymer International 53(1): 121–126.

Zamir, E. and B. Geiger (2001). Molecular complexity anddynamics of cell-matrix adhesions. Journal of Cell Science114(20): 3583–3590.

Zhang, Y., C. Chai et al. (2007). Fibronectin immobilizedby covalent conjugation or physical adsorption showsdifferent bioactivity on aminated-PET. Materials Scienceand Engineering: C 27(2): 213–219.

Zhang, Z., T. Chao et al. (2006a). Superlow foulingsulfobetaine and carboxybetaine polymers on glass slides.Langmuir 22(24): 10072–10077.

Zhang, Z., S. Chen et al. (2006b). Dual-functionalbiomimetic materials: Nonfouling poly(carboxybetaine) withactive functional groups for protein immobilization.Biomacromolecules 7(12): 3311–3315.

Page 311: Polymeric Biomaterials - Taylor & Francis eBooks

Zhang, W., P. K. Chu et al. (2006c). Antibacterialproperties of plasma-modi�ed and triclosan or bronopolcoated polyethylene. Polymer 47(3): 931–936.

Zhang, Z., R. Yoo et al. (2005). Neurite outgrowth onwell-characterized surfaces: Preparation andcharacterization of chemically and spatially controlled�bronectin and RGD substrates with good bioactivity.Biomaterials 26(1): 47–61.

Zhang, J., J. Yuan et al. (2003). Chemical modi�cation ofcellulose membranes with sulfo ammonium zwitterionic vinylmonomer to improve hemocompatibility. Colloids and SurfacesB: Biointerfaces 30(3): 249–257.

Zhang, Z., M. Zhang et al. (2008). Blood compatibility ofsurfaces with superlow protein adsorption. Biomaterials29(32): 4285–4291.

Zhao, C., X. Liu et al. (2003). Blood compatible aspects ofDNA-modi�ed polysulfone membrane—Protein adsorption andplatelet adhesion. Biomaterials 24(21): 3747–3755.

Zhou, J., J. Yuan et al. (2005). Platelet adhesion andprotein adsorption on silicone rubber surface byozoneinduced grafted polymerization with carboxybetainemonomer. Colloids and Surfaces B: Biointerfaces 41(1):55–62.

Zhu, Y., K. S. Chian et al. (2006a). Protein bonding onbiodegradable poly(l-lactide-co-caprolactone) membrane foresophageal tissue engineering. Biomaterials 27(1): 68–78.

Zhu, A. P., N. Fang et al. (2006b). Adhesion contactdynamics of 3T3 �broblasts on poly(lactide-coglycolideacid) surface modi�ed by photochemical immobilization ofbiomacromolecules. Biomaterials 27(12): 2566–2576.

Zhu, Y., C. Gao et al. (2004a). Endothelial cell functionsin vitro cultured on poly(l-lactic acid) membranes modi�edwith different methods. Journal of Biomedical MaterialsResearch Part A 69(3): 436–443.

Zhu, Y., C. Gao et al. (2004b). Endothelium regeneration onluminal surface of polyurethane vascular scaffold modi�edwith diamine and covalently grafted with gelatin.Biomaterials 25(3): 423–430.

Zhu, H., J. Ji et al. (2004c). Construction of multilayercoating onto poly-(DL-lactide) to promote

Page 312: Polymeric Biomaterials - Taylor & Francis eBooks

cytocompatibility. Biomaterials 25(1): 109–117.

Zhu, Y., M. Otsubo et al. (2006c). Loss and recovery inhydrophobicity of silicone rubber exposed to coronadischarge. Polymer Degradation and Stability 91(7):1448–1454.

Zhu, A., M. Zhang et al. (2002). Covalent immobilization ofchitosan/heparin complex with a photosensitivehetero-bifunctional crosslinking reagent on PLA surface.Biomaterials 23(23): 4657–4665.

Zisch, A. H., U. Schenk et al. (2001). Covalentlyconjugated VEGF-�brin matrices for endothelialization.Journal of Controlled Release 72(1–3): 101–113.

Zreiqat, H., F. A. Akin et al. (2003). Differentiation ofhuman bone-derived cells grown on GRGDSP-peptide boundtitanium surfaces. Journal of Biomedical Materials ResearchPart A 64A(1): 105–113.

Zwaal, R. F. A., P. Comfurius et al. (1977). Membraneasymmetry and blood coagulation. Nature 268(5618):358–360.

Page 313: Polymeric Biomaterials - Taylor & Francis eBooks

16 Chapter 16. Electrospinning forRegenerative Medicine

1. D. W. Hutmacher, T. Wood�eld, P. D. Dalton, and J.Lewis, in: C. Van Blitterswijk et al., Eds., Scaffolddesign and fabrication. Tissue Engineering (Academic Press,New York, 2008), pp. 403–450.

2. D. W. Hutmacher and A. K. Ekaputra, in: P. K. Chu and X.Liu, Eds., Design and fabrication principles ofelectrospinning of scaffolds. Biomaterials Fabrication andProcessing Handbook ( Taylor & Francis Group, Boca Raton,FL, 2008), pp. 115–139.

3. P. D. Dalton, T. Wood�eld, and D. W. Hutmacher,Snapshot: Polymer scaffolds for tissue engineering (vol.30, p. 701, 2009). Biomaterials 30, 2420 (Apr 2009).

4. W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan,and F. K. Ko, Electrospun nano�brous structure: A novelscaffold for tissue engineering. Journal of BiomedicalMaterials Research 60, 613 (June 2002).

5. J. A. Matthews, G. E. Wnek, D. G. Simpson, and G. L.Bowlin, Electrospinning of collagen nano�bers.Biomacromolecules 3, 232 (Mar–Apr 2002).

6. C. L. Casper, N. Yamaguchi, K. L. Kiick, and J. F.Rabolt, Functionalizing electrospun �bers with biologicallyrelevant macromolecules. Biomacromolecules 6, 1998 (Jul–Aug2005).

7. S. Y. Chew, J. Wen, E. K. F. Yim, and K. W. Leong,Sustained release of proteins from electrospunbiodegradable �bers. Biomacromolecules 6, 2017 (Jul–Aug2005).

8. J. J. Stankus, J. J. Guan, K. Fujimoto, and W. R.Wagner, Microintegrating smooth muscle cells into abiodegradable, elastomeric �ber matrix. Biomaterials 27,735 (Feb 2006).

9. A. K. Ekaputra, G. D. Prestwich, S. M. Cool, and D. W.Hutmacher, Combining electrospun scaffolds withelectrosprayed hydrogels leads to three-dimensionalcellularization of hybrid constructs. Biomacromolecules 9,2097 (Aug 2008).

10. M. Simonet, O. D. Schneider, P. Neuenschwander, and W.J. Stark, Ultraporous 3D polymer meshes by low-temperature

Page 314: Polymeric Biomaterials - Taylor & Francis eBooks

electrospinning: Use of ice crystals as a removable voidtemplate. Polymer Engineering and Science 47, 2020 (Dec2007).

11. O. D. Schneider et al., Cotton wool-like nanocompositebiomaterials prepared by electrospinning: In vitrobioactivity and osteogenic differentiation of humanmesenchymal stem cells. Journal of Biomedical MaterialsResearch Part B-Applied Biomaterials 84B, 350 (Feb 2008).

12. R. Gentsch, B. Bo ysen, A. Lankenau, and H. G. Borner,Single-step electrospinning of bimodal �ber meshes forease of cellular in�ltration. Macromolecular RapidCommunications 31, 59 (Jan 2010).

13. S. J. Kim, D. H. Jang, W. H. Park, and B. M. Min,Fabrication and characterization of 3-dimensional PLGAnano�ber/micro�ber composite scaffolds. Polymer 51, 1320(Mar 2010).

14. Y. M. Shin, M. M. Hohman, M. P. Brenner, and G. C.Rutledge, Electrospinning: A whipping ¥uid jet generatessubmicron polymer �bers. Applied Physics Letters 78, 1149(Feb 2001).

15. R. J. Deng et al., Melt electrospinning of low-densitypolyethylene having a low-melt ¥ow index. Journal ofApplied Polymer Science 114, 166 (Oct 2009).

16. B. S. Jha et al., Two pole air gap electrospinning:Fabrication of highly aligned, three-dimensional scaffoldsfor nerve reconstruction. Acta Biomaterialia 7, 203 (Jan2011).

17. N. Shimada, H. Tsutsumi, K. Nakane, T. Ogihara, and N.Ogata, Poly(ethylene-co-vinyl alcohol) and nylon 6/12nano�bers produced by melt electrospinning system equippedwith a line-like laser beam melting device. Journal ofApplied Polymer Science 116, 2998 (Jun 2010).

18. A. Zajicova et al., Treatment of ocular surfaceinjuries by limbal and mesenchymal stem cells growing onnano�ber scaffolds. Cell Transplant 19, 1281 (Jun 2011).

19. D. H. Sun, C. Chang, S. Li, and L. Lin, Near-�eldelectrospinning. Nano Letters 6, 839 (Apr 2006).

20. S. N. Malakhov et al., Method of manufacturingnonwovens by electrospinning from polymer melts. FibreChemistry 41, 355 (Nov 2009).

Page 315: Polymeric Biomaterials - Taylor & Francis eBooks

21. D. H . Reneker, A. L. Yarin, H. Fong, and S.Koombhongse, Bending instability of electrically chargedliquid jets of polymer solutions in electrospinning.Journal of Applied Physics 87, 4531 (May 2000).

22. D. W. Hutmacher and P. D. Dalton, Melt electrospinning.Chemistry-An Asian Journal 6, 44 (Jan 2011).

23. P. D. Dalton, D. Grafahrend, K. Klinkhammer, D. Klee,and M. Moller, Electrospinning of polymer melts:Phenomenological observations. Polymer 48, 6823 (Nov 2007).

24. P. D. Dalton, N. T. Joergensen, J. Groll, and M.Moeller, Patterned melt electrospun substrates for tissueengineering. Biomedical Materials 3, 34109 (Sep 2008).

25. P. Zahedi, I. Rezaeian, S. O. Ranaei-Siadat, S. H.Jafari, and P. Supaphol, A review on wound dressings withan emphasis on electrospun nano�brous polymeric bandages.Polymers for Advanced Technologies 21, 77 (Feb 2010).

26. Y. K. W ang, T. Yong, and S. Ramakrishna, Nano�bres andtheir in¥uence on cells for tissue regeneration.Australian Journal of Chemistry 58, 704 (2005).

27. M. J. Beglou and A. K. Haghi, Electrospunbiodegdadable and biocompatible natural nano�bers:A detailed review. Cellulose Chemistry and Technology 42,441 (Oct–Dec 2008).

28. J. D. Schiffman and C. L. Schauer, A review:Electrospinning of biopolymer nano�bers and theirapplications. Polymer Reviews 48, 317 (2008).

29. D. I. Zeugolis et al., Electro-spinning of purecollagen nano-�bres—Just an expensive way to make gelatin?Biomaterials 29, 2293 (May 2008).

30. B. M . Min et al., Formation of silk �broin matriceswith different texture and its cellular response to normalhuman keratinocytes. International Journal of BiologicalMacromolecules 34, 281 (Oct 2004).

31. X. H. Zhang, M. R. Reagan, and D. L. Kaplan,Electrospun silk biomaterial scaffolds for regenerativemedicine. Advanced Drug Delivery Reviews 61, 988 (Oct2009).

32. K. S. Rho et al., Electrospinning of collagen

Page 316: Polymeric Biomaterials - Taylor & Francis eBooks

nano�bers: Effects on the behavior of normal humankeratinocytes and early-stage wound healing. Biomaterials27, 1452 (Mar 2006).

33. S. S. Xu et al., Chemical crosslinking and biophysicalproperties of electrospun hyaluronic acid based ultra-thin�brous membranes. Polymer 50, 3762 (Jul 2009).

34. Y. Ji et al., Electrospun three-dimensional hyaluronicacid nano�brous scaffolds. Biomaterials 27, 3782 (Jul2006).

35. S. A. Sell, M. J. McClure, K. Garg, P. S. Wolfe, and G.L. Bowlin, Electrospinning of collagen/biopolymers forregenerative medicine and cardiovascular tissueengineering. Advanced Drug Delivery Reviews 61, 1007 (Oct2009).

36. H. C. Chen, W. C. Jao, and M. C. Yang, Characterizationof gelatin nano�bers electrospun using ethanol/ formicacid/water as a solvent. Polymers for Advanced Technologies20, 98 (Feb 2009).

37. M. W. Frey, Electrospinning cellulose and cellulosederivatives. Polymer Reviews 48, 378 (2008).

38. H. M. Powell and S. T. Boyce, Fiber density ofelectrospun gelatin scaffolds regulates morphogenesis ofdermal-epidermal skin substitutes. Journal of BiomedicalMaterials Research Part A 84A, 1078 (Mar 2008).

39. R. A. Neal et al., Laminin nano�ber meshes that mimicmorphological properties and bioactivity of basementmembranes. Tissue Engineering Part C-Methods 15, 11 (Mar2009).

40. H. S. Koh, T. Yong, C. K. Chan, and S. Ramakrishna,Enhancement of neurite outgrowth using nanostructuredscaffolds coupled with laminin. Biomaterials 29, 3574 (Sep2008).

41. R. Jayakumar, M. Prabaharan, S. V. Nair, and H. Tamura,Novel chitin and chitosan nano�bers in biomedicalapplications. Biotechnology Advances 28, 142 (Jan–Feb2010).

42. L. Nivison-Smith, J. Rnjak, and A. S. Weiss, Synthetichuman elastin micro�bers: Stable cross-linked tropoelastinand cell interactive constructs for tissue engineeringapplications. Acta Biomaterialia 6, 354 (Feb 2010).

Page 317: Polymeric Biomaterials - Taylor & Francis eBooks

43. Y. Ner, J. A. Stuart, G. Whited, and G. A. Sotzing,Electrospinning nanoribbons of a bioengineeredsilkelastin-like protein (SELP) from water. Polymer 50,5828 (Nov 2009).

44. M. C. McManus, E. D. Boland, D. G. Simpson, C. P.Barnes, and G. L. Bowlin, Electrospun �brinogen:Feasibility as a tissue engineering scaffold in a rat cellculture model. Journal of Biomedical Materials ResearchPart A 81A, 299 (May 2007).

45. G. E. Wnek, M. E. Carr, D. G. Simpson, and G. L.Bowlin, Electrospinning of nano�ber �brinogen structures.Nano Letters 3, 213 (Feb 2003).

46. S. H. Teng, P. Wang, and H. E. Kim, Blend �bers ofchitosan-agarose by electrospinning. Materials Letters 63,2510 (Nov 2009).

47. J. X. Li et al., Electrospinning of hyaluronic acid(HA) and HA/gelatin blends. Macromolecular RapidCommunications 27, 114 (Jan 2006).

48. D. Puppi, A. M. Piras, N. Detta, D. Dinucci, and F.Chiellini, Poly(lactic-co-glycolic acid) electrospun�brous meshes for the controlled release of retinoic acid.Acta Biomaterialia 6, 1258 (Apr 2010).

49. L. Zhao et al., Preparation and cytocompatibility ofPLGA scaffolds with controllable �ber morphology anddiameter using electrospinning method. Journal ofBiomedical Materials Research Part B-Applied Biomaterials87B, 26 (Oct 2008).

50. J. M. Corey et al., The design of electrospun PLLAnano�ber scaffolds compatible with serum-free growth ofprimary motor and sensory neurons. Acta Biomaterialia 4,863 (Jul 2008).

51. R. Inai, M. Kotaki, and S. Ramakrishna, Structure andproperties of electrospun PLLA single nano�bres.Nanotechnology 16, 208 (Feb 2005).

52. G. H. Kim, Electrospun PCL nano�bers with anisotropicmechanical properties as a biomedical scaffold. BiomedicalMaterials 3, 25010 (Jun 2008).

53. G. Y. Liao, K. F. Jiang, S. B. Jiang, and H. Xia,Synthesis and characterization of biodegradable

Page 318: Polymeric Biomaterials - Taylor & Francis eBooks

poly(epsilon-caprolactone)-b-poly(L-lactide) and study ontheir electrospun scaffolds. Journal of MacromolecularScience Part A-Pure and Applied Chemistry 47, 1116 (2010).

54. J. Zeng, X. S. Chen, Q. Z. Liang, X. L. Xu, and X. B.Jing, Enzymatic degradation of poly(L-lactide) and poly(epsilon-caprolactone) electrospun �bers. MacromolecularBioscience 4, 1118 (Dec 2004).

55. T. Uyar and F. Besenbacher, Electrospinning of uniformpolystyrene �bers: The effect of solvent conductivity.Polymer 49, 5336 (Nov 2008).

56. G. T. Kim et al., The morphology of electrospunpolystyrene �bers. Korean Journal of Chemical Engineering22, 147 (Jan 2005).

57. D. Grafahrend et al., Control of protein adsorption onfunctionalized electrospun �bers. Biotechnology andBioengineering 101, 609 (Oct 2008).

58. D. G rafahrend et al., Biofunctionalized poly(ethyleneglycol)-block-poly(epsilon-caprolactone) nano�bers fortissue engineering. Journal of Materials Science-Materialsin Medicine 19, 1479 (Apr 2008).

59. M. S. Khil, D. I. Cha, H. Y. Kim, I. S. Kim, and N.Bhattarai, Electrospun nano�brous polyurethane membrane aswound dressing. Journal of Biomedical Materials ResearchPart B-Applied Biomaterials 67B, 675 (Nov 2003).

60. A. Pedicini and R. J. Farris, Mechanical behavior ofelectrospun polyurethane. Polymer 44, 6857 (Oct 2003).

61. S. A. Riboldi, M. Sampaolesi, P. Neuenschwander, G.Cossu, and S. Mantero, Electrospun degradablepolyesterurethane membranes: Potential scaffolds forskeletal muscle tissue engineering. Biomaterials 26, 4606(Aug 2005).

62. K. Arayanarakul, N. Choktaweesap, D. Aht-ong, C.Meechaisue, and P. Supaphol, Effects of poly(ethyleneglycol), inorganic salt, sodium dodecyl sulfate, andsolvent system on electrospinning of poly(ethylene oxide).Macromolecular Materials and Engineering 291, 581 (Jun2006).

63. J. M. Deitzel, J. D. Kleinmeyer, J. K. Hirvonen, and N.C. B. Tan, Controlled deposition of electrospunpoly(ethylene oxide) �bers. Polymer 42, 8163 (Sep 2001).

Page 319: Polymeric Biomaterials - Taylor & Francis eBooks

64. H. Okuzaki, K. Kobayashi, and H. Yan, Non-woven fabricof poly(N-isopropylacrylamide) nano�bers fabricated byelectrospinning. Synthetic Metals 159, 2273 (Nov 2009).

65. D. N. Rockwood, D. B. Chase, R. E. Akins, and J. F.Rabolt, Characterization of electrospun poly(Nisopropylacrylamide) �bers. Polymer 49, 4025 (Aug 2008).

66. D. Grafahrend et al., Degradable polyester scaffoldswith controlled surface chemistry combining minimal proteinadsorption with speci�c bioactivation. Nature Materials 10,67 (Jan 2011).

67. E. Schnell et al., Guidance of glial cell. migrationand axonal growth on electrospun nano�bers ofpoly-epsilon-caprolactone and acollagen/poly-epsilon-caprolactone blend. Biomaterials 28,3012 (Jul 2007).

68. H. J. Jin, S. V. Fridrikh, G. C. Rutledge, and D. L.Kaplan, Electrospinning Bombyx mori silk withpoly(ethylene oxide). Biomacromolecules 3, 1233 (Nov–Dec2002).

69. Z. X. Meng et al., Electrospinning of PLGA/gelatinrandomly-oriented and aligned nano�bers as potentialscaffold in tissue engineering. Materials Science andEngineering C-Materials for Biological Applications 30,1204 (Oct 2010).

70. X. L. Deng, G. Sui, M. L. Zhao, G. Q. Chen, and X. P.Yang, Poly(L-lactic acid)/hydroxyapatite hybrid nano�brousscaffolds prepared by electrospinning. Journal ofBiomaterials Science-Polymer Edition 18, 117 (2007).

71. B. Duan et al., A nano�brous composite membrane ofPLGA-chitosan/PVA prepared by electrospinning. EuropeanPolymer Journal 42, 2013 (Sep, 2006).

72. A. S. Asran, S. Henning, and G. H. Michler, Polyvinylalcohol-collagen-hydroxyapatite biocomposite nano�brousscaffold: Mimicking the key features of natural bone at thenanoscale level. Polymer 51, 868 (Feb 2010).

73. M. G. McKee, G. L. Wilkes, R. H. Colby, and T. E.Long, Correlations of solution rheology with electrospun�ber formation of linear and branched polyesters.Macromolecules 37, 1760 (Mar 2004).

Page 320: Polymeric Biomaterials - Taylor & Francis eBooks

74. H. R. Nie et al., Effects of chain conformation andentanglement on the electrospinning of pure alginate.Biomacromolecules 9, 1362 (May 2008).

75. Y. Liu et al., Effects of solution properties andelectric �eld on the electrospinning of hyaluronic acid.Carbohydrate Polymers 83, 1011 (2011).

76. K. H. Lee, H. Y. Kim, M. S. Khil, Y. M. Ra, and D. R.Lee, Characterization of nano-structuredpoly(epsilon-caprolactone) nonwoven mats viaelectrospinning. Polymer 44, 1287 (Feb 2003).

77. K. H. Lee, H. Y. Kim, Y. J. Ryu, K. W. Kim, and S. W.Choi, Mechanical behavior of electrospun �ber mats ofpoly(vinyl chloride)/polyurethane polyblends. Journal ofPolymer Science Part B-Polymer Physics 41, 1256 (Jun2003).

78. H. Fong, W . D. Liu, C. S. Wang, and R. A. Vaia,Generation of electrospun �bers of nylon 6 and nylon6-montmorillonite nanocomposite. Polymer 43, 775 (Feb2002).

79. W. W. Zuo et al., Experimental study on relationshipbetween jet instability and formation of beaded �bersduring electrospinning. Polymer Engineering and Science 45,704 (May 2005).

80. C. Mit-uppatham, M. Nithitanakul, and P. Supaphol,Ultratine electrospun polyamide-6 �bers: Effect ofsolution conditions on morphology and average �berdiameter. Macromolecular Chemistry and Physics 205, 2327(Nov 2004).

81. C. X. Zhang, X. Y. Yuan, L. L. Wu, Y. Han, and J.Sheng, Study on morphology of electrospun poly(vinylalcohol) mats. European Polymer Journal 41, 423 (Mar 2005).

82. A. Patlolla, G. Collins, and T. L. Arinzeh,Solvent-dependent properties of electrospun �brouscomposites for bone tissue regeneration. Acta Biomaterialia6, 90 (Jan 2010).

83. X. H. Zong et al., Structure and process relationshipof electrospun bioabsorbable nano�ber membranes. Polymer43, 4403 (Jul 2002).

84. Y. You, S. J. Lee, B. M. Min, and W. H. Park, Effect ofsolution properties on nano�brous structure of electrospun

Page 321: Polymeric Biomaterials - Taylor & Francis eBooks

poly(lactic-co-glycolic acid). Journal of Applied PolymerScience 99, 1214 (Feb 2006).

85. Z. Jun, H. Q. Hou, A. Schaper, J. H. Wendorff, and A.Greiner, Poly-L-lactide nano�bers by electrospinning -In¥uence of solution viscosity and electrical conductivityon �ber diameter and �ber morphology. E-Polymers, Paper 9(Mar 2003).

86. S. Megelski, J. S. Stephens, D. B. Chase, and J. F.Rabolt, Micro- and nanostructured surface morphology onelectrospun polymer �bers. Macromolecules 35, 8456 (Oct2002).

87. Y. Z. Zhang et al., Coaxial electrospinning of(¥uorescein isothiocyanate-conjugated bovine serumalbumin)-encapsulated poly(epsilon-caprolactone) nano�bersfor sustained release. Biomacromolecules 7, 1049 (Apr2006).

88. Z. G. Chen, B. Wei, X. M. Mo, and F. Z. Cui, Diametercontrol of electrospun chitosan-collagen �bers. Journal ofPolymer Science Part B-Polymer Physics 47, 1949 (Oct 2009).

89. Y. Z. Zhang, Z. M. Huang, X. J. Xu, C. T. Lim, and S.Ramakrishna, Preparation of core-shell structuredPCL-r-gelatin Bi-component nano�bers by coaxialelectrospinning. Chemistry of Materials 16, 3406 (Sep2004).

90. R. Kessick, J. Fenn, and G. Tepper, The use of ACpotentials in electrospraying and electrospinningprocesses. Polymer 45, 2981 (Apr 2004).

91. J. M. Deitzel, J. Kleinmeyer, D. Harris, and N. C. B.Tan, The effect of processing variables on the morphologyof electrospun nano�bers and textiles. Polymer 42, 261 (Jan2001).

92. M. M. Demir, I. Yilgor, E. Yilgor, and B. Erman,Electrospinning of polyurethane �bers. Polymer 43, 3303(May 2002).

93. J. Ayutsede et al., Regeneration of Bombyx mori silk byelectrospinning. Part 3: Characterization of electrospunnonwoven mat. Polymer 46, 1625 (Feb 2005).

94. X. M. Mo, C. Y. Xu, M. Kotaki, and S. Ramakrishna,Electrospun P(LLA-CL) nano�ber: A biomimetic extracellularmatrix for smooth muscle cell and endothelial cell

Page 322: Polymeric Biomaterials - Taylor & Francis eBooks

proliferation. Biomaterials 25, 1883 (May 2004).

95. D. S. Katti, K. W. Robinson, F. K. Ko, and C. T.Laurencin, Bioresorbable nano�ber-based systems for woundhealing and drug delivery: Optimization of fabricationparameters. Journal of Biomedical Materials Research PartB-Applied Biomaterials 70B, 286 (Aug 2004).

96. F.-L. Zhou, R.-H. Gong, and I. Porat, Three-jetelectrospinning using a ¥at spinneret. Journal of MaterialsScience 44, 5501 (2009).

97. C. Zhang, X. Y uan, L. Wu, Y. Han, and J. Sheng, Studyon morphology of electrospun poly(vinyl alcohol) mats.European Polymer Journal 41, 423 (2005).

98. N. Bolgen, Y. Z. Menceloglu, K. Acatay, I. Vargel, andE. Piskin, In vitro and in vivo degradation of non-wovenmaterials made of poly(epsilon-caprolactone) nano�bersprepared by electrospinning under different conditions.Journal of Biomaterials Science-Polymer Edition 16, 1537(2005).

99. K. H. Lee, H. Y. Kim, H. J. Bang, Y. H. Jung, and S.G. Lee, The change of bead morphology formed onelectrospun polystyrene �bers. Polymer 44, 4029 (Jun 2003).

100. P. D. Dalton, K. Klinkhammer, J. Salber, D. Klee, andM. Moller, Direct in vitro electrospinning with polymermelts. Biomacromolecules 7, 686 (Mar 2006).

101. N. Detta et al., Melt electrospinning ofpolycaprolactone and its blends with poly(ethylene glycol).Polymer International 59, 1558 (Nov 2010).

102. C. Wang et al., Electrospinning of polyacrylonitrilesolutions at elevated temperatures. Macromolecules 40,7973 (Oct 2007).

103. S. R. Giv ens, K. H. Gardner, J. F. Rabolt, and D. B.Chase, High-temperature electrospinning of polyethylenemicro�bers from solution. Macromolecules 40, 608 (Feb2007).

104. D. G. Yu et al., Multicomponent amorphous nano�berselectrospun from hot aqueous solutions of a poorly solubledrug. Pharmaceutical Research 27, 2466 (Nov 2010).

105. C. Wang, C. H. Hsu, and J. H. Lin, Scaling laws inelectrospinning of polystyrene solutions. Macromolecules

Page 323: Polymeric Biomaterials - Taylor & Francis eBooks

39, 7662 (Oct 2006).

106. J. P. Chen, K. H. Ho, Y. P. Chiang, and K. W. Wu,Fabrication of electrospun poly(methyl methacrylate)nano�brous membranes by statistical approach forapplication in enzyme immobilization. Journal of MembraneScience 340, 9 (Sep 2009).

107. C. J. Thompson, G. G. Chase, A. L. Yarin, and D. H.Reneker, Effects of parameters on nano�ber diameterdetermined from electrospinning model. Polymer 48, 6913(Nov 2007).

108. T. J arusuwannapoom et al., Effect of solvents onelectro-spinnability of polystyrene solutions andmorphological appearance of resulting electrospunpolystyrene �bers. European Polymer Journal 41, 409 (Mar2005).

109. C. L. Casper, J. S. Stephens, N. G. Tassi, D. B.Chase, and J. F. Rabolt, Controlling surface morphology ofelectrospun polystyrene �bers: Effect of humidity andmolecular weight in the electrospinning process.Macromolecules 37, 573 (Jan 2004).

110. J.-Y. Park and I.-H. Lee, Relative humidity effect onthe preparation of porous electrospun polystyrene �bers.Journal of Nanoscience and Nanotechnology 10, 3473 (2010).

111. S. De Vrieze et al., The effect of temperature andhumidity on electrospinning. Journal of Materials Science44, 1357 (Mar 2009).

112. G. Srinivasan and D. H. Reneker, Structure andmorphology of small-diameter electrospun aramid �bers.Polymer International 36, 195 (Feb 1995).

113. R. Tzezana, E. Zussman, and S. Levenberg, A layeredultra-porous scaffold for tissue engineering, created via ahydrospinning method. Tissue Engineering Part C-Methods 14,281 (Dec 2008).

114. E. Smit, U. Buttner, and R. D. Sanderson, Continuousyarns from electrospun �bers. Polymer 46, 2419 (Mar 2005).

115. M. S. Khil, S. R. Bhattarai, H. Y. Kim, S. Z. Kim, andK. H. Lee, Novel fabricated matrix via electrospinning fortissue engineering. Journal of Biomedical MaterialsResearch Part B-Applied Biomaterials 72B, 117 (Jan 2005).

Page 324: Polymeric Biomaterials - Taylor & Francis eBooks

116. A. Formhals, U. S. P. Of�ce, Ed. (1934).

117. A. Formhals, U. S. P. Of�ce, Ed. (1944).

118. W. E. Teo and S. Ramakrishna, A review onelectrospinning design and nano�bre assemblies.Nanotechnology 17, R89 (Jul 2006).

119. P. D. Dalton, D. Klee, and M. Moller, Electrospinningwith dual collection rings. Polymer 46, 611 (Jan 2005).

120. W. E. Teo and S. Ramakrishna, Electrospun �bre bundlemade of aligned nano�bres over two �xed points.Nanotechnology 16, 1878 (Sep 2005).

121. K. Klinkhammer et al., Deposition of electrospun �berson reactive substrates for in vitro investigations. TissueEngineering Part C-Methods 15, 77 (Mar 2009).

122. K. Klinkhammer et al., Functionalization ofelectrospun �bers of poly(epsilon-caprolactone) with starshaped NCO-poly(ethylene glycol)-stat-poly(propyleneglycol) for neuronal cell guidance. Journal of MaterialsScience-Materials in Medicine 21, 2637 (Sep 2010).

123. J. Gerardo-Nava et al., Human neural cell interactionswith orientated electrospun nano�bers in vitro.Nanomedicine 4, 11 (Jan 2009).

124. J. M. Deitzel, J. Kleinmeyer, D. Harris, and N. C. B.Tan, The effect of processing variables on the morphologyof electrospun nano�bers and textiles. Polymer 42, 261(2001).

125. S. Ramakrishna, K. Fujihara, W. E. Teo, T. C. Lim,and Z. Ma, An Introduction to Electrospinning andNano©bers (World Scienti�c Publishing, Singapore, 2005).

126. D. M. Zhang and J. Chang, Electrospinning ofthree-dimensional nano�brous tubes with controllablearchitectures. Nano Letters 8, 3283 (Oct 2008).

127. D. M. Zhang and J. Chang, Patterning of electrospun�bers using electroconductive templates. AdvancedMaterials 19, 3664 (Nov 5, 2007).

128. J. Kameoka et al., A scanning tip electrospinningsource for deposition of oriented nano�bres.Nanotechnology 14, 1124 (Oct 2003).

Page 325: Polymeric Biomaterials - Taylor & Francis eBooks

129. A. Subramanian, D. Vu, G. F. Larsen, and H. Y. Lin,Preparation and evaluation of the electrospun chitosan/PEO�bers for potential applications in cartilage tissueengineering. Journal of Biomaterials SciencePolymer Edition16, 861 (2005).

130. T. A. K owalewski, S. Barral, and T. Kowalczyk,Modeling electrospinning of nano�bers. Iutam Symposium onModelling Nanomaterials and Nanosystems 13, 279 (2009).

131. B. Sundaray et al., Electrospinning of continuousaligned polymer �bers. Applied Physics Letters 84, 1222(Feb 2004).

132. E. Zussman, A. Theron, and A. L. Yarin, Formation ofnano�ber crossbars in electrospinning. Applied PhysicsLetters 82, 973 (Feb 2003).

133. J. Stitzel et al., Controlled fabrication of abiological vascular substitute. Biomaterials 27, 1088 (Oct2006).

134. S. Kidoaki, I. K. Kwon, and T. Matsuda, Mesoscopicspatial designs of nano- and micro�ber meshes fortissue-engineering matrix and scaffold based on newlydevised multilayering and mixing electrospinningtechniques. Biomaterials 26, 37 (Jan 2005).

135. A. Theron, E. Zussman, and A. L. Yarin, Electrostatic�eld-assisted alignment of electrospun nano�bres.Nanotechnology 12, 384 (Sep 2001).

136. C. Y. Xu, R. Inai, M. Kotaki, and S. Ramakrishna,Aligned biodegradable nano�brous structure: A potentialscaffold for blood vessel engineering. Biomaterials 25, 877(Feb 2004).

137. N. Bhattarai, D. Edmondson, O. Veiseh, F. A. Matsen,and M. Q. Zhang, Electrospun chitosan-based nano�bers andtheir cellular compatibility. Biomaterials 26, 6176 (Nov2005).

138. P. Katta, M. Alessandro, R. D. Ramsier, and G. G.Chase, Continuous electrospinning of aligned polymernano�bers onto a wire drum collector. Nano Letters 4, 2215(Nov 2004).

139. C. Chang, K. Limkrailassiri, and L. W. Lin, Continuousnear-�eld electrospinning for large area deposition oforderly nano�ber patterns. Applied Physics Letters 93,

Page 326: Polymeric Biomaterials - Taylor & Francis eBooks

123111 (Sep 2008).

140. T. Han, D. H. Reneker, and A. L. Yarin, Buckling ofjets in electrospinning. Polymer 48, 6064 (Sep 2007).

141. H. J. Zhou, T. B. Green, and Y. L. Joo, The thermaleffects on electrospinning of polylactic acid melts.Polymer 47, 7497 (Oct 2006).

142. C. Hellmann et al., High precision depositionelectrospinning of nano�bers and nano�ber nonwovens.Polymer 50, 1197 (Feb 2009).

143. T. D. Brown, P. D. Dalton, and D. W. Hutmacher, Directwriting by way of melt electrospinning. Advanced Materials23, 5651 (Dec 2011).

144. S. Chung, A. K. Moghe, G. A. Montero, S. H. Kim, andM. W. King, Nano�brous scaffolds electrospun fromelastomeric biodegradablepoly(L-lactide-co-epsilon-caprolactone) copolymer.Biomedical Materials 4, 15019 (Feb 2009).

145. S. H. Park, T. G. Kim, H. C. Kim, D. Y. Yang, and T.G. Park, Development of dual scale scaffolds via directpolymer melt deposition and electrospinning forapplications in tissue regeneration. Acta Biomaterialia 4,1198 (Sep 2008).

146. M. Centola et al., Combining electrospinning and fuseddeposition modeling for the fabrication of a hybridvascular graft. Biofabrication 2, 14102 (Mar 2010).

147. Q. P. Pham, U. Sharma, and A. G. Mikos, Electrospunpoly(epsilon-caprolactone) micro�ber and multilayernano�ber/micro�ber scaffolds: Characterization of scaffoldsand measurement of cellular in�ltration. Biomacromolecules7, 2796 (Oct 2006).

148. N. Ashammakhi, A. Ndreu, L. Nikkola, I. Wimpenny, andY. Yang, Advancing tissue engineering by using electrospunnano�bers. Regenerative Medicine 3, 547 (Jul 2008).

149. M. Goldberg, R. Langer, and X. Q. Jia, Nanostructuredmaterials for applications in drug delivery and tissueengineering. Journal of Biomaterials Science-PolymerEdition 18, 241 (Mar 2007).

150. C. M. Li, C. Vepari, H. J. Jin, H. J. Kim, and D. L.Kaplan, Electrospun silk-BMP-2 scaffolds for bone tissue

Page 327: Polymeric Biomaterials - Taylor & Francis eBooks

engineering. Biomaterials 27, 3115 (Jun 2006).

151. Y. C. Fu, H. Nie, M. L. Ho, C. K. Wang, and C. H.Wang, Optimized bone regeneration based on sustainedrelease from three-dimensional �brous PLGA/HAp compositescaffolds loaded with BMP-2. Biotechnology andBioengineering 99, 996 (Mar 2008).

152. H. Nie, B. W . Soh, Y. C. Fu, and C. H. Wang,Three-dimensional �brous PLGA/HAp composite scaffold forBMP-2 delivery. Biotechnology and Bioengineering 99, 223(Jan 2008).

153. H. M. Nie and C. H. Wang, Fabrication andcharacterization of PLGA/HAp scaffolds for delivery ofBMP-2 plasmid composite DNA. Journal of Controlled Release120, 111 (Jul 2007).

154. M. K. Horne, D. R. Nisbet, J. S. Forsythe, and C. L.Parish, Three-dimensional nano�brous scaffoldsincorporating immobilized BDNF promote proliferation anddifferentiation of cortical neural stem cells. Stem CellsDev 19, 843 (Jun 2010).

155. H. J. Lam, S. Patel, A. J. Wang, J. Chu, and S. Li,In vitro regulation of neural differentiation and axongrowth by growth factors and bioactive nano�bers. TissueEngineering Part A 16, 2641 (Aug 2010).

156. S. Sahoo, L. T . Ang, J. C. H. Goh, and S. L. Toh,Growth factor delivery through electrospun nano�bers inscaffolds for tissue engineering applications. Journal ofBiomedical Materials Research Part A 93A, 1539 (Jun 2010).

157. C. L. Casper, W. D. Yang, M. C. Farach-Carson, and J.F. Rabolt, Coating electrospun collagen and gelatin �berswith perlecan domain I for increased growth factor binding.Biomacromolecules 8, 1116 (Apr 2007).

158. S. Patel et al., Bioactive nano�bers: Synergisticeffects of nanotopography and chemical signaling on cellguidance. Nano Letters 7, 2122 (Jul 2007).

159. S. Y. Che w, R. F. Mi, A. Hoke, and K. W. Leong,Aligned protein-polymer composite �bers enhance nerveregeneration: A potential tissue-engineering platform.Advanced Functional Materials 17, 1288 (May 2007).

160. F. Wang, Z. Q. Li, K. Tamama, C. K. Sen, and J. J.Guan, Fabrication and characterization of prosurvival

Page 328: Polymeric Biomaterials - Taylor & Francis eBooks

growth factor releasing, anisotropic scaffolds for enhancedmesenchymal stem cell survival/growth and orientation.Biomacromolecules 10, 2609 (Sep 2009).

161. X. Q. Li et al., Encapsulation of proteins inpoly(L-lactide-co-caprolactone) �bers by emulsionelectrospinning. Colloids and Surfaces B-Biointerfaces 75,418 (Feb 2010).

162. H. Li et al., Controlled release of PDGF-bb by coaxialelectrospun dextran/poly(L-lactide-co-epsiloncaprolactone)�bers with an ultra�ne core/shell structure. Journal ofBiomaterials Science-Polymer Edition 21, 803 (2010).

163. Y. Lu, H. L. Jiang, K. H. Tu, and L. Q. Wang, Mildimmobilization of diverse macromolecular bioactive agentsonto multifunctional �brous membranes prepared by coaxialelectrospinning. Acta Biomaterialia 5, 1562 (Jun 2009).

164. N. Bolgen, I. Vargel, P. Korkusuz, Y. Z. Menceloglu,and E. Piskin, In vivo performance of antibiotic embeddedelectrospun PCL membranes for prevention of abdominaladhesions. Journal of Biomedical Materials Research PartB-Applied Biomaterials 81B, 530 (May 2007).

165. D. Grafahrend, K.-H. Heffels, M. Beer, P. Gasteier, M.Möller, G. Boehm, P. D. Dalton, and J. Groll, Degradablepolyester scaffolds with controlled surface chemistrycombining minimal protein adsorption with speci�cbioactivation. Nature Materials 10, 67–73 (2010).

166. H. S. Yoo, T. G. Kim, and T. G. Park,Surface-functionalized electrospun nano�bers for tissueengineering and drug delivery. Advanced Drug DeliveryReviews 61, 1033 (Oct 2009).

167. M. Yoshida, R. Langer, A. Lendlein, and J. Lahann,From advanced biomedical coatings to multifunctionalizedbiomaterials. Polymer Revie ws 46, 347 (Oct–Dec 2006).

168. Z. W. Ma, K. Masaya, and S. Ramakrishna,Immobilization of Cibacron blue F3GA on electrospunpolysulphone ultra-�ne �ber surfaces towards developing anaf�nity membrane for albumin adsorption. Journal ofMembrane Science 282, 237 (Oct 2006).

169. H. S. Kim and H. S. Yoo, MMPs-responsive release ofDNA from electrospun nano�brous matrix for local genetherapy: In vitro and in vivo evaluation. Journal ofControlled Release 145, 264 (Aug 2010).

Page 329: Polymeric Biomaterials - Taylor & Francis eBooks

170. R. Losel, D. Grafahrend, M. Moller, and D. Klee,Bioresorbable electrospun �bers for immobilization ofthiol-containing compounds. Macromolecular Bioscience 10,1177 (Oct 2010).

171. J. B. Chiu et al., Electrospun nano�brous scaffoldsfor biomedical applications. Journal of BiomedicalNanotechnology 1, 115 (Jun 2005).

172. S. G. Kumbar, S. P. Nukavarapu, R. James, L. S. Nair,and C. T. Laurencin, Electrospun poly(lacticacidco-glycolic acid) scaffolds for skin tissueengineering. Biomaterials 29, 4100 (Oct 2008).

173. P. Wutticharoenmongkol, N. Sanchavanakit, P. Pavasant,and P. Supaphol, Preparation and characterization of novelbone scaffolds based on electrospun polycaprolactone �bers�lled with nanoparticles. Macromolecular Bioscience 6, 70(Jan 2006).

174. A. Neamnark, N. Sancha vanakit, P. Pavasant, R.Rujiravanit, and P. Supaphol, In vitro biocompatibility ofelectrospun hexanoyl chitosan �brous scaffolds towardshuman keratinocytes and �broblasts. European PolymerJournal 44, 2060 (Jul 2008).

175. C. A. Bashur, L. A. Dahlgren, and A. S. Goldstein,Effect of �ber diameter and orientation on �broblastmorphology and proliferation on electrospunpoly(D,L-lactic-co-glycolic acid) meshes. Biomaterials 27,5681 (Nov 2006).

176. K. Park, Y . M. Ju, J. S. Son, K. D. Ahn, and D. K.Han, Surface modi�cation of biodegradable electrospunnano�ber scaffolds and their interaction with �broblasts.Journal of Biomaterials Science-Polymer Edition 18, 369(2007).

177. R. A. Thakur, C. A. Florek, J. Kohn, and B. B.Michniak, Electrospun nano�brous polymeric scaffold withtargeted drug release pro�les for potential application aswound dressing. International Journal of Pharmaceutics364, 87 (Nov 19, 2008).

178. A. Saraf, L. S. Baggett, R. M. Raphael, F. K. Kasper,and A. G. Mikos, Regulated non-viral gene delivery fromcoaxial electrospun �ber mesh scaffolds. Journal ofControlled Release 143, 95 (Apr 2010).

Page 330: Polymeric Biomaterials - Taylor & Francis eBooks

179. S. P. Zhong et al., An aligned nano�brous collagenscaffold by electrospinning and its effects on in vitro�broblast culture. Journal of Biomedical Materials ResearchPart A 79A, 456 (Dec 2006).

180. C. H. Lee et al., Nano�ber alignment and direction ofmechanical strain affect the ECM production of human ACL�broblast. Biomaterials 26, 1261 (Apr 2005).

181. M. Schindler et al., A synthetic nano�brillar matrixpromotes in vivo-like organization and morphogenesis forcells in culture. Biomaterials 26, 5624 (Oct 2005).

182. J. Venugopal and S. Ramakrishna, Biocompatiblenano�ber matrices for the engineering of a dermalsubstitute for skin regeneration. Tissue Engineering 11,847 (2005).

183. Z. X. Cai et al., Fabrication of chitosan/silk �broincomposite nano�bers for wound-dressing applications.International Journal of Molecular Sciences 11, 3529 (Sep2010).

184. J. Y. Chun et al., Epidermal cellular response topoly(vinyl alcohol) nano�bers containing silvernanoparticles. Colloids and Surfaces B-Biointerfaces 78,334 (Jul 2010).

185. Y. Gui-Bo et al., Study of the electrospun PLA/silk�broin-gelatin composite nano�brous scaffold for tissueengineering. Journal of Biomedical Materials Research PartA 93A, 158 (Apr 2010).

186. F. Y. Hsu, Y. S. Hung, H. M. Liou, and C. H. Shen,Electrospun hyaluronate-collagen nano�brous matrix and theeffects of varying the concentration of hyaluronate on thecharacteristics of foreskin �broblast cells. ActaBiomaterialia 6, 2140 (Jun 2010).

187. P. J. Kluger et al., Electrospunpoly(d/l-lactide-co-l-lactide) hybrid matrix: A novelscaffold material for soft tissue engineering. Journal ofMaterials Science-Materials in Medicine 21, 2665 (Sep2010).

188. F. J. Liu et al., Effect of the porous microstructuresof poly(lactic-co-glycolic acid)/carbon nanotubecomposites on the growth of �broblast cells. Soft Materials8, 239 (2010).

Page 331: Polymeric Biomaterials - Taylor & Francis eBooks

189. S. J. Liu et al., Electrospun PLGA/collagen nano�brousmembrane as early-stage wound dressing. Journal ofMembrane Science 355, 53 (Jun 2010).

190. X. J. Loh, P. Peh, S. Liao, C. Sng, and J. Li,Controlled drug release from biodegradable thermoresponsivephysical hydrogel nano�bers. Journal of Controlled Release143, 175 (Apr 2010).

191. J. L. Lowery , N. Datta, and G. C. Rutledge, Effect of�ber diameter, pore size and seeding method on growth ofhuman dermal �broblasts in electrospunpoly(epsilon-caprolactone) �brous mats. Biomaterials 31,491 (Jan 2010).

192. G. P. Ma et al., Organic-solublechitosan/polyhydroxybutyrate ultra�ne �bers as skinregeneration prepared by electrospinning. Journal ofApplied Polymer Science 118, 3619 (Dec 2010).

193. L. L. Wu et al., Composite �brous membranes of PLGAand chitosan prepared by coelectrospinning and coaxialelectrospinning. Journal of Biomedical Materials ResearchPart A 92A, 563 (Feb 2010).

194. K. Schenke-Layland et al., The use ofthree-dimensional nanostructures to instruct cells toproduce extracellular matrix for regenerative medicinestrategies. Biomaterials 30, 4665 (Sep 2009).

195. W. G. Cui, X. L. Zhu, Y. Yang, X. H. Li, and Y. Jin,Evaluation of electrospun �brous scaffolds ofpoly(DLlactide) and poly(ethylene glycol) for skin tissueengineering. Materials Science and Engineering C-Materialsfor Biological Applications 29, 1869 (Aug 2009).

196. L. Jeong et al., Plasma-treated silk �broin nano�bersfor skin regeneration. International Journal of BiologicalMacromolecules 44, 222 (Apr 2009).

197. B. Marelli, A. Alessandrino, S. Fare, M. C. Tanzi, andG. Freddi, Electrospun silk �broin tubular matrixes forsmall vessel bypass grafting. Materials Technology 24, 52(Mar 2009).

198. J. Meng et al., Enhancement of nano�brous scaffold ofmultiwalled carbon nanotubes/polyurethane composite to the�broblasts growth and biosynthesis. Journal of BiomedicalMaterials Research Part A 88A, 105 (Jan 2009).

Page 332: Polymeric Biomaterials - Taylor & Francis eBooks

199. Y. H. Nien et al., Fabrication and cell af�nity ofpoly(vinyl alcohol) nano�bers via electrospinning. Journalof Medical and Biological Engineering 29, 98 (2009).

200. L. S. Wray and E. J. Orwin, Recreating themicroenvironment of the native cornea for tissueengineering applications. Tissue Engineering Part A 15,1463 (Jul 2009).

201. F. Zhang, B. Q. Zuo, and L. Bai, Study on thestructure of SF �ber mats electrospun with HFIP and FA andcells behavior. Journal of Materials Science 44, 5682 (Oct2009).

202. E. Borg et al., Electrospinning of degradableelastomeric nano�bers with various morphology and theirinteraction with human �broblasts. Journal of AppliedPolymer Science 108, 491 (Apr 2008).

203. N. Khanam, C. Mikoryak, R. K. Draper, and K. J.Balkus, Electrospun linear polyethyleneimine scaffolds forcell growth. Acta Biomaterialia 3, 1050 (Nov 2007).

204. G. Kim and W . Kim, Highly porous 3D nano�ber scaffoldusing an electrospinning technique. Journal of BiomedicalMaterials Research Part B-Applied Biomaterials 81B, 104(Apr 2007).

205. H. B. Deng et al., Layer-by-layer structuredpolysaccharides �lm-coated cellulose nano�brous mats forcell culture. Carbohydrate Polymers 80, 474 (Apr 2010).

206. M. F. Leong, K. S. Chian, P. S. Mhaisalkar, W. F.Ong, and B. D. Ratner, Effect of electrospunpoly(D,L-lactide) �brous scaffold with nanoporous surfaceon attachment of porcine esophageal epithelial cells andprotein adsorption. Journal of Biomedical MaterialsResearch Part A 89A, 1040 (June, 2009).

207. I. Han et al., Effect ofpoly(3-hydroxybutyrate-co-3-hydroxyvalerate) nano�bermatrices cocultured with hair follicular epithelial anddermal cells for biological wound dressing. Arti©cialOrgans 31, 801 (Nov 2007).

208. Y. B. Zhu, M. F. Leong, W. F. Ong, M. B. Chan-Park,and K. S. Chian, Esophageal epithelium regeneration on�bronectin grafted poly(L-lactide-co-caprolactone) (PLLC)nano�ber scaffold. Biomaterials 28, 861 (Feb 2007).

Page 333: Polymeric Biomaterials - Taylor & Francis eBooks

209. C. H. Kim, M. S. Khil, H. Y. Kim, H. U. Lee, and K.Y. Jahng, An improved hydrophilicity via electrospinningfor enhanced cell attachment and proliferation. Journal ofBiomedical Materials Research Part B-Applied Biomaterials78B, 283 (Aug 2006).

210. W. He et al., Tubular nano�ber scaffolds for tissueengineered small-diameter vascular grafts. Journal ofBiomedical Materials Research Part A 90A, 205 (Jul 2009).

211. W. He et al., Biodegradable polymer nano�ber mesh tomaintain functions of endothelial cells. TissueEngineering 12, 2457 (Sep 2006).

212. P. Uttayarat et al., Micropatterning ofthree-dimensional electrospun polyurethane vascular grafts.Acta Biomaterialia 6, 4229 (Nov 2010).

213. A. Bianco et al., Microstructure and cytocompatibilityof electrospun nanocomposites based onpoly(epsilon-caprolactone) and carbon nanostructures.International Journal of Arti©cial Organs 33, 271 (May2010).

214. Z. G. Chen, P. W. Wang, B. Wei, X. M. Mo, and F. Z.Cui, Electrospun collagen-chitosan nano�ber: A biomimeticextracellular matrix for endothelial cell and smooth musclecell. Acta Biomaterialia 6, 372 (Feb 2010).

215. Y. M. Ju, J. S. Choi, A. Atala, J. J. Yoo, and S. J.Lee, Bilayered scaffold for engineering cellularized bloodvessels. Biomaterials 31, 4313 (May 2010).

216. D. A. Rubenstein et al., In vitro biocompatibility ofsheath-core cellulose-acetate-based electrospun scaffoldstowards endothelial cells and platelets. Journal ofBiomaterials Science-Polymer Edition 21, 1713 (2010).

217. K. H. Zhang, X. M. Mo, C. Huang, C. L. He, and H. S.Wang, Electrospun scaffolds from silk �broin and theircellular compatibility. Journal of Biomedical MaterialsResearch Part A 93A, 976 (Jun 2010).

218. K. H. Zhang et al., Fabrication of silk �broin blendedP(LLA-CL) nano�brous scaffolds for tissue engineering.Journal of Biomedical Materials Research Part A 93A, 984(Jun 2010).

219. R. Chen, L. J. Qiu, Q. F. Ke, C. L. He, and X. M. Mo,Electrospinning thermoplastic polyurethanecontained

Page 334: Polymeric Biomaterials - Taylor & Francis eBooks

collagen nano�bers for tissue-engineering applications.Journal of Biomaterials SciencePolymer Edition 20, 1513(2009).

220. X. Q. Li et al., Sorbitan monooleate andpoly(L-lactide-co-epsilon-caprolactone) electrospunnano�bers for endothelial cell interactions. Journal ofBiomedical Materials Research Part A 91A, 878 (Dec 2009).

221. A. N. Veleva et al., Interactions between endothelialcells and electrospun methacrylic terpolymer �bers forengineered vascular replacements. Journal of BiomedicalMaterials Research Part A 91A, 1131 (Dec 2009).

222. P. Carampin et al., Electrospun polyphosphazenenano�bers for in vitro rat endothelial cells proliferation.Journal of Biomedical Materials Research Part A 80A, 661(Mar 2007).

223. W. He, Z. W. Ma, T. Yong, W. E. Teo, and S.Ramakrishna, Fabrication of collagen-coated biodegradablepolymer nano�ber mesh and its potential for endothelialcells growth. Biomaterials 26, 7606 (Dec 2005).

224. Z. W. Ma, M. Kotaki, T. Yong, W. He, and S.Ramakrishna, Surface engineering of electrospunpolyethylene terephthalate (PET) nano�bers towardsdevelopment of a new material for blood vessel engineering.Biomaterials 26, 2527 (May 2005).

225. C. Y. Xu, F. Yang, S. Wang, and S. Ramakrishna, Invitro study of human vascular endothelial cell function onmaterials with various surface roughness. Journal ofBiomedical Materials Research Part A 71A, 154 (Oct 2004).

226. S. Welin, in: C. Van Blitterswijk et al., Eds.,Ethical issues in tissue engineering. Tissue Engineering(Academic Press, New York, 2008), pp. 685–703.

227. D. E. Heath, J. J. Lannutti, and S. L. Cooper,Electrospun scaffold topography affects endothelial cellproliferation, metabolic activity, and morphology. Journalof Biomedical Materials Research Part A 94A, 1195 (Sep2010).

228. J. Meng et al., Electrospun aligned nano�brouscomposite of MWCNT/polyurethane to enhance vascularendothelium cells proliferation and function. Journal ofBiomedical Materials Research Part A 95A, 312 (Oct 2010).

Page 335: Polymeric Biomaterials - Taylor & Francis eBooks

229. C. Del Gaudio, A. Bianco, M. Folin, S. Baiguera, andM. Grigioni, Structural characterization and cell responseevaluation of electrospun PCL membranes: Micrometric versussubmicrometric �bers. Journal of Biomedical MaterialsResearch Part A 89A, 1028 (Jun 2009).

230. G. Yin et al., Study on the properties of theelectrospun silk �broin/gelatin blend nano�bers forscaffolds. Journal of Applied Polymer Science 111, 1471(Feb 2009).

231. H. Inoguchi, T. Tanaka, Y. Maehara, and T. Matsuda,The effect of gradually graded shear stress on themorphological integrity of a huvec-seeded compliantsmall-diameter vascular graft. Biomaterials 28, 486 (Jan2007).

232. I. K. Kwon, S. Kidoaki, and T. Matsuda, Electrospunnano- to micro�ber fabrics made of biodegradablecopolyesters: Structural characteristics, mechanicalproperties and cell adhesion potential. Biomaterials 26,3929 (Jun 2005).

233. S. I. Jeong et al., Tissue-engineered vascular graftscomposed of marine collagen and PLGA �bers using pulsatileperfusion bioreactors. Biomaterials 28, 1115 (Feb 2007).

234. J. J. Stankus et al., Fabrication of cellmicrointegrated blood vessel constructs throughelectrohydrodynamic atomization. Biomaterials 28, 2738 (Jun2007).

235. E. D. Boland et al., Electrospinning collagen andelastin: Preliminary vascular tissue engineering.Frontiers in Bioscience 9, 1422 (May 2004).

236. J. Venugopal, L. L. Ma, T. Yong, and S. Ramakrishna,In vitro study of smooth muscle cells on polycaprolactoneand collagen nano�brous matrices. Cell BiologyInternational 29, 861 (2005).

237. E. Luong-Van et al., Controlled release of heparinfrom poly(epsilon-caprolactone) electrospun �bers.Biomaterials 27, 2042 (Mar 2006).

238. F. Xu et al., Improvement of cytocompatibility ofelectrospinning PLLA micro�bers by blending PVP. Journalof Materials Science-Materials in Medicine 20, 1331 (Jun2009).

Page 336: Polymeric Biomaterials - Taylor & Francis eBooks

239. J. Venugopal, L. L. Ma, T. Yong, and S. Ramakrishna,In vitro study of smooth muscle cells on polycaprolactoneand collagen nano�brous matrices. Cell BiologyInternational 29, 861 (Oct 2005).

240. M. Shin, O. Ishii, T. Sueda, and J. P. Vacanti,Contractile cardiac grafts using a novel nano�brous mesh.Biomaterials 25, 3717 (Aug 2004).

241. O. Ishii, M. Shin, T. Sueda, and J. P. Vacanti, Invitro tissue engineering of a cardiac graft using adegradable scaffold with an extracellular matrix–liketopography. The Journal of Thoracic and CardiovascularSurgery 130, 1358 (2005).

242. X. H. Zong et al., Electrospun �ne-textured scaffoldsfor heart tissue constructs. Biomaterials 26, 5330 (Sep2005).

243. H. Hosseinkhani, M. Hosseinkhani, S. Hattori, R.Matsuoka, and N. Kawaguchi, Micro and nano-scale in vitro3D culture system for cardiac stem cells. Journal ofBiomedical Materials Research Part A 94A, 1 (Jul 2010).

244. J. D. Fromstein et al., Seeding bioreactor-producedembryonic stem cell-derived cardiomyocytes on differentporous, degradable, polyurethane scaffolds reveals theeffect of scaffold architecture on cell morphology. TissueEngineering Part A 14, 369 (Mar 2008).

245. M. L. Focarete et al., Electrospun scaffolds of apolyhydroxyalkanoate consisting ofomega-hydroxylpentadecanoate repeat units: Fabrication andin vitro biocompatibility studies. Journal of BiomaterialsScience-Polymer Edition 21, 1283 (2010).

246. M. P . Prabhakaran, J. R. Venugopal, and S.Ramakrishna, Mesenchymal stem cell differentiation toneuronal cells on electrospun nano�brous substrates fornerve tissue engineering. Biomaterials 30, 4996 (Oct 2009).

247. J. K. Wise, A. L. Yarin, C. M. Megaridis, and M. Cho,Chondrogenic differentiation of human mesenchymal stemcells on oriented nano�brous scaffolds: Engineering thesuper�cial zone of articular cartilage. Tissue EngineeringPart A 15, 913 (Apr 2009).

248. Y. M. K olambkar, A. Peister, A. K. Ekaputra, D. W.Hutmacher, and R. E. Guldberg, Colonization and osteogenicdifferentiation of different stem cell sources on

Page 337: Polymeric Biomaterials - Taylor & Francis eBooks

electrospun nano�ber meshes. Tissue Engineering Part A 16,3219 (Oct 2010).

249. R. S. Tuan, G. Boland, and R. Tuli, Adult mesenchymalstem cells and cell-based tissue engineering. ArthritisResearch and Therapy 5, 32 (2003).

250. W. J. Li, R. Tuli, X. X. Huang, P. Laquerriere, andR. S. Tuan, Multilineage differentiation of humanmesenchymal stem cells in a three-dimensional nano�brousscaffold. Biomaterials 26, 5158 (Sep 2005).

251. W. J. Li et al., A three-dimensional nano�brousscaffold for cartilage tissue engineering using humanmesenchymal stem cells. Biomaterials 26, 599 (Feb 2005).

252. H. Yoshimoto, Y . M. Shin, H. Terai, and J. P.Vacanti, A biodegradable nano�ber scaffold byelectrospinning and its potential for bone tissueengineering. Biomaterials 24, 2077 (May 2003).

253. S. Ahn, Y. H. Koh, and G. Kim, A three-dimensionalhierarchical collagen scaffold fabricated by a combinedsolid freeform fabrication (SFF) and electrospinningprocess to enhance mesenchymal stem cell (MSC)proliferation. Journal of Micromechanics andMicroengineering 20, 129901 (Jun 2010).

254. J. H. Lee, N. G. Rim, H. S. Jung, and H. Shin, Controlof osteogenic differentiation and mineralization of humanmesenchymal stem cells on composite nano�bers containingpoly lactic-co-(glycolic acid) and hydroxyapatite.Macromolecular Bioscience 10, 173 (Feb 2010).

255. L. Ren et al., Fabrication of gelatin-siloxane �brousmats via sol-gel and electrospinning procedure and itsapplication for bone tissue engineering. Materials Scienceand Engineering C-Materials for Biological Applications30, 437 (Apr 2010).

256. T. T. Ruckh, K. Kumar, M. J. Kipper, and K. C. Popat,Osteogenic differentiation of bone marrow stromal cells onpoly(epsilon-caprolactone) nano�ber scaffolds. ActaBiomaterialia 6, 2949 (Aug 2010).

257. S. Soliman et al., Multiscale three-dimensionalscaffolds for soft tissue engineering via multimodalelectrospinning. Acta Biomaterialia 6, 1227 (Apr 2010).

258. C. K. Chan et al., Early adhesive behavior of

Page 338: Polymeric Biomaterials - Taylor & Francis eBooks

bone-marrow-derived mesenchymal stem cells on collagenelectrospun �bers. Biomedical Materials 4, 35006 (Jun2009).

259. L. Ghasemi-Mobarakeh et al., The thickness ofelectrospun poly (epsilon-caprolactone) nano�brousscaffolds in¥uences cell proliferation. InternationalJournal of Arti©cial Organs 32, 150 (Mar 2009).

260. C. M. Li et al., Preliminary investigation of seedingmesenchymal stem cells on biodegradable scaffolds forvascular tissue engineering in vitro. Asaio Journal 55, 614(Nov–Dec 2009).

261. H. Hong et al., Fabrication of a novel hybrid scaffoldfor tissue engineered heart valve. Journal of HuazhongUniversity of Science and Technology-Medical Sciences 29,599 (Oct 2009).

262. A. J. Meinel et al., Optimization strategies forelectrospun silk �broin tissue engineering scaffolds.Biomaterials 30, 3058 (Jun 2009).

263. K. T. Shalumon et al., Electrospinning ofcarboxymethyl chitin/poly(vinyl alcohol) nano�brousscaffolds for tissue engineering applications.Carbohydrate Polymers 77, 863 (Jul 2009).

264. E. K. Ko et al., In vitro osteogenic differentiationof human mesenchymal stem cells and in vivo bone formationin composite nano�ber meshes. Tissue Engineering Part A 14,2105 (Dec 2008).

265. S. Srouji, T. Kizhner, E. Suss-Tobi, E. Livne, and E.Zussman, 3-D Nano�brous electrospun multilayered constructis an alternative ECM mimicking scaffold. Journal ofMaterials Science-Materials in Medicine 19, 1249 (Mar2008).

266. Y. M. Kolambkar et al., An alginate-based hybridsystem for growth factor delivery in the functional repairof large bone defects. Biomaterials 32, 65 (Jan 2011).

267. B. Mavis, T. T. Demirtas, M. Gumusderelioglu, G.Gunduz, and U. Colak, Synthesis, characterization andosteoblastic activity of polycaprolactone nano�bers coatedwith biomimetic calcium phosphate. Acta Biomaterialia 5,3098 (Oct 2009).

268. H. S. Yu, J. H. Jang, T. I. Kim, H. H. Lee, and H. W.

Page 339: Polymeric Biomaterials - Taylor & Francis eBooks

Kim, Apatite-mineralized polycaprolactone nano�brous web asa bone tissue regeneration substrate. Journal of BiomedicalMaterials Research Part A 88A, 747 (Mar 2009).

269. C. Erisken, D. M. Kalyon, and H. J. Wang, Viscoelasticand biomechanical properties of osteochondral tissueconstructs generated from graded polycaprolactone andbeta-tricalcium phosphate composites. Journal ofBiomechanical Engineering-Transactions of the Asme 132,91013 (Sep 2010).

270. L. Francis et al., Simultaneouselectrospin-electrosprayed biocomposite nano�brousscaffolds for bone tissue regeneration. Acta Biomaterialia6, 4100 (Oct 2010).

271. S. Z. Fu et al., Preparation and characterization ofnano-hydroxyapatite/poly(epsilon-caprolactone)poly(ethyleneglycol)-poly(epsilon-caprolactone) composite �bers fortissue engineering. Journal of Physical Chemistry C 114,18372 (Nov 2010).

272. H. M . Kim et al., Composite nano�ber mats consistingof hydroxyapatite and titania for biomedical applications.Journal of Biomedical Materials Research Part B-AppliedBiomaterials 94B, 380 (Aug 2010).

273. E. J. Lee et al., Nanostructuredpoly(epsilon-caprolactone)-silica xerogel �brous membranefor guided bone regeneration. Acta Biomaterialia 6, 3557(Sep 2010).

274. K. T. Noh, H. Y. Lee, U. S. Shin, and H. W. Kim,Composite nano�ber of bioactive glass nano�llerincorporated poly(lactic acid) for bone regeneration.Materials Letters 64, 802 (Apr 2010).

275. I. K. Shim et al., Novel three-dimensional scaffoldsof poly((L)-lactic acid) micro�bers using electrospinningand mechanical expansion: Fabrication and boneregeneration. Journal of Biomedical Materials ResearchPart B-Applied Biomaterials 95B, 150 (Oct 2010).

276. T. J. Shin, S. Y. Park, H. J. Kim, H. J. Lee, and J.H. Youk, Development of 3-D

277. Y. M. Shin, H. Shin, and Y. M. Lim, Surfacemodi�cation of electrospunpoly(L-lactide-co-epsiloncaprolactone) �brous meshes with aRGD peptide for the control of adhesion, proliferation and

Page 340: Polymeric Biomaterials - Taylor & Francis eBooks

differentiation of the preosteoblastic cells.Macromolecular Research 18, 472 (May 2010).

278. H. W. T ong, M. Wang, Z. Y. Li, and W. W. Lu,Electrospinning, characterization and in vitro biologicalevaluation of nanocomposite �bers containing carbonatedhydroxyapatite nanoparticles. Biomedical Materials 5,54111 (Oct 2010).

279. A. K. Ekaputra, Y . F. Zhou, S. M. Cool, and D. W.Hutmacher, Composite electrospun scaffolds for engineeringtubular bone grafts. Tissue Engineering Part A 15, 3779(Dec 2009).

280. D. Gupta, J. V enugopal, S. Mitra, V. R. G. Dev, andS. Ramakrishna, Nanostructured biocomposite substrates byelectrospinning and electrospraying for the mineralizationof osteoblasts. Biomaterials 30, 2085 (Apr 2009).

281. Y. M. Kang, K. H. Kim, Y. J. Seol, and S. H. Rhee,Evaluations of osteogenic and osteoconductive properties ofa non-woven silica gel fabric made by the electrospinningmethod. Acta Biomaterialia 5, 462 (Jan 2009).

282. M. Ngiam et al., Fabrication of mineralized polymericnano�brous composites for bone graft materials. TissueEngineering Part A 15, 535 (Mar 2009).

283. H. W. Kim, H. H. Lee, and G. S. Chun, Bioactivity andosteoblast responses of novel biomedical nanocomposites ofbioactive glass nano�ber �lled poly(lactic acid). Journalof Biomedical Materials Research Part A 85A, 651 (Jun2008).

284. J. H. Jang, O. Castano, and H. W. Kim, Electrospunmaterials as potential platforms for bone tissueengineering. Advanced Drug Delivery Reviews 61, 1065 (Oct2009).

285. A. R. Poole et al., Composition and structure ofarticular cartilage—A template for tissue repair. ClinicalOrthopaedics and Related Research 1, S26 (Oct 2001).

286. E. B. Hunziker , Articular cartilage repair: Basicscience and clinical progress. A review of the currentstatus and prospects. Osteoarthr Cartilage 10, 432 (Jun2002).

287. T. J. Klein, J. Malda, R. L. Sah, and D. W. Hutmacher,Tissue engineering of articular cartilage with biomimetic

Page 341: Polymeric Biomaterials - Taylor & Francis eBooks

zones. Tissue Engineering Part B-Reviews 15, 143 (Jun2009).

288. T. J. Klein et al., Strategies for zonal cartilagerepair using hydrogels. Macromolecular Bioscience 9, 1049(Nov 10, 2009).

289. G. Kim, J. Son, S. Park, and W. Kim, Hybrid processfor fabricating 3D hierarchical scaffolds combining rapidprototyping and electrospinning. Macromolecular RapidCommunications 29, 1577 (Oct 2008).

290. I. K. Shim et al., Chitosan nano-/micro�brousdouble-layered membrane with rolled-up three-dimensionalstructures for chondrocyte cultivation. Journal ofBiomedical Materials Research Part A 90A, 595 (Aug 2009).

291. W. J. Li, K. G. Danielson, P. G. Alexander, and R. S.Tuan, Biological response of chondrocytes cultured inthree-dimensional nano�brous poly(epsilon-caprolactone)scaffolds. Journal of Biomedical Materials Research Part A67A, 1105 (Dec 2003).

292. T. G. Kim, H. J. Chung, and T. G. Park, Macroporousand nano�brous hyaluronic acid/collagen hybrid scaffoldfabricated by concurrent electrospinning anddeposition/leaching of salt particles. Acta Biomaterialia4, 1611 (Nov 2008).

293. L. Moroni, R. Schotel, D. Hamann, J. R. de Wijn, andC. A. van Blitterswijk, 3D �ber-deposited electrospunintegrated scaffolds enhance cartilage tissue formation.Advanced Functional Materials 18, 53 (Jan 2008).

294. A. Thorvaldsson, H. Stenhamre, P. Gatenholm, and P.Walkenstrom, Electrospinning of highly porous scaffoldsfor cartilage regeneration. Biomacromolecules 9, 1044 (Mar2008).

295. I. S. Lee, O. H. Kwon, W. Meng, and I. K. Kang,Nanofabrication of microbial polyester by electrospinningpromotes cell attachment. Macromolecular Research 12, 374(Aug 2004).

296. K. J. Shields, M. J. Beckman, G. L. Bowlin, and J. S.Wayne, Mechanical properties and cellular proliferation ofelectrospun collagen type II. Tissue Engineering 10, 1510(Sep 2004).

297. R. M. Smeal and P. A. Tresco, The in¥uence of

Page 342: Polymeric Biomaterials - Taylor & Francis eBooks

substrate curvature on neurite outgrowth is cell typedependent. Experimental Neurology 213, 281 (Oct 2008).

298. R. M. Smeal, R. Rabbitt, R. Biran, and P. A. Tresco,Substrate curvature in¥uences the direction of nerveoutgrowth. Annals of Biomedical Engineering 33, 376 (Jan2005).

299. F. Y ang, R. Murugan, S. Wang, and S. Ramakrishna,Electrospinning of nano/micro scale poly(Llactic acid)aligned �bers and their potential in neural tissueengineering. Biomaterials 26, 2603 (May 2005).

300. T. B. Bini, S. J. Gao, S. Wang, and S. Ramakrishna,Poly(l-lactide-co-glycolide) biodegradable micro�bers andelectrospun nano�bers for nerve tissue engineering: An invitro study. Journal of Materials Science 41, 6453 (Oct2006).

301. D. Gupta et al., Aligned and random nano�broussubstrate for the in vitro culture of Schwann cells forneural tissue engineering. Acta Biomaterialia 5, 2560 (Sep2009).

302. U. Assmann et al., Fiber scaffolds of polysialic acidvia electrospinning for peripheral nerve regeneration.Journal of Materials Science-Materials in Medicine 21, 2115(Jul 2010).

303. R. C. de Guzman, J. A. Loeb, and P. J. VandeVord,Electrospinning of matrigel to deposit a basal laminalikenano�ber surface. Journal of Biomaterials Science-PolymerEdition 21, 1081 (2010).

304. H. B. Wang et al., Creation of highly alignedelectrospun poly-L-lactic acid �bers for nerve regenerationapplications. Journal of Neural Engineering 6, 16001 (Feb2009).

305. J. W. Xie et al., Conductive core-sheath nano�bersand their potential application in neural tissueengineering. Advanced Functional Materials 19, 2312 (Jul2009).

306. L. Yao, N. O’Brien, A. Windebank, and A. Pandit,Orienting neurite growth in electrospun �brous neuralconduits. Journal of Biomedical Materials Research PartB-Applied Biomaterials 90B, 483 (Aug 2009).

307. M. P. Prabhakaran, J. Venugopal, C. K. Chan, and S.

Page 343: Polymeric Biomaterials - Taylor & Francis eBooks

Ramakrishna, Surface modi�ed electrospun nano�brousscaffolds for nerve tissue engineering. Nanotechnology 19,455102 (Nov 2008).

308. M. P. Prabhakaran et al., Electrospun biocompositenano�brous scaffolds for neural tissue engineering. TissueEngineering Part A 14, 1787 (Nov 2008).

309. W. N. Chow, D. G. Simpson, J. W. Bigbee, and R. J.Colello, Evaluating neuronal and glial growth onelectrospun polarized matrices: Bridging the gap inpercussive spinal cord injuries. Neuron Glia Biology 3,119 (2007).

310. P. D . Dalton, L. Flynn, and M. S. Shoichet,Manufacture of poly(2-hydroxyethyl methacrylate co-m ethylmethacrylate) hydrogel tubes for use as nerve guidancechannels. Biomaterials 23, 3843 (Sep 2002).

311. D. E. Birk and R. Mayne, Localization of collagentypes I, III and V during tendon development. Changes incollagen types I and III are correlated with changes in�bril diameter. European Journal of Cell Biology 72, 352(1997).

312. K. L. Moffat et al., Novel nano�ber-based scaffold forrotator cuff repair and augmentation. Tissue EngineeringPart A 15, 115 (2009).

313. B. Inanc, Y. E. Arslan, S. Seker, A. E. Elcin, and Y.M. Elcin, Periodontal ligament cellular structuresengineered with electrospun poly(DL-lactide-co-glycolide)nano�brous membrane scaffolds. Journal of BiomedicalMaterials Research Part A 90A, 186 (Jul 2009).

314. S. Zhang et al., Gelatin nano�brous membranefabricated by electrospinning of aqueous gelatin solutionfor guided tissue regeneration. Journal of BiomedicalMaterials Research Part A 90A, 671 (Sep 2009).

315. M. C. Bottino, V. Thomas, and G. M. Janowski, A novelspatially designed and functionally graded electrospunmembrane for periodontal regeneration. Acta Biomaterialia7, 216 (2011).

316. S. Sahoo, H. Ouyang, J. C. H. Goh, T. E. Tay, and S.L. Toh, Characterization of a novel polymeric scaffold forpotential application in tendon/ligament tissueengineering. Tissue Engineering 12, 91 (Jan 2006).

Page 344: Polymeric Biomaterials - Taylor & Francis eBooks

317. S. Sahoo, J. C.-H. Goh, and S. L. Toh, Development ofhybrid polymer scaffolds for potential applications inligament and tendon tissue engineering. BiomedicalMaterials 2, 169 (2007).

318. S. Sahoo, S. L. Toh, and J. C.-H. Goh, PLGAnano�ber-coated silk micro�brous scaffold for connectivetissue engineering. Journal Biomedical Material ResearchPart B: Applied Biomaterials 95B, 19 (2010).

319. C. Vaquette et al., Alignedpoly(L-lactic-co-e-caprolactone) electrospun micro�bers andknitted structure: A novel composite scaffold for ligamenttissue engineering. Journal of Biomedical MaterialsResearch Part A 94A, 1270 (Sep 2010).

320. C. A. Bashur, R. D. Shaffer, L. A. Dahlgren, S. A.Guelcher, and A. S. Goldstein, Effect of �ber diameter andalignment of electrospun polyurethane meshes on mesenchymalprogenitor cells. Tissue Engineering Part A 15, 2435 (Sep2009).

321. J. W. S. Hayami, D. C. Surrao, S. D. Waldman, and B.G. Amsden, Design and characterization of a biodegradablecomposite scaffold for ligament tissue engineering. Journalof Biomedical Materials Research Part A 92A, 1407 (Mar2010).

322. D. C. Surrao, J. W. S. Hayami, S. D. Waldman, and B.G. Amsden, Self-crimping, biodegradable, electrospunpolymer micro�bers. Biomacromolecules 11, 3624 (2010).

323. S. L. Woo, J. M. Hollis, D. J. Adams, R. M. Lyon, andS. Takai, Tensile properties of the human femuranteriorcruciate ligament complex. The effects of specimen age andorientation. American Journal of Sport Medicine 19, 217(1991).

324. F. Mei et al., Improved biological characteristics ofpoly(L-lactic acid) electrospun membrane by incorporationof multiwalled carbon nanotubes/hydroxyapatitenanoparticles. Biomacromolecules 8, 3729 (Dec 2007).

325. S. H. Shang, F. Yang, X. R. Cheng, X. F. Walboomers,and J. A. Jansen, The effect of electrospun �bre alignmenton the behaviour of rat periodontal ligament cells.European Cells and Materials 19, 180 (Jan–Jun 2010).

326. P. K. Lam et al., Development and evaluation of a newcomposite Laserskin graft. The Journal of Trauma 47, 918

Page 345: Polymeric Biomaterials - Taylor & Francis eBooks

(Nov 1999).

327. S. Heydarkhan-Hagvall et al., Three-dimensionalelectrospun ECM-based hybrid scaffolds for cardiovasculartissue engineering. Biomaterials 29, 2907 (Jul 2008).

328. A. Bianco et al., Electrospunpoly(epsilon-caprolactone)/Ca-de�cient hydroxyapatitenanohybrids: Microstructure, mechanical properties andcell response by murine embryonic stem cells. MaterialsScience and Engineering C-Materials for BiologicalApplications 29, 2063 (Aug 2009).

329. D. R. Nisbet, A. E. Rodda, M. K. Horne, J. S.Forsythe, and D. I. Finkelstein, Neurite in�ltration andcellular response to electrospun polycaprolactonescaffolds implanted into the brain. Biomaterials 30, 4573(Sep 2009).

330. B. W. Tillman et al., The in vivo stability ofelectrospun polycaprolactone-collagen scaffolds in vascularreconstruction. Biomaterials 30, 583 (Feb 2009).

331. H. Q. Cao, K. McHugh, S. Y. Chew, and J. M. Anderson,The topographical effect of electrospun nano�brousscaffolds on the in vivo and in vitro foreign bodyreaction. Journal of Biomedical Materials Research Part A93A, 1151 (Jun 2010).

332. J. L. Ifko vits, K. Wu, R. L. Mauck, and J. A.Burdick, The in¥uence of �brous elastomer structure andporosity on matrix organization. Plos One 5, e15717 (2010).

333. P. D. Dalton, A. R. Harvey, M. Oudega, and G. W.Plant, in: C. Van Blitterswijk et al., Eds., Tissueengineering of the nervous system. Tissue Engineering(Academic Press, New York, 2008), pp. 611–647.

334. I. P. Clements et al., Thin-�lm enhanced nerveguidance channels for peripheral nerve repair. Biomaterials30, 3834 (Aug 2009).

335. E. Seyedjafari, M. Soleimani, N. Ghaemi, and I.Shabani, Nanohydroxyapatite-coated electrospunpoly(L-lactide) nano�bers enhance osteogenicdifferentiation of stem cells and induce ectopic boneformation. Biomacromolecules 11, 3118 (Nov 2010).

336. A. Nandakumar, L. Yang, P. Habibovic, and C. vanBlitterswijk, Calcium phosphate coated electrospun �ber

Page 346: Polymeric Biomaterials - Taylor & Francis eBooks

matrices as scaffolds for bone tissue engineering. Langmuir26, 7380 (May 18, 2010).

337. M. Shin, H. Yoshimoto, and J. P. Vacanti, In vivo bonetissue engineering using mesenchymal stem cells on a novelelectrospun nano�brous scaffold. Tissue Engineering 10, 33(2004).

338. S. Srouji et al., A model for tissue engineeringapplications: Femoral critical size defect inimmunode�cient mice. Tissue Eng Part C Methods 17, 597 (May2011).

339. W. J. Li et al., Evaluation of articular cartilagerepair using biodegradable nano�brous scaffolds in a swinemodel: A pilot study. Journal of Tissue Engineering andRegenerative Medicine 3, 1 (Jan 2009).

340. J. P. Chen and C. H. Su, Surface modi�cation ofelectrospun PLLA nano�bers by plasma treatment andcationized gelatin immobilization for cartilage tissueengineering. Acta Biomaterialia 7, 234 (Jan 2011).

341. W. Wang et al., Effects of Schwann cell alignmentalong the oriented electrospun chitosan nano�bers on nerveregeneration. Journal of Biomedical Materials Research PartA 91A, 994 (Dec 2009).

342. S. Panseri et al., Electrospun micro- and nano�bertubes for functional nervous regeneration in sciatic nervetransections. BMC Biotechnology 8, 39 (Apr 2008).

343. W. Wang et al., Enhanced nerve regeneration through abilayered chitosan tube: The effect of introduction ofglycine spacer into the CYIGSK sequence. Journal ofBiomedical Materials Research Part A 85A, 919 (Jun 2008).

344. B. Nottelet et al., Factorial design optimization andin vivo feasibility of poly(epsilon-caprolactone)micro- andnaro�ber-based small diameter vascular grafts. Journal ofBiomedical Materials Research Part A 89A, 865 (Jun 2009).

345. T. Sun, D. Norton, R. J. Mckean, J. W. Haycock, A. J.Ryan, and S. MacNeil, Development of a 3D cell culturesystem for investigating cell interactions with electrospun�bers, Biotechnology and Bioengineering 97, 1318–1328(2007).

Page 347: Polymeric Biomaterials - Taylor & Francis eBooks

17 Chapter 17. Polymeric Nanoparticlesfor Targeted Delivery of Bioactive Agentsand Drugs

Agnihotri, S.A., Mallikarjuna, N.N., and Aminabhavi, T.M.2004. Recent advances on chitosan-based micro- andnanoparticles in drug delivery. J. Control. Release 100:5–28.

Asanuma, H., Nakai, K., Sanada, S., Minamino, T.,Takashima, S., Ogita, H., Fujita, M., Hirata, A. et al.2007. S-nitrosylated and pegylated hemoglobin, a newlydeveloped arti�cial oxygen carrier, exerts cardioprotectionagainst ischemic hearts. J. Mol. Cell. Cardiol. 42(5):924–930.

Azarmi, S., Tao, X., Chen, H., Wang, Z., Finlay, W.H.,Loebenberg, R., and Roa, W.H. 2006. Formulation andcytotoxicity of doxorubicin nanoparticles carried by drypowder aerosol particles. Int. J. Pharm. 319(1–2):155–161.

Bagalkot, V., Farokhzad, O.C., Langer, R., Jon, S. 2006. Anaptamer-doxorubicin physical conjugate as a novel targeteddrug-delivery platform. Angew. Chem. Int. Ed. Engl. 45:8149–8152.

Bilati, U., Allemann, E., and Doelker, E. 2005. Developmentof a nanoprecipitation method intended for the entrapmentof hydrophilic drugs into nanoparticles. Eur. J. Pharm.Sci. 24: 67–75.

Bilensoy, E., Gurkaynak, O., Ertan, M., Murat, A., andAtilla, H. 2008. Development of nonsurfactant cyclodextrinnanoparticles loaded with anticancer drug paclitaxel. J.Pharm. Sci. 97: 19.

Brannon-Peppas, L. and Blanchette, J.O. 2004. Nanoparticleand targeted systems for cancer therapy. Adv. Drug Deliv.Rev. 56: 1649–1659.

Brody, E.N. and Gold, L.J. 2000. Aptamers as therapeuticand diagnostic agents. Biotechnol. 74: 5–13.

Byrne, J.D., Betancourt, T., and Brannon-Peppas, L. 2008.Active targeting schemes for nanoparticle systems incancer therapeutics. Adv. Drug Deliv. Rev. 60: 1615–1626.

Castro, C.I. and Briceno, J.C. 2010. Per¥uorocarbon-basedoxygen carriers: Review of products and trials. Artif.

Page 348: Polymeric Biomaterials - Taylor & Francis eBooks

Organs 34(8): 622–634.

Chapman, A.P. 2002. PEGylated antibodies and antibodyfragments for improved therapy: A review. Adv. Drug Deliv.Rev. 54(4): 531–545.

Chattopadhyay, P., Huff, R., and Shekunov, B.Y. 2006. Drugencapsulation using supercritical ¥uid extraction ofemulsions. J. Pharm. Sci. 95(3): 667–679.

Chiellini, F., Bartoli, C., Dinucci, D., Piras, A.M.,Anderson, R., and Croucher, T. 2007. Bioeliminablepolymeric nanoparticles for proteic drug delivery. Int. J.Pharm. 343(1–2): 90–97.

Chiellini, E., Chiellini, F., and Solaro, R. 2006.Bioerodible polymeric nanoparticles for targeted deliveryof proteic drugs. J. Nanosci. Nanotechnol. 6(9/10):3040–3047.

Chiellini, F., Piras, A.M., Fiumi, C., Anderson, R.,Muckova, M., Bartoli, C., Dinucci, D. et al. 2006.Bioerodible/ bioeliminable nanoparticles as versatilevectors for the targeted and controlled release of proteindrugs, bioactive principles and as oxygen carriers. 20thEuropean Conference on Biomaterials. September 27– October1. Cité des Congrès, Nantes, France.

Chithrani, B.D., Stewart, J., Allen, C., and Jaffray, D.A.2009. Intracellular uptake, transport, and processing ofnanostructures in cancer cells. Nanomedicine 5(2): 118–127.

Cho, K., Wang, X., Nie, S., Chen, Z., and Shin, D.M. 2008.Therapeutic nanoparticles for drug delivery in cancer.Clin. Cancer Res. 14(5): 1310–1316.

Cirstoiu-Hapca, A., Bossy-Nobs, L., Buchegger, F., andGurny, F. 2007. Differential tumor cell targeting ofantiHER2 (Herceptin ® ) and anti-CD20 (Mabthera ® ) couplednanoparticles. Int. J. Pharm. 331(2): 190–196.

Clark, L.C. and Gollan, F. 1966. Survival of mammalsbreathing organic liquids equilibrated with oxygen atatmospheric pressure. Science 152(3730): 1755–1756.

Coester, C.J., Langer, K., van Briesen, H., and Kreuter, J.2000. Gelatin nanoparticles by two step desolvation, a newpreparation method, surface modi�cations and cell uptake.J. Microencapsul. 17: 187–193.

Page 349: Polymeric Biomaterials - Taylor & Francis eBooks

Cowdall, J., Davies, J., Roberts, M., Carlsson, A., Solaro,R., Chiellini, E., Chiellini, F. et al. 1999a.Microparticles based on hybrid polymeric materials forcontrolled release of biologically active molecules. Aprocess for preparing the same and their uses for in vivoand in vitro therapy, prophylaxis and diagnostics.PCT Int. Appl. WO9902131.

Cowdall, J., Davies, J., Roberts, M., Carlsson, A., Solaro,R., Chiellini, E., Chiellini, F. et al. 1999b.Microparticles for controlled delivery of biologicallyactive molecules. PCT Int. Appl. WO9902135.

Crowder, T.M., Rosati, J.A., Schroeter, J.D., Hickey, A.J.,and Martonen, T.B. 2002. Fundamental effects of particlemorphology on lung delivery: Predictions of stokes’ law andthe particular relevance to dry powder inhaler formulationand development. Pharm. Res. 19(3): 239–245.

De Rosa, G., Larobina, D., La Rotonda, M., Musto, P.,Quaglia, F., and Ungaro, F. 2005. How cyclodextrinincorporation affects the properties of protein-loadedPLGA-based microspheres: The case of insulin/hydroxypropyl-beta-cyclodextrin system. J. Control. Release102(1): 71–83.

Desgouilles, S., Vauthier, C., Bazile, D., Vacus, J.,Grossiord, J.L., Veillard, M., and Couvreur, P. 2003. Thedesign of nanoparticles obtained by solvent evaporation: Acomprehensive study. Langmuir 19: 9504–9510.

Dessy, A., Kubowicz, S., Alderighi, M., Bartoli, C., Piras,A.M., Schmid, R., and Chiellini, F. 2011a. Dead SeaMinerals loaded polymeric nanoparticles. Colloids Surf. BBiointerfaces 87(2): 236–242.

Dessy, A., Piras, A.M., Schirò, G., Levantino, M., Cupane,A., and Chiellini, F. 2011b. Hemoglobin loaded polymericnanoparticles: Preparation and characterizations. Eur. J.Pharm. Sci. 43: 57–64.

Determan, M.D., Cox, J.P., Seifert, S., Thiyagarajan, P.,and Mallapragada, S.K. 2005. Synthesis and characterizationof temperature and pH-responsive pentablock copolymers.Polymer 46: 6933–6946.

Dinucci, D., Bartoli, C., Piras, A.M., and Chiellini, F.2007. Intracellular fate investigation of bioeliminablepolymers and relative nanoformulates by confocal laserscanning microscopy. 7th International Symposium on

Page 350: Polymeric Biomaterials - Taylor & Francis eBooks

Frontiers in Biomedical Polymers. June 24–27. Ghent,Belgium.

Dong, Y. and Feng, S.S. 2004. Methoxy poly(ethyleneglycol)-poly(lactide) (MPEG-PLA) nanoparticles forcontrolled delivery of anticancer drugs. Biomaterials 25:2843–2849.

Douglas, K.L. and Tabrizian, M. 2005. Effect ofexperimental parameters on the formation ofalginate-chitosan nanoparticles and evaluation of theirpotential application as DNA carrier. J. Biomater. Sci.Polym. Ed. 16(1): 43–56.

Ehrlich, P. 1906. In: Collected Studies on Immunity, JohnWiley, New York, p. 442.

Ellington, A.D. and Szostak, J.W. 1990. In vitro selectionof RNA molecules that bind speci�c ligands. Nature 346:818–822.

Elversson, J. and Millqvist-Fureby, A. 2005. Aqueoustwo-phase systems as a formulation concept for spraydriedprotein. Int. J. Pharm. 294(1–2): 73–87.

Errico, C., Bartoli, C., Chiellini, F., and Chiellini, E.2009a. Poly(hydroxyalkanoates)-based polymericnanoparticles for drug delivery. J. Biomed. Biotechnol.:1–10.

Errico, C., Gazzarri, M., and Chiellini, F. 2009b. A novelmethod for the preparation of retinoic acid loadednanoparticles. Int. J. Mol. Sci. 10: 2336–2347.

Farokhzad, O.C. 2004. Nanoparticle–aptamer bioconjugates: Anew approach for targeting prostate cancer cells. CancerRes. 64: 7668–7672.

Farokhzad, O.C. and Langer, R. 2009. Impact ofnanotechnology on drug delivery. ACS Nano 3(1): 16–20.

Finkelstein, A., McClean, D., KarKaname Takizawa, S.,Varghese, K., Baek, N., Park, K. et al. 2003. Local drugdelivery via a coronary stent with programmable. ReleasePharmacokinetics Circ. 107: 777.

Fonseca, C., Simoes, S., and Gaspar, R. 2002.Paclitaxel-loaded PLGA nanoparticles: Preparation,physicochemical characterization and in vitro antitumoralactivity. J. Control. Release 83: 273–286.

Page 351: Polymeric Biomaterials - Taylor & Francis eBooks

Francis, J.W., Bastia, E., Matthews, C.C., Parks, D.A.,Schwarzschild, M.A., Brown, R.H., and Fishman, P.S. 2004.Tetanus toxin fragment C as a vector to enhance thedelivery of proteins to the CNS. Brain Res. 1011: 7–13.

Furusawa, K., Terao, K., Nagasawa, N., Yoshii, F., Kubota,K., and Dobashi, T. 2004. Nanometer-sized gelatinparticles prepared by means of gamma-ray irradiation.Colloid Polym. Sci. 283(2): 229–233.

Goldberg, M., Langer, R., and Jiaj, X. 2007. Nanostructuredmaterials for applications in drug delivery and tissueengineering. Biomater. Sci. Polym. Ed. 18(3): 241–268.

Goletz, S.P., Christensen, A., Kristensen, P., Blohm, D.,Tomlinson, I., Winter, G., and Karsten, U. 2002. Selectionof large diversities of antiidiotypic antibody fragments byphage display. J. Mol. Biol. 315(5): 1087–1097.

Gupta, K., Ganguli, M., Pasha, S., and Maiti, S. 2006.Nanoparticle formation from poly(acrylic acid) andoppositely charged peptides. Biophys. Chem. 119: 303–306.

Gupta, A.K., Gupta, M., Yarwood, S.J., and Curtis, A.S.2004. Effect of cellular uptake of gelatin nanoparticleson adhesion, morphology and cytoskeleton organisation ofhuman �broblasts. J. Control. Release 95(2): 197–207.

Hoeffel, C., Mulé, S., Romaniuk, B., Ladam-Marcus, V.,Bouché, O., and Marcus, C. 2009. Advances in radiologicalimaging of gastrointestinal tumors. Crit. Rev. Oncol.Hematol. 69(2): 153–167.

Hoffman, A.S. 2008. The origins and evolution of“controlled” drug delivery systems. J. Control. Release132: 153–163.

Hruby′, M., Konàk, C., and Ulbrich, K. 2005. Polymericmicellar pH-sensitive drug delivery system for doxorubicin. J. Control. Release 103: 137–148.

Hsiue, G.H., Wang, C.H., Lo, C.L., Wang, C.H., Li, J.P.,and Yang, J.L. 2006. Environmental-sensitive micellesbased on poly(2-ethyl-2-oxazoline)-b-poly(l-lactide)diblock copolymer for application in drug delivery. Int.J. Pharm. 317: 69–75.

Hu, T., Manjula, B.N., Li, D., Brenowitz, M., and Acharya,S.A. 2007. In¥uence of intramolecular cross-links on the

Page 352: Polymeric Biomaterials - Taylor & Francis eBooks

molecular, structural and functional properties ofPEGylated haemoglobin. Biochem. J. 402(1): 143–151.

Jeong, Y.I., Cho, C.S., Kim, S.H., Ko, K.S., Kim, S.I.,Shim, Y.H. et al. 2001. Preparation of poly(DL-lactidecoglycolide) nanoparticles without surfactant.J. Appl. Polym. Sci. 80: 2228–2236.

Johnson, O.L., Cleland, J.L., Lee, H.J., Charnis, M.,Duenas, E., Jaworowicz, W. et al. 1996. A month-longeffect from a single injection of microencapsulated humangrowth hormone. Nat. Med. 2: 795–799.

Kashyap, N., Modi, S., Jain, J.P., Bala, I., Hariharan, S.,Bharadwaj, R. et al. 2004. Polymers for advanced drugdelivery. CRIPS 5: 7–12.

Khaw, B., Jose, D.S., and Wiiliam, H.C. 2007.Cytoskeletal-antigen speci�c immunoliposome targeted invivo preservation of myocardial viability. J. Control.Release 120: 35–40.

Kim, D.H. and Martin, D.C. 2006. Sustained release ofdexamethasone from hydrophilic matrices using PLGAnanoparticles for neural drug delivery. Biomaterials 27:3031–3037.

Kubiak, C., Manil, L., and Couvreur, P. 1988. Sorbtiveproperties of antibodies onto cyanoacrylic nanoparticles.Int. J. Pharm. 41: 181–187.

Lee, L.S., Conover, C., Shi, C., Whitlow, M., and Filpula,D. 1999. Prolonged circulating lives of single-chain Fvproteins conjugated with polyethylene glycon: A comparisonof conjugating chemistries and compounds. Bioconjug. Chem.10(6): 973–981.

Leuenberger, H. 2002. Spray freeze-drying—The process ofchoice for low water soluble drugs? J. Nanopart. Res. 4:111–119.

Li, D., Manjula, B.N., and Acharya, A.S. 2006. Extensionarm facilitated PEGylation of hemoglobin: Correlation ofthe properties with the extent of PEGylation. Protein J.25(4): 263–274.

Li, X., Anton, X., Arpagaus, C., Belleteix, F., andVandamme, T.F. 2010. Nanoparticles by spray drying usinginnovative new technology: The Büchi nano spray dryer B-90.J. Control. Release 147: 304–310.

Page 353: Polymeric Biomaterials - Taylor & Francis eBooks

Liu, X.M., Yang, Y.Y., and Leong, K.W. 2003. Thermallyresponsive polymeric micellar nanoparticles selfassembledfrom cholesteryl end-capped randompoly(N-isopropylacrylamide-co-N,N-imethylacrylamide):Synthesis, temperature-sensitivity, and morphologies. J.Colloid. Interface Sci. 266: 295–293.

Lupold, S.E. 2002. Identi�cation and characterization ofnuclease-stabilized RNA molecules that bind human prostatecancer cells via the prostate-speci�c membrane antigen.Cancer Res. 62: 4029–4033.

Maeda, H., Bharate, G.Y., and Daruwalla, J. 2009. Polymericdrugs for ef�cient tumor-targeted drug delivery based onEPR-effect. Eur. J. Pharm. Biopharm. 71(3): 409–419.

Mandal, S.C. and Mandal, M. 2010. Current status and futureprospects of new drug delivery system. Pharma. Times42(4): 13–16.

McBain, S.C., Yiu, H.P., and Dobson, J. 2008. Magneticnanoparticles for drug and gene delivery. Int. J. Nanomed.3: 169–180.

Meziani, M.J., Pathak, P., Desai, T., and Sun, Y.P. 2006.Supercritical ¥uid processing of nanoscale particles frombiodegradable and biocompatible polymers. Ind. Eng. Chem.Res. 45(10): 3420–3424.

Min, H.K., Park, K., Kim, Y.S. et al. 2008. Hydrophobicallymodi�ed glycol chitosan nanoparticles-encapsulatedcamptothecin enhance the drug stability and tumor targetingin cancer therapy. J. Control. Release 127: 208–218.

Mishima, K. 2008. Biodegradable particle formation for drugand gene delivery using supercritical ¥uid and dense gas.Adv. Drug Deliv. Rev. 60: 411–432.

Mu, L., Teo, M.M., Ning, H.Z., Tan, C.S., and Feng, S.S.2005. Novel powder formulations for controlled delivery ofpoorly soluble anticancer drug: Application andinvestigation of TPGS and PEG in spray-dried particulatesystem. J. Control. Release 103: 565–575.

Müller, S. 2009. Magnetic ¥uid hyperthermia therapy formalignant brain tumours—An ethical discussion.Nanomedicine 5(4): 387–393.

Muzzarelli, R.A.A. and Muzzarelli, C. 2005. Chitosan

Page 354: Polymeric Biomaterials - Taylor & Francis eBooks

chemistry: Relevance to the biomedical sciences. Adv.Polym. Sci. 186: 151–209.

Ness, P.M. and Cushing, M.M. 2007. Oxygen therapeuticspursuit of an alternative to the donor red blood cell.Arch. Pathol. Lab. Med. 131(5): 734–741.

O’Donnell, P. and McGinity, J. 1997. Preparation ofmicrospheres by the solvent evaporation technique. Adv.Drug Deliv. Rev. 28: 25–42.

Palmer, T.N., Caldercourt, M.A., and Kingaby, R.O. 1984.Liposome drug delivery in chronic ischemia. Biochem. Soc.Trans. 12: 344–345.

Pan, B., Cui, D., Sheng, Y., Ozkan, C., Gao, F., He, R.,Li, Q., Xu, P., and Huang, T. 2007. Dendrimer-modi�edmagnetic nanoparticles enhance ef�ciency of gene deliverysystem. Cancer Res. 67: 8156–8163.

Panyam, J. and Labhasetwar, V. 2003. Biodegradablenanoparticles for drug and gene delivery to cells andtissue. Adv. Drug Deliv. Rev. 55: 329–347.

Panyam, J., Williams, D., Dash, A., Leslie-Pelecky, D., andLabhasetwar, V. 2004. Solid-state solubility in¥uencesencapsulation and release of hydrophobic drugs fromPLGA/PLA nanoparticles. J. Pharm. Sci. 93(7): 1804–1814.

Pape, A. 2007. Alternatives to allogeneic bloodtransfusions. Best Pract. Res. Clin. Anaesthesiol. 21(2):221–239.

Park, T.G., Lu, W., and Crotts, G. 1995. Importance of invitro experimental conditions on protein release kinetics,stability and polymer degradation in protein encapsulatedpoly(D,L–lactic acid–co–glycolic acid) microspheres. J.Control. Release 33: 211–222.

Park, J.H., Ye, M., and Park, K. 2005. BiodegradablePolymers for microencapsulation of drugs. Molecules 10:146–161.

Parveen, S., Misra, R., and Sahoo, S.K. 2011.Nanoparticles: A boon to drug delivery, therapeutics,diagnostics and imaging. Nanomedicine: 1–20.

Pawar, R., Ben-Ari, A., and Domb, A.J. 2004. Protein andpeptide parental controlled delivery. Expert Opin. Biol.Ther. 4(8): 1203–1212.

Page 355: Polymeric Biomaterials - Taylor & Francis eBooks

Peer, D., Kar, J.M., Hong, S.P., Farokhzad, O.C., Margalit,M., and Langer, R. 2007. Nanocarriers as an emergingplatform for cancer therapy. Nat. Nanotechnol. 2: 751–760.

Piras, A.M., Chiellini, F., Fiumi, C., Bartoli, C., andChiellini, E. 2007. A new biocompatible nanoparticledelivery system for targeted release of �brinolytic drugs.Int. J. Pharm. 357(1–2): 260–271.

Piras, A.M., Nikkola, L., Chiellini, F., Ashammakhi, N.,and Chiellini, E. 2006. Bioerodible electrospun �bers forthe controlled release of conventional and protein drugs.20th European Conference on Biomaterials. September27–October 1. Nantes, France.

Rao, J.P. and Geckeler, K.E. 2011. Polymer nanoparticles:Preparation techniques and size-control parameters. Prog.Polym. Sci. 36: 887–913.

Riess, J.G. 2001. Oxygen carriers (‘blood substitutes’)Raison d’etre, chemistry, and some physiology. Chem. Rev.101(9): 2797–2894.

Roa, W.H., Azarmi, S., Al-Hallak, M.H.D., Finlay, W.H.,Magliocco, A.M., and Löbenberg, R. 2011. Inhalablenanoparticles, a non-invasive approach to treat lung cancerin a mouse model. J. Control. Release 150: 49–55.

Rosca, I.D., Watari, F., and Uo, M. 2004. Microparticleformation and its mechanism in single and double emulsionsolvent evaporation. J. Control. Release 99(2): 271–280.

Rossler, B., Kreuter, J., and Scherer, D. 1995. Collagenmicroparticles: Preparation and properties.J. Microencapsul. 12: 49–57.

Scriven, L.E. and Sternling, C.V. 1960. The marangonieffects. Nature 187(4733): 186–188.

Seki, J., Sonoke, S., Saheki, A., Fukui, H., Sasaki, H.,and Mayumi, T. 2004. A nanometer lipid emulsion, lipidnano-sphere (LNS(R)), as a parenteral drug carrier forpassive drug targeting. Int. J. Pharm. 273(1–2): 75–83.

Sham, J.O.-H., Zhang, Y., Finlay, W.H., Roa, W.H., andLobenberg, R. 2004. Formulation and characterization ofspray-dried powders containing nanoparticles for aerosoldelivery to the lung. Int. J. Pharm. 269(2): 457–467.

Page 356: Polymeric Biomaterials - Taylor & Francis eBooks

Shangguan, D., Li, Y., Tang, Z., Cao, Z.C., Chen, H.W.,Mallikaratchy, P., Sefah, K., Yang, C.J., and Tan, W.2006. Aptamers evolved from live cells as effectivemolecular probes for cancer study. Proc. Natl. Acad. Sci.USA 103: 11838–11843.

Sharma, A., Arora, A., Grewal, P., Dhillon, V.K., andKumar, V. 2011. Recent innovations in delivery of arti�cialblood substitute: A review. Int. J. App. Pharm. 3(2): 1–5.

Si-Feng, S. 2004. Nanoparticles of biodegradable polymersfor new-concept chemotherapy. Expert Rev. Med. Devices1(1): 115–125.

Solaro, R., Chiellini, F., and Battisti, A. 2010. Targeteddelivery of protein drugs by nanocarriers. Materials 3:1928–1980.

Stacy, K.M. 2005. Therapeutic MAbs: Saving lives and makingmillions. The Scientist: 17–19.

Sun, Y.P., Meziani, M.J., Pathak, P., and Qu, L. 2005.Polymeric nanoparticles from rapid expansion ofsupercritical ¥uid solution. Chem. Eur. J. 11: 1366–1373.

Suri, S.S., Fenniri, H., and Singh, B. 2007.Nanotechnology-based drug delivery systems. J. Occup. Med.Toxicol. 2:16.

Takada, S., Uda, Y., Toguchi, H., and Ogawa, Y. 1995.Application of a spray drying technique in the productionof TRH-containing injectable sustained-releasemicroparticles of biodegradable polymers. PDA J. Pharm.Sci. Technol. 49(4): 180–184.

Tang, Z.W., Shangguan, D., Wang, K.M., Shi, H., Sefah, K,Mallikratchy, P., Chen, H.W., Li, Y., and Tan, W.H. 2007.Selection of aptamers for molecular recognition andcharacterization of cancer cells. Anal. Chem. 79:4900–4907.

Timko, B.P., Whitehead, K., Gao, W., Kohane, D.S.,Farokhzad, O., Anderson, D., and Langer, R. 2011. Advancesin drug delivery. Ann. Rev. Mater. Res. 41: 1–20.

Turek, C. and Gold, L. 1990. Systematic evolution ofligands by exponential enrichment—RNA ligands tobacteriophage-T4 DNA-polymerase. Science 249: 505–510.

Van Dijk, M.A. and van de Winkel, J.G. 2001. Human

Page 357: Polymeric Biomaterials - Taylor & Francis eBooks

antibodies as next generation therapeutics. Curr. Opin.Chem. Biol. 5(4): 368–374.

Vandervoort, J. and Ludwig, A. 2007. Ocular drug delivery:nanomedicine applications. Nanomedicine 2(11): 21.

Vasir, J.K., Reddy, M.K., and Labhasetwar, V.D. 2005.Nanosystems in drug targeting: Opportunities andchallenges. Curr. Nanosci. 1: 47–64.

Vauthier, C. and Bouchemal, K. 2008. Methods for thepreparation and manufacture of polymeric nanoparticles.Pharm. Res. 26(5): 1025–1058.

Veronese, F.M. and Caliceti, P. 2002. Drug deliverysystems. In: R. Barbucci, ed., Integrated BiomaterialsScience, pp. 833–873. Academic/Plenum Publishers, New York.

Veronese, F.M. and Pasut, G. 2005. PEGylation, successfulapproach to drug delivery. Drug Discov. Today 10(21):1451–1458.

Wagner, V., Dullaart, A., Bock, A.K., and Zweck, A. 2006.The emerging nanomedicine landscape. Nat. Biotechnol.24(10): 1211–1217.

Wang, S., Su, H., Chen, K., Armijo, A., Lin, W., Wang, Y.et al. 2009. A supramolecular approach for preparation ofsize-controlled nanoparticles. Angew. Chem. 121(24):4408–4412.

Wei, H., Zhang, X.Z., Zhou, Y., Cheng, S.X., and Zhuo, R.X.2006. Self-assembled thermoresponsive micelles ofpoly(N-isopropylacrylamide-b-methyl methacrylate).Biomaterials 27: 2028–2034.

Williams, A.S., Camilleri, J.P., Goodfellow, R.M., andWilliams, B.D. 1996. A single intra-articular injection ofliposomally conjugated methotrex- ate suppresses jointin¥ammation in rat antigen-induced arthritis. Br. J.Rheumatol. 35: 719–724.

Yeo, Y., Chen, A.U., Basaran, O.A., and Park, K. 2004.Solvent exchange method: A novel microencapsulationtechnique using dual microdispensers. Pharm. Res. 21(8):1419–1427.

Zambaux, M.F., Bonneaux, F., Gref, R., Dellacherie, E., andVigneron, C. 1999. Preparation and characterization ofprotein C-loaded PLA nanoparticles. J. Control. Release

Page 358: Polymeric Biomaterials - Taylor & Francis eBooks

60(2–3): 179–188.

Zhang, L. 2007. Co-delivery of hydrophobic and hydrophilicdrugs from nanoparticle–aptamer bioconjugates. Chem. Med.Chem. 2: 1268–1271.

Zhang, T., Brown, J., Oakley, R.J., and Faul, C.F.J. 2009.Towards functional nanostructures: Ionic selfassembly ofpolyoxometalates and surfactants. Curr. Opin. ColloidInterface Sci. 14(2): 62–70.

Zhang, Z. and Feng, S.S. 2006. In vitro investigation onpoly(lactide)-Tween 80 copolymer nanoparticles fabricatedby dialysis method for chemotherapy. Biomacromolecules 7:1139–1146.

Page 359: Polymeric Biomaterials - Taylor & Francis eBooks

18 Chapter 18. Polymeric MaterialsObtained through Biocatalysis

1. Kobayashi, S. and A. Makino, Enzymatic polymersynthesis: An opportunity for green polymer chemistry.Chemical Reviews, 2009. 109(11): 5288–5353.

2. Weijers, C.A.G.M., M.C.R. Franssen, and G.M. Visser,Glycosyltransferase-catalyzed synthesis of bioactiveoligosaccharides. Biotechnology Advances, 2008. 26(5):436–456.

3. van der Vlist, J. and K. Loos, Transferases in polymerchemistry, in Enzymatic Polymerization, A.R.A. Palmans andA. Heise, Eds. 2011, Springer, Berlin, Germany, pp. 21–54.

4. Öhrlein, R., Glycosyltransferase-catalyzed synthesis ofnon-natural oligosaccharides, in Biocatalysis: FromDiscovery to Application, W.-D. Fessner, Ed. 1999, SpringerVerlag, Berlin, Germany, pp. 227–254.

5. Glaser, L., The synthesis of cellulose in cell-freeextracts of Acetobacter xylinum. Journal of BiologicalChemistry, 1958. 232(2): 627–636.

6. Flowers, H.M. et al., Biosynthesis of cellulose in vitrofrom guanosine diphosphate d-glucose with enzymicpreparations from Phaseolus aureus and Lupinus albus.Journal of Biological Chemistry, 1969. 244(18): 4969–4974.

7. Murata, T. and T. Usui, Enzymatic synthesis ofoligosaccharides and neoglycoconjugates. Bioscience,Biotechnology, and Biochemistry, 2006. 70(5): 1049–1059.

8. Zhang, Y. et al., Glycopolymers: The future antiadhesiondrugs, in Polymer Biocatalysis and Biomaterials II, H.N.Cheng and R.A. Gross, Eds. 2008, American Chemical Society,Washington, DC, pp. 342–361.

9. Degu chi, K.S., H. Genzou, I. Masahito, N. Hiroaki, andN. Shinichiro, Oligosaccharide synthesizer. 2006. UnitedStates Patent 7070988.

10. Johnson, K.F.H., D.J. Bezila, D.E. Taylor, J.Simala-grant, and D. Rasko, Synthesis of oligosaccharides,glycolipids, and glycoproteins using bacterialglycosyltransferases. 2009, Neose Technologies, Inc.,Horsham, PA, Governors of the University of Alberta,Edmonton, Alberta, Canada. United States Patent 7524655.

Page 360: Polymeric Biomaterials - Taylor & Francis eBooks

11. Nilsson, I.K.G.L., Method for synthesis ofoligosaccharides. 1993, Procur AB, Lund, SE. United StatesPatent 5246840.

12. Roth, S.G., Apparatus for glycosyltransferase-catalyzedsaccharide synthesis. 2003, The Trustees of the Universityof Pennsylvania, Philadelphia, PA. United States Patent6544778.

13. Boons, G.-J. and K. Hale, Organic Synthesis withCarbohydrates. 2000, Shef�eld Academic Press, Shef�eld,U.K., Vol. xi, 336pp.

14. Wong, C.H. et al., Enzymes in organic synthesis:Application to the problems of carbohydrate recognition(part 2). Angewandte Chemie International Edition inEnglish, 1995. 34(5): 521–546.

15. Homann, A. and J. Seibel, Towards tailor-madeoligosaccharides—Chemo-enzymatic approaches by enzyme andsubstrate engineering. Applied Microbiology andBiotechnology, 2009. 83(2): 209–216.

16. Frey, P.A. and A.D. Hegeman, Enzymatic ReactionMechanisms. 2007, Oxford University Press, Oxford, U.K.,Vol. xviii, 831pp.

17. Palm, D. et al., The role of pyridoxal 5′-phosphate inglycogen phosphorylase catalysis. Biochemistry, 1990.29(5): 1099–1107.

18. Ohdan, K. et al., Phosphorylase coupling as a tool toconvert cellobiose into amylose. Journal of Biotechnology,2007. 127(3): 496–502.

19. Fujii, K. et al., Bioengineering and application ofnovel glucose polymers. Biocatalysis andBiotransformation, 2003. 21(4–5): 167–172(6).

20. Yanase, M., T. Takaha, and T. Kuriki, α-Glucanphosphorylase and its use in carbohydrate engineering.Journal of the Science of Food and Agriculture, 2006.86(11): 1631–1635.

21. Kadokawa, J.-I. and S. Kobayashi, Polymer synthesis byenzymatic catalysis. Current Opinion in Chemical Biology,2010. 14(2): 145–153.

22. Kaneko, Y., K. Beppu, and J.-I. Kadokawa, Amyloseselectively includes a speci�c range of molecular weights

Page 361: Polymeric Biomaterials - Taylor & Francis eBooks

in poly(tetrahydrofuran)s in vine-twining polymerization.Polymer Journal, 2009. 41(9): 792–796.

23. Kaneko, Y. et al., Selectivity and priority oninclusion of amylose toward guest polyethers and polyestersin vine-twining polymerization. Polymer Journal, 2009.41(4): 279–286.

24. van der Vlist, J. et al., Synthesis of branchedpolyglucans by the tandem action of potato phosphorylaseand Deinococcus geothermalis glycogen branching enzyme.Macromolecular Rapid Communications, 2008. 29(15):1293–1297.

25. Faijes, M. and A. Planas, In vitro synthesis ofarti�cial polysaccharides by glycosidases andglycosynthases. Carbohydrate Research, 2007. 342(12–13):1581–1594.

26. Plou, F.J., A.G.D. Segura, and A. Ballesteros,Application of glycosidases and transglycosidases in thesynthesis of oligosaccharides, in Industrial Enzymes, J.Polaina and A.P. MacCabe, Eds. 2007, Springer, Dordrecht,the Netherlands, pp. 141–157.

27. Koshland, D.E., Stereochemistry and the mechanism ofenzymatic reactions. Biological Reviews, 1953. 28(4):416–436.

28. Vocadlo, D.J. and G.J. Davies, Mechanistic insightsinto glycosidase chemistry. Current Opinion in ChemicalBiology, 2008. 12(5): 539–555.

29. Kobayashi, S. et al., Novel method for polysaccharidesynthesis using an enzyme: The �rst in vitro synthesis ofcellulose via a nonbiosynthetic path utilizing cellulase ascatalyst. Journal of the American Chemical Society, 1991.113(8): 3079–3084.

30. Kobayashi, S., Challenge of synthetic cellulose.Journal of Polymer Science Part A: Polymer Chemistry,2005. 43(4): 693–710.

31. Okada, G., D.S. Genghof, and E.J. Hehre, Thepredominantly nonhydrolytic action of alpha amylases on[alpha]-maltosyl ¥uoride. Carbohydrate Research, 1979.71(1): 287–298.

32. Kobayashi, S. and M. Ohmae, Enzymatic polymerizationto polysaccharides. Enzyme-Catalyzed Synthesis of

Page 362: Polymeric Biomaterials - Taylor & Francis eBooks

Polymers, 2006. 194: 159–210.

33. Linh ardt, R.J. and M. Weïwer, Synthesis ofglycosaminoglycans and their oligosaccharides inComprehensive Glycoscience, Volume 1, J. Kamerling et al.,Eds. 2007, Elsevier science, Oxford, U.K., pp. 713–745.

34. Plou, F. et al., Glucosyltransferases acting on starchor sucrose for the synthesis of oligosaccharides. CanadianJournal of Chemistry, 2002. 80(6): 743–752.

35. Monsan, P., M. Remaud-Siméon, and I. André,Transglucosidases as ef�cient tools for oligosaccharideand glucoconjugate synthesis. Current Opinion inMicrobiology, 2010. 13(3): 293–300.

36. Vasur, J. et al., Synthesis of cyclic β-glucan usinglaminarinase 16A glycosynthase mutant from thebasidiomycete Phanerochaete chrysosporium. Journal of theAmerican Chemical Society, 2010. 132(5): 1724–1730.

37. Williams, S.J. and S.G. Withers, Glycosyl ¥uorides inenzymatic reactions. Carbohydrate Research, 2000.327(1–2): 27–46.

38. Perugino, G. et al., Oligosaccharide synthesis byglycosynthases. Trends in Biotechnology, 2004. 22(1):31–37.

39. Hommalai, G. et al., Enzymatic synthesis ofcello-oligosaccharides by rice BGlu1 β-glucosidaseglycosynthase mutants. Glycobiology, 2007. 17(7): 744–753.

40. Shaikh, F. and S. Withers, Teaching old enzymes newtricks: Engineering and evolution of glycosidases andglycosyl transferases for improved glycoside synthesis.Biochemistry and Cell Biology, 2008. 86(2): 169–177.

41. Mackenzie, L.F. et al., Glycosynthases: Mutantglycosidases for oligosaccharide synthesis. Journal of theAmerican Chemical Society, 1998. 120(22): 5583–5584.

42. Drone, J. et al., Thermus thermophilus glycosynthasesfor the ef�cient synthesis of galactosyl andglucosyl-(1→3)-glycosides. European Journal of OrganicChemistry, 2005. 2005(10): 1977–1983.

43. Müllegger, J. et al., Thermostable glycosynthases andthioglycoligases derived from thermotoga maritimaβ-glucuronidase. ChemBioChem, 2006. 7(7): 1028–1030.

Page 363: Polymeric Biomaterials - Taylor & Francis eBooks

44. Wilkinson, S.M. et al., Escherichia coliglucuronylsynthase: An engineered enzyme for the synthesisof β-glucuronides. Organic Letters, 2008. 10(8):1585–1588.

45. Fort, S. et al., Highly ef�cient synthesis of β(1 →4)-oligo- and -polysaccharides using a mutant cellulase.Journal of the American Chemical Society, 2000. 122(23):5429–5437.

46. Hrmova, M. et al., Mutated barley (1,3)-β-d-glucanendohydrolases synthesize crystalline (1,3)-β-dglucans.Journal of Biological Chemistry, 2002. 277(33):30102–30111.

47. Faijes, M. et al., In vitro synthesis of a crystalline(1→3, 1→4)-beta-d-glucan by a mutated (1→3,1→4)-beta-d-glucanase from Bacillus. Biochemical Journal,2004. 380(Pt 3): 635.

48. Gullfot, F. et al., Functional characterization ofxyloglucan glycosynthases from GH7, GH12, and GH16scaffolds. Biomacromolecules, 2009. 10(7): 1782–1788.

49. Volova, T., Polyhydroxyalkanoates—Plastic Materials ofthe 21st Century: Production, Properties, Applications.2004, Nova Science Pub Inc., Hauppauge, New York.

50. Guisan, J., Immobilization of Enzymes and Cells. 2006,Humana Press Inc., Totowa, NJ.

51. Gross, R.A., M. Ganesh, and W. Lu, Enzyme-catalysisbreathes new life into polyester condensationpolymerizations. Trends in Biotechnology, 2010. 28(8):435–443.

52. Heise, A. and A. Palmans, Hydrolases in polymerchemistry: Chemoenzymatic approaches to polymericmaterials, in Enzymatic Polymerisation, A.R.A. Palmans andA. Heise, Eds. 2011, Springer, Berlin, Germany, pp.79–113.

53. Bencze, L.C. et al., CaL-B a highly selectivebiocatalyst for the kinetic resolution offurylbenzthiazole2-yl-ethanols and acetates. Tetrahedron:Asymmetry, 2010. 21(16): 1999–2004.

54. Bencze, L.C. et al., Synthesis of enantiomericallyenriched (R)- and (S)-benzofuranyl- and

Page 364: Polymeric Biomaterials - Taylor & Francis eBooks

benzo[b]thiophenyl-1,2-ethanediols via enantiopurecyanohydrins as intermediates. Tetrahedron: Asymmetry,2010. 21(4): 443–450.

55. Brem, J. et al., Lipase-catalyzed kinetic resolution ofracemic 1-(10-alkyl-10H-phenothiazin-3-yl)ethanols andtheir butanoates. Tetrahedron: Asymmetry, 2010. 21(16):1993–1998.

56. Mahapatro, A., A. Kumar, and R.A. Gross, Mild,solvent-free ω-hydroxy acid polycondensations catalyzed byCandida antarctica lipase B. Biomacromolecules, 2004. 5(1):62–68.

57. Mahapatro, A. et al., Solvent-free adipicacid/1,8-octanediol condensation polymerizations catalyzedby Candida antarctica lipase B. Macromolecules, 2003.37(1): 35–40.

58. Ajima, A. et al., Polymerization of 10-hydroxydecanoicacid in benzene with polyethylene glycol-modi�ed lipase.Biotechnology Letters, 1985. 7(5): 303–306.

59. Ebata, H. and S. Matsumura, Polyricinoleatecomposition and process for producing the same. 2007.United States Patent application 0270550 (2009).

60. Noll, O. and H. Ritter, Enzymes in polymer chemistry,9. Polymerizable oligoesters from cholic acid via lipasecatalyzed condensation reactions. Macromolecular RapidCommunications, 1996. 17(8): 553–557.

61. Berkane, C. et al., Lipase-catalyzed polyestersynthesis in organic medium. Study of ring–chainequilibrium. Macromolecules, 1997. 30(25): 7729–7734.

62. Okumura, S., M. Iw ai, and Y. Tominaga, Synthesis ofester oligomer by Aspergillus niger lipase. Agriculturaland Biological Chemistry, 1984. 48(11): 2805–2808.

63. Kobayashi, S., Lipase-catalyzed polyester synthesis—Agreen polymer chemistry. Proceedings of the Japan Academy,Series B, 2010. 86(4): 338–365.

64. Hilker, I. et al., Chiral polyesters by dynamic kineticresolution polymerization. Angewandte Chemie InternationalEdition, 2006. 45(13): 2130–2132.

65. Albertsson, A.-C. and I.K. Varma, Recent developmentsin ring opening polymerization of lactones for biomedical

Page 365: Polymeric Biomaterials - Taylor & Francis eBooks

applications. Biomacromolecules, 2003. 4(6): 1466–1486.

66. Knan i, D., A. Gutman, and D. Kohn, Enzymaticpolyesteri�cation in organic media. Enzyme-catalyzedsynthesis of linear polyesters. I. Condensationpolymerization of linear hydroxyesters. II. Ring-openingpolymerization of ε-caprolactone. Journal of PolymerScience Part A: Polymer Chemistry, 1993. 31(5): 1221–1232.

67. Varma, I.K. et al., Enzyme catalyzed synthesis ofpolyesters. Progress in Polymer Science, 2005. 30(10):949–981.

68. Uyama, H. and S. Kobayashi, Enzymic ring-openingpolymerization of lactones catalyzed by lipase. ChemistryLetters, 1993. 7: 1149–1150.

69. Kobayashi, S., Enzymatic ring-opening polymerizationof lactones by lipase catalyst: Mechanistic aspects.Macromolecular Symposia, 2006. 240(1): 178–185.

70. Córdova, A. et al., Lipase-catalysed formation ofmacrocycles by ring-opening polymerisation of[epsilon]-caprolactone. Polymer, 1998. 39(25): 6519–6524.

71. Matsumura, S., Enzymatic synthesis of polyesters viaring-opening polymerization, in Enzyme-Catalyzed Synthesisof Polymers, S. Kobayashi, H. Ritter, and D. Kaplan, Eds.2006, Springer, Berlin, Germany, pp. 95–132.

72. Kobayashi, S., Recent developments in lipase-catalyzedsynthesis of polyesters. Macromolecular RapidCommunications, 2009. 30(4–5): 237–266.

73. Nobes, G.A.R., R.J. Kazlauskas, and R.H. Marchessault,Lipase-catalyzed ring-opening polymerization of lactones:A novel route to poly(hydroxyalkanoate)s. Macromolecules,1996. 29(14): 4829–4833.

74. Shimada, K. et al., Poly-(L)-malic acid: A new proteaseinhibitor from Penicillium cyclopium. Biochemical andBiophysical Research Communications, 1969. 35(5): 619.

75. Liu, S. and A. Steinbüchel, Investigation ofpoly(β-l-malic acid) production by strains of Aureobasidiumpullulans. Applied Microbiology and Biotechnology, 1996.46(3): 273–278.

76. Matsumura, S. and S. Yoshikawa, Biodegradablepoly(carboxylic acid) design in Agricultural and Synthetic

Page 366: Polymeric Biomaterials - Taylor & Francis eBooks

Polymers, Biodegradability and Utilization, J.E. Glass andG. Swift, Eds. 1990, ACS Symposium Series, AmericanChemical Society, Washington, DC.

77. Küllmer, K. et al., Lipase-catalyzed ring-openingpolymerization of α-methyl-δ-valerolactone andα-methyl-ε-caprolactone. Macromolecular RapidCommunications, 1998. 19(2): 127–130.

78. Nishida, H. et al., Synthesis of metal-freepoly(1,4-dioxan-2-one) by enzyme-catalyzed ring-openingpolymerization. Journal of Polymer Science Part A: PolymerChemistry, 2000. 38(9): 1560–1567.

79. Kikuchi, H., H. Uyama, and S. Kobayashi,Lipase-catalyzed enantioselective copolymerization ofsubstituted lactones to optically active polyesters.Macromolecules, 2000. 33(24): 8971–8975.

80. Peeters, J.W. et al., Lipase-catalyzed ring-openingpolymerizations of 4-substituted ε-caprolactones:Mechanistic considerations. Macromolecules, 2005. 38(13):5587–5592.

81. van Buijtenen, J. et al., Switching from S- toR-selectivity in the Candida antarctica lipase B-catalyzedring-opening of ω-methylated lactones: Tuningpolymerizations by ring size. Journal of the AmericanChemical Society, 2007. 129(23): 7393–7398.

82. Veld, M.A.J. et al., Lactone size dependent reactivityin Candida antarctica lipase B: A molecular dynamics anddocking study. ChemBioChem, 2009. 10(8): 1330–1334.

83. Geus, M.D. et al., Insights into the initiationprocess of enzymatic ring-opening polymerization frommonofunctional alcohols using liquid chromatography undercritical conditions. Biomacromolecules, 2008. 9(2):752–757.

84. Uyama, H., S. Suda, and S. Kobayashi, Enzymaticsynthesis of terminal-functionalized polyesters byinitiator method. Acta Polymerica, 1998. 49(12): 700–703.

85. Takwa, M. et al., Lipase catalyzed HEMA initiatedring-opening polymerization: In situ formation of mixedpolyester methacrylates by transesteri�cation.Biomacromolecules, 2008. 9(2): 704–710.

86. Bisht, K.S. et al., Ethyl glucoside as a

Page 367: Polymeric Biomaterials - Taylor & Francis eBooks

multifunctional initiator for enzyme-catalyzedregioselective lactone ring-opening polymerization. Journalof the American Chemical Society, 1998. 120(7): 1363–1367.

87. Uyama, H., H. Kikuchi, and S. Kobayashi, Single-stepacylation of polyester terminals by enzymatic ring-openingpolymerization of 12-dodecanolide in the presence ofacyclic vinyl esters. Bulletin of the Chemical Society ofJapan, 1997. 70(7): 1691–1695.

88. Kobayashi, S., H. Kikuchi, and H. Uyama,Lipase-catalyzed ring-opening polymerization of1,3-dioxan2-one. Macromolecular Rapid communications, 1997.18(7): 575–579.

89. Matsumura, S., K. Tsukada, and K. Toshima,Enzyme-catalyzed ring-opening polymerization of1,3-dioxan-2-one to poly(trimethylene carbonate).Macromolecules, 1997. 30(10): 3122–3124.

90. Bisht, K.S. et al., Lipase-catalyzed ring-openingpolymerization of trimethylene carbonate † .Macromolecules, 1997. 30(25): 7735–7742.

91. He, F., Immobilized porcine pancreas lipase for polymersynthesis, in Polymer Biocatalysis and Biomaterials II,H.N. Cheng1 and R.A. Gross, Eds. 2008, American ChemicalSociety, Washington, DC, pp. 144–154.

92. Wu, R., T.F. Al-Azemi, and K.S. Bisht, Functionalizedpolycarbonate derived from tartaric acid: Enzymaticring-opening polymerization of a seven-membered cycliccarbonate. Biomacromolecules, 2008. 9(10): 2921–2928.

93. Albertsson, A.-C. and R.K. Srivastava, Recentdevelopments in enzyme-catalyzed ring-openingpolymerization. Advanced Drug Delivery Reviews, 2008.60(9): 1077–1093.

94. Reihmann, M. and H. Ritter, Synthesis of phenolpolymers using peroxidases, in Enzyme-Catalyzed Synthesisof Polymers, S. Kobayashi, H. Ritter, and D. Kaplan, Eds.2006, Springer, Berlin, Germany, pp. 1–49.

95. Valderrama, B., M. Ayala, and R. Vazquez-Duhalt,Suicide inactivation of peroxidases and the challenge ofengineering more robust enzymes. Chemistry & Biology, 2002.9(5): 555–565.

96. Dordick, J.S., M.A. Marletta, and A.M. Klibanov,

Page 368: Polymeric Biomaterials - Taylor & Francis eBooks

Polymerization of phenols catalyzed by peroxidase innonaqueous media. Biotechnology and Bioengineering, 1987.30(1): 31–36.

97. Montellano, P.R.O.D., Catalytic mechanisms on hemeperoxidases, in Biocatalysis Based on Heme Peroxidases, E.Torres and M. Ayala, Eds. 2010, Springer-Verlag, Berlin,Germany, pp. 79–105.

98. Kobayashi, S. et al., Regio- and chemo-selectivepolymerization of phenols catalyzed by oxidoreductaseenzyme and its model complexes. Macromolecular Symposia,2001. 175(1): 1–10.

99. Mita, N. et al., Precise structure control ofenzymatically synthesized polyphenols. Bulletin of theChemical Society of Japan, 2004. 77(8): 1523–1527.

100. Ayyagari, M., J. Akkara, and D. Kaplan,Solvent-enzyme-polymer interactions in the molecular-weightcontrol of poly(m-cresol) synthesized in nonaqueous mediain Enzymes in Polymer Synthesis, A.C. Society, Ed. 1998,ACS Symposium Series, American Chemical Society,Washington, DC.

101. Fukuoka, T. et al., Peroxidase-catalyzed oxidativepolymerization of 4,4′-dihydroxydiphenyl ether. Formationof α,ω-hydroxyoligo(1,4-phenylene oxide) through an unusualreaction pathway. Macromolecules, 2000. 33(24): 9152–9155.

102. Ikeda, R. et al., Enzymatic oxidative polymerizationof 4-hydroxybenzoic acid derivatives to poly(phenyleneoxide)s. Polymer International, 1998. 47(3): 295–301.

103. Mita, N. et al., Enzymatic oxidative polymerizationof phenol in an aqueous solution in the presence of acatalytic amount of cyclodextrin. MacromolecularBioscience, 2002. 2(3): 127–130.

104. Xu, Y.P., G.L. Huang, and Y.T. Yu, Kinetics ofphenolic polymerization catalyzed by peroxidase in organicmedia. Biotechnology and Bioengineering, 1995. 47(1):117–119.

105. Uyama, H., H. Kurioka, and S. Kobayashi, Novelbienzymatic catalysis system for oxidative polymerizationof phenols. Polymer Journal, 1997. 29(2): 190–192.

106. An, E.S. et al., Peroxidase-catalyzed copolymerizationof syringaldehyde and bisphenol A. Enzyme and Microbial

Page 369: Polymeric Biomaterials - Taylor & Francis eBooks

Technology, 2010. 46(3–4): 287–291.

107. Cañas, A.I. and S. Camarero, Laccases and theirnatural mediators: Biotechnological tools for sustainableeco-friendly processes. Biotechnology Advances, 2010.28(6): 694–705.

108. Yoshida, H., Chemistry of lacquer (urshi), part 1.Journal of Chemical Society, 1883. 43: 472–486.

109. Piontek, K., M. Antorini, and T. Choinowski, Crystalstructure of a laccase from the fungus Trametes versicolorat 1.90-Å resolution containing a full complement ofcoppers. Journal of Biological Chemistry, 2002. 277(40):37663.

110. Riva, S., Laccases: Blue enzymes for green chemistry.Trends in Biotechnology, 2006. 24(5): 219–226.

111. Kunamneni, A. et al., Engineering and applications offungal laccases for organic synthesis. Microbial CellFactories, 2008. 7(1): 32.

112. Chandra, R., C. Felby , and A. Ragauskas, Improvinglaccase-facilitated grafting of 4-hydroxybenzoic acid tohigh-kappa kraft pulps. Journal of Wood Chemistry andTechnology, 2005. 24(1): 69–81.

113. Parravano, G., Chain reactions induced by enzymicsystems. Journal of the American Chemical Society, 1951.73(1): 183–184.

114. Derango, R. et al., Enzyme-mediated polymerization ofacrylic monomers. Biotechnology Techniques, 1992. 6(6):523–526.

115. Ikeda, R. et al., Laccase-catalyzed polymerization ofacrylamide. Macromolecular Rapid Communications, 1998.19(8): 423–425.

116. Emer y, O. et al., Free-radical polymerization ofacrylamide by horseradish peroxidase-mediated initiation.Journal of Polymer Science Part A: Polymer Chemistry, 1997.35(15): 3331–3333.

117. Singh, A., D. Ma, and D.L. Kaplan, Enzyme-mediatedfree radical polymerization of styrene. Biomacromolecules,2000. 1(4): 592–596.

118. Durand, A. et al., Enzyme-mediated radical initiation

Page 370: Polymeric Biomaterials - Taylor & Francis eBooks

of acrylamide polymerization: Main characteristics ofmolecular weight control. Polymer, 2001. 42(13): 5515–5521.

119. Kalra, B. and R.A. Gross, Horseradish peroxidasemediated free radical polymerization of methylmethacrylate. Biomacromolecules, 2000. 1(3): 501–505.

120. Uyama, H. et al., Chemoselective polymerization of aphenol derivative having a methacryl group by peroxidasecatalyst. Macromolecules, 1998. 31(2): 554–556.

Page 371: Polymeric Biomaterials - Taylor & Francis eBooks

19 Chapter 19. Polymer-Based ColloidalAggregates as a New Class of DrugDelivery Systems

1. H. Ringsdorf, Structure and properties ofpharmacologically active polymers, J. Polym. Sci. Polym.Symp., 51, 1975, 135–153.

2. E.W. Neuse, Synthetic polymers as drug deliveryvehicles in medicine, Metal Based Drugs, 2008, 1–19; doi:10.1155/2008/469531.

3. D.D. Lasic, Liposomes in Gene Delivery, Boca Raton, FL,CRC Press, 1997.

4. I. Brigger, C. Dubernet, P. Couvreur, Nanoparticles incancer therapy and diagnosis, Adv. Drug. Deliv. Rev., 54,2002, 631–651.

5. K. Cho, X. Wang, Z.C. Chen, D.M. Shin, Therapeuticnanoparticles for drug delivery in cancer, Clin. CancerRes., 14, 2008, 1310–1316.

6. M. Nahar, T. Dutta, S. Murugesan, A. Asthana, D. Mishra,V. Rajkumar, M. Tare, S. Saraf, N.K. Jain, Functionalpolymeric nanoparticles: an ef�cient and promising tool foractive delivery of bioactives, Crit. Rev. Ther. Drug.Carr. Syst., 23, 2006, 259–318.

7. O. Pillai, R. Panchagnula, Polymers in drug delivery,Curr. Opin. Chem. Biol., 5, 2001, 447–451.

8. B. Sumer, J. Gao, Theranostic nanomedicine for cancer,Nanomedicine, 3, 2008, 137–140.

9. K. Kostarelos, Rational design and engineering ofdelivery systems for therapeutics: biomedical exercises incolloid and surface science, Adv. Colloid Interface Sci.,106, 2003, 147–168.

10. H. Bader, H. Ringsdorf, B. Schmidt, Water solublepolymers in medicine, Angew. Makromol. Chem., 123/124,1984, 457–485.

11. E. Blanco, C.W. Kessinger, B.D. Sumer, J. Gao,Multifunctional micellar nanomedicine for cancer therapy,Exp. Biol. Med., 234, 2009, 123–131.

12. K. Kataoka, A. Harada, Y. Nagasaki, Block copolymermicelles for drug delivery: design characterization and

Page 372: Polymeric Biomaterials - Taylor & Francis eBooks

biological signi�cance, Adv. Drug Deliver Rev., 47, 2001,113–131.

13. A. Harada, H. Togawa, K. Kataoka, Physico-chemicalproperties and nuclease resistance ofantisense-oligonucleotides entrapped in the core of polyioncomplex micelles composed of poly(ethylene glycol) -poly(L-lysine) block copolymers, Eur. J. Pharm. Sci., 13,2001, 35–42.

14. S. Zuzzi, C. Cametti, G. Onori, S. Sennato, S. Tacchi,Polyion-induced cluster formation in different colloidalpolyparticle aqueous suspensions, Langmuir, 25, 2009,5910–5917.

15. M. Yokoyama, M. Miyauchi, N. Yamada, T. Okano, Y.Sakurai, K. Kataoka, Characterization and antcanceractivity of the micelle-forming polymeric anticancer drugadriamycin-conjugated poly(ethylene glycol)-poly(asparticacid) block copolymer, Cancer Res., 50, 1990, 1693–1700.

16. M. Yokoyama, T. Okano, Y. Sakurai, H. Ekimoto, C.Shibazaki, K. Kataoka, Toxicity and antitumor activityagainst solid tumors of micelle- forming polymericanticancer drug and its extremely long circulation inblood, Cancer Res., 51, 1991, 3229–3236.

17. V.P. T orchilin, A.N. Lukyanov, Z. Gao, B.Papahadiopoulos -Stenberg, Immunomicelles: targetedpharmaceutical carriers for poorly soluble drugs, Proc.Natl. Acad. Sci., USA, 100, 2003, 6039–6044.

18. V.P. Torchilin, PEG-based micelles as carriers ofcontrast agents for different imaging modalities,Adv. Drug Deliv. Rev., 54, 2002, 235–252.

19. E. Nakamura, K. Makino, T. Okano, T. Yamamoto, M.Yokoyama, A polymeric micelle MRI contrast agent withchangeable relaxivity, J. Control. Release, 114, 2006,325–333.

20. G. Zhang, R. Zhang, X. Wen, L. Li, C. Li, Micellesbased on biodegradable poly(L-glutamic acid)-b-polylactide with paramagnetic Gd ions chelated to theshell layer as a potenntial nanoscale MRI-visible delyverysystem, Biomacromolecules, 9, 2008, 36–42.

21. N. Nasongka, E. Bey, J. Ren, H. Ai, C. Khemtong, J.S.Guthi, S.F. Chin, A.D. Sherry, D.A. Boothman, J. Gao,Multifunctional polymeric micelles as cancer- targeted

Page 373: Polymeric Biomaterials - Taylor & Francis eBooks

MRI-ultrasensitive drug delivery system, Nano Lett., 6,2006, 2427–2430.

22. X.-B. Xiong, A. Mahmud, H. Uludag, A. Lavasanifar,Multifuctional polymeric micelles for enhancedintracellular delivery of Doxorubicin to metastatic cancercells, Pharm. Res., 25, 2008, 2555–2566.

23. Y. Sayed-Sweet, D.M. Hedstrand, R. Spinder, D.A.Tomalia, Hydrophobically modi�ed poly(amidoamine) (PAMAM)dendrimers:their properties at the air-water interface anduse as nanoscopic container molecules, J. Mater. Chem., 7,1997, 1199–1205.

24. Y. C hen, Z. Shen, H. Frey, J. Perez-Prieto, S.-E.Stiriba, Synergistic assembly of hyperbranchedpolyethylenimine and fatty acids leading to unusualsupramolecular nanocapsules, Chem. Commun., 48, 2005,755–757.

25. M.C. Jones, H. Gao, J.C. Leroux, Reverse polymericmicelles for pharmaceutical applications, J. Control.Release, 132, 2008, 208–215.

26. L. Cheng, D. Cao, Effect of tail architecture onself-assembly of amphiphiles for polymeric micelles,Langmuir, 25, 2009, 2749–2756.

27. Y. Matsumura, Poly(amino acid) micelle nanocarriers inpreclinical and clinical studies, Adv. Drug Deliv. Rev.,60, 2008, 899–914.

28. H. Chou, W. Arkeley, H. Safran, S. Graziano, C. Chung,T. Williams, B. Cole, T. Kennedy, Multiinstutional phaseII trial of paclitaxel, carboplatin and concurrentradiation therapy for locally advanced non-smallcell lungcancer, J. Clin. Oncol., 16, 1998, 3316–3322.

29. H. Uchino, Y. Matsumura, T. Negishi, F. Koizumi, T.Hayashi, T. Honda, Cisplatin-incorporating polymericmicelles (NC-6004) can reduce nephrotoxicity andneurotoxicity of cisplatin in rats, Br. J. Cancer, 93,2005, 678–687.

30. X.W. Wei, C.Y.Gong, S. Shi, S.Z. Fu, K. Men, S. Zeng,X. L. Zeng et al. Self-assembled Honokiolloaded micellesbased on poly(ε-caprolactone)-poly(ethyleneglycol)-poly(ε-caprolactone) copolymer, Int. J. Pharm.,369, 2009, 170–175.

Page 374: Polymeric Biomaterials - Taylor & Francis eBooks

31. H. Liu, C. Zang, A. Emde, M.D. Planas-Silva, M. Roshe,A. Kuhnl, C.O. Schulz, E. Elstner, K. Possinger, J.Eucker, Anti-tumor effect of Honokiol alone and incombination with other anticancer agents in breast cancer,Eur. J. Pharm., 591, 2008, 43–51.

32. S.E. Yang, M.T. Hsieh, T.H. Tsai, S.L. Hsu, Downmodulation of Bcl-XL, release of cytochrome c andsequential activation opases during Honokiol-inducedapoptosis in human squamous lung cancer CH27 cells,Biochem. Pharmacol., 63, 2002, 1641–1651.

33. W.F. F ong, K.W. Tse Anfernee, K.H. Poon, C. Wang,Magnolon and Honokiol enhance HL-60 human leukemia celldifferentiation induced by 1.25-dihydroxyvitamin D3 andretinoic acid, Int. J. Biochem. Cell. Biol., 37, 2005,427–441.

34. B.M. Discher, Y .Y. Won, D.S. Ege, J.C. Lee, F.S.Bates, D.E. Discher, D.A. Hammer, Polymerosomes: toughvesicles made from diblock copolymers, Science, 284, 1999,1143–1146.

35. F. Meng, Z. Zhong, J. Feijen, Stimuli-responsivepolymerosomes for programmed drug delivery,Biomacromolecules, 10, 2009, 197–209.

36. H. Shen, A. Eisenberg, Morphological phase diagram fora ternary system of block copolymer PS310-bPAA52/H 2 O, J.Phys. Chem. B, 103, 1999, 9473–9487.

37. M. Antonietti, S. Foster, Vesicles and liposomes. Aself assembly principle beyond lipids, Adv. Mater., 15,2003, 1323–1333.

38. J.C.M. Lee, H. Bermudez, B.M. Discher, M.A.Won, Y.-Y.Bates, D.E. Discher, Preparation, stability and in vitroperformance of vesicles made with diblock copolymers,Biotechnol. Bioeng., 73, 2001, 135–145.

39. E. Lorenceau, A.S. Utada, D.R. Link, G. Cristobal, M.Joanicott, D.A. Weitz, Generation of polymerosomes fromdouble emulsions, Langmuir, 21, 2005, 9138–9186.

40. F. Ahmed, E.D. Discher, Self-poroting polymerosomes ofPEG-PLA and PEG-PCL: hydrolysis-triggered controlledrelease vesicles, J. Control. Release, 96, 2004, 37–53.

41. C. Nardin, T. Hirt, J. Leukel, W. Meier, PolymerizedABA triblock copolymer vesicles, Langmuir, 16, 2000,

Page 375: Polymeric Biomaterials - Taylor & Francis eBooks

1035–1041.

42. S. Rameez, H. Alosta, A.F. Palmer, Biocampatible andbiodegradable polymerosomes encapsulated hemoglobin: apotential oxygen carrier, Bioconj. Chem., 19, 2008,1025–1032.

43. L. Ayres, P. Hans, J. Adams, D.W.P.M. Loewik, J.C.M.van Hest, Peptide-polymer vesicles prepared by atomtransfer radical polymerization, J. Polym. Sci. Part APolym. Chem., 43, 2005, 6355–6366.

44. J. Ding, G. Liu, Water soluble hollow nanospheres aspotential drug carriers, J. Phys. Chem. B, 102, 1998,6107–6113.

45. H. Ringsdorf, B. Schlarb, J. Venzmer, Molekularearchitektur und funktion von polymeren orientiertensystemen, J. Angew. Chem., 100, 1988, 117–121.

46. E. Donath, G.B. Sukhoruk ov, F. Caruso, S.A. Davis, H.Möhwald, Novel hollow polymer shells by colloid-templatedassembly of polyelectrolytes, Angew. Chem. Int. Ed. Engl.,37, 1998, 2202–2205.

47. H. Huang, E.E. Remsen, T. Kowalewski, K.L. Wooley,Nanocages derived from shell cross-linked micelletemplates, J. Am. Chem. Soc., 121, 1999, 3805–3806.

48. O. Rathore, D.Y. Sogah, Self-assembly of beta-sheetsinto nanostructures by poly(alanine) segments incorporatedin multiblock copolymers inspired by spider silk, J. Am.Chem. Soc., 123, 2001, 5231–5239.

49. F. Checot, S. Lecommandoux, Y. Gnanou, H.A. Klok,Water-soluble stimuli-responsive vesicles frompeptide-based diblock copolymers, Angew. Chem. Int. Ed.,41, 2001, 1339–1343.

50. S. Kimura, T. Kidchob, Y. Imanishi, Controlled releasefrom amphiphilic polymer aggregates, Polym. Adv. Technol.,12, 2001, 85–95.

51. T. Kidchob, S. Kimura, Y. Imanishi, Thermoresponsiverelease from poly(L-lactic acid) microcapsules containingpoly(N-isopropylacrylamide) gel, J. Chem. Soc. PerkinTrans., 2, 1997, 2195–2199.

52. M. van Dijk, T.H. Smith, F.M. Arnoe, E.H. Burger, P.I.Wuisman, The use of poly-L-lactic acid in lumbar interbody

Page 376: Polymeric Biomaterials - Taylor & Francis eBooks

cages: design and biomechanical evaluation in vitro, Eur.Spine J., 12, 2003, 34–42.

53. A.G. Anderopoulos, E.C. Hatzi, M. Doxastakis,Controlled release systems based on poly(lactic acid). Anin vitro and in vivo study, J. Mater. Sci. Mater. Med., 11,2000, 393–397.

54. Y.M. Lin, A.R. Boccaccini, J.M. Polak, A.E. Bishop, V.Maquet, Biocompatibility of poly-dl-lactic acid (pdlla)for lung tissue engineering, J. Biomater. Appl., 21, 2006,109–118.

55. R.Langer, J.P. Vacanti, Tissue engineering, Science,260, 1993, 920–926.

56. J. Klompmaker, H.W.B. Jansen, R.P.H. Verth, J.H.deGroot, A.J. Nijenhuius, J.A. Pennings, Porous polymerimplant for repair of meniscal lesions: a preliminary studyin dogs, Biomaterials, 12, 1991, 810–816.

57. C. Berkland, M.J. Kipper, B. Barasimhan, K. Kim, D.W.Pack, Microsphere size, precipitation kinetics and drugdistribution control drug release from biodegradablepolyanhydride microspheres, J. Control. Release, 94, 2004,129–141.

58. M. He, Z. Zhao, L. Yin, C. Tang, C. Yin, Hyaluronicacid coated poly(butyl cyanoacrylate) nanoparticles asanticancer drug carriers, Int. J. Pharm., 373, 2009,165–173.

59. F. Kratz, Albumin as a drug carrier: design ofprodrugs, drug conjugates and nanoparticles, J. Control.Release, 132, 2008, 171–183.

60. N. Desai, V. Trieu, Z. Yao, L. Louie, S. Ci, A. Yang,C. Tao, T. De, B. Beals, D. Dykes, P. Noker, R. Yao, E.Labao, M. Hawkins, P. Soon-Shiong, Increased antitumoractivity, intratumor paclitaxel concentration andendothelial cell transport of cremophor-free, albumin-boundpaclitaxel, ABI-007, compared with cremophor-basedpaclitaxel, Clin. Cancer Res., 12, 2006, 1317–1324.

61. M. Hamidi, A. Azadi, P. Ra�ei, Hydrogel nanoparticlesin drug delivery, Adv. Drug Deliv. Rev., 60, 2008,1638–1649.

62. M.N. Mason, A.T. Metters, C.N. Bowman, K.S.Anseth,Predicting controlled release behavior of degradable

Page 377: Polymeric Biomaterials - Taylor & Francis eBooks

PLA-b-PEG-b-PLA hydrogels, Macromolecules, 34, 2001,4630–4635.

63. G.M. Cruise, D.S. Scharp, J.A. Hubbell,Characterization of permeability and network structure ofinterfacially photopolymerized poly(ethylene glycol)diacrylate hydrogels, Biomaterials, 19, 1998, 1287–1294.

64. T. Coviello, P. Matricardi, C. Marianecci, F. Alhaique,Polysaccharide hydrogels for modi�ed release formulations,J. Control. Release, 119, 2007, 5–24.

65. C.C. Lin, A.T. Metters, Hydrogels in controlled releaseformulation: network, design and mathematical modeling,Adv. Drug. Deliv. Rev., 58, 2006, 1379–1408.

66. N.A. Peppas, P. Bures, W. Leobandung, H. Ichikawa,Hydrogel in pharmaceutical formulation, Eur. J. Pharm.Biopharm., 50, 2000, 27–46.

67. P. Bawa, V. Pillay, Y.E. Choonara, C. du Toit,Stimuli-responsive polymers and their applications in drugdelivery, Biomed. Mater., 4, 2009, 022001–022015.

68. K.S. Soppimath, T.M. Aminabhavi, A.M. Dave, S.G.Kumbar, W.E. Rudzinski, Stimulus-responsive “smart”hydrogels as novel drug delivery systems, Drug. Dev. Ind.Pharm., 28, 2002, 957–974.

69. L.H. Gan, D.G. Roshan, X.J. Loh, Y.Y. Gan, New stimuliresponsive copolymers and N- acryloyl -N′- alkylpiperazine and methyl methacrylate and their hydrogels,Polymer, 42, 2001, 65–69.

70. E.S. Gil, S.A. Hudson, Stimuli-responsive polymers andtheir bioconjugates, Prog. Polym. Sci., 29, 2004,1173–1222.

71. T. Farhan, O. Azzaroni, W.T.S. Huck, AFM study ofcationically charged polymer brushes: switching betweensoft and hard matter, Soft Matter, 1, 2005, 66–68.

72. S.S. Pennadam, K. Firman, C. Alexander, D.G. Gorecki,Protein-polymer nano-machines. Towards synthetic control ofbiological processes, J. Nanobiotechnol., 2, 2004, 8–22.

73. Y. Qiu, K. Park, Environment-sensitive hydrogels fordrug delivery, Adv. Drug. Deliv. Rev., 53, 2001, 321–339.

74. T. Aoki, M. Muramatsu, A. Nishina, K. Sanui, N. Ogata,

Page 378: Polymeric Biomaterials - Taylor & Francis eBooks

Thermosensityvity of optically active hydrogelsconstructed with N-(1)-(hydroxymethyl)propylmethacrylamide, Macromol. Biosci., 4, 2004, 943–949.

75. C.-L. Lo, S.-J. Lin, H.C. Tsai, W.H. Chan, C.H. Tsai,C.D.H. Cheng, G.H. Hsiue, Mixed micelle systems formedfrom critical micellar concentration andtemperature-sensitive diblock copolymers for doxorubicindelivery, Biomaterials, 30, 2009, 3961–3970.

76. E.E. Carpenter, Iron nanoparticles as potentialmagnetic carriers, J. Ma gn. Mater., 225, 2001, 17–20.

77. A. Mamada, T. Tanaka, D. Kungwachakun, M. Irie,Photo-induced phase transition of gels, Macromolecules,23, 1990, 1517–1519.

78. K. Sumaru, M. Kameda, T. Kanamori, T. Shinbo,Characteristic phase transition of aqueous solutions ofpoly(N-isopropylacrylamide) functionalized withsphirobenzopyran, Macromolecules, 37, 2004, 4949–4955.

79. K. Nakamae, T. Nizuka, T. Miyata, M. Furukawa, T.Nishino, K. Kato, T. Inoue, A.S. Hoffman, Lysozyme loadingand release from hydrogels carrying pendant phosphategroups, J. Biomater. Sci. Polym. Ed., 9, 1997, 43–53.

80. L.C. Dong, A.S. Hof fman, A novel approach forpreparation of pH-sensitive hydrogels for enteric drugdelivery, J. Control. Release, 15, 1991, 141–152.

81. K. Nakamae, T. Nizuka, T. Miyata, T. Uragami, A.S.Hoffman, Y. Kanzaki, Advanced Biomaterials in BiomedicalEngineering and Drug Delivery Systems, N. Ogata, S.W.Kim,J.Feijen, T.Okano Eds., Springer-Verlag, Tokyo, Japan1996.

82. C. Alexander, K.M. Shakesheff, Responsive polymers atthe biology/materials science interface, Adv. Mater., 18,2006, 3321–3328.

83. D. Le Garrec, J. Taillefer, J.E. van Lier, V. Lenaerts,J.-C. Leroux, Optimizing pH-responsive polymeric micellesfor drug delivery in a cancer photodynamic therapy model,J. Drug Target., 10, 2002, 420–437.

84. G.-D. Zang, N. Nishiyama, A. Harada, D.-L. Jiang, T.Aida, K. Kataoka, pH-sensitive assembly of highharvestingdendrimer zinc porphyrin bearing peripheral groups ofprimary amine poly(ethylene glycol)b-poly(aspartic acid) in

Page 379: Polymeric Biomaterials - Taylor & Francis eBooks

aqueous solution, Macromolecules, 36, 2003, 1304–1309.

85. C.F. van Nostrum, Polymeric micelles to deliverphotosentisizers for photodynamic therapy, Adv. DrugDeliv. Rev., 56, 2004, 9–16.

86. Y.Kakizawa, K. Kataoka, Block copolymer micelles fordelivery of gene and related compounds, Adv. Drug Deliv.Rev., 54, 2002, 203–222.

87. B. Schmaljohann, Thermo- and pH-responsive polymers indrug delivery, Adv. Drug Deliv. Res., 58, 2006, 1655–1670.

88. P. Gupta, K. Vermani, S. Garg, Hydrogels: fromcontrolled release to pH-responsive drug delivery, DrugDiscov. Today, 7, 2002, 569–579.

89. A. Serres, M. Baudys, S.W. Kim, Temperature andpH-sensitive polymers for human calcitonin delivery,Pharm. Res., 13, 1996, 196–201.

90. Y.H. Kim, Y.H. Bae, S.W. Kim, pH-temperature sensitivepolymers for macromolecular drug loading and release, J.Control. Release, 28, 1994, 143–152.

91. K. Hada, M. Porkov, M. Shamis, R.A. Lerner, C.F.Barbas, D. Shabat, Single triggered trimeric prodrugs,Angew. Chem. Int. Ed., 44, 2005, 716–720.

92. T. Miyata, J. Jikihara, K. Nakamae, A.S. Hoffman,Preparation of reversible glucose-responsive hydrogels bycovalent immobilization of lecitin in polymeric networkshaving pendant glucose, J. Biomater. Sci. Polym. Ed., 15,2004, 1085–1098.

93. C.M. Dorski, F.J. Doyle, N.A. Peppas, Preparation andcharacterization of glucose sensitive P(MAA-g-EG)hydrogels, Polym. Mater. Sci. Eng. Proceed., 76, 1997,281–282.

Page 380: Polymeric Biomaterials - Taylor & Francis eBooks

20 Chapter 20. Photoresponsive Polymersfor Control of Cell Bioassay Systems

Akiyama, H. and Tamaoki, N. 2004. Polymers derived fromN-isopropylacrylamide and azobenzene- containingacrylamides: Photoresponsive af�nity to water. J. Polym.Sci. A Polym. Chem. 42: 5200.

Albertsson, P.-A. 1958. Partition of proteins in liquidpolymer–polymer two-phase systems. Nature 182: 709.

Andersson, H. and van den Berg, A. 2004. Lab-on-Chips forCellomics, Kluwer Academic Publishers, Dordrecht, theNetherlands. Cell culture chamber Patterned culture systemfabricated on photoresponsive substrate Drug supply atarbitrary amount and timing Photoresponsive hydrogel LightDrug A Drug B Drug C

FIGURE 20.22 Construction of integrated cell bioassaysystem fully controlled by light irradiation.

Andersson, E. and Hahn-Hagerdal, B. 1990. Bioconversion inaqueous two-phase systems. Enzyme Microb. Technol. 12:242.

Ashkin, A. 1970. Acceleration and trapping of particles byradiation pressure. Phys. Rev. Lett. 24: 156.

Ashkin, A. 1992. Forces of a single-beam gradient lasertrap on a dielectric sphere in the ray optics regime.Biophys. J. 61: 569.

Ashkin, A. and Dziedzic, J. M. 1989a. Internal cellmanipulation using infrared laser traps. Proc. Natl. Acad.Sci. USA 86: 7914.

Ashkin, A. and Dziedzic, J. M. 1989b. Optical trapping andmanipulation of single living cells using infra-red laserbeams. Ber. Bunsenges. Phys. Chem. 93: 254.

Caprioli, L., Mele, E., Angilè, F. E. et al. 2007.Photocontrolled wettability changes in polymermicrochannels doped with photochromic molecules. Appl.Phys. Lett. 91: 113113.

Chee, M., Yang, R., Hubbel, E. et al. 1996. Accessinggenetic information with high-density DNA arrays. Science274: 610.

Chen, G., Svec, F., and Knapp, D. R. 2008. Light-actuated

Page 381: Polymeric Biomaterials - Taylor & Francis eBooks

high pressure-resisting microvalve for on-chip ¥ow controlbased on thermo-responsive nanostructured polymer. Lab Chip8: 1198.

Desponds, A. and Freitag, R. 2003. Synthesis andcharacterization of photoresponsive N-isopropylacrylamidecotelomers. Langmuir 19: 6261.

Edahiro, J., Sumaru, K., Tada, Y., Ohi, K., Takagi, T.,Kameda, M., Shinbo, T., Kanamori, T., and Yoshimi, Y.2005a. In-situ control of cell adhesion usingphotoresponsive culture surface. Biomacromolecules 6: 970.

Edahiro, J., Sumaru, K., Takagi, T., Kanamori, T., andShinbo, T. 2006. Photoresponse of an aqueous two- phasesystem composed of photochromic dextran. Langmuir 22: 5224.

Edahiro, J., Sumaru, K., Takagi, T., Shinbo, T., Kanamori,T., and Sudoh, M. 2008. Analysis of photo-inducedhydration of a photochromicpoly(N-isopropylacrylamide)—Spiropyran copolymer thin layerby quartz crystal microbalance. Eur. Polym. J. 44: 300.

Edahiro, J., Yamada, M., Seike, S., Kakigi, Y., Miyanaga,K., Nakamura, M., Kanamori, T., and Seki, M. 2005b.Separation of cultured strawberry cells producinganthocyanins in aqueous two-phase system. J. Biosci.Bioeng. 100: 449.

Fissi, A., Pieroni, O., Balestreri, E., and Amato, C. 1996.Photoresponsive polypeptides. photomodulation of themacromolecular structure in poly(N-((phenylazophenyl)sulfonyl)-l-lysine). Macromolecules 29:4680.

Fodor, S. P., Read, J. L., Pirrung, M. C., Stryer, L., Lu,A. T., and Solas, D. 1991. Light-directed, spatiallyaddressable parallel chemical synthesis. Science 251: 767.

Fujita, K., Kobayashi, M., Kawano, S., Yamanaka, M., andKawata, S. 2007. High-resolution confocal microscopy bysaturated excitation of ¥uorescence. Phys. Rev. Lett. 99:228105.

Fukuda, J. and Nakazawa, K. 2005. Orderly arrangement ofhepatocyte spheroids on a microfabricated chip. TissueEng. 11: 1254.

Fukuda, J., Sakai, Y., and Nakazawa, K. 2006. Novelhepatocyte culture system developed using microfabrication

Page 382: Polymeric Biomaterials - Taylor & Francis eBooks

and collagen/PEG microcantact printing. Biomaterials 27:1061.

Garcia, A., Marquez, M., Cai, T. et al. 2007. Photo-,thermally, and pH-responsive microgels. Langmuir 23: 224.

Goodman, M. and Falxa, M. L. 1967. Conformational aspectsof polypeptide structure. XXIII. Photoisomerization ofazoaromatic polypeptides. J. Am. Chem. Soc. 89: 3863.

Guan, Y., Lilley, T. H., Treffry, T. E., Zhou, C.-L., andWilkinson, P. B. 1996. Use of aqueous two-phase systems inthe puri�cation of human interferon-alphal from recombinantE. coli. Enzyme Microb. Technol. 19: 446.

Hattori, A., Moriguchi, H., Ishiwata, S., and Yasuda, K.2004. A 1480-nm/1064-nm dual wavelength photothermal echingsystem for non-contact three-dimensional microstructuregeneration into agar microculture chip. Sens. Actuat. BChem. 100: 455.

Hosokawa, Y., Takabayashi, J., Shukunami, C., Hiraki, Y.,and Masuhara, H. 2004. Nondestructive isolation of singlecultured animal cells by femtosecond laser- inducedshockwave. Appl. Phys. A 79: 795.

Hua, Z., Pal, R., Srivannavit, O., Burns, M. A., andGulari, E. 2008. A light writable micro¥uidic ¥ash memory:Optically addressed actuator array with latched operationfor micro¥uidic applications. Lab Chip 8: 488.

Hui, E. E. and Bhatia, S. N. 2007. Microscale control ofcell contact and spacing via three-component surfacepatterning. Langmuir 23: 4103.

Irie, M. and Hosoda, M. 1985. Photoresponsive polymers.Reversible solution viscosity change of poly(N,Ndimethylacrylamide) with pendant triphenylmethaneleucohydroxide residues in methanol. Makromol. Chem. RapidCommun. 6: 533.

Irie, M., Iwayanagi, T., and Taniguchi, Y. 1985.Photoresponsive polymers. 7. Reversible solubility changeof polystyrene having pendant spirobenzopyran groups andits application to photoresists. Macromolecules 18: 2418.

Irie, M. and Kunwatchakun, D. 1986. Photoresponsivepolymers. 8. Reversible photostimulated dilation ofpolyacrylamide gels having triphenylmethane leucoderivatives. Macromolecules 19: 2476.

Page 383: Polymeric Biomaterials - Taylor & Francis eBooks

Irie, M., Menju, A., and Hayashi, K. 1979. Photoresponsivepolymers. Reversible solution viscosity change of poly(methyl methacrylate) having spirobenzopyran side groups.Macromolecules 12: 1176.

Ishihara, K., Okazaki, A., Negishi, N. et al. 1982.Photo-induced change in wettability and binding ability ofazoaromatic polymers. J. Appl. Polym. Sci. 27: 239.

Ito, Y., Chen, G., Guan, Y., and Imanishi, Y. 1997.Patterned immobilization of thermoresponsive polymer.Langmuir 13: 2756.

Iwanaga, S., Smith, N., Fujita, K., Kawata, S., andNakamura, O. 2006. Slow Ca 2+ wave stimulation using lowrepetition rate femtosecond pulsed irradiation. Opt.Express 14: 717.

Kawata, S., Ono, A., and Verma, P. 2008. Subwavelengthcolour imaging with a metallic nanolens Nat. Photon. 2:438.

Khetani, S. R. and Bhatia, S. N. 2008. Microscale cultureof human liver cells for drug development. Nat.Biotechnol. 26: 120.

Kiessling, L. L. and Cairo, C.W. 2003. Hitting the sweetspot. Nat. Biotechnol. 20: 234.

Kikuchi, K., Sumaru, K., Edahiro, J. et al. 2009. Stepwiseassembly of micropatterned co-cultures usingphotoresponsive culture surfaces and its application tohepatic tissue arrays. Biotechnol. Bioeng. 1003: 552.

Kimura, K., Kaneshige, M., and Yokoyama, M. 1995. Cationcomplexation, photochromism, and photoresponsiveion-conducting behavior of crowned malachite greenleuconitrile. Chem. Mater. 7: 945.

Kitamura, K., Tokunaga, M., Iwane, A. H., and Yanagida, T.1999. A single myosin head moves along an actin �lamentwith regular steps of 5.3 nanometres. Nature 397: 129.

Kodzwa, M. G., Staben, M. E., and Rethwisch, D. G. 1999.Photoresponsive control of ion -exchange in leucohydroxidecontaining hydrogel membranes. J. Membr. Sci. 158: 85.

Kono, K., Nishihara, Y., and Takagishi, T. 1995.Photoresponsive permeability of polyelectrolyte complex

Page 384: Polymeric Biomaterials - Taylor & Francis eBooks

capsule membrane containing triphenylmethane leucohydroxideresidues. J. Appl. Poly. Sci. 56: 707.

Kröger, R., Menzel, H., and Hallensleben, M. L. 1994. Lightcontrolled solubility change of polymers: Copolymers ofN,N-dimethylacrylamide and 4-phenylazophenyl acrylate.Macromol. Chem. Phys. 195: 2291.

Kungwatchakun, D. and Irie, M. 1988. Photoresponsivepolymers. Photocontrol of phase separation temperature ofaqueous solutions of Poly(N-isopropylacrylamide) withpendant azobenzene groups. Makromol. Chem. Rapid. Commun.9: 243.

Mamada, A., Tanaka, T., Kungwatchakun, D., and Irie, M.1990. Photoinduced phase transition of gels.Macromolecules 23: 1517.

Menju, A., Hayashi, K., and Irie, M. 1981. Photoresponsivepolymers. 3. Reversible solution viscosity change of poly(methacrylic acid) having spirobenzopyran pendant groups inmethanol. Macromolecules 14: 755.

Moriguchi, H., Wakamoto, Y., Sugio, Y., Takahashi, K.,Inoue, I., and Yasuda, K. 2002. An agar-microchambercell-cultivation system: Flexible change of microchambershapes during cultivation by photo-thermal etching. LabChip 2: 125.

Nakanishi, J., Kikuchi, Y., Inoue, S., Yamaguchi, K.,Takarada, T., and Maeda. M. 2007. Spatiotemporal controlof migration of single cells on a photoactivatable cellmicroarray. J. Am. Chem. Soc. 129: 6694.

Nakanishi, J., Kikuchi, Y., Takarada, T., Nakayama, H.,Yamaguchi, K., and Maeda, M. 2004. Photoactivation of asubstrate for cell adhesion under standard ¥uorescencemicroscopes. J. Am. Chem. Soc. 126: 16314.

Nakanishi, J., Takarada, T., Yamaguchi, K., and Maeda, M.2008. Recent advances in cell micropatterning techniquesfor bioanalytical and biomedical sciences. Anal. Sci. 24:67.

Nakayama, Y., Furumoto, A., Kidoaki, S., and Matsuda, T.2003. Photocontrol of cell adhesion and proliferation by aphotoinduced cationic polymer surface. Photochem.Photobiol. 77: 480.

Nakazawa, K., Izumi, Y., Fukuda, J., and Yasuda, T. 2006.

Page 385: Polymeric Biomaterials - Taylor & Francis eBooks

Hepatocyte spheroid culture on a poly-dimethylsiloxanechip having microcavities. J. Biomater. Sci. Polym. Ed. 17:859.

Norde, W. and Gage, D. 2004. Interaction of bovine serumalbumin and human blood plasma with PEOtethered surfaces:In¥uence of PEO chain length, grafting density, andtemperature. Langmuir 20: 4162.

O’Brien, P. J., Irwin, W., Diaz, D. et al. 2006. Highconcordance of drug-induced human hepatotoxicity with invitro cytotoxicity measured in a novel cell- based modelusing high content screening. Arch. Toxicol. 80: 580.

Otsuka, H., Hirano, A., Nagasaki, Y., Okano, T., Horiike,Y., and Kataoka, K. 2004. Two-dimensional multiarrayformation of hepatocyte spheroids on a microfabricatedPEG-brush surface. Chem. Bio. Chem. 5: 850.

Park, J.-M., Cho, Y.-K., Lee, B.-S., Lee, J.-G., and Ko, C.2007. Multifunctional microvalves control by opticalillumination on nanoheaters and its application incentrifugal micro¥uidic devices. Lab Chip 7: 557.

Pieroni, O., Fissi, A., Houben, J. L., and Ciardelli, F.1985. Photoinduced aggregation changes in photochromicpolypeptides. J. Am. Chem. Soc. 107: 2990.

Pieroni, O., Fissi, A., Viegi, A., Fabbri, D., andCiardelli, F. 1992. Modulation of the chain conformationalof spiropyran-containing poly(L-lysine) by the combinedaction of visible light and solvent. J. Am. Chem. Soc.114: 2734.

Pieroni, O., Houben, J. L., Fissi, A., Costantino, P., andCiardelli, F. 1980. Reversible conformational changesinduced by light in poly(L-glutamic acid) with photochromicside chains. J. Am. Chem. Soc. 102: 5913.

Pierschbacher, M. D. and Ruoslahti, E. 1984. Cellattachment activity of �bronectin can be duplicated bysmall synthetic fragments of the molecule. Nature 309: 30.

Sakai, Y. and Nakazawa, K. 2007. Technique for the controlof spheroid diameter using microfabricated chips. ActaBiomater. 3: 1033.

Sershen, S. R., Mensing, G. A., Ng, M., Halas, N. J.,Beebe, D. J., and West, J. L. 2005. Independent opticalcontrol of micro¥uidic valves formed from optomechanically

Page 386: Polymeric Biomaterials - Taylor & Francis eBooks

responsive nanocomposite hydrogels. Adv. Mater. 17: 1366.

Shimoboji, T., Larenas, E., Fowler, T., Kulkarni, S.,Hoffman, A. S., and Stayton, P. S. 2002. Photoresponsivepolymer–enzyme switches. Proc. Natl. Acad. Sci. USA 99:16592.

Singhvi, R., Kumar, A., Lopez, P., Stephanopoulos, G. N.,Wang, D. I., Whitesides, G. M., and Ingber, D. E. 1994.Engineering cell shape and function. Science 264: 696.

Smets, G., Braeken, J., and Irie, M. 1978. Photomechanicaleffects in photochromic systems. Pure Appl. Chem. 50: 845.

Smith, N. I., Iwanaga, S., Beppu, T., Fujita, K., Nakamura,O., and Kawata, S. 2006. Photostimulation of two types ofCa 2+ waves in rat pheochromocytoma PC12 cells byultrashort pulsed near-infrared laser irradiation. LaserPhys. Lett. 3: 154.

Sugiura, S., Sumaru, K., Ohi, K., Hiroki, K., Takagi, T.,and Kanamori, T. 2007. Photoresponsive polymer gelmicrovalves controlled by local light irradiation. Sens.Actuat. A: Phys. 140: 176.

Sugiura, S., Szilagyi, A., Sumaru, K. et al. 2009.On-demand micro¥uidic control by micropatterned lightirradiation of a photoresponsive hydrogel sheet. Lab Chip9: 196.

Suh, K. Y., Seong, J., Khademhosseini, A., Laibainis, P.E., and Langer, R. 2004. A simple soft lithographic routeto fabrication of poly(ethyleneglycol) microstructures forprotein and cell patterning. Biomaterials 25: 557.

Sumaru, K., Kameda, M., Kanamori, T., and Shinbo, T. 2004a.Characteristic phase transition of aqueous solution ofpoly(N-isopropylacrylamide) functionalized withspirobenzopyran. Macromolecules 37: 4949.

Sumaru, K., Kameda, M., Kanamori, T., and Shinbo, T. 2004b.Reversible and ef�cient proton dissociation ofspirobenzopyran-functionalized poly(N-isopropylacrylamide)in aqueous solution triggered by light irradiation andtemporary temperature rise. Macromolecules 37: 7854.

Sumaru, K., Ohi, K., Takagi, T., Kanamori, T., and Shinbo,T. 2006. Photo-responsive properties ofpoly(Nisopropylacrylamide) hydrogel partly modi�ed withspirobenzopyran. Langmuir 22: 4353.

Page 387: Polymeric Biomaterials - Taylor & Francis eBooks

Suzuki, A. and Tanaka, T. 1990. Phase transition in polymergels induced by visible light. Nature 346: 345.

Szaniszlo, P., Rose, W. A., Wang, N. et al. 2006. Scanningcytometry with a LEAP: Laser-enabled analysis andprocessing of live cells in situ. Cytometry 69A: 641.

Szilagyi, A., Sumaru, K., Sugiura, S. et al. 2007.Rewritable microrelief formation on photoresponsivehydrogel layers. Chem. Mater. 19: 2730.

Tada, Y., Edahiro, J., Sumaru, K. et al. 2006b. Fabricationof a ¥ow-type micro cell chip based on photoinduced cellcapturing. Proceedings of the μTAS 2006 1: 966.

Tada, Y., Sumaru, K., Kameda, M. et al. 2006a. Developmentof a photoresponsive cell culture surfaces: Regionalenhancement of living cell adhesion induced by local lightirradiation. J. Appl. Polym. Sci. 100: 495.

Tamura, T., Sakai, Y., and Nakazawa, K. 2008.Two-dimensional microarray of HepG2 spheroids usingcollagen/polyethylene glycol micropatterned chip. J. Mater.Sci. Mater. Med. 19: 2071.

Tjerneld, F., Persson, I., Albertsson, P.–A., andHahn-Hagerdal, B. 1985. Enzymatic hydrolysis of cellulosein aqueous two-phase systems. I. Partition of cellulasesfrom Trichoderma reesei. Biotechnol. Bioeng. 27: 1036.

Wojcieszyn, J. W., Schlegel, R. A., Lumley-Sapanski, K.,and Jacobson, K. A. 1983. Studies on the mechanism ofpolyethylene glycol-mediated cell fusion using ¥uorescentmembrane and cytoplasmic probes. J. Cell Biol. 96: 151.

Ziauddin, J. and Sabatini, D. M. 2001. Microarrays of cellsexpressing de�ned cDNAs. Nature 411: 107.

Page 388: Polymeric Biomaterials - Taylor & Francis eBooks

21 Chapter 21. Lignin in BiologicalSystems

Akao, Y., Seki, N., Nakagawa, Y. et al. 2004. A highlybioactive lignophenol derivative from bamboo ligninexhibits a potent activity to suppress apoptosis induced byoxidative stress in human neuroblastoma SH-SY5Y cells.Bioorg. Med. Chem. 12: 4791–4801.

Bach Knudsen, K. E., Serena, A., Kjaer, A. K. et al. 2003.Rye bread in the diet of pigs enhances the formation ofenterolactone and increases its levels in plasma, urine andfeces. J. Nutr. 133: 1368–1375.

Baurhoo, B., Ruiz-Deria, C. A., and Zhao, X. 2008. Puri�edlignin: Nutritional and health impacts on farm animals—Areview. Anim. Feed Sci. Technol. 144: 175–184.

Begum, N. A., Nicolle, C., Mila, I. et al. 2004. Dietarylignins are the precursors of mammalian lignans in rats.J. Nutr. 134: 120–127.

Boeriu, C. G., Bravo, D., Gosselink, R. J. A. et al. 2004.Characterisation of structure-dependent functionalproperties of lignin with infrared spectroscopy. Ind. Crop.Prod. 20: 205–218.

Catignani, G. L. and Carter, M. E. 1982. Antioxidantproperties of lignin. J. Food Sci. 47: 1745–1748.

Csonka, F. A., Phillips, M., and Breese Jones, D. 1929.Studies of lignin metabolism. J. Biol. Chem. LXXXV: 65–75.

Dizhbite, T., Telysheva, G., Jurkjana, V., and Viesturs, U.2004. Characterization of the radical scavenging activityof lignins-natural antioxidants. Bioresour. Technol. 95:309–317.

Garcia, L., Abajo, C., del Campo, J. et al. 2006.Antioxidant effect of Ligmed—A on humane erythrocytesin vitro. Pharmacologyonline 3: 514–519.

Haggans, C. J., Hutchins, A. M., Olson, B. A. et al. 1999.Effect of ¥axseed consumption on urinary estrogenmetabolites in postmenopausal women. Nutr. Cancer 33:188–195.

Ichimura, T., Otake, T., Mori H. et al. 1999. HIV-1Protease inhibition and anti-HIV effect of natural andsynthetic water soluble lignin-like substances. Biosci.

Page 389: Polymeric Biomaterials - Taylor & Francis eBooks

Biotechnol. Biochem. 63: 2202–2204.

Ichimura, T., Watanabe, O., and Maruyama, S. 1990.Inhibition of HIV-1 protease by water-soluble lignin-likesubstance in an edible mushroom, Fusciporia oblique. Agric.Biol. Chem. 54: 479–487.

Jenab, M. and Thompson, Lu. 1996. The in¥uence of ¥ax seedon colon carcinogenesis and beta-glucuronidase activity.Carcinogenesis 17: 1343–1348.

Koracevic, D., Koracevic, G., Djordjevic, V. et al. 2001.Method for measurement of antioxidant activity in human¥uids. J. Clin. Pathol. 54: 356–361.

Kosikova, B., Slamenova, D., Mikulasova, M. et al. 2002.Reduction of carcinogensis by bio-based ligninderivatives. Biomass Bioenergy 23: 153–159.

Labaj, J., Slameoova, D., Lazarova, M., and Kosikova, B.2004. Lignin-stimulated reduction of oxidative DNA lesionsin testicular cells and lymphocytes of sprague-dawley ratsin vitro and ex vivo. Nutr. Cancer 50: 198–205.

Le Digabel, F. and Averous, L. 2006. Effects of lignincontent on the properties of lignocellulose-basedcomposites. Carbohydr. Polym. 66: 537–545.

Lu, F. J., Chu, L. H., and Gau, R. J. 1998. Freeradical-scavenging properties of lignin. Nutr. Cancer 30:31–38.

Mikulasova, M. and Kosikova, B. 2003. Modulation ofmutagenicity of various mutagens by lignin derivatives.Mutat. Res. 535: 171–180.

Mitjans, M., Garcia, L., Marrero, E. et al. 2001. Study ofLigmed-A, an antidiarrheal drug based on lignin, on ratsmall intestine enzyme activity and morphometry. J. Vet.Pharmacol. Ther. 24: 349–351.

Nelson, J. L., Alexander, J. W., Gianotti, L. et al. 1994.In¥uence of dietary �ber on microbial growth in vitro andbacterial translocation after burn injury in mice.Nutrition 10: 32–33.

Nicolle, C., Manach, C., Morand, C. et al. 2002. Mammaliannlignan formation in rats fed a wheat bran diet. J. Agric.Food Chem. 50: 6222–6226.

Page 390: Polymeric Biomaterials - Taylor & Francis eBooks

Novikova, N. L., Ostrovskaya, M. R., Kozhova, M. O. et al.1998. The Biological Properties of LigninContainedCompounds. Abstract of Posters, p. 125, Institute ofOrganic Chemistry, Novosibirsk, Russia.

Okazaki, M., Akimoto, K., and Sorimaki, K. 1996. Polyanioninduced preferential multinucleation in macrophages at lowlevel of TNF-α secretion. Cell Struct. Funct. 21: 277–282.

Parasad, K. 1997. Dietary ¥ax seed in prevention ofhypercholesterolemic atherosclerosis. Atherosclerosis132: 69–76.

Perez-Perez, E. M., Rodriguez-Malaver, J. A., andDumitrieva, N. 2005. Antioxidant activity of lignin fromblack liquor. In Proceedings of the 7th ILIForum-Barcelona, Barcelona, Spain, pp. 191–194.

Popa, V. I. 2007. Lignin and sustainable development.Cellulose Chem. Technol. 41: 591–593.

Ranby, B. 2001. Degradation of important polymermaterials—An overview of basic reactions. In RecentAdvances in Environmentally Compatible Polymers, eds. J. F.Kennedy, G. O. Phillips, and P. A. Williams, Guest EditorHyoe Hatakeyama, pp. 3–14. Cambridge, U.K.: WoodheadPublishing Limited.

Re, R., Proteggente, A. R., Saija, A. et al. 2003. Thecompositional characterization and antioxidant activity offresh juices from Sicilian sweet orange (Citrus sinensis L.Osbeck) varieties. Free Radic. Res. 37: 681–687.

Rickard, S. E., Yuan, Y. V., and Thomson, L. U. 2000.Plasma insulin-like growth factor levels in rats arereduced by dietary supplementation of ¥axseed or its lignanseicoisolariciresinol diglycoside. Cancer Lett. 161:47–55.

Sakagami, H., Hashimoto, K., Suzuki, F. et al. 2005.Molecular requirements of lignin-carbohydrate complexesfor expression of unique biological activities.Phytochemistry 66: 2108–2120.

Sakagami, H., Kawazoe, Y., Toshinari Oh-Hara, T. et al.1991. Stimulation of human perripheral bloodpolymorphonuclear cell iodination by lignin—Relatedsubstances. J. Leukoc. Biol. 49: 277–282.

Sorimachi, K. 1992. Differential response of lignin

Page 391: Polymeric Biomaterials - Taylor & Francis eBooks

derivatives between tumor and normal tissue derived celllines: Effects on cellular adhesion and cell growth. CellBiol. Int. Rep. 16: 249–257.

Sorimachi, K., Akimoto, K., Niwa, A. et al. 1997. Delayedcytocidal effect of lignin derivatives on virallytransformed rat �broblasts. Cancer Detect. Prev. 22:111–117.

Sorimachi, K., Akimoto, K., Tsuru, K. et al. 1995.Secretion of TNF-α from macrophage following inductionwith induction with a lignin derivatives. Cell Biol. Int.Rep. 19: 833–838.

Sorimachi, K., Akimoto, K., Yamazaki, S. et al. 1990.Multinucleation of macrophages with water-solubilizedlignin derivatives in vitro. Cell Struct. Funct. 15:317–322.

Sorimachi, K., Akimoto, K., and Yamazaki, S. 2003.Modulation of interleukin-8 and nitric oxide synthase mRNAlevels by interferon-γ in macrophages stimulated withlignin derivatives and lipopolysaccharides. Cancer Detect.Prev. 27: 1–4.

Suzuki, H., Iiyama, K., Yoshida, O. et al. 1990. Structuralcharacterization of the immunoactive and antiviral watersolubilized lignin in an extract of the culture medium ofLentinus edodes Mycelia (LEM). Agric. Biol. Chem. 54:479–487.

Suzuki, H., Okubo, A., Yamzaki, S. et al. 1998. Inhibitionof the infectivity and cytopathic effect of humanimmunode�ciency virus by water-soluble lignin in an extractof the culture medium of Lentinus edodes mycelia (LEM).Biosci. Biotechnol. Biochem. 62: 575–577.

Tanaka, S., Sakata, Y., Morimoto, K. et al. 2001. In¥uenceof natural and synthetic compounds on cell surfaceexpression of cell adhesion molecules, ICAm-1 and VCAM-1.Planta Med. 67: 108–113.

Telysheva, G., Dizhbite, T., Lebedeva, G. et al. 2005.Lignin products for decontamination of environment objectsfrom pathogenic microorganisms and pollutants. InProceedings of the 7th ILI Forum, Barcelona, Spain, pp.71–74.

Telysheva, G., Dizhbite, T., Tirzite, D., and Jurjane, V.2000. Applicability of a free radical (DPPH·) method for

Page 392: Polymeric Biomaterials - Taylor & Francis eBooks

estimation of antioxidant activity of lignin and itsderivatives. In: Proceedings of the 5th InternationalLignin Institute, Forum, Commercial Outlets for New Ligninsand De©nitions of New Projects, Bordeaux, France, pp.153–160.

Toh, K., Yokoyama, H., Takahashi, C. et al. 2007. Effect ofherb lignin on the growth of enterobacteria. J. Gen. Appl.Microbiol. 53: 201–205.

Tollner, L. T., Overstreet, W. J., Li, W. M. et al. 2002.Lignosulfonic acid blocks in vitro fertilization of macaqueoocytes when sperm are treated either before or aftercapacitation. J. Androl. 23: 889–898.

Vinardell, M. P., Ugartondo, V., and Mitjans, M. 2005.Antioxidant and photoprotective action of lignins fromdifferent sources assessed in human red blood cells. InProceedings of the 7th ILI Forum, Barcelona, Spain, pp.75–77.

Page 393: Polymeric Biomaterials - Taylor & Francis eBooks

22 Chapter 22. Carbohydrate-DerivedSelf-Crosslinkable In Situ GelableHydrogels for Modulation of Wound Healing

1. Wilgus, T.A. 2008. Immune cells in the healing skinwound: in¥uential players at each stage of repair. PharmRes 58:112–116.

2. Balakrishnan, B., Mohanty, M., Umashankar, P.R.,Jayakrishnan, A. 2005. Evaluation of an in situ forminghydrogel wound dressing based on oxidized alginate andgelatin. Biomaterials 26:6335–6342.

3. Yusof, N., Ha�za, A.H.A., Zohdi, R.M., Bakar, Z.A.M.2007. Development of honey hydrogel dressing for enhancedwound healing. Rad Phys Chem 76:1767–1770.

4. Garcia, Y., Wilkins, B., Collighan, R.J., Grif�n, M.,Pandit, A. 2008. Towards development of a dermal rudimentfor enhanced wound healing response. Biomaterials29:857–868.

5. Raym ent, E.A., Dargaville, T.R., Shooter, G.K., George,G.A., Upton, Z. 2008. Attenuation of protease activity inchronic wound ¥uid with bisphosphonate-functionalisedhydrogels. Biomaterials 29:1785–1795.

6. Peppas, N.A., Bures, P ., Leobandung, W., Ichikawa, H.2000. Hydrogels in pharmaceutical formulations. Eur JPharm Biopharm 50:27–46.

7. Shu, X.Z., Liu, Y ., Palumbo, F.S., Luo, Y., Prestwich,G.D. 2004. In situ crosslinkable hyaluronan hydrogels fortissue engineering. Biomaterials 25:1339–1348.

8. Klouda, L., Hacker , M.C., Kretlow, J.D., Mikos, A.G.2009. Cytocompatibility evaluation of amphiphilic,thermally responsive and chemically crosslinkable macromersfor in situ forming hydrogels. Biomaterials 30:4558–4566.

9. Coviello, T., Matricardi, P., Marianecci, C., Alhaique,F. 2007. Polysaccharide hydrogels for modi�ed releaseformulations. J Control Release 119:5–24.

10. Tammi, M.I., Day, A.J., Turley, E.A. 2002. Hyaluronanand homeostasis: a balancing act. J Biol Chem277:4581–4584.

11. Morra, M. 2005. Engineering of biomaterials surfaces byhyaluronan. Biomacromolecules 6: 1205–1223.

Page 394: Polymeric Biomaterials - Taylor & Francis eBooks

12. Slevin, M., Krupinski, J., Gaffney, J., Matou, S.,West, D., Delisser, H., Savani, R.C., Kumar, S. 2007.Hyaluronan-mediated angiogenesis in vascular disease:uncovering RHAMM and CD44 receptor signaling pathways.Matrix Biol 26:58–68.

13. Hornebeck W. 2003. Down-regulation of tissue inhibitorof matrix metalloprotease-1 (TIMP-1) in aged human skincontributes to matrix degradation and impaired cell growthand survival. Pathol Biol 51:569–573.

14. Segura, T., Anderson, B.C., Chung, P.H., Webber, R.E.,Shull, K.R., Shea, L.D. 2005. Crosslinked hyaluronic acidhydrogels: a strategy to functionalize and pattern.Biomaterials 26:359–371.

15. Baumann, M. D., Kang, C.E, Stanwick, J.C., Wang, Y.,Kim, H., Lapitsky, Y., Shoichet, M.S. 2009. An injectabledrug delivery platform for sustained combination therapy. JControl Release 138:205–213.

16. Shu, X.Z., Liu, Y ., Palumbo, F., Prestwich, G.D. 2003.Disul�de-crosslinked hyaluronan-gelatin hydrogel �lms: acovalent mimic of the extracellular matrix for in vitrocell growth. Biomaterials 24:3825–3834.

17. Esposito, E., Meneg atti, E., Cortesi, R. 2005.Hyaluronan-based microspheres as tools for drug delivery:a comparative study. Inter J Pharm 288:35–49.

18. Jia, X.Q., Burdick, J.A., Kobler, J., Clifton, R.J.,Rosowski, J.J., Zeitels, S.M. et al. 2004. Synthesis andcharacterization of in situ cross–linkable hyaluronicacid-based hydrogels with potential application for vocalfold regeneration. Macromolecules 37:3239–3248.

19. Kogan, G., Šoltés, L., Stern, R., Schiller, J.,Mendichi, R. 2008. Hyaluronic acid: its function anddegradation in in vivo systems. Stud Nat Prod Chem34:789–882.

20. Tomihata, K., Ikada, Y. 1997. Crosslinking ofhyaluronic acid with glutaraldehyde, J Polym Sci Part APolym Chem 35:3553–3559.

21. Jia, X., Colombo, G., Padera, R., Langer, R., Kohane,D.S. 2004. Prolongation of sciatic nerve blockade by insitu cross-linked hyaluronic acid. Biomaterials25:4797–4804.

Page 395: Polymeric Biomaterials - Taylor & Francis eBooks

22. Croce, M.A., Dyne, K., Boraldi, F., Quaglino, D.Jr.,Cetta, G., Tiozzo, R., Pasquali, R.I. 2001. Hyaluronanaffects protein and collagen synthesis by in vitro humanskin �broblasts. Tissue Cell 33:326–331.

23. Meyer, L.J., Russell, S.B., Russell, J.D., Trupin,J.S., Egbert, B.M., Shuster, S., Stern, R. 2000. Reducedhyaluronan in keloid tissue and cultured keloid �broblasts.J Invest Dermatol 114:953–959.

24. Xu, H., Ma, L., Shi, H., Gao, C., Han, C. 2007.Chitosan–hyaluronic acid hybrid �lm as a novel wounddressing: in vitro and in vivo studies. Polym Adv Technol18:869–875.

25. Cai, S., Liu, Y., Shu, X.Z., Prestwich, G.D. 2005.Injectable glycosaminoglycan hydrogels for controlledrelease of human basic �broblast growth factor.Biomaterials 26:6054–6067.

26. Witte, S.H., Olaif a, A.K., Lewis, A.J., Eggleston,R.B., Halper, J., Kietzmann, M., Baeumer, W., Mueller, E.2009. Application of exogenous esteri�ed hyaluronan toequine distal limb wounds. J Equine Veter Sci 29:197–205.

27. Cana, H.K., Denizlia, B.K., Gunera, A., Rzaev, Z.M.O.2005. Effect of functional crosslinking agents onpreparation and swelling properties of dextran hydrogels.Carbohydr Polym 59:51–56.

28. Nowako wska, M., Zapotoczny, S., Sterzel, M., Kot, E.2004. Novel water-soluble photosensitizers from dextrans.Biomacromolecules 5:1009–1014.

29. Suda, E.J., Thomas, K.E., Pabst, T.M., Mensah, P.,Ramasubramanyan, N., Gustafson, M.E., Hunter, A.K.2009.Comparison of agarose and dextran-grafted agarosestrong ion exchangers for the separation of proteinaggregates. J Chromatogr A 1216:5256–5264.

30. Hiem stra, C., Zhong, Z., van Steenbergen, M.J.,Hennink, W.E., Feijen, J. 2007. Release of model proteinsand basic �broblast growth factor from in situ formingdegradable dextran hydrogels. J Control Release 122:71–78.

31. Pitarresi, G., Palumbo, F.S., Giammona, G., Casadei,M.A., Moracci, F.M. 2003. Biodegradable hydrogels obtainedby photocrosslinking of dextran and polyaspartamidederivatives. Biomaterials 24:4301–4313.

Page 396: Polymeric Biomaterials - Taylor & Francis eBooks

32. Cadee, J.A., de Groot, C.J., Jiskoot, W., den Otter,W., Hennink, W.E. 2002. Release of recombinant humaninterleukin-2 from dextran-based hydrogels. J ControlRelease 78:1–13.

33. Hornig, S., Bunjes, H., Heinze, T. 2009. Preparationand characterization of nanoparticles based on dextran–drugconjugates. J Colloid Interface Sci 338:56–62.

34. Vercoutter-Edouart, A.S., Dubreucq, G., Vanhoecke, B.,Rigaut, C., Renaux, F., Correia, L.D., Lemoine, J.,Bracke, M., Michalski, J.C., Correia, J. 2008. Enhancementof PDGF-BB mitogenic activity on human dermal �broblastsby biospeci�c dextran derivatives. Biomaterials29:2280–2292.

35. Rouet, V., Meddahi-Pelle, A., Miao, H.Q., Vlodavsky,I., Caruelle, J.P., Barritault, D. 2006. Heparin-likesynthetic polymers, named RGTAs, mimic biological effectsof heparin in vitro. J Biomed Mater Res A 78:792–797.

36. Logeart-Avramoglou, D., Huynh, R., Chaubet, F., Sedel,L., Meunier, A. 2002. Interaction of speci�cally chemicallymodi�ed dextrans with transforming growth factor beta-1:potentiation of its biological activity. Biochem Pharmacol63:129–137.

37. Banz, Y., Gajanayake, T., Matozan, K., Yang, Z.,Rieben, R. 2009. Dextran sulfate modulates MAP kinasesignaling and reduces endothelial injury in a rat aorticclamping model. J Vasc Surg 50:161–170.

38. Huynh, R., Chaubet, F ., Jozefonvicz, J. 2001.Anticoagulant properties of dextran methylcarboxylatebenzylamide sulfate (DMCBSu): a new generation of bioactivefunctionalized dextran. Carbohydr Res 332:75–83.

39. Meddahi, A., Bree, F., Papy-Garcia, D., Gautron, J.,Barritault, D., Caruelle, J.P. 2002. Pharmacologicalstudies of RGTA, a heparan sulfate mimetic polymer,ef�cient on muscle regeneration. J Biomed Mater Res62:525–531.

40. Papy-Garcia, D., Barbosa, I., Duchesnay, A., Saadi, S.,Caruelle, J.P., Barritault, D. et al. 2002.Glycosaminoglycan mimetics (RGTA) modulate adult skeletalmuscle satellite cell proliferation in vitro. J BiomedMater Res 62:46–55.

Page 397: Polymeric Biomaterials - Taylor & Francis eBooks

41. Barbosa, I., Morin, C., Garcia, S., Duchesnay, A.,Oudghir, M., Jenniskens, G. et al. 2005. A syntheticglycosaminoglycan mimetic (RGTA) modi�es naturalglycosaminoglycan species during myogenesis. J Cell Sci118:253–264.

42. Garcia-Filipe, S., Barbier-Chasse�ere, V., Alexakis,C., Huet, E., Ledoux, D., Kerros, M.E. et al. 2007. RGTAOTR4120, a heparan sulfate mimetic, is a possible long-termactive agent to heal burned skin. J Biomed Mater Res A80:75–84.

43. Escartin, Q., Lallam-Laroye, C., Baroukh, B., Morvan,F.O., Caruelle, J.P., Godeau, G. et al. 2003. A newapproach to treat tissue destruction in periodontitis withchemically modi�ed dextran polymers. FASEB J 17:644–651.

44. Lallam-Laroye, C., Escartin, Q., Zlowodzki, A.S.,Barritault, D., Caruelle, J.P., Baroukh, B. et al. 2006.Periodontitis destructions are restored by syntheticglycosaminoglycan mimetic. J Biomed Mater Res A79:675–683.

45. Blanquaert, F., Carpentier, G., Morvan, F., Caruelle,J.P., Barritault, D., Tardieu, M. 2003. RGTA modulates thehealing pattern of a defect in a monolayer of osteoblasticcells by acting on both proliferation and migration. JBiomed Mater Res A 64:525–532.

46. Alexakis, C., Mestries, P., Garcia, S., Petit, E.,Barbier, V., Papy-Garcia, D. et al. 2004. Structurallydifferent RGTAs modulate collagen-type expression bycultured aortic smooth muscle cells via different pathwaysinvolving �broblast growth factor-2 or transforming growthfactor-beta1. FASEB J 18:1147–1149.

47. Mestries, P., Alexakis, C., Papy-Garcia, D., Duchesnay,A., Barritault, D., Caruelle, J.P. et al. 2001. Speci�cRGTA increases collagen V expression by cultured aorticsmooth muscle cells via activation and protection oftransforming growth factor-beta1. Matrix Biol 20:171–181.

48. Ledoux, D., Pap y-Garcia, D., Escartin, Q., Sagot,M.A., Cao, Y., Barritault, D. et al. 2000. Human plasminenzymatic activity is inhibited by chemically modi�eddextrans. J Biol Chem 275:29383–29390.

49. Ledoux, D., Merciris, D., Barritault, D., Caruelle,J.P. 2003. Heparin-like dextran derivatives as well asglycosaminoglycans inhibit the enzymatic activity of human

Page 398: Polymeric Biomaterials - Taylor & Francis eBooks

cathepsin G. FEBS Lett 537:23–29.

50. Zhang, H., Gu, C., Wu, H., Fan, L., Li, F., Yang, F.,Yang, Q. 2007. Immobilization of derivatized dextrannanoparticles on konjac glucomannan/chitosan �lm as a novelwound dressing. BioFactors 30:227–240.

51. Bhatnagar, A., Sillanpää, M. 2009. Applications ofchitin- and chitosan-derivatives for the detoxi�cation ofwater and wastewater — A short review. Adv ColloidInterface Sci 152:26–38.

52. Wang, Q., Zhang, J., Wang, A. 2009. Preparation andcharacterization of a novel pH-sensitivechitosan-gpoly(acrylic acid)/attapulgite/sodium alginatecomposite hydrogel bead for controlled release ofdiclofenac sodium. Carbohydr Polym 78:731–737.

53. Majeti, N.V., K umar, R. 2000. A review of chitin andchitosan applications. React Funct Polym 46:1–27.

54. Boucard, N., Viton, C., Agay, D., Mari, E., Roger, T.,Chancerelle, Y., Domard, A. 2007. The use of physicalhydrogels of chitosan for skin regeneration followingthird-degree burns. Biomaterials 28:3478–3488.

55. Chang, Y.Y., Chen, S.J., Liang, H.C., Sung, H.W., Lin,C.C., Huang, R.N. 2004.The effect of galectin 1 on 3T3cell proliferation on chitosan membranes. Biomaterials25:3603–3611.

56. Dutkiewicz, J.K. 2002. Superabsorbent materials fromshell�sh waste—A review. J Biomed Mater Res 63:373–381.

57. Kandile, N.G., Nasr, A.S. 2009. Environment friendlymodi�ed chitosan hydrogels as a matrix for adsorption ofmetal ions, synthesis and characterization. Carbohydr Polym78:753–759.

58. Felix, L., Hernandez, J., Arguelles-Monal, W.M.,Goycoolea, F.M. 2005. Kinetics of gelation and thermalsensitivity of N-isobutyryl chitosan hydrogels.Biomacromolecules 6:2408–2415.

59. Huang, R., Chen, G., Yang, B., Gao, C. 2008.Positively charged composite nano�ltration membrane fromquaternized chitosan by toluene diisocyanate cross-linking.Sep Purif Technol 61:424–429.

60. Tiera, M.J., Qiu, X.P., Bechaouch, S., Shi, Q.,

Page 399: Polymeric Biomaterials - Taylor & Francis eBooks

Fernandes, J.C., Winnik, F.M. 2006. Synthesis andcharacterization of phosphorylcholine-substituted chitosanssoluble in physiological pH conditions. Biomacromolecules7:3151–3156.

61. Zhang, C., Qu, G., Sun, Y., Wu, X., Yao, Z., Guo, Q.,Ding, Q., Yuan, S., Shen, Z., Ping, Q., Zhou, H. 2008.Pharmacokinetics, biodistribution, ef�cacy and safety ofN-octyl-O-sulfate chitosan micelles loaded withpaclitaxel. Biomaterials 29:1233–1241.

62. Lu, G., Kong, L., Sheng, B., Wang, G., Gong, Y., Zhang,X. 2007. Degradation of covalently crosslinkedcarboxymethyl chitosan and its potential application forperipheral nerve regeneration. Eur Polym J 43:3807–3818.

63. Jiang, H., Wang, Y., Huang, Q., Li, Y., Xu, C., Zhu,K., Chen, W. 2005. Biodegradable hyaluronicacid/Ncarboxyethyl chitosan/protein ternary complexes asimplantable carriers for controlled protein release.Macromol Biosci 5:1226–1233.

64. Badawy, M.E.I., Rabea, E.I., Rogge, T.M., Stevens,C.V., Smagghe, G., Steurbaut, W., Hofte, M. 2004.Synthesis and fungicidal activity of new N, O-acyl chitosanderivatives. Biomacromolecules 5:589–595.

65. Zhu, A., Shan, B., Yuan, Y., Shen, J. 2003.Preparation and blood compatibility ofphosphorylcholinebonded O-butyrylchitosan. Polym Int52:81–85.

66. Ueno, H., Yamada, H., Tanaka, I., Kaba, N., Matsuura,M., Okumura, M., Kadosawa, T., Fujinaga, T. 1999.Accelerating e!ects of chitosan for healing at early phaseof experimental open wound in dogs. Biomaterials20:1407–1414.

67. Ishiharaa, M., Nakanishi, K., Ono, K., Sato, M.,Kikuchi, M., Saito,Y., Yura, H., Matsuia, T., Hattoria,H., Uenoyama, M., Kurita, A. 2002. Photocrosslinkablechitosan as a dressing for wound occlusion and acceleratorin healing process. Biomaterials 23:833–840.

68. Alemdaroglu, C., Degim, Z., Celebi, N.C., Zor, F.,Ozturk, S., Erdogan, D. 2006. An investigation on burnwound healing in rats with chitosan gel formulationcontaining epidermal growth factor. Burns 32:319–327.

69. Boudet, C., Lliopoulos, L., Poncelet, O., Cloitre, M.

Page 400: Polymeric Biomaterials - Taylor & Francis eBooks

2005. Control of the chemical cross-linking of gelatin by athermosensitive polymer: example of switchable reactivity.Biomacromolecules 6:3073–3078.

70. Broderick, E.P., O’Halloran, D.M., Rochev, Y.A.,Grif�n, M., Collighan, R.J., Pandit, A.S. 2005. Enzymaticstabilization of gelatin-based scaffolds. J Biomed MaterRes Part B 72B:37–42.

71. Hurley, P.A., Clarke, M., Crook, J.M., Wise, A.K.,Shepherd, R.K. 2003. Cochlear immunochemistry: a newtechnique based on gelatin embedding. J Neurosci 129:81–86.

72. Gaspard, S., Oujja, M., Abrusci, C., Catalina, F.,Lazare, S., Desvergne, J.P., Castillejo, M. 2008. Laserinduced foaming and chemical modi�cations of gelatine �lms.J Photochem Photobiol A 193:187–192.

73. Liang, H.C., Chang, W .H., Liang, H.F., Lee, M.H.,Sung, H.W. 2004.Crosslinking structures of gelatinhydrogels crosslinked with genipin or a water-solublecarbodiimide. J Appl Polym Sci 91: 4017–4026.

74. Sent hilkumar, K.S., Saravanan, K.S., Chandra, G.,Sindhu, K.M., Jayakrishnan, A., Mohanakumar, K.P. 2007.Unilateral implantation of dopamine-loaded biodegradablehydrogel in the striatum attenuates motor abnormalities inthe 6-hydroxydopamine model of hemi-parkinsonism. BehavBrain Res 184:11–18.

75. Balakrishnan, B., Jayakrishnan, A. 2005.Self-crosslinkable biopolymers as injectable in situforming biodegradable scaffolds. Biomaterials 26:3941–3951.

76. Balakrishnan, B., Jayakrishnan, A. 2005. Oxidizedchondroitin sulfate-crosslinked gelatin matrixes: a newclass of hydrogels. Biomaterials 6: 2040–2048.

77. Hong, S.R., Chong, M.S., Lee, S.B., Lee, Y.M., Song,K.W., Park, M.H., Hong, S.H. 2004. Biocompatibility andbiodegradation of crosslinked gelatin/hyaluronic acidsponge in rat subcutaneous tissue. J Biomater Sci: PolymEd 15: 201–214.

78. Pate l, Z.S., Yamamoto, M., Ueda, H., Tabata, Y.,Mikos, A.G. 2008. Biodegradable gelatin microparticles asdelivery systems for the controlled release of bonemorphogenetic protein-2. Acta Biomater 4:1126–1138.

Page 401: Polymeric Biomaterials - Taylor & Francis eBooks

79. Huang, Y., On yeri, S., Siewe, M., Moshfeghian, A.,Madihally, S.V. 2005. In vitro characterization ofchitosan–gelatin scaffolds for tissue engineering.Biomaterials 26:7616–7627.

80. Yamamoto, M., T akahashi, Y., Tabata, Y. 2003.Controlled release by biodegradable hydrogels enhances theectopic bone formation of bone morphogenetic protein.Biomaterials 24:4375–4383.

81. van Luyn, M.J.A., van Wachem, P.B., Dijkstra, P.J.,Olde Damink, L.H.H., Feijen, J. 1995. Calci�cation ofsubcutaneously implanted collagen in relation tocytotoxicity, cellular interactions and crosslinking.J Mater Sci Mater Med 11:169–175.

82. Grif�n, M., Casadio, R., Bergamini, C.M. 2002.Transglutaminases: Nature’s biological glues. Biochem J368:377–396.

83. Crescenzi, V., Francescangeli, A., Taglienti, A. 2005.New gelatin-based hydrogels via enzymatic networking. JBiomed Mater Res Part B: 72B:37–42.

84. Gu, Y.S., Matsumura, Y., Yamaguchi, S., Mori, T. 2001.Action of proteinglutaminase on alpha-lactalbumin in thenative and molten globule states. J Agric Food Chem49:5999–6005.

85. Kang, Y.N., Kim, H., Shin, W.S., Woo, G., Moon, T.W.2003. Effect of disul�de bond reduction on bovine serumalbumin-stabilized emulsion gel formed by microbialtransglutaminase. J Food Sci 68:2215–2220.

86. Deng, C.M., He, L.Z., Zhao, M., Yang, D., Liu, Y. 2007.Biological properties of the chitosan-gelatin sponge wounddressing. Carbohydr Polym 69: 583–589.

87. Wang, T.W., Sun, J.S., Wu, H.C., Tsuang, Y.H., Wang,W., Lin, F.H. 2006. The effect of gelatin–chondroitinsulfate–hyaluronic acid skin substitute on wound healing inSCID mice. Biomaterials 27:5689–5697.

88. Balakrishnan, B., Mohanty, M., Fernandez, A.C.,Mohananc, P.V., Jayakrishnan, A. 2006. Evaluation of theeffect of incorporation of dibutyryl cyclic adenosinemonophosphate in an in situ-forming hydrogel wounddressing based on oxidized alginate and gelatin.Biomaterials 27:1355–1361.

Page 402: Polymeric Biomaterials - Taylor & Francis eBooks

89. Ulubayram, K.A., Cakar, N., Korkusuz, P., Ertan, C.,Hasirci, N. 2001. EGF containing gelatin-based wounddressings. Biomaterials 22:1345–1356.

90. Weng, L., Romano v, A., Rooney, J., Chen, W. 2008.Non-cytotoxic, in situ gelable hydrogels composed ofN-carboxyethyl chitosan and oxidized dextran. Biomaterials29, 3905–3913.

91. Yin, L., Fei, L., Cui, F., Tang, C., Yin, C. 2007.Superporous hydrogels containing poly(acrylicacid-co-acrylamide)/O-carboxymethyl chitosaninterpenetrating polymer networks. Biomaterials28:1258–1266.

92. Roughley, P., Hoemann, C., DesRosiers, E., Mwale, F.,Antoniou, J., Alini, M. 2006. The potential ofchitosan-based gels containing intervertebral disc cellsfor nucleus pulposus supplementation. Biomaterials27:388–396.

93. Chen, L., Tian, Z., Du, Y. 2004. Synthesis and pHsensitivity of carboxymethyl chitosan-based polyampholytehydrogels for protein carrier matrices. Biomaterials25:3725–3732.

94. Crompton, K.E., Prankerd, R.J., Paganin, D.M., Scott,T.F., Horne, M.K., Finkelstein, D.I., Gross, K.A.,Forsythe, J.S. 2005. Morphology and gelation ofthermosensitive chitosan hydrogels. Biophys Chem117:47–53.

95. Draye, J., Delaey, B., Van de Voorde, A., Van DenBulcke, A., Bogdanov, B., Schacht, E. 1998. In vitrorelease characteristic of bioactive molecules from dextrandialdehyde crosslinked gelatin hydrogels �lms.Biomaterials19:99–107.

96. Weng, L., Chen, X., Chen, W. 2007. Rheologicalproperties of in situ crosslinkable hydrogels from dextranand chitosan derivatives. Biomacromolecules 8:1109–1115.

97. Winter, H.H., Chambon, F. 1986. Analysis of linearviscoelasticity of a crosslinking polymer at the gelpoint. J Rheol 30:367–382.

98. Lee, K.Y., Bouhadir , K.H., Mooney, D.J. 2000.Degradation behavior of covalent crosslinked poly(aldehydeguluronate) hydrogels. Macromolecules 33:97–101.

Page 403: Polymeric Biomaterials - Taylor & Francis eBooks

99. Weng, L., P an, H., Chen, W. 2008. Self-crosslinkablehydrogels composed of partially oxidized hyaluronan andgelatin: in vitro and in vivo responses. J Biomed Mater Res85A: 352–365

100. Tamada, Y., Ikada, Y. 2004. Fibroblast growth onpolymer surface and biosynthesis of collagen. J BiomedMater Res 28:783–789.

101. Ohno, T., Y oo, M.J., Swanson, E.R., Hirano, S.,Ossoff, R.H., Rousseau, B. 2009. Regenerative effects ofbasic �broblast growth factor on extracellular matrixproduction in aged rat vocal folds. Ann Otol RhinolLaryngol 118:559–564.

102. Mo, X.M., Xu, C.Y ., Kotaki, M., Ramakrishna, S. 2004.Electrospun P(LLA-CL) nano�ber: a biomimetic extracellularmatrix for smooth muscle cell and endothelial cellproliferation. Biomaterials 25:1883–1890.

103. Liu, X.F., Guan, Y.L., Yang, D.Z., Li, Z., Yao, K.D.2001. Antibacterial action of chitosan andcarboxymethylated chitosan. J Appl Polym Sci 79:1324–1335.

104. Ueno, H., Mori, T ., Fujinaga, T. 2001. Topicalformulations and wound healing applications of chitosan.Adv Drug Deliv Rev 52:105–115.

105. Berg er, J., Reist, M., Mayer, J.M., Felt, O., Gurny,R. 2004. Structure and interactions in chitosan hydrogelsformed by complexation or aggregation for biomedicalapplications. Eur J Pharm Biopharm 57:35–52.

106. Shu, X.Z., Ghosh, K., Liu, Y., Palumbo, F.S., Luo, Y.,Clark, R.A., Prestwich, G.D. 2004. Attachment andspreading of �broblasts on an RGD peptide–modi�edinjectable hyaluronan hydrogel. J Biomed Mater Res A68:365–375.

107. Bouhadir, K.H., Hausman, D.S., Mooney, D.J. 1999.Synthesis of cross-linked poly(aldehyde guluronate)hydrogels. Polymer 40:3575–3584.

108. Guan, Y.L., Shao, L., Yao, K.D. 1996. A study oncorrelation between water state and swelling kinetics ofchitosan-based hydrogels. J Appl Polym Sci 61:2325–2335.

109. Strauss, G., Kral, H. 1982. Borate complexes ofamphotericin-B: polymeric species and aggregates inaqueous solutions. Biopolymers 21:459–470.

Page 404: Polymeric Biomaterials - Taylor & Francis eBooks

110. Suzuki, Y., Nishimura, Y., Tanihara, M., Suzuki, K.,Nakamura, T., Shimizu, Y., Yamawaki, Y., Kakimaru, Y.1998. Evaluation of a novel alginate gel dressing:cytotoxicity to �broblasts in vitro and foreign-bodyreaction in pig skin in vivo. J Biomed Mater Res39:317–322.

111. Aivd, B., Bogdanov, B., Rooze, N.D., Schacht, E.H.,Cornelissen, M., Berghmans, H. 2000. Structural andrheological properties of methacrylamide modi�ed gelatinhydrogels. Biomacromolecules 1:31–38.

112. Rudraraju, V.S., Wyandt, C.M. 2005. Rheology ofmicrocrystalline cellulose and sodium carboxymethylcellulose hydrogels using a controlled stress rheometer:part II. Inter J Pharm 292:63–73.

113. Santoveña, A., Álvarez-Lorenzo, C., Concheiro, A.,Llabrés, M., Fariña, J.B. 2004. Rheological properties ofPLGA �lm-based implants: correlation with polymerdegradation and SPf66 antimalaric synthetic peptide.Biomaterials 25:925–931.

114. Santiago, L.Y., Nowak, R.W., Rubin, J.P., Marra, K.G.2006. Peptide-surface modi�cation of poly(caprolactone)with laminin-derived sequences for adipose-derived stemcell applications. Biomaterials 27:2962–2969.

115. Stabenfeldt, S.E., Garcia, A.J., Laplaca, M.C. 2006.Thermoreversible laminin-functionalized hydrogel forneural tissue engineering. J Biomed Mater Res A 77:718–725.

116. Seo, S.J., Choi, Y.J., Akaike, T., Higuchi, A., Cho,C.S. 2006. Alginate/Galactosylated chitosan/heparinscaffold as a new synthetic extracellular matrix forhepatocytes. Tissue Eng 12: 33–44.

117. Hwang, N.S., Kim, M.S., Sampattavanich, S., Baek,J.H., Zhang, Z., Elisseeff, J. 2006. Effects ofthreedimensional culture and growth factors on thechondrogenic differentiation of murine embryonic stemcells. Stem Cells 24: 284–291.

118. Sontjens, S.H., Nettles, D.L., Carnahan, M.A., Setton,L.A., Grinstaff, M.W. 2006. Biodendrimer-based hydrogelscaffolds for cartilage tissue repair. Biomacromolecules 7:310–316.

Page 405: Polymeric Biomaterials - Taylor & Francis eBooks

119. DeLong, S.A., Gobin, A.S., West, J.L. 2005. Covalentimmobilization of RGDS on hydrogel surfaces to direct cellalignment and migration. J Control Release 109:139–148.

120. Stevens, M.M., Mayer, M., Anderson, D.G., Weibel,D.B., Whitesides, G.M., Langer, R. 2005. Direct patterningof mammalian cells onto porous tissue engineeringsubstrates using agarose stamps. Biomaterials 26:7636–7641.

121. Mironov, V., Kasyanov, V., Shu, X.Z., Eisenberg, C.,Eisenberg, L., Gonda, S., Trusk, T., Markwald, R.R.,Prestwich, G.D. 2005. Fabrication of tubular tissueconstructs by centrifugal casting of cells suspended in anin situ crosslinkable hyaluronan-gelatin hydrogel.Biomaterials 26: 7628–7635.

122. Mahoney, M.J., Anseth, K.S. 2006. Three-dimensionalgrowth and function of neural tissue in degradablepolyethylene glycol hydrogels. Biomaterials 27:2265–2274.

123. Alberts, B., Johnson, A., Lewis, J., Raff, M.,Roberts, K., Walter, P. 2002. Cell junctions, celladhesion, and the extracellular matrix. In: MolecularBiology of the Cell (4th edn.), Chapter 19, GarlandPublishing, New York.

124. Tian, W.M., Hou, S.P., Ma, J., Zhang, C.L., Xu, Q.Y.,Lee, I.S., Li, H.D., Spector, M., Cui, F.Z. 2005.Hyaluronic acid-poly-D-lysine-based three-dimensionalhydrogel for traumatic brain injury. Tissue Eng11:513–525.

125. Clark, R.A.F. 1996. Wound repair: overview and generalconsiderations. In: R.A.F. Clark, Ed., The Molecular andCellular Biology of Wound Repair (2nd edn.), Plenum, NewYork, pp. 3–35.

126. Silva, E.A., Moone y, D.J. 2004. Syntheticextracellular matrices for tissue engineering andregeneration. Curr Top Dev Biol 64:181–205.

127. Young, J.J., Cheng, K.M., Tsou, T.L., Liu, H.W.,Wang, H.J. 2004. Preparation of cross-linked hyaluronicacid �lm using 2-chloro-1-methylpyridinium iodide orwater-soluble 1- ethyl - (3, 3- dimethylaminopropyl)carbodiimide. J Biomater Sci Polym Ed 15:767–780.

128. Danielsson, C., Ruault, S., Basset-Dardare, A., Frey,P. 2006. Modi�ed collagen ¥eece, a scaffold for

Page 406: Polymeric Biomaterials - Taylor & Francis eBooks

transplantation of human bladder smooth muscle cells.Biomaterials 27:1054–1060.

129. Ratner, B.D., Hof fman, A.S., Schoen, F.J., Lemons,J.E. 2004. Biomaterials Science: An Introduction toMaterials in Medicine (2nd edn.), Elsevier, Amsterdam, theNetherlands.

130. Vural, B., Cantürk, N.Z., Esen, N., Solakoglu, S.,Cantürk, Z., Kirkali, G., Sökmensüer, C. 1999. Hum Reprod14:49–54.

131. Boland, G.M., Weigel, R.J. 2006. Formation andprevention of postoperative abdominal adhesions. J SurgRes 132:3–12.

132. Becker, J.M., Dayton, M.T., Fazio, V.W. et al. 1996.Prevention of postoperative abdominal adhesions by asodium hyaluronate-based bioresorbable membrane: aprospective, randomized, double-blind multicenter study. JAm Coll Surg 183:297–306.

133. Gago, L.A., Saed, G.M., Chauhan, S. et al. 2003.Sepra�lm (modi�ed hyaluronic acid andcarboxymethylcellulose) acts as a physical barrier. FertilSteril 80:612–616.

134. Liakakos, T., Thomakos, N., Fine, P.M. et al. 2001.Peritoneal adhesions: etiology, pathophysiology, andclinical signi�cance. Recent advances in prevention andmanagement. Dig Surg 18:260–273.

135. Liu, Y., Shu, X.Z., Prestwich, G.D. 2007. Reducedpostoperative intraabdominal adhesions using Carbylan-SX,a semisynthetic glycosaminoglycan hydrogel. Fertil Steril87:940–948.

136. Lundorff, P., van Geldorp, H., Tronstad, S.E. et al.2001. Reduction of postsurgical adhesions with ferrichyaluronate gel: a European study. Hum Reprod 16:1982–1988.

137. Falabella, C.A., Melendez, M.M., Weng, L., Chen, W.2009. Novel macromolecular crosslinking hydrogel to reduceintra-abdominal adhesions, J. Surg. Res., 159:772–778.

138. DiZerega, G.C.J.D. 2001. Peritoneal repair andpost-surgical adhesion formation. Hum Reprod Update7:547–555.

139. Harris, E.S., Morg an, R.F., Rodeheaver, G.T. 1995.

Page 407: Polymeric Biomaterials - Taylor & Francis eBooks

Analysis of the kinetics of peritoneal adhesion formationin the rat and evaluation of potential antiadhesive agents.Surgery 117:663–669.

140. Arnold, P.B., Green, C.W., Foresman, P.A. et al.2000. Evaluation of resorbable barriers for preventingsurgical adhesions. Fertil Steril 73:157–161.

141. Dunn, R., Lyman, M.D., Edelman, P.G. et al. 2001.Evaluation of the SprayGel adhesion barrier in the ratcecum abrasion and rabbit uterine horn adhesion models.Fertil Steril 75:411–416.

142. Cadee, J.A., van Luyn, M.J., Brouwer, L.A. et al.2000. In vivo biocompatibility of dextran-based hydrogels.J Biomed Mater Res 50:397–404.

143. Numanoglu, V., Cihan, A., Salman, B. et al. 2007.Comparison between powdered gloves, powder-free gloves andhyaluronate/carboxymethylcellulose membrane on adhesionformation in a rat caecal serosal abrasion model. Asian JSurg 30:96–101.

144. Risberg, B. 1997. Adhesions: preventive strategies.Eur J Surg Suppl 577:32–39.

145. Anderson, J.M. 2004. In¥ammation, wound healing, andthe foreign body response. In: Ratner, B.D., Hoffman,A.S., Schoen, F.J., Lemons, J.E., Eds., BiomaterialsScience: An Introduction to Materials in Medicine,Elsevier Academic Press, San Diego, CA, p. 296.

146. Chuang, Y.C., Fan, C.N., Cho, F.N. et al. 2008. Anovel technique to apply a Sepra�lm(hyaluronatecarboxymethylcellulose) barrier followinglaparoscopic surgeries. Fertil Steril 90:1959–1963.

147. Weng, L., Iv anova, N.D., Zakhaleva, J., Chen, W.2008. In vitro and in vivo suppression of cellular activityby guanidinoethyl disul�de released from hydrogelmicrospheres composed of partially oxidized hyaluronan andgelatin. Biomaterials 29:4149–4156.

148. Suzuki, E., Umezaw a, K. 2006. Inhibition ofmacrophage activation and phagocytosis by a novel NF-κBinhibitor, dehydroxymethylepoxyquinomicin. BiomedPharmacother 60:578–586.

149. Amy, C., Gao, Q., John, K.W. 2007. Macrophage matrixmetalloproteinase-2/-9 gene and protein expression

Page 408: Polymeric Biomaterials - Taylor & Francis eBooks

following adhesion to ECM-derived multifunctional matricesvia integrin complexation. Biomaterials 28:285–298.

150. Maresz, K., Ponomarev , E.D., Barteneva, N., Tan, Y.,Manna, M.K., Dittel, B.N. 2008. IL-13 induces theexpression of the alternative activation marker Ym1 in asubset of testicular macrophages. J Reprod Immunol78:140–148.

151. Coleman, J.W. 2001. Nitric oxide in immunity andin¥ammation. Inter Immunopharmacol 1:1397–1406.

152. Cantoni, O., Palomba, L., Guidarelli, A., Tommasini,I., Cerioni, L., Sestili, P. 2002. Cell signaling andcytotoxicity by peroxynitrite. Environ Health Perspect110:823–825.

153. Lee, R.H., Efron, D., Tantry, U., Barbul, A. 2001.Nitric oxide in the healing wound: a time-course study. JSurg Res 101:104–108.

154. Schwentker, A., Vodovotz, Y., Weller, R., Billiar,T.R. 2002. Nitric oxide and wound repair: role ofcytokines. Nitric Oxide 7:1–10.

155. Kibbe, M., Billiar, T., Tzeng, E. 1999. Induciblenitric oxide synthase and vascular injury. Cardiovasc Res43:650–657.

156. Isenberg, C., Kolmann, H.L. 2005. Neurocutaneousangiomatosis: manifestation with cystic tumors. Nervenarzt76:202–204.

157. Mabley, J.G., Pacher, P., Bai, P., Wallace, R.,Goonesekera, S., Virag, L. et al. 2004. Suppression ofintestinal polyposis in Apcmin/+ mice by targeting thenitric oxide or poly(ADP-ribose) pathways. Mut Res548:107–116.

158. Suarez-Pinzon, W.L., Mable y, J.G., Strynadaka, K.,Power, R.F., Szabo, C., Rabinovitch, A. 2001. An inhibitorof inducible nitric oxide synthase and scavenger ofperoxynitrite prevents diabetes development in NOD mice. JAutoimmunity 16:449–455.

159. Paquette, D.W., Rosenberg, A., Lohinai, Z., Southan,G.J., Williams, R.C., Offenbacher, S. et al. 2006.Inhibition of experimental gingivitis in beagle dogs withtopical mercatoalkylguanidines. J Periodontol 77:385–391.

Page 409: Polymeric Biomaterials - Taylor & Francis eBooks

160. Wong, H.L., Wang, M.X., Cheung, P.T., Yao, K.M., Chan,B.P. 2007. A 3D collagen microsphere culture system forGDNF-secreting HEK293 cells with enhanced proteinproductivity. Biomaterials 28:5369–5380.

161. Yun, Y.H., Goetz, D.J., Yellen, P., Chen, W. 2004.Hyaluronan microspheres for sustained gene delivery andsite-speci�c targeting. Biomaterials 25:147–157.

162. Agnihotri, S.A., Aminabhavi, T.M. 2006. Novelinterpenetrating network chitosan-poly(ethyleneoxide-gacrylamide) hydrogel microspheres for the controlledrelease of capecitabine. Int J Pharm 324:103–115.

163. Cortesi, R., Esposito, E., Osti, M., Squarzoni, G.,Menegatti, E., Davis, S.S. et al. 1999. Dextran crosslinkedgelatin microspheres as a drug delivery system. Eur J PharmBiopharm 47:153–160.

164. Dinarvand, R., Rahmania, E., Farboda, E. 2003.Gelatin microspheres for the controlled release ofalltrans-retinoic acid topical formulation and drugdelivery evaluation. Iranian J Pharm Res 2:47–50.

165. Patil, S.D., P apadmitrakopoulos, F., Burgess, D.J.2007. Concurrent delivery of dexamethasone and VEGF forlocalized in¥ammation control and angiogenesis. J ControlRelease 117:68–79.

166. O’Donnell, P.B., McGinity, J.W. 1997. Preparation ofmicrospheres by the solvent evaporation technique. AdvDrug Deliv Rev 28:25–42.

167. Bernatchez, S.F., Parks, P.J., Gibbons, D.F. 1996.Interaction of macrophages with �brous materials in vitro.Biomaterials 17:2077–2086.

168. Esposito, A., Sannino, A., Cozzolino, A., Quintiliano,S.N., Lamberti, M., Ambrosio, L. et al. 2005. Response ofintestinal cells and macrophages to an orally administeredcellulose-PEG based polymer as a potential treatment forintractable edemas. Biomaterials 26:4101–4110.

169. Gamal-Eldeen, A.M., Amer, H., Helmy, W.A., Talaat,R.M., Ragab, H. 2007. Chemically-modi�ed polysaccharideextract derived from Leucaena leucocephala alters Raw 264.7murine macrophage functions. Int Immunopharm 7:871–888.

170. Bredt, D.S., Snyder, S.H. 1994. Nitric oxide: aphysiologic messenger molecule. Annu Rev Biochem

Page 410: Polymeric Biomaterials - Taylor & Francis eBooks

63:175–195.

171. Vijayasekaran, S., Fitton, J.H., Hicks, C.R., Chirila,T.V., Crawford, G.J., Constable, I.J. 1998. Cell viabilityand in¥ammatory response in hydrogel sponges implanted inthe rabbit cornea. Biomaterials 19:2255–2267.

172. Xa, Z., Trif�tt, J.T . 2006. A review on macrophageresponses to biomaterials. Biomed Mater 1:1–9.

173. Witte, M.B., Barbul, A. 1997. General principles of wound healing. Surg Clin North Am 77:509–528.

174. Enoch, S., Leaper, D.J. 2005. Basic science of woundhealing. Sur gery 23:37–42.

Page 411: Polymeric Biomaterials - Taylor & Francis eBooks

23 Chapter 23. Dental and MaxillofacialSurgery Applications of Polymers

1. K. R. St. John. Biocompatibility of dental materials.Dent. Clin. N. Am. 51:747–760 (2007).

2. J. C. Wataha. Principles of bicompatibility for dentalpractitioners. J. Prosthet. Dent. 86:203–209 (2001).

3. D. F. Williams. On the mechanisms of biocompatibility.Biomater. 29:2941–2953 (2008).

4. V. B. Michelsen, H. Lygre, R. Shålevik, A. B. Tveit, E.Solheim. Identi�cation of organic eluates from fourpolymer-based dental �lling materials. Eur. J. Oral Sci.111:263–271 (2003).

5. M. Taira, H. Urabe, T. Hirose, K. Wakasa, M. Yamaki.Analysis of photo-initiators in visible-light-cured dentalcomposite resins. J. Dent. Res. 67:24–28 (1988).

6. G. J. Sun, K. H. Chae. Properties of 2,3-butanedioneand 1-phenyl-1,2-propanedione as new photosensitizers forvisible light cured dental resin composites. Polymer41:6205–6212 (2000).

7. K. L. Van Landuyt, J. Snauwaert, J. De Munck, M.Peumans, Y. Yoshida, A. Poitevin, E. Coutinho, K. Suzuki,P. Lambrechts, B. Van Meerbeek. Systematic review of thechemical composition of contemporary dental adhesives.Biomater. 28:3757–3785 (2007).

8. D. N. Raith, J. E. Palamara, H. H. Messer. Temperaturechange, dentinal ¥uid ¥ow and cuspal displacement duringresin composite restoration. J. Oral Rehabil. 34:693–701(2007).

9. S. A. Faraj, B. Ellis. The effect of processingtemperatures on the exotherm, porosity and properties ofacrylic denture base. Br. Dent. J. 147:209–212 (1979).

10. L. G. Lopes, E. B. Franco, J. C. Pereira, R. F. L.Mondelli. Effect of light-curing units and activation modeon polymerization shrinkage and shrinkage stress ofcomposite resins. J. Appl. Oral Sci. 16:35–42 (2008).

11. J. L. Ferracane, J. C. Mitchem, J. R. Condon, R. Todd.Wear and marginal breakdown of composites with variousdegrees of cure. J. Dent. Res. 76:1508–1516 (1997).

Page 412: Polymeric Biomaterials - Taylor & Francis eBooks

12. L. Feng, B. I. Suh, Acrylic resins resisting oxygeninhibition during free-radical photocuring. I. Formulation attributes. J. Appl. Pol. Sci. 112:1565–1571(2009).

13. S. Fujisawa, Y. Kadoma. Action of eugenol as a retarderagainst polymerization of methyl methacrylate by benzoylperoxide. Biomaterials 18:701–703 (1997).

14. W. D. Cook, P. M. Standish. Polymerization kinetics ofresin-based restorative materials. J. Biomed. Mater. Res.17:275–282 (1983).

15. C. A. Lapp, G. S. Schuster. Effects of DMAEMA and4-methoxyphenol on gingival �broblast growth, metabolism,response to interleukin-1. J. Biomed. Mater. Res. 60:30–35(2002).

16. M. Reed, H. Fujiwara, D. C. Thompson. Comparativemetabolism, covalent binding and toxicity of BHT congenersin rat liver slices. Chem. Biol. Interact. 138:155–170(2001).

17. D. C. Smith. A new dental cement. Br. Dent. J.124:381–384 (1968).

18. A. D. Wilson, B. E. Kent. A new translucent cement fordentistry. The glass ionomer cement. Br. Dent. J.132:133–135 (1972).

19. A. D. Wilson, S. Crisp, G. Abel. Characterization ofglass-ionomer cements. 4. Effect of molecular weight onphysical properties. J. Dent. 5:117–120 (1977).

20. P. V. Hatton, I. M. Brook. Characterisation of theultrastructure of glass-ionomer (poly-alkenoate) cement.Br. Dent. J. 173:275–277 (1992).

21. The Academy of Prosthodontics. The glossary ofprosthodontic terms. J. Prosthet. Dent. 94:21–38 (2005).

22. E. E. Hill. Dental cements for de�nitive luting: areview and practical clinical considerations. Dent. Clin.N. Am. 51:643–658 (2007).

23. D. Edelhoff, M. Özcan. To what extent does thelongevity of �xed dental prostheses depend on the functionof the cement? Clin. Oral Impl. Res. 18(supplement3):193–204 (2007).

Page 413: Polymeric Biomaterials - Taylor & Francis eBooks

24. J. O. Burgess, B. K. Norling, H. R. Rawls, J. L. Ong.Directly placed esthetic restorative materials—thecontinuum. Comp. Contin. Ed. Dent. 17:731–732,734 (1996).

25. R. L. Bowen. U. S. Patent 3,066,112 (1962).

26. F. M. Burke, N. J. Ray, R J. McConnell.Fluoride-containing restorative materials. Int. Dent. J.56:33–43 (2006).

27. A. D. Wilson. Resin-modi�ed glass-ionomer cements. Int.J. Prosthodont. 3:425–429 (1990).

28. J. W. Nicholson. Polyacid-modi�ed composite resins(“compomers”) and their use in clinical dentistry. Dent.Mater. 23:615–622 (2007).

29. G. Eliades, A. Kakaboura, G. Palaghias. Acid-basereaction and ¥uoride release pro�les in visible lightcuredpolyacid-modi�ed composite restoratives (compomers). Dent.Mater. 14:57–63 (1998).

30. J. W. McLean, J. W. Nicholson, A. D. Wilson. Proposednomenclature for glass-ionomer dental cements and relatedmaterials. Quint. Int. 25:587–589 (1994).

31. J. W. Nicholson, M. A. McKenzie. The properties ofpolymerizable luting cements. J. Oral Rehabil. 26:767–774(1999).

32. C. H. Lloyd, L. Mitchell. The fracture toughness oftooth coloured restorative materials. J. Oral Rehabil.11:257–272 (1984).

33. R. W. Phillips. Advancements in adhesive restorativedental materials. J. Dent. Res. 45:1662–1667 (1966).

34. A. D. Wilson, H. J. Prosser, D. M. Powis. Mechanism ofadhesion of polyelectrolyte cements to hydroxyapatite. J.Dent. Res. 62:590–592 (1983).

35. M. J. Tyas. The effect of dentine conditioning withpolyacrylic acid on the clinical performance of glassionomer cement. Aust. Dent. J. 38:46–48 (1993).

36. M. G. Buonocore. A simple method of increasing theadhesion of acrylic �lling materials to enamel surfaces. J.Dent. Res. 34:849–853 (1955).

37. M. G. Buonocore, A. Matsui, A. J. Gwinnett.

Page 414: Polymeric Biomaterials - Taylor & Francis eBooks

Penetration of resin dental materials into enamel surfaceswith reference to bonding. Archs. Oral Biol. 13:61–70(1968).

38. A. J. Gwinnett, L. W. Ripa. Penetration of pit and�ssure sealants into conditioned human enamel in vivo.Archs. Oral Biol. 18:435–439 (1973).

39. G. W. Marshall Jr, S. J. Marshall, J. H. Kinney, M.Balooch. The dentin substrate: structure and propertiesrelated to bonding. J. Dent. 25:441–458 (1997).

40. F. R. T ay, D. H. Pashley. Have dentin adhesives becometoo hydrophilic? J. Can. Dent. Assoc. 69:726– 731 (2003).

41. Gebr. De Trey Aktiengesellschaft. Swiss Patent 278,946(1951).

42. I. R. H. Kramer , J. W. McLean. Alterations in thestaining reactions of dentine resulting from a constituentof a new self-polymerizing resin. Brit. Dent. J. 93:150–153(1952).

43. W. H. Douglas. Clinical status of dentine bondingagents. J. Dent. 17:209–215 (1989).

44. I. Watanabe, N. Nakabayashi, D. H. Pashley. Bonding toground dentin by a phenyl-P self-etching primer. J. Dent.Res. 73:1212–1220 (1994).

45. T. Fusayama. New Concepts in Operative Dentistry. p.118. Quintessence Publishing, Chicago, IL (1980).

46. J. Perdigão. New dev elopments in dental adhesion.Dent. Clin. N. Am. 51:333–357 (2007).

47. N. Nakabayashi, K. Kojima, E. Masuhara. The promotionof adhesion by the in�ltration of monomers into toothsubstrates. J. Biomed. Mater. Res. 16:265–273 (1982).

48. S. Uno, W. J. Finger. Effects of acidic conditioners ondentine demineralization and dimension of hybrid layers.J. Dent. 24:211–216 (1996).

49. M. Hashimoto, H. Ohno, K. Endo, M. Kaga, H. Sana, H.Oguchi. The effect of hybrid layer thickness on bondstrength: demineralized dentin zone of the hybrid layer.Dent. Mater. 16:406–411 (2000).

50. N. Nakabayashi, T. Saimi. Bonding to intact dentin. J.

Page 415: Polymeric Biomaterials - Taylor & Francis eBooks

Dent. Res. 75:1706–1715 (1996).

51. B. Van Meerrbeck, J. Perdigão, P. Lambrechts, G.Vanherle. The clinical performance of adhesives. J. Dent.26:1–20 (1998).

52. L. Breschi, A. Mazzoni, A. Ruggeri, M. Cadenaro.Dental adhesion review: aging and stability of the bondedinterface. Dent. Mater. 24:90–101 (2008).

53. M. Peumans, P. Kanumilli, J. De Munck, K. Van Landuyt,P. Lambrechts, B. Van Meerbeek. Clinical effectiveness ofcontemporary adhesives: a systematic review of currentclinical trials. Dent. Mater. 21:864–881 (2005).

54. J. De Munck, K. Van Landuyt, M. Peumans, A. Poitevin,P. Lambrechts, M. Braem, B. Van Meerbeek. A criticalreview of the durability of adhesion to tooth tissue:methods and results. J. Dent. Res. 84:118– 132 (2005).

55. S. Inoue, K. Koshiro, Y. Yoshida, J. De Munck, K.Nagakane, K. Suzuki, H. Sano, B. Van Meerbeek. Hydrolyticstability of self-etch adhesives bonded to dentin. J. Dent.Res. 84:1160–1164 (2005).

56. K. L. Van Landuyt, Y. Yoshida, I. Hirata, J. Snauwaert,J. De Munck, M. Okazaki, K. Suzuki, P. Lambrechts, B. VanMeerbeck. In¥uence of the chemical structure of functionalmonomers on their adhesive performance. J. Dent. Res.87:757–761 (2008).

57. Y. Yoshida, K. Nagakane, R. Fukuda, Y. Nakayama, M.Okazaki, H. Shintani, S. Inoue et al. Comparative study onadhesive performance of functional monomers. J. Dent. Res.83:454–458 (2004).

58. K. L. Van Landuyt, J. De Munck, J. Snauwaert, E.Continho, A. Poitevin, Y. Yoshida, S. Inoue et al.Monomer-solvent phase separation in one-step self-etchadhesives. J. Dent. Res. 184:183–188 (2005).

59. K. L. Van Landuyt, J. Snauwaert, J. De Munck, E.Continho, A. Poitevin, Y. Yoshida, K. Suzuki,P. Lambrechts, B. Van Meerbeek. Origin of interfacialdroplets with one-step adhesives. J. Dent. Res. 86:739–744(2007).

60. A. F. Reis, M. Giannini, P. N. R. Pereira. Long-termTEM analysis of the nanoleakage patterns in resindentininterfaces produced by different bonding strategies. Dent.

Page 416: Polymeric Biomaterials - Taylor & Francis eBooks

Mater. 23:1164–1172 (2007).

61. K. L. Van Landuyt, J. Snauwaert, M. Peumans, J. DeMunck. The role of HEMA in one-step self-etch adhesives.Dent. Mater. 24:1412–1419 (2008).

62. M. G . Brackett, F. R. Tay, W. W. Brackett, A. Dib, F.A. Dipp, S. Mai, D. H. Pashley. In vivo chlorhexidinestabilization of hybrid layers of an acetone-based dentinadhesive. Oper. Dent. 34:379–383 (2009).

63. R. Stanislawczuk, R. C. Amaral, C. Zander-Hrande, D.Gagler, A. Reis, A. D. Loguercio. Chlorhexidinecontainingacid conditioner preserves the longevity of resin-dentinbonds. Oper. Dent. 34:481–490 (2009).

64. H. Hosaka, Y. Nishitani, J. Tagami, M. Yoshiyama, W.W. Brackett, K. A. Agee, F. R. Tay, D. H. Pashley.Durability of resin-dentin bonds to water- vs.ethanol-saturated dentin. J. Dent. Res. 88:146–151 (2009).

65. J. P. Matinlinna, L. V. J. Lassila. M. Özcan, A.Yli-Urpo, P. K. Vallittu. An introduction to silanes andtheir clinical applications in dentistry. Int. J.Prosthodont. 17:155–164 (2004).

66. M. B. Blatz, A. Sadan, M. Kern. Resin-ceramic bonding:a review of the literature. J. Prosthet. Dent. 89:268–274(2003).

67. R. L. Bertolotti. Adhesion to porcelain and metal.Dent. Clin. N. Am . 51:433–451 (2007).

68. U.S. Department of health and Human Services. OralHealth in America: A Report of the Surgeon General. U. S.Department of Health and Human Services, National Instituteof Dental and Craniofacial Research, National Institutesof Health: Washington, DC; Rockford, IL; Bethesda, MD(2000).

69. S. M. Adair. The role of sealants in caries preventionprograms. J. Calif. Dent. Assoc. 31:221–227 (2003).

70. R. Welbury , M. Raadal, N. A. Lygidakis. EAPDguidelines for the use of pit and �ssure sealants. Eur.J. Paediatric Dent. 5:179–184 (2004).

71. L. W. Ripa. Sealants revisited: an update of theeffectiveness of pit-and-�ssure sealants. Caries Res. 27(supplement 1):77–82 (1993).

Page 417: Polymeric Biomaterials - Taylor & Francis eBooks

72. R. J. Simonsen. Preventive resin restorations andsealants in light of current evidence. Dent. Clin. N. Am.49:815–823 (2005).

73. R. C. Parkhouse, G. B. Winter. A �ssure sealantcontaining methyl-2-cyanoacrylate as a caries preventiveagent. A clinical evaluation. Br. Dent. J. 130:16–19(1971).

74. D. C. Birdsell, P. J. Bannon, R. B. Webb. Harmfuleffects of near-ultraviolet radiation used forpolymerization of a sealant and a composite resin. J. Am.Dent. Assoc. 94:311–314 (1977).

75. K. C. Young, M. Hussey, F. C. Gillespie, K. W. Stephen.The performance of ultraviolet lights used to polymerize�ssure sealants. J. Oral Rehabil. 4:181–191 (1977).

76. I. E. Ruyter. Unpolymerized surface layers on sealants.Acta Odont. Scan. 39:27–32 (1981).

77. N. Olea, R. Pulgar, P. Pérez, F. Olea-Serrano, A.Rivas, A. Novillo-Fertrell, V. Pedraza, A. M. Soto,C. Sonnenschein. Estrogenicity of resin-based compositesand sealants used in dentistry. Environ. Health Perspect.104:298–305 (1996).

78. R. Joskow , D. B. Barr, J. R. Barr, A. M. Calafat, L.L. Needham, C. Rubin. Exposure to bisphenol A frombis-glycidyl dimethacrylate-based dental sealants. J. Am.Dent. Assoc. 137:353–362 (2006).

79. A. Azarpazhooh, P. A. Main. Is there a risk of harm ortoxicity in the placement of pit and �ssue sealantmaterials? A systematic review. J. Can. Dent. Assoc.74:179–183 (2008).

80. J. H. Warford II, J. H. W arford III, E.C. Combe. U. S.Patent 6,620,859 (2003).

81. A. Ahovuo-Saloranta, A. Hiiri, A. Norblad, M. Mäkelä,H. V. Worthington. Pit and �ssure sealants for preventingdental decay in the permanent teeth of children andadolescents. Cochrane Database of Systematic Reviews 2008,Issue 4. Art No.: CD001830. DOI:10.1002/14651858.CD001830.pub3.

82. E. M. Oong, S. O. Grif�n, W. G. Kohn, B. F. Gooch, P.W. Cau�eld. The effect of dental sealants on bacteria

Page 418: Polymeric Biomaterials - Taylor & Francis eBooks

levels in caries lesions. A review of the evidence. J. Am.Dent. Assoc. 139:271–278 (2008).

83. S. O. Grif�n, E. Oong, W. Kohn, B. Vidakovic, B. F.Gooch, J. Bader, J. Clarkson, M. R. Fontana, D. M. Meyer,R. G. Roozier, J. A. Weintraub, D. T. Zero. Theeffectiveness of sealants in managing caries lesions. J.Dent. Res. 87:169–174 (2008).

84. R. J. Feigal, I. Quelhas. Clinical trial of aself-etching adhesive for sealant application: success at24 months with Prompt L-Pop. Am J. Dent. 16:249–251 (2003).

85. A. Peutzfeldt, L. A. Nielsen. Bond strength of asealant to primary and permanent enamel: phosphoric acidversus self-etching adhesive. Pediatr. Dent. 26:240–244(2004).

86. J. Perdigão, J. W. Fundingsland, S. Duarte Jr, M.Lopes. Microtensile adhesion of sealants to intact enamel.Int. J. Paediatric Dent. 15:342–348 (2005).

87. R. J. Feigal. Self-etch adhesives for sealants? J.Esthetic Restorative Dent. 19:69–70 (2007).

88. R. M. Puppin-Rontani, M. E. Baglioni-Gouvea, M. F.deGoes, F. Garcia-Godoy. Compomer as a pit and �ssuresealant: effectiveness and retention after 24 months. J.Dent. Child. 73:31–36 (2006).

89. N. Yakut, H. Sönmez. Resin composite sealant vs.polyacid-modi�ed resin composite applied to post eruptivemature and immature molars: two year clinical study. J.Clin. Pediatr. Dent. 30:215–218 (2006).

90. N. Beiruti, J. E. Frencken, M. A. van’t Hof, W. H. VanPalenstein Helderman. Caries-preventive effect ofresin-based and glass ionomer sealants over time: asystematic review. Commun. Dent. Oral Epidemiol.34:403–409 (2006).

91. R. J. Simonsen. Pit and �ssure sealant: review of theliterature. Pediatr. Dent. 24:393–414 (2002).

92. J. Beauchamp, P. W. Cau�eld, J. J. Crall, K. Donly, R.Feigal, B. Gooch, A. Ismail, W. Kohn, M. Siegal, R.Simonsen. Evidence-based clinical recommendations for theuse of pit-and-�ssure sealants. J. Am. Dent. Assoc.139:257–267 (2008).

Page 419: Polymeric Biomaterials - Taylor & Francis eBooks

93. A. Azarpazhooh, P. A. Main. Pit and �ssure sealants inthe prevention of dental caries in children andadolescents: a systematic review. J. Can. Dent. Assoc.74:171–177 (2008).

94. American Society for T esting and Materials. StandardPractice for Care and Use of Athletic Mouth Protectors.American Society for Testing and Materials, Philadelphia,PA, F 697–00 (2006).

95. American Dental Association. The importance of usingmouthguards. J. Am. Dent. Assoc. 135:1061 (2004).

96. R. E. Going, R. E. Loehman, M. S. Chan. Mouthguardmaterials: their physical and mechanical properties. J. Am.Dent. Assoc. 89:132–138 (1974).

97. J. B. Park, K. L. Shaull, B. Overton, K. J. Donly. J.Prosthet. Dent. 72:373–380 (1994).

98. J. B . Fontelles, C. Clarke. Directive 2005/84/EC ofthe European Parliament. Off. J. Eur. Union, 48:40–43(2005).

99. T. E. Gould, S. G. Piland, J. Shin, C. E. Hoyle, S.Nazarenko. Characterization of mouthguard materials:physical and mechanical properties of commercializedproducts. Dent. Mater. 25:771–780 (2009).

100. ADA Council on Access, Prevention andInterprofessional relations and ADA Council on Scienti�cAffairs. Using mouthguards to reduce the incidence andseverity of sports-related oral injuries. J. Am. Dent.Assoc. 137:1712–1720 (2006).

101. A. Picozzi. Mouth protectors. Dent. Clin. N. Am.19:385–387 (1975).

102. J. J . Knapik, S. W. Marshall, R. B. Lee, S. S.Darakjy, S. B. Jones, T. A. Mitchener, G. C. delaCruz, B.H. Jones. Mouthguards in sport activities. Sports Med.37:117–144 (2007).

103. D. J. Howells, P. Jones. In vitro evaluation of acyanoacrylate bonding agent. Br J. Ortho. 16:75–78 (1989).

104. D. Millett, N. Mandall, J. Hickman, R. Mattick, A.-M.Glenny. Adhesives for �xed orthodontic bands. A systematicreview. Angle Orthod. 79:193–199 (2009).

Page 420: Polymeric Biomaterials - Taylor & Francis eBooks

105. T. Eliades. Orthodontic materials research andapplications: part 1. Current status and projected futuredevelopments in bonding and adhesives. Am J. Orthod.Dentofacial Orthop. 130:445–451 (2006).

106. T. Eliades, A. Hiskia, G. Eliades, A. E. Athanasiou.Assessment of bisphenol-A release from orthodonticadhesives. Am J. Orthod. Dentofacial Orthop. 131:72–75(2007).

107. T. Eliades, V . Gioni, D. Kletsas, A. E. Athanasiou,G. Eliades. Oestrogenicity of orthodontic adhesive resins.Eur. J. Orthod. 29:404–407 (2007).

108. L. Gorelick, A. M. Geiger, A. J. Gwinnett. Incidenceof white spot formation after bonding and banding. Am. J.Orthod. 81:93–98 (1982).

109. S. Imran. Fluoride varnish reduces white spot lesionsduring orthodontic treatment. Evid. Based Dent. 9:81(2008).

110. A. W. Benham, P. M. Campbell, P. H. Buschang.Effectiveness of pit and �ssure sealants in reducing whitespot lesions during orthodontic treatment. A pilot study.Angle Orthod. 79:338–345 (2009).

111. F. Heravi, R. Rashed, L. Raziee. The effects ofbracket removal on enamel. Aust. Orthod. J. 24:110–115(2008).

112. C. S. Chen, M. L. Hsu, K. D. Chang, S. H. Kuang, P. T.Chen, Y. W. Gung. Failure analysis: enamel fracture afterdebonding orthodontic brackets. Angle Orthod. 78:1071–1077(2008).

113. C. Nattrass, A. J. Ireland, C. R. Lovell. Latexallergy in an orthognathic patient and implications forclinical management. Br. J. Oral Maxillofac. Surg. 37:11–13(1999).

114. C. Bertoncini, E. Cioni, B. Grampi, P. Gandini. Invitro properties’ change of latex and non-latex orthodonticelastics. Prog. Orthod. 7:76–84 (2006).

115. P. Gandini, R. Gennai, C. Bertoncini, S. Massironi.Experimental evaluation of latex-free orthodonticelastics’ behaviour in dynamics. Prog. Orthod. 8:88–99(2007).

Page 421: Polymeric Biomaterials - Taylor & Francis eBooks

116. M. L. Kerse y, K. E. Glover, G. Heo, D. Raboud, P. W.Major. A comparison of dynamic and static testing of latexand nonlates orthodontic elastics. Angle Orthod. 73:181–186(2003).

117. M. Peumans, B. V an Meerbeek, P. Lambrechts, G.Vanherle. Porcelain veneers: a review of the literature.J. Dent. 28:163–177 (2000).

118. G. J. Christensen. Have porcelain veneers arri ved? J.Am. Dent. Assoc. 122:81 (1991).

119. J. R. Calamia, C. S. Calamia. Porcelain laminateveneers: reasons for 25 years of success. Dent. Clin.N. Am. 51:399–417 (2007).

120. D. Layton, T. Walton. An up to 16-year prospectivestudy of 304 porcelain veneers. Int. J. Prosthod.20:389–396 (2007).

121. F. J. T. Burke, M. G. D. Kelleher. Perspectives. The“daughter test” in elective esthetic dentistry. J. Esthet.Restor. Dent. 21:143–146 (2009).

122. A. D. Puckett, J. G. Fitchie, P. C. Kirk, J. Gamblin.Direct composite restorative materials. Dent. Clin. N. Am.51:659–675 (2007).

123. M. N. Mandikos, G. P. McGivney, E. Davis, P. J. Bush,J. M. Carter. A comparison of the wear resistance andhardness of indirect composite resins. J. Prosthet. Dent.85:386–395 (2001).

124. F. Lutz, R. W. Phillips. A classi�cation andevaluation of composite resin systems. J. Prosthet. Dent.50:480–488 (1983).

125. A. C. Shortall, W . M. Palin, P. Burtscher. Refractiveindex mismatch and monomer reactivity in¥uence compositecuring depth. J. Dent. Res. 87:84–88 (2008).

126. R. W. Hasel. U. S Patent 5,944,527 (1999).

127. A. Nuray, L. E. Tam, D. McComb. Flow, strength,stiffness and radiopacity of ¥owable resin composites. J.Can. Dent. Assoc. 69:516–521 (2003).

128. R. D. Jackson, M. Morgan. The new posterior resins anda simpli�ed placement technique. J. Am. Dent. Assoc.131:375–383 (2000).

Page 422: Polymeric Biomaterials - Taylor & Francis eBooks

129. K. F. Leinfelder , S. C. Bayne. E. J. Swift Jr.Packable composites: overview and technical considerations.J. Esthet. Dent. 11:234–249 (1999).

130. A. P eutzfeldt. Resin composites in dentistry: themonomer systems. Eur. J. Oral Sci. 105:97–116 (1997).

131. K. Tanaka, M. Taira, H. Shintani, K. Wakasa, M.Yamaki. Residual monomers (TEGDMA and BisGMA) of a setvisible-light-cured dental composite resin when immersed inwater. J. Oral Rehabil. 18:353–362 (1991).

132. W. Spahl, H. Budzikiewicz, W. Guersten. Determinationof leachable components from four commercial dentalcomposites by gas and liquid chromatography/massspectrometry. J. Dent. 26:137–145 (1998).

133. U. Ortengren, H. Wellendorf, S. Karlsson, I. E.Ruyter. Water sorption and solubility of dental compositesand identi�cation of monomers released in an aqueousenvironment. J. Oral Rehabil. 28:1106–1115 (2001).

134. Y. Issa, D. C. Watts, P. A. Brunton, C. M. Waters, A.J. Duxbury. Resin composite monomers alter MTT and LDHactivity of human gingival �broblasts in vitro. Dent.Mater. 20:12–20 (2004).

135. D. H. Lee, N. R. Kim, B.-S. Lim, Y.-K. Lee, H.-C.Yang. Effects of TEGDMA and HEMA on the expression of COX-2and iNOS in cultures murine macrophage cells. Dent. Mater.25:240–246 (2009).

136. J. P. Santerre, L. Shajii, B. W. Leung. Relation ofdental composite formulations to their degradation and therelease of hydrolyzed polymeric-resin-derived products.Crit. Rev. Oral Biol. Med. 12:136–151 (2001).

137. T. Nihei, A. Dabanoglu, T. Teranaka, S. Kurata, K.Ohashi, Y. Kondo, N. Yoshino, R. Hickel, K.-H. Kunzelmann.Three-body-wear resistance of the experimental compositescontaining �ller treated with hydrophobic silane couplingagents. Dent. Mater. 24:760–764 (2008).

138. L. Lindqvist, C. E. Nord, P. O. Söder. Origin ofesterase in human whole saliva. Enzyme 22:165–175 (1977).

139. Y. Finer, J. P. Santerre. Salivary esterase activityand its association with the biodegradation of dentalcomposites. J. Dent. Res. 83:22–26 (2004).

Page 423: Polymeric Biomaterials - Taylor & Francis eBooks

140. Y. Finer, J. P. Santerre. In¥uence of silanated �llercontent on the biodegradation of bisGMA/TEGDMA dentalcomposite resins. J. Biomed. Mater. Res. 81A:75–84 (2007).

141. J. L. Drummond. Degradation, fatigue, and failure ofresin dental composite materials. J. Dent. Res. 87:710–719(2008).

142. N. Moszner, U. Salz. New developments of polymericdental composites. Prog. Polym. Sci. 26:535–576 (2001).

143. R. R. Braga, R. Y. Ballester, J. L. Ferracane. Factorsinvolved in the development of polymerization shrinkagestress in resin-composites: a systematic review, Dent.Mater. 21:962–970 (2005).

144. M. J . M. Coelho Santos, G. C. Santos Jr, H. NagemFilho, R. F. L. Mondelli, O. El-Mowafy. Effect of lightcuring method on volumetric polymerization shrinkage ofresin composites. Oper. Dent. 29:157–161 (2004).

145. R. L. Sakaguchi, A. Versluis, W. H. Douglas. Analysisof strain gage method for measurement of post-gelshrinkage in resin composites. Dent. Mater. 13:233–239(1997).

146. D. Tantbirojn, A. Versluis, M. R. Pintado, R. DeLong,W. H. Douglas. Tooth deformation patterns in molars aftercomposite restoration. Dent. Mater. 20:535–542 (2004).

147. J. M. Antonucci, J. W. Stansbury, S. Venz. Synthesisand properties of poly¥uorinated prepolymer multifunctionalurethane methacrylate. Poly. Mater. Sci. Eng. 59:388–396(1988).

148. J. W. Stansbury. Cyclopolymerizable monomers for usein dental resin composites. J. Dent. Res. 69:844– 848(1990).

149. V. P . Thompson, E. F. Williams, W. J. Bailey. Dentalresins with reduced shrinkage during hardening. J. Dent.Res. 58:1522–1532 (1979).

150. J. W. Stansb ury, W. J. Bailey. Evaluation of spiroorthocarbonate monomers capable of polymerizing withexpansion as ingredients in dental composite materials. In:C. G. Gebelein, R. L. Dunn (eds.). Progress in BiomedicalPolymers, Plenum Press, New York, pp. 133–139 (1990).

Page 424: Polymeric Biomaterials - Taylor & Francis eBooks

151. J. W. Stansb ury. Synthesis and evaluation of newoxaspiro monomers for double ring-opening polymerization.J. Dent. Res. 71:1408–1412 (1992).

152. E. J. Moon, J. Y. Lee, C. K. Kim, B. H. Cho. Dentalrestorative composites containing2,2-Bis-[4-(2hydroxy-3-methacryloyloxy propoxy) phenyl]propane derivatives and spiro orthocarbonates. J. Biomed.Mater. Res. Part B: Appl. Biomater. 73B:338–346 (2005).

153. M. T rujillo-Lemon, J. Ge, H. Lu, J. Tanaka, J. W.Stansbury. Dimethacrylate derivatives of dimer acid. J.Polym. Sci. Part A Polym. Chem. 44:3921–3929 (2006).

154. C. A. Khatri, J. W. Stansbury, C. R. Schultheisz, J.M. Antonucci. Synthesis, characterization and evaluation ofurethane derivatives of bis-GMA. Dent. Mater. 19:584–588(2003).

155. J. W. Stansb ury, J. M. Antonucci. Dimethacrylatemonomers with various ¥uorine contents and distributions.Dent. Mater. 15:166–173 (1999).

156. S. Kurata, N. Yamazaki. New matrix polymers forphoto-activated resin composites using di-α¥uoroacrylicacid derivatives. Dent. Mater. J. 27:434–540 (2008).

157. N. Moszner, U. Salz. Chapter 2: Composites for dentalrestoratives. In: S. S. Shalaby, U. Salz (eds.). Polymersfor Dental and Orthopedic Applications, CRC Press, BocaRaton, FL, pp. 13–67 (2007).

158. W. Weinmann, C. Thalacker, R. Guggenberger. Siloranesin dental composites. Dent. Mater. 21:68–74 (2005).

159. V. Miletic, V. Ivanovic, B. Dzeletovic, M. Lezaja,Temperature changes in silorane-, ormocer-, anddimethacrylate-based composites and pulp chamber roofduring light-curing. J. Esther. Restor. Dent. 21:122–132(2009).

160. N. Ilie, R. Hickel. Macro-, micro- and nano-mechanicalinvestigations on silorane and methacrylatebasedcomposites. Dent. Mater. 25:810–819 (2009).

161. S. Duarte Jr, J.-H. Park, F. M. Varjão, A. Sadan.Nanoleakage, ultramorphological characteristics, andmicrotensile bond strengths of a new low-shrinkagecomposite to dentin after arti�cial aging. Dent. Mater.25:589–600 (2009).

Page 425: Polymeric Biomaterials - Taylor & Francis eBooks

162. H. Wolter, W. Storch, H. Ott. New inorganic/organiccopolymers (Ormocer ® s) for dental applications. In: A.K. Cheetham, C. J. Brinker, M. L. Mecartney, C. Sanchez(eds.). Material Research Society Symposium Proceedings,San Francisco, CA, April 4–8, 1994, Vol. 346, pp. 143–149.Materials Research Society, Pittsburgh, PA (1994).

163. D. A. Tagtekin, F. C. Yanikoglu, F. O. Bozkurt, B.Kogoglu, H. Sur. Selected characteristics of an Ormocerand a conventional hybrid resin composite. Dent. Mater.20:487–497 (2004).

164. J. M. Meyer, M. A. Cattani-Lorente, V. Dupuis.Compomers: between glass-ionomer cements and composites.Biomaterials 19:529–539 (1998).

165. J. W. Nicholson. Glass-ionomers in medicine anddentistry. Proc. Instn. Mech. Engrs. Part H, 212:121–126(1998).

166. B. L. Chadwick, P. M. H. Dummer, F. D. Dunstan, A. S.M. Gilmour, R. J. Jones, C. J. Phillips, J. Rees, S.Richmond, J. Stevens, E. T. Treasure. What type of �lling?Best practice in dental restorations. Quality in HealthCare 8:202–207 (1999).

167. R. S. Gatewood. Endodontic materials. Dent. Clin. N.Am. 51:695–712 (2007).

168. L. Spångberg. Biological effects of root end �llingmaterials. II. Effect in vitro of water-soluble componentsof root canal �lling materials in HeLa cells. Odontol.Revy. 20:133–145 (1969).

169. L. Spångberg. Biological effects of root end �llingmaterials. IV. Effect in vitro of solubilized root canal�lling materials in HeLa cells. Odontol. Revy. 20:289–299(1969).

170. J. Moshonov, M. Trope, S. Friedman. Retreatmentef�cacy 3 months after obturation using glass ionomercement, zinc oxide-eugenol, and epoxy resin sealers. J.Endod. 20:90–92 (1994).

171. R. Raina, R. J. Loushine, R. N. Weller, F. R. Tay, D.H. Pashley. Evaluation of the quality of the apical sealin Resilon/Epiphany and Gutta-Percha/AH plus-�lled rootcanals by using a ¥uid �ltration approach. J. Endod.33:944–948 (2007).

Page 426: Polymeric Biomaterials - Taylor & Francis eBooks

172. S. Bouillaguet, J. C. Wataha, F. R. Tay, M. G.Brackett, P. E. Lockwood. Initial in vitro biologicalresponse to contemporary endodontic sealers. J. Endod.32:989–992 (2006).

173. S. M ai, Y. K. Kim, N. Hirashi, J. Ling, D. H.Pashley, F. R. Tay. Evaluation of the true self-etchingpotential of a fourth generation self-adhesive methacrylateresin-based sealer. J. Endod. 35:870–874 (2009).

174. F. R . Tay, D. H. Pashley. Monoblocks in root canals:a hypothetical or a tangible goal. J. Endod. 22:391–398(2007).

175. E. S . Reeh, E. C. Combe. New core and sealermaterials for root canal obturation and retro�lling.J. Endod. 28:520–523 (2002).

176. S. Buchan, R.W. Peggie. Role of ingredients inalginate impression compounds. J. Dent. Res. 45:1120– 1129(1966).

177. W. D. Cook. Alginate dental impression materials:chemistry, structure and properties. J. Biomed. Mater.Res. 20:1–24 (1986).

178. N. N allamuthu, M. Braden, M. P. Patel. Dimensionalchanges of alginate dental impression materials. J. Mater.Sci.: Mater. Med. 17:1205–1210 (2006).

179. J. G. Stannard, R. G. Craig. Modifying the settingrate of an addition-type silicone impression material. J.Dent. Res. 58:1377–1382 (1979).

180. C. Shen, Chapter 9 of Phillips’ Science of DentalMaterials. 11th edn., In: K. J. Anusavice (eds.).Saunders, Philadelphia, PA, pp. 216–217 (2003).

181. A. Sadan. Hydrophilic vin yl polysiloxane impressionmaterials. Pract. Proc. Aesthet. Dent. 17:310 (2005).

182. E. Kotsiomiti, A. Tzialla, K. Hatjivasiliou. Accuracyand stability of impression materials subjected tochemical disinfection – a literature review. J. OralRehabil. 35:291–299 (2008).

183. D. G. Gratton, S. A. Aquilino. Interim restorations.Dent. Clin. N. Am. 48:487–497 (2004).

Page 427: Polymeric Biomaterials - Taylor & Francis eBooks

184. C. M. Becker , C. C. Swoope, C. A. Schwalm. Emergencydentures. J. Prosthet. Dent. 32:514–519 (1974).

185. R. E. Ogle, S. E. Sorensen, E. A. Lewis. A new visiblelight-cured resin system applied to removableprosthodontics. J. Prosthet. Dent. 56:497–504 (1986).

186. A. M. Diaz-Arnold, M. A. Vargas, K. L. Shuall, J. E.Laffoon, F. Qian. Flexural and fatigue strengths ofdenture base resin. J. Prosthet. Dent. 100:47–51 (2008).

187. R. Diwan, E. C. Combe, A. A. Grant. The use ofmicrowave energy to cure acrylic resins. Clin. Mater.12:117–120 (1993).

188. S. Sadamori, T. Gane�yanti, T. Hamada, T. Arima.In¥uence of thickness and location on the residual monomercontent of denture base cured by three processing methods.J. Prosthet. Dent. 72:19–22 (1994).

189. J. F. McCabe, R. M. Basker. Tissue sensitivity toacrylic resin. Br. Dent. J. 140:347–350 (1976).

190. J. H. Jorge, E. T. Giampaolo, A. L. Machado, C. E.Vergani. Cytotoxicity of denture base acrylic resins: aliterature review. J. Prosthet. Dent. 90:190–193 (2003).

191. D. C . Jagger, A. Harrison, K. D. Jandt. Thereinforcement of dentures. J. Oral Rehabil. 26:185–194(1999).

192. G. D. Stafford, J. F. Bates, R. Huggett, R. W.Handley. A review of the properties of some denture basepolymers. J. Dent. 8:292–306 (1980).

193. R. A. Rodford. Further development and evaluation ofhigh-impact-strength denture base materials. J. Dent.18:151–157 (1990).

194. C. K. Schreiber. The clinical application of carbon�bre/polymer denture bases. Br. Dent. J. 137:21–22 (1974).

195. J. M. Berrong, R. M. Weed, J. M. Young. Fractureresistance of Kevlar-reinforced poly(methyl methacrylate)resin: a preliminary study. Int. J. Prosthodont. 3:391–395(1990).

196. P. K. Vallittu, V. P. Lassila, R. Lappalainen. Acrylicresin �bre composite. Part I: The effect of �breconcentration on fracture resistance. J. Prosthet. Dent.

Page 428: Polymeric Biomaterials - Taylor & Francis eBooks

71:607–612 (1994).

197. P. K. Vallittu, V. P. Lassila, R. Lappalainen.Transverse strength and fatigue of denture acrylic glass�ber composite. Dent. Mater. 10:116–121 (1994).

198. P. K. Vallittu, K. Narva. Impact strength of a modi�edglass �ber poly(methyl methacrylate). Int J. Prosthodont.10:142–148 (1997).

199. M. Braden, K. W. M. Davy, S. Parker, N. H. Ladizesky,I. M. Ward. Denture base poly (methyl methacrylate)reinforced with ultra-high molulus polyethylene �bres.Brit. Dent. J. 164:109–113 (1988).

200. D. L. Gutteridge. Reinforcement of poly (methylmethacrylate) with ultra-high-modulus polyethylene �bre.J. Dent. 20:50–54 (1992).

201. N. H. Ladizesky , T. W. Chow. Reinforcement ofcomplete denture bases with continuous high performancepolyethylene �bres. J. Prosthet. Dent. 68:934–939 (1992).

202. J. L. Gilbert, D. S. Ney, E. P. Lautenschlager. Selfreinforced composite poly (methyl methacrylate): staticand fatigue properties. Biomaterials 16:1043–1055 (1995).

203. P. K. V allittuil, V. P. Lassila. Effect of metalstrengthener’s surface roughness on fracture resistance ofacrylic denture base material. J. Oral Rehabil. 19:385–391(1992).

204. P. K. Vallittu. Effect of some properties of metalstrengtheners on the fracture resistance of acrylic denturebase material. J. Oral Rehabil. 20:241–248 (1993).

205. G. L. Polyzois. Reinforcement of denture acrylicresin. The effect of metal inserts and denture resin typeon fracture resistance. Eur. J. Prosthodont. Rest. Dent.3:275–278 (1995).

206. K. E. Bloodworth, P. J. Render. Dental acrylic resinradiopacity: literature review and survey of practitioners’attitudes. J. Prosthet. Dent. 67:121–123 (1992).

207. N. Yunus, A. A. Rashid, L.L. Azmi, M. I. Abu-Hassan.Some ¥exural properties of a nylon denture base polymer.J. Oral Rehabil. 32:65–71 (2005).

208. P. Pfeiffer , N. An, P. Schmage. Repair strengths of

Page 429: Polymeric Biomaterials - Taylor & Francis eBooks

hypoallergenic denture base materials. J. Prosthet. Dent.100:292–301 (2008).

209. A. C. Murphy , R. G. Hill. Fracture toughness of toothacrylics. J. Mater. Sci. Mater. Med. 14:1011–1015 (2003).

210. S. Suzuki. In vitro wear of nano-composite dentureteeth. J. Prosthodont . 13:238–243 (2004).

211. K. R. Reis, G. Bonfante, L. F. Pegoraro, P. C. Conti,P. C. Oliveira, O. B. Kaizer. In vitro wear resistance ofthree types of poly(methyl methacrylate) denture teeth. J.Appl. Oral Sci. 16:176–180 (2008).

212. J. M. Clancy , D. B. Boyer. Comparative bond strengthsof light-cured, heat-cured, and autopolymerizing dentureresins to denture teeth. J. Prosthet. Dent. 61:457–462(1989).

213. P. K. Vallittu, I. E. Ruyter, R. Nat. The swellingphenomenon of acrylic resins polymer teeth at the interfacewith denture base polymers. J. Prosthet. Dent. 78:194–199(1997).

214. W. W. Chase. Tissue conditioning utilizing dynamicadaptive stress. J. Prosthet. Dent. 11:804–815 (1961).

215. H. Murata, Y. Narasaki, T. Hamada, F. F. McCabe. Analcohol-free tissue conditioner—A laboratory study. J.Dent. 34:307–315 (2006).

216. M. Braden, P. S. Wright, S. Parker. Soft liningmaterials—A review. Eur. J. Prosthodont. Rest. Dent.3:163–174 (1995).

217. D. R. Radford, S. J. Challacombe, J. D. Walter.Denture plaque and adherence of Candida albicans todenture-base materials in vivo and in vitro. Crit. Rev.Oral Biol. Med. 10:99–116 (1999).

218. S. Parker, D. Martin, M. Braden. Soft acrylic resinmaterials containing a polymerisable plasticiser I:Mechanical properties. Biomater. 19:1695–1701 (1988).

219. S. Parker, D. Martin, M. Braden. Soft acrylic resinmaterials containing a polymerisable plasticiser II: Waterabsorption characteristics. Biomaterials 20:55–60 (1999).

220. I. Hayakawa, N. Akiba, E. Keh, Y. Kasuga. Physicalproperties of a new denture lining material containing a

Page 430: Polymeric Biomaterials - Taylor & Francis eBooks

¥uoroalkyl methacrylate polymer. J. Prosthet. Dent.96:53–58 (2006).

221. J. E. Grasso. Denture adhesives: changing attitudes. J. Am. Dent. Assoc. 127:90–96 (1996).

222. J. E. Grasso. Denture adhesives. Dent. Clin. N. Am.48:721–733 (2004).

223. A. H. Melcher. On the repair potential of periodontaltissues. J. P eriodont. 256–260 (1976).

224. A. H. Melcher. Healing of wounds in the periodontium.In: A. H. Melcher, W. H. Bowen (eds.). Biology of thePeriodontium, Academic Press, London, U.K., pp. 497–529(1969).

225. F. Isidor, T. Karring, S. Nyman. J. Lindhe. Thesigni�cance of coronal growth of periodontal ligamenttissue for new attachment formation. J. Clin. Periodont.13:145–150 (1986).

226. S. Nyman, J. Lindhe, T. Karring, H. Rylander. Newattachment following surgical treatment of humanperiodontal disease. J. Clin. Periodont. 9:290–296 (1982).

227. M. R. Urist. Bone: formation by autoinduction. Science150(698):893–899 (1965).

228. J. D. Bashutski, H.-M. Wang. Periodontal andendodontic regeneration. J. Endod. 35:321–328 (2009).

229. P. I. Branemark, B. O. Hannson, R. Adell, U. Breine,J. Lindstrom, O. Hallen, A. Ohman. Osseointegratedimplants in the treatment of the edentulous jaw. Experiencefrom a 10-year period. Scand. J. Plast. Reconstr. Surg.Suppl. 16:1–132 (1977).

230. H. Schliephake, D. Scharnweber. Chemical andbiological functionalization of titanium for dentalimplants. J. Mater. Chem. 18:2404–2414 (2008).

231. A.Tezel, G. H. Fredrickson. The science of hyaluronicacid dermal �llers. J. Cosmetic and Laser Ther. 10:35–42(2008).

232. D. W. Buck, A. Alam, J. Y. S. Kim. Injectable �llersfor facial rejuvenation: a review. J. Plast. Reconstr.Aesth. Surg. 62:11–18 (2008).

Page 431: Polymeric Biomaterials - Taylor & Francis eBooks

233. J. L . Cohen. Understanding, avoiding and managingdermal �ller complications. Derm. Surg. 34:S92–S99 (2008).

234. K. C. Smith. Re versible vs. nonreversible �llers infacial aesthetics: concerns and considerations. Derm.Online J. 14:3 (2008).

235. A. J. Valauri. Maxillofacial prosthetics. Aesth.Plast. Surg. 6:159–164 (1982).

236. J. C. Lemon, S. Kiat-amnuay, L. Gettleman, J. W.Martin, M. S. Chambers. Fixed prosthetic rehabilitation:preprosthetic surgical techniques and biomaterials. Curr.Opin. Otolaryngol. Head Neck Surg. 13:255–262 (2005).

237. H. Huber, S. P. Studer. Materials and techniques inmaxillofacial prosthodontic rehabilitation. OralMaxillofac. Surg. Clin. N. Am. 14:73–93 (2002).

238. T. Aziz, M. Waters, R. Jagger. Analysis of theproperties of silicone rubber maxillofacial prostheticmaterials. J. Dent. 31:67–74 (2003).

239. A. K. Hulterström, A. Berglund, I. E. Ruyter.Wettability, water sorption and water solubility of sevensilicone elastomers used for maxillofacial prostheses. J.Mater. Sci Mater. Med. 19:225–231 (2008).

240. J. J. Gary, C. T. Smith. Pigments and theirapplication in maxillofacial elastomers: a literaturereview. J. Prosthet. Dent. 80:204–208 (1998).

241. S. P. Haug, B. K. Moore, C. J. Andres. Color stabilityand colorant effect on maxillofacial elastomers. Part II:Weathering effect on physical properties. J. Prosthet.Dent. 81:423–430 (1999).

242. J. H. Lai, L. L. Wang, C. C. Ko, R. L. DeLong, J. S.Hodges. New organosilicon maxillofacial prostheticmaterials. Dent. Mater. 18:281–286 (2002).

243. Y. Han, S. Kiat-amnuay, J. M. Powers, Y. Zhao. Effectof nano-oxide concentration on the mechanical propertiesof a maxillofacial silicone elastomer. J. Prosthet. Dent.100:465–473 (2008).

244. S. O. Bartlett, D. J. Moore. Ocular prosthesis: aphysiologic system. J. Prosthet. Dent. 29:450–459 (1973).

245. Y. Grossman, I. Savion. The use of a light-polymerized

Page 432: Polymeric Biomaterials - Taylor & Francis eBooks

resin-based obturator for the treatment of themaxillofacial patient. J. Prosthet. Dent. 94:289–292(2005).

246. G. T. Grant, R. M. Taft, S. T. Wheeler. Practicalapplication of polyurethane and Velcro in maxillofacialprosthetics. J. Prosthet. Dent. 85:281–283 (2001).

247. S. Kiat-amnuay, P. J. Waters, D. Roberts, L.Gettleman. Adhesive retention of silicone and chlorinatedpolyethylene for maxillofacial prostheses. J. Prosthet.Dent. 99:483–488 (2008).

248. H. Kurunmäki, R. Kantola, M. M. Hatamleh, D. C. Watts,P. K. Vallittu. A �ber-reinforced composite prosthesisrestoring a lateral midfacial defect: a clinical report. J.Prosthet. Dent. 100:348–352 (2008).

249. A. Vasanthan, K. Satheesh, W. Hoopes, P. Lucaci, K.Williams, J. Rapley. Comparing suture strengths forclinical applications: a novel in vitro study. J.Periodontol. 80:618–624 (2009).

250. R. J. Shaw, T. W. Negus, T. K. Mellor. A prospectiveevaluation of the longevity of resorbable sutures in oralmucosa. Brit. J. Oral Maxillofac. Surg. 34:252–254 (1996).

251. R. Gassner. Wound closure materials. Oral Maxillofac.Surg. Clin. 14:95–104 (2002).

252. D. F. Williams. On the nature of biomaterials.Biomaterials 30:5897–5909 (2009).

Page 433: Polymeric Biomaterials - Taylor & Francis eBooks

24 Chapter 24. Biomaterials as Platformsfor Topical Administration of TherapeuticAgents in Cutaneous Wound Healing

Akopian, G., Nunnery, S. P., Piangenti, J. et al. 2006.Outcomes of conventional wound treatment in a comprehensivewound center. Am. Surg., 72, 314–317.

Amery, C. M. 2005. Growth factors and the management of thediabetic foot. Diabet. Med., 22, 12–14.

Anderson, J. M., Rodriguez, A. and Chang, D. T. 2008.Foreign body reaction to biomaterials. Semin. Immunol.,20, 86–100.

Aoyagi, S., Onishi, H. and Machida, Y. 2007. Novel chitosanwound dressing loaded with minocycline for the treatmentof severe burn wounds. Int. J. Pharm., 330, 138–145.

Arakawa, T., Prestrelski, S. J., Kenney, W. C. andCarpenter, J. F. 2001. Factors affecting short-term andlongterm stabilities of proteins. Adv. Drug Deliv. Rev.,46, 307–326.

Arul, V., Kartha, R. and Jayakumar, R. 2007. A therapeuticapproach for diabetic wound healing using biotinylated GHKincorporated collagen matrices. Life Sci., 80, 275–284.

Bader, R. A. and Kao, W. J. 2009. Modulation of thekeratinocyte-�broblast paracrine relationship withgelatinbased semi-interpenetrating networks containingbioactive factors for wound repair. J. Biomater. Sci.Polym. Ed., 20, 1005–1030.

Bao, P., Kodra, A., Tomic-Canic, M. et al. 2009. The roleof vascular endothelial growth factor in wound healing. J.Surg. Res., 153, 347–358.

Benito-Ruiz, J., Guisantes, E. and Serra-Renom, J. M. 2006.Porcine dermal collagen: A new option for softtissuereconstruction of the lip. Plast. Reconstr. Surg., 117,2517–2519.

Bhattarai, N., Gunn, J. and Zhang, M. 2010. Chitosan-basedhydrogels for controlled, localized drug delivery. Adv.Drug Deliv. Rev., 62, 83–99.

Blair, S. D., Backhouse, C. M., Harper, R., Matthews, J.and McCollum, C. N. 1988. Comparison of absorbablematerials for surgical haemostasis. Br. J. Surg., 75,

Page 434: Polymeric Biomaterials - Taylor & Francis eBooks

69–71.

Boateng, J. S., Matthews, K. H., Stevens, H. N. E. andEccleston, G. M. 2008. Wound healing dressings and drugdelivery systems: A review. J. Pharm. Sci., 97, 2892–2923.

Bota, P. C. S., Collie, A. M. B., Puolakkainen, P. et al.2010. Biomaterial topography alters healing in vivo andmonocyte/macrophage activation in vitro. J. Biomed. Res. A,95A, 649–657.

Braund, R., Hook, S. M., Greenhill, N. and Medlicott, N. J.2009. Distribution of �broblast growth factor-2 (FGF-2)within model excisional wounds following topicalapplication. J. Pharm. Pharmacol., 61, 193–200.

Braund, R., Hook, S. and Medlicott, N. J. 2007a. The roleof topical growth factors in chronic wounds. Curr. DrugDeliv., 4, 195–204.

Braund, R., Tucker, I. G. and Medlicott, N. J. 2007b.Hypromellose �lms for the delivery of growth factors forwound healing. J. Pharm. Pharmacol., 59, 367–372.

Brem, H. and Tomic-Canic, M. 2007. Cellular and molecularbasis of wound healing in diabetes. J. Clin. Invest., 117,1219–1222.

Burgess, W. H. and Maciag, T. 1989. The heparin-binding(�broblast) growth factors family of proteins. Annu. Rev.Biochem., 58, 575–606.

Burns, J. L., Mancoll, J. S. and Phillips, L. G. 2003.Impairments to wound healing. Clin. Plast. Surg., 30,47–56.

Chan, R. K., Liu, P. H., Pietramaggiori, G. et al. 2006.Effect of recombinant platelet-derived growth factor(Regranex®) on wound closure in genetically diabetic mice.J. Burn Care Res., 27, 202–205.

Chang, D. T., Jones, J. A., Meyerson, H. et al. 2008.Lymphocyte/macrophage interactions: Biomaterialsurface-dependent cytokine, chemokine and matrix proteinproduction. J. Biomed. Mater. Res., 87, 676–687.

Choi, Y. S., Lee, S. B., Hong, S. R. et al. 2001. Studieson gelatin-based sponges. Part III: A comparative study ofcross-linked gelatin/alginate, gelatin/hyaluronate andchitosan/hyaluronate sponges and their application as a

Page 435: Polymeric Biomaterials - Taylor & Francis eBooks

wound dressing in full-thickness skin defect of rat. J.Mater. Sci. Mater. Med., 12, 67–73.

Clark, R. A. F. 1995. Wound repair: Overview and generalconsiderations. In: R.A.F. Clark (ed.) The Molecular andCellular Biology of Wound Repair, 2nd edn. New York: PlenumPress.

Cross, S. and Roberts, M. S. 1999. De�ning a model topredict the distribution of topically applied growthfactors and other solutes in excisional full-thicknesswounds. J. Invest. Dermatol., 112, 36–41.

Davidson, J. M. 2007. Growth factors: The promise and theproblems. Int. J. Lower Extrem. Wounds, 6, 8–10.

Dieckmann, C., Renner, R., Milkova, L. and Simon, J. C.2010. Regenerative medicine in dermatology: Biomaterials,tissue engineering, stem cells, gene transfer and beyond.Exp. Derm., 19, 697–706.

Doyle, J. W., Roth, T., Smith, R. M., Li, Y. Q. and Dunn,R. M. 1996. Effects of calcium alginate on cellular woundhealing processes modelled in vitro. J. Biomed. Mater.Res., 32, 561–568.

Embil, J. M., Papp, K., Sibbald, G. et al. 2000.Recombinant human platelet-derived growth factor-BB(becaplermin) for healing chronic lower extremity diabeticulcers: An open-label clinical evaluation of ef�cacy.Wound Repair Regen., 8, 162–168.

Field, C. K. and Kerstein, M. D. 1994. Overview of woundhealing in a moist environment. Am. J. Surg., 167 (Suppl1A), 2S–6S.

Franz, M. G., Robson, M. C., Steed, D. L. et al. 2008.Guidelines to aid healing of acute wounds by decreasingimpediments of healing. Wound Repair Regen., 16, 723–748.

Franz, M. G., Steed, D. L. and Robson, M. C. 2007.Optimizing healing of the acute wound by minimizingcomplications. Curr. Prob. Surg., 44, 691–763.

Frokjaer, S. and Otzen, D. E. 2005. Protein drug stability:A formulation challenge. Nat. Rev. Drug Disc., 4, 298–306.

Fu, X., Li, X., Cheng, B., Chen, W. and Sheng, Z. 2005.Engineered growth factors and cutaneous wound healing:Success and possible questions in the past 10 years. Wound

Page 436: Polymeric Biomaterials - Taylor & Francis eBooks

Repair Regen., 13, 122–130.

Gospodarowicz, D. and Cheng, J. 1986. Heparin protectsbasic and acidic FGF from inactivation. J. Cell. Physiol.,128, 475–484.

Greenhalgh, D. G. 2003. Wound healing and diabetesmellitus. Clin. Plast. Surg., 30, 37–45.

Heggers, J. P. 2003. Assessing and controlling woundinfection. Clin. Plast. Surg., 30, 25–35.

Hinchliffe, R. J., Valk, G. D., Apelqvist, J. et al. 2008.Speci�c guidelines on wound and wound-bed management.Diabet. Met. Res. Rev., 24 (Suppl. 1), S188–S189.

Ho, Y. C., Mi, F. L., Sung, H. W. and Kuo, P. L. 2009.Heparin-functionalized chitosan-alginate scaffolds forcontrolled release of growth factor. Int. J. Pharm., 376,69–75.

Ichioka, S., Harii, K., Nakahara, M. and Sato, Y. 1998. Anexperimental comparison of hydrocolloid and alginatedressings, and the effect of calcium ions on the behaviourof alginate gel. Scand. J. Plast. Reconstr. Surg. HandSurg., 32, 311–316.

Jeffcoate, W. J., Price, P. and Harding, K. G. 2004. Woundhealing and treatments for people with diabetic footulcer. Diabetes. Metab. Res. Rev., 20, S78–S89.

Kamolz, L. P., Lumenta, D. B., Kitzinger, H. B. and Frey,M. 2008. Tissue engineering for cutaneous wounds: Anoverview of current standards and possibilities. Eur.Surg., 40, 19–26.

Khor, E. and Lim, L. Y. 2003. Implantable applications ofchitin and chitosan. Biomaterials, 24, 2339–2349.

Kiritsy, C. P., Lynch, A. B. and Lynch, S. E. 1993. Role ofgrowth factors in cutaneous wound healing: A review. Crit.Rev. Oral Biol. Med., 4, 729–760.

Lawrence, W. T. and Diegelmann, R. F. 1994. Growth factorsin wound healing. Clin. Dermatol., 12, 157–169.

Lazarus, G. S., Cooper, D. M., Knighton, D. R. et al. 1994.De�nitions and guidelines for assessment of wounds andevaluation of healing. Arch. Dermatol., 130, 489–493.

Page 437: Polymeric Biomaterials - Taylor & Francis eBooks

Leaper, D. J. and Durani, P. 2008. Topical antimicrobialtherapy of chronic wounds healing by secondary intentionusing iodine products. Int. Wound J., 5, 361–368.

Liu, B. S., Yao, C. H. and Fang, S. S. 2008. Evaluation ofa non-woven fabric coated with a chitosan bi-layercomposite for wound dressing. Macromol. Biosci., 8,432–440.

MacLeod, T. M., Cambrey, A., Williams, G., Sanders, R. andGreen, C. J. 2008. Evaluation of Permacol™ as a culturedskin equivalent. Burns, 34, 1169–1175.

Macleod, T. M., Williams, G., Sanders, R. and Green, C. J.2005. Histological evaluation of Permacol™ as asubcutaneous implant over a 20-week period in the ratmodel. Br. J. Plast. Surg., 58, 518–532.

Magnusson, B. M., Anissimov, Y. G., Cross, S. E. andRoberts, M. S. 2004. Molecular size as the maindeterminant of solute maximum ¥ux across the skin. J.Invest. Dermatol., 122, 993–999.

Mekkes, J. R., Loots, M. A. M., Van der Wal, A. C. and Bos,J. D. 2003. Causes, investigation and treatment of legulceration. Br. J. Dermatol., 148, 388–401.

Meng, X., Tian, F., Yang, J. et al. 2010. Chitosan andalginate polyelectrolyte complex membranes and theirproperties for wound dressing application. J. Mater. Sci.Mater. Med., 21, 1751–1759.

Menon, G. K. 2002. New insight into skin structure:Scratching the surface. Adv. Drug Deliv. Rev., 54 (Suppl.1), S3–S17.

Milic, D. J., Zivic, S. S., Bogdanovic, D. C., Karanovic,N. D. and Golubovic, D. C. 2009. Risk factors related tothe failure of venous ulcers to heal with compressiontreatment. J. Vasc. Surg., 49, 1242–1247.

Miller, M. J. and Patrick, C. W. 2003. Tissue engineering.Clin. Plast. Surg., 30, 91–103.

Milstone, A. M., Passaretti, C. L. and Perl, T. M. 2008.Chlorhexidine: Expanding the armamentarium for infectioncontrol and prevention. Clin. Infect. Dis., 46, 274–281.

Monaco, J. L. and Lawrence, W. T. 2003. Acute woundhealing: An overview. Clin. Plast. Surg., 30, 1–12.

Page 438: Polymeric Biomaterials - Taylor & Francis eBooks

Mulder, G., Tallis, A. J., Marshall, V. T. et al. 2009.Treatment of nonhealing diabetic foot ulcers with aplatelet derived growth factor gene-activated matrix(GAM501): Results of a phase 1/2 trial. Wound Rep. Regen.,17, 772–779.

Papanas, N. and Maltezos, E. 2007. Growth factors in thetreatment of diabetic foot ulcers: New technologies, anypromises? Int. J. Low. Extrem. Wounds, 6, 37–53.

Papanas, N. and Maltezos, E. 2010. Bene�t-risk assessmentof becaplermin in the treatment of diabetic foot ulcers.Drug Saf., 33, 455–461.

Priya, S. G., Jungvid, H. and Kumar, A. 2008. Skin tissueengineering for tissue repair and regeneration. TissueEng. Part B Rev., 14, 105–118.

Rees, R. S., Robson, M. C., Smiell, J. M., Perry, B. H. andThe Pressure Ulcer Study, G. 1999. Becaplermin gel in thetreatment of pressure ulcers: A phase II randomized,double-blind, placebo-controlled study. Wound RepairRegen., 7, 141–147.

Reimer, K., Vogt, P. M., Broegmann, B. et al. 2000. Aninnovative topical drug formulation for wound healing andinfection treatment: In vitro and in vivo investigations ofa povidone-iodine liposome hydrogel. Dermatology, 201,235–241.

Robson, M. C. and Barbul, A. 2006. Guidelines for the bestcare of chronic wounds. Wound Repair Regen., 14, 647–648.

Robson, M. C., Dubay, D. A., Wang, X. and Franz, M. G.2004. Effect of cytokine growth factors on the preventionof acute wound failure. Wound Repair Regen., 12, 38–43.

Rosenberg, A. S. 2006. Effects of proteins aggregates: Animmunological perspective. AAPS J., 8, E501–E507.

Rossi, S., Marciello, M., Sandri, G. et al. 2007. Wounddressings based on chitosans and hyaluronic acid for therelease of chlorhexidine diacetate in skin ulcer therapy.Pharm. Dev. Technol., 12, 415–422.

Ryan, C. M., Schoenfeld, D. A., Thorpe, W. P. et al. 1998.Objective estimates of the probability of death from burninjuries. N. Engl. J. Med., 338, 362–366.

Page 439: Polymeric Biomaterials - Taylor & Francis eBooks

Sakiyama-Elbert, S. E. and Hubbell, J. A. 2000. Developmentof �brin derivatives for controlled release ofheparin-binding growth factors. J. Control. Release, 65,389–402.

Scaffer, C. J. and Nanney, L. B. 1996. Cell biology ofwound healing. Int. Rev. Cytol., 169, 151–158.

Sen, C. K., Gordillo, G. M., Roy, S. et al. 2009. Humanskin wounds: A major and snowballing threat to publichealth and the economy. Wound Repair Regen., 17, 763–771.

Shevchenko, R. V., Sibbons, P. D., Sharpe, J. R. and James,S. E. 2008. Use of a novel porcine collagen paste as adermal substitute in full-thickness wounds. Wound RepairRegen., 16, 198–207.

Singer, A. J. and Clark, R. A. F. 1999. Cutaneous woundhealing. N. Engl. J. Med., 341, 734–746.

Singer, A. J. and Dagum, A. B. 2008. Current management ofacute cutaneous wounds. N. Engl. J. Med., 359, 1037–1046.

Smiell, J. M. 1998. Clinical safety of becaplermin(rhPDGF-BB) gel. Am. J. Surg., 176 (Suppl 2A), 68S–73S.

Smiell, J. M., Wieman, J., Steed, D. L. et al. 1999.Ef�cacy and safety of becaplermin (recombinant humanplatelet-derived growth factor-BB) in patients withnonhealing, lower extremity diabetic ulcers: A combinedanalysis of four randomized studies. Wound Repair Regen.,7, 335–346.

Sulea, D., Albu, M. G., Ghica, M. V. et al. 2011.Characterization and in vitro release of chlorhexidinedigluconate contained in type I collagen porous matrices.Rev. Roum. Chim., 56, 65–71.

Tanihara, M., Suzuki, Y., Yamamoto, E., Noguchi, A. andMizushima, Y. 2001. Sustained release of basic �broblastgrowth factor and angiogenesis in a novel covalentlycrosslinked gel of heparin and alginate. J. Biomed. Mater.Res., 56, 216–221.

Thomsen, P. D. 1994. What is Infection? Am. J. Surg., 167(Suppl 1), 7S–11S.

Tredget, E. E., Shankowsky, H. A., Groeneveld, A. andBurrell, R. 1998. A matched-pair, randomised studyevaluating the ef�cacy and safety of Acticoat silver-coated

Page 440: Polymeric Biomaterials - Taylor & Francis eBooks

dressing for the treatment of burn wounds. J. Burn CareRehabil., 19, 531–537.

Walker, R. B. and Smith, E. W. 1996. The role ofpercutaneous penetration enhancers. Adv. Drug Deliv. Rev.,18, 295–301.

Werner, S. and Grose, R. 2003. Regulation of wound healingby growth factors and cytokines. Physiol. Rev., 83,835–870.

Winter, G. D. 1962. Formation of the scab and the rate ofepithelialization of super�cial wounds in the skin of theyoung domestic pig. Nat. Biotechnol., 193, 293–294.

Wong, C., Inman, E., Spaethe, R. and Helgerson, S. 2003.Fibrin-based biomaterials to deliver human growth factors.Thromb. Haemost., 89, 573–582.

Yamaguchi, Y. and Yoshikawa, K. 2001. Cutaneous woundhealing: An update. J. Dermatol., 28, 521–534.

Yudanova, T. N. and Reshetov, I. V. 2006. Modern wounddressings: Manufacturing and properties. Pharm. Chem. J.,40, 24–31.

Zakrewska, M., Wiedlocha, A., Szlachcic, A., Krowarsch, D.and Otlewski, J. 2009. Increased protein stability ofFGF-1 can compensate for its reduced af�nity for heparin.J. Biol. Chem., 284, 25388.

Zhang, Y., Lim, C. T., Ramakrishna, R. and Huang, Z. M.2005. Recent developments of polymer nano�bres forbiomedical and biotechnological applications. J. Mater.Sci. Mater. Med., 16, 933–946.

Zilberman, M., Golerkansky, E., Elsner, J. J. andBerdicevsky, I. 2009. Gentamicin-eluting bioresorbablecomposite �bres for wound healing applications. J. Biomed.Mater. Res., 89A, 654–666.

Page 441: Polymeric Biomaterials - Taylor & Francis eBooks

25 Chapter 25. Polymers for ArtificialJoints

1. Kurtz S, Mowat F, Ong K, Chan N, Lau E, Halpern M. 2005.Prevalence of primary and revision total hip and kneearthroplasty in the United States from 1990 through 2002. JBone Joint Surg Am 87(7):1487–1497.

2. Malchau H, Herberts P, Eisler T, Garellick G, SödermanP. 2002. The swedish total hip replacement register. JBone Joint Surg Am 84 (Suppl 2):2–20.

3. Sierra RJ, Cooney WP 4th, Pagnano MW, Trousdale RT, andRand, JA. 2004. Reoperations after 3200 revision TKAs:Rates, etiology, and lessons learned. Clin Orthop Relat Res425:200–206. (b) O H 3 CO OCH 3 OCH 3 O Si O O n m (a) HOSi Si OH OH OH OH Apatite – O O O O O O O O Si Si Ca 2+ Ca2+ Ca 2+ PO 4 3– OH – O – Body �uid Bone cement (d) 5 mmBone Bone cement (c) Bone cement surface Apatite layer 0 d10 μm 10 μm 7 d

FIGURE 25.25 Schematic illustration of bone bioactive PMMAbone cement: (a) concept of bone bioactive

cement, (b) chemical structure, (c) apatite formation insimulated body soaking ¥uid by SEM observation, and

(d) pQCT image after 9 weeks implantation, Animalexperiment.

4. Rand JA, Trousdale RT, Ilstrup DM, Harmsen WS. 2003.Factors affecting the durability of primary total kneeprostheses. J Bone Joint Surg Am 85(2):259–265.

5. Orthopedic medical device market in Japan 2007. In:Medical Bionics (Arti©cial Organ) Market 2007. Tokyo,Japan: Yano Research Institute, Ltd., pp. 275–344.

6. Harris WH. 1995. The problem is osteolysis. Clin OrthopRelat Res 311:46–53.

7. Sochart DH. 1999. Relationship of acetabular wear toosteolysis and loosening in total hip arthroplasty. ClinOrthop Relat Res 363:135–150.

8. ASTM F648-07, 2007. Standard speci�cation forultra-high-molecular-weight polyethylene powder andfabricated form for surgical implants. West Conshohocken,PA: ASTM International.

Page 442: Polymeric Biomaterials - Taylor & Francis eBooks

9. ISO 5834-1, 2007. Implants forsurgery—Ultra-high-molecular-weight polyethylene—Part 1:Powder form., Geneva, Switzerland: InternationalOrganization for Standardization.

10. Charnley J. 1961. Arthroplasty of the hip. A newoperation. Lancet 27;1(7187):1129–1132.

11. Dupont JA, Charnley J. 1972. Low-friction arthroplastyof the hip for the failures of previous operations. J BoneJoint Surg Br 54(1):77–87.

12. Isaac GH, Dowson D, Wroblewski BM. 1996. Aninvestigation into the origins of time-dependent variationin penetration rates with Charnley acetabular cups—Wear,creep or degradation? Proc Inst Mech Eng H 210(3):209–216.

13. Kurtz SM, Muratoglu OK, Evans M, Edidin AA. 1999.Advances in the processing, sterilization, andcrosslinking of ultra-high molecular weight polyethylenefor total joint arthroplasty. Biomaterials20(18):1659–1688.

14. Wright TM, Bartel DL. 1986. The problem of surfacedamage in polyethylene total knee components. Clin OrthopRelat Res 205:67–74.

15. Connelly GM, Rimnac CM, Wright TM, Hertzberg RW, MansonJA. 1984. Fatigue crack propagation behavior of ultrahighmolecular weight polyethylene. J Orthop Res 2(2):119–125.

16. Oonishi H, Takayama Y, Tsuji E. 1992. Improvement ofpolyethylene by irradiation in arti�cial joints. RadiatPhys Chem 39(6):495–504.

17. Kyom oto M, Ueno M, Kim SC, Oonishi H, Oonishi H. 2007.Wear of ‘100 Mrad’ cross-linked polyethylene: Effects ofpackaging after 30 years real-time shelf-aging. J BiomaterSci Polym Ed 18(1):59–70.

18. Grobbelaar CJ, Du Plessis TA, Marais F. 1978. Theradiation improvement of polyethylene prostheses:A preliminary study. J Bone Joint Surg Br 60:370–374.

19. Oonishi H, Wakitani S, Murata N, Saito M, Imoto K, KimS, Matsuura M. 2000. Clinical experience with ceramics intotal hip replacement. Clin Orthop Relat Res 379:77–84.

20. Wroblewski BM, Siney PD, Dowson D, Collins SN. 1996.Prospective clinical and joint simulator studies of a new

Page 443: Polymeric Biomaterials - Taylor & Francis eBooks

total hip arthroplasty using alumina ceramic heads andcross-linked polyethylene cups. J Bone Joint Surg Br78(2):280–285.

21. Li S, Burstein AH. 1994. Ultra-high molecular weightpolyethylene. The material and its use in total jointimplants. J Bone Joint Surg Am 76(7):1080–1090.

22. Muratoglu OK, Bragdon CR, O’Connor DO, Jasty M, HarrisWH. 2001. A novel method of cross-linkingultra-high-molecular-weight polyethylene to improve wear,reduce oxidation, and retain mechanical properties. JArthroplasty 16(2):149–160.

23. Oonishi H, Kim SC, Takao Y, Kyomoto M, Iwamoto M, UenoM. 2006. Wear of highly cross-linked polyethyleneacetabular cup in Japan. J Arthroplasty 21(7):944–949.

24. McKellop H, Shen FW, Lu B, Campbell P, Salovey R.2000. Effect of sterilization method and othermodi�cations on the wear resistance of acetabular cups madeof ultra-high molecular weight polyethylene. Ahip-simulator study. J Bone Joint Surg Am 82(12):1708–1725.

25. Dowd JE, Sychterz CJ, Young AM, Engh CA. 2000.Characterization of long-term femoral-head-penetrationrates. Association with and prediction of osteolysis. JBone Joint Surg Am 82(8):1102–1107.

26. Oparaugo PC, Clarke IC, Malchau H, Herberts P. 2001.Correlation of wear debris-induced osteolysis and revisionwith volumetric wear-rates of polyethylene: A survey of 8reports in the literature. Acta Orthop Scand 72(1):22–28.

27. Röhrl S, Nivbrant B, Mingguo L, Hewitt B. 2005. In vivowear and migration of highly cross-linked polyethylenecups a radiostereometry analysis study. J Arthroplasty20(4):409–413.

28. Martell JM, Verner JJ, Incavo SJ. 2003. Clinicalperformance of a highly cross-linked polyethylene at twoyears in total hip arthroplasty: A randomized prospectivetrial. J Arthroplasty 18(7 Suppl 1):55–59.

29. Krushell RJ, Fingeroth RJ, Cushing MC. 2005. Earlyfemoral head penetration of a highly cross-linkedpolyethylene liner vs a conventional polyethylene liner. Acase controlled study. J Arthroplasty 20(7 Suppl 3):73–76.

30. D’Antonio JA, Manley MT, Capello WN, Bierbaum BE,

Page 444: Polymeric Biomaterials - Taylor & Francis eBooks

Ramakrishnan R, Naughton M, Sutton K. 2005. Five-yearexperience with Cross�re highly cross-linked polyethylene.Clin Orthop Relat Res 441:143–150.

31. Heisel C, Silva M, dela Rosa MA, Schmalzried TP. 2004.Short-term in vivo wear of cross-linked polyethylene. JBone Joint Surg Am 86:748–751.

32. Sychterz CJ, Engh CA Jr, Engh CA. 2004. A prospective,randomized clinical study comparing Marathon and Enduronpolyethylene acetabular liners: 3 year results. JArthroplasty 19:258.

33. Engh CA Jr, Stepniewski AS, Ginn SD, Beykirch SE,Sychterz-Terefenko CJ, Hopper RH Jr, Engh CA. 2006. Arandomized prospective evaluation of outcomes after totalhip arthroplasty using cross-linked Marathon andnon-cross-linked Enduron polyethylene liners. JArthroplasty 21(6 Suppl 2):17–25.

34. Digas G, Karrholm J, Thanner J, Malchau H, Herberts P.2003. Highly cross-linked polyethylene in cemented THA:Randomized study of 61 hips. Clin Orthop Relat Res417:126–138.

35. Manning DW, Chiang PP, Martell JM, Galante JO, HarrisWH. 2005. In vivo comparative wear study of traditionaland highly cross-linked polyethylene in total hiparthroplasty. J Arthroplasty 20:880–886.

36. Hopper RH Jr, Young AM, Orishimo KF, McAuley JP. 2003.Correlation between early and late wear rates in total hiparthroplasty with application to the performance ofMarathon cross-linked polyethylene liners. J Arthroplasty18(7 Suppl 1):60–67.

37. Digas G, Karrholm J, Thanner J, Malchau H, Herberts P.2004. Highly cross-linked polyethylene in total hiparthroplasty: Randomized evaluation of penetration rate incemented and uncemented sockets using radiostereometricanalysis. Clin Orthop Relat Res 429:6–16.

38. Bragdon CR, Barrett S, Martell JM, Greene ME, MalchauH, Harris WH. 2006. Steady-state penetration rates ofelectron beam-irradiated, highly cross-linked polyethyleneat an average 45-month follow-up. J Arthroplasty21:935–943.

39. Dorr LD, Wan Z, Shahrdar C, Sirianni L, Boutary M, YunA. 2005. Clinical performance of a Durasul highly

Page 445: Polymeric Biomaterials - Taylor & Francis eBooks

cross-linked polyethylene acetabular liner for total hiparthroplasty at �ve years. J Bone Joint Surg Am87:1816–1821.

40. Ries MD, Scott ML, Jani S. 2001. Relationship betweengravimetric wear and particle generation in hipsimulators: Conventional compared with cross-linkedpolyethylene. J Bone Joint Surg Am 83 (Suppl 2):116–122.

41. Bradford L, Kurland R, Sankaran M, Kim H, Pruitt LA,Ries MD. 2004. Early failure due to osteolysis associatedwith contemporary highly cross-linked ultra-high molecularweight polyethylene. A case report. J Bone Joint Surg Am86(5):1051–1056.

42. Moro T, T akatori Y, Ishihara K, Kyomoto M, Nakamura K,Kawaguchi H. 2009. Progress of research in osteoarthritis.Invention of longer lasting arti�cial joints. Clin Calcium19(11):1629–1637.

43. Shibata N, Tomita N. 2005. The anti-oxidativeproperties of α-tocopherol in γ-irradiated UHMWPE withrespect to fatigue and oxidation resistance. Biomaterials26(29):5755–5762.

44. Suzuki M, Lee T , Miyagi J, Kobayashi T, Sasho T,Nakagawa K, Fujiwara K, Nishimura N, Kuramoto K, Moriya H,Takahashi K. 2010. Evaluation of vitamin E added ultra highmolecular weight polyethylene in total knee arthroplasty.Joint ¥uid concentrations of tocopherol and matrixmetalloproteinase 9. J Bone Joint Surg Br 92-B (Suppl I):131.

45. Brach Del Prever EM, Bistol� A, Bracco P, Costa L.2009. UHMWPE for arthroplasty: Past or future? J OrthopTraumatol 10(1):1–8.

46. Yoshida H, Morita Y, Ikeuchi K. 2003. Biologicallubrication of hydrated surface layer in small intestine.In: Dowson D, editor. Tribological Research and Design forEngineering Systems. Amsterdam, the Netherlands: Elsevier,pp. 425–428.

47. Buckwalter JA, Rosenberg L. 1983. Structural changesduring development in bovine fetal epiphyseal cartilage.Coll Relat Res 3(6):489–504.

48. Obara T, Mabuchi K, Iso T, Yamaguchi T. 1997. Increasedfriction of animal joints by experimental degeneration andrecovery by addition of hyaluronic acid. Clin Biomech

Page 446: Polymeric Biomaterials - Taylor & Francis eBooks

(Bristol, Avon) 12(4):246–252.

49. Ishikawa Y, Hiratsuka K, Sasada T. 2006. Role of waterin the lubrication of hydrogel. Wear 261:500–504.

50. Long�eld MD, Dowson D, Walker PS, Wright V. 1969.“Boosted lubrication” of human joints by ¥uid enrichmentand entrapment. Biomed Eng 4(11):517–522.

51. Ikeuchi K, Kusaka J, Yamane D, Fujita S. 1999.Time-dependent wear process between lubricated softmaterials. Wear 229:656–659.

52. Milner ST. 1991. Polymer brushes. Science 251:905–914.

53. Nagasaki Y, Kataoka K. 1996. An intelligent polymerbrush. Trends Polym Sci 4(2):59–64.

54. Edmondson S, Osborne VL, Huck WTS. 2004. Polymerbrushes via surface-initiated polymerizations. Chem SocRev 33:14–22.

55. Dyer DJ. 2006. Photoinitiated synthesis of graftedpolymers. In: Abe A et al., editors. Advances in PolymerScience. Berlin, Germany: Springer-Verlag, pp. 47–65.

56. Moro T, Takatori Y, Ishihara K, Konno T, Takigawa Y,Matsushita T, Chung UI, Nakamura K, Kawaguchi H. 2004.Surface grafting of arti�cial joints with a biocompatiblepolymer for preventing periprosthetic osteolysis. NatMater 3:829–837.

57. Moro T, Takatori Y, Ishihara K, Nakamura K, KawaguchiH. 2006. 2006 Frank Stinch�eld Award: Grafting ofbiocompatible polymer for longevity of arti�cial hipjoints. Clin Orthop Relat Res 453:58–63.

58. Moro T, Kawaguchi H, Ishihara K, Kyomoto M, Karita T,Ito H, Nakamura K, Takatori Y. 2009. Wear resistance ofarti�cial hip joints with poly(2-methacryloyloxyethylphosphorylcholine) grafted polyethylene: Comparisons withthe effect of polyethylene cross-linking and ceramicfemoral heads. Biomaterials 30(16):2995–3001.

59. Ishihara K, Ueda T, Nakabayashi N. 1990. Preparation ofphospholipid polymers and their properties as polymerhydrogel membranes. Polym J 22(5):355–360.

60. Brash JL. 2000. Exploiting the current paradigm ofblood-material interactions for the rational design of

Page 447: Polymeric Biomaterials - Taylor & Francis eBooks

blood-compatible materials. J Biomater Sci Polym Ed11(11):1135–1146.

61. Zwaal RF, Comfurius P, van Deenen LL. 1977. Membraneasymmetry and blood coagulation. Nature 268(5618):358–360.

62. Hayward JA, Chapman D. 1984. Biomembrane surfaces asmodels for polymer design: The potential forhaemocompatibility. Biomaterials 5(3):135–142.

63. Yamazaki K, Saito S, Tomioka H, Miyagishima M,Kobayashi K, Miyake T, Ishii H, Kawai A, Aomi S, TagusariO, Niwaya K, Nakatani T, Kobayashi J, Kitamura S, Kihara S,Kurosawa H. 2006. Clinical trial of EVAHEART: Nextgeneration left ventricular assist device. Circulation J 70(Suppl 1):59.

64. Myers GJ, Gardiner K, Ditmore SN, Swyer WJ, Squires C,Johnstone DR, Power CV, Mitchell LB, Ditmore JE, Cook B.2005. Clinical evaluation of the Sorin Synthesis oxygenatorwith integrated arterial �lter. J Extra Corpor Technol37(2):201–206.

65. Myer s GJ, Johnstone DR, Swyer WJ, McTeer S, MaxwellSL, Squires C, Ditmore SN et al. 2003. Evaluation ofMimesys phosphorylcholine (PC)-coated oxygenators duringcardiopulmonary bypass in adults. J Extra Corpor Technol35(1):6–12.

66. Faja det J, Wijns W, Laarman GJ, Kuck KH, Ormiston J,Münzel T, Popma JJ, Fitzgerald PJ, Bonan R, Kuntz RE;ENDEAVOR II Investigators. 2006. Randomized, double-blind,multicenter study of the Endeavor zotarolimus-elutingphosphorylcholine-encapsulated stent for treatment ofnative coronary artery lesions: Clinical and angiographicresults of the ENDEAVOR II trial. Circulation114(8):798–806.

67. Gershlick A, Kandzari DE, Leon MB, Wijns W, MeredithIT, Fajadet J, Popma JJ, Fitzgerald PJ, Kuntz RE; ENDEAVORInvestigators. 2007. Zotarolimus-eluting stents in patientswith native coronary artery disease: Clinical andangiographic outcomes in 1,317 patients. Am J Cardiol100(8B):45M–55M.

68. Kandzari DE, Leon MB. 2006. Overview of pharmacologyand clinical trials program with the zotarolimus-elutingendeavor stent. J Interv Cardiol 19(5):405–413.

69. Sakurai R, Hongo Y, Yamasaki M, Honda Y, Bonneau HN,

Page 448: Polymeric Biomaterials - Taylor & Francis eBooks

Yock PG, Cutlip D, Popma JJ, Zimetbaum P, Fajadet J, KuntzRE, Wijns W, Fitzgerald PJ; ENDEAVOR II TrialInvestigators. 2007. Detailed intravascular ultrasoundanalysis of Zotarolimus-eluting phosphorylcholine-coatedcobalt-chromium alloy stent in de novo coronary lesions(results from the ENDEAVOR II trial). Am J Cardiol100(5):818–823.

70. Kandzari DE, Leon MB, Popma JJ, Fitzgerald PJ,O’Shaughnessy C, Ball MW, Turco M et al. 2006. Comparisonof zotarolimus-eluting and sirolimus-eluting stents inpatients with native coronary artery disease: A randomizedcontrolled trial. J Am Coll Cardiol 48(12):2440–2447.

71. Abizaid A, Popma JJ, Tanajura LF, Hattori K, Solberg B,Larracas C, Feres F, Costa Jde R Jr, Schwartz LB. 2007.Clinical and angiographic results of percutaneous coronaryrevascularization using a trilayer stainlesssteel-tantalum-stainless steel phosphorylcholine-coatedstent: The TriMaxx trial. Catheter Cardiovasc Interv70(7):914–919.

72. Abizaid A, Lansky AJ, Fitzgerald PJ, Tanajura LF, FeresF, Staico R, Mattos L et al. 2007. Percutaneous coronaryrevascularization using a trilayer metalphosphorylcholine-coated zotarolimus-eluting stent. Am JCardiol 99(10):1403–1408.

73. Han SH, Ahn TH, Kang WC, Oh KJ, Chung WJ, Shin MS, KohKK, Choi IS, Shin EK. 2006. The favorable clinical andangiographic outcomes of a high-dose dexamethasone-elutingstent: Randomized controlled prospective study. Am Heart J152(5):887, e1–e7.

74. Kwok OH, Chow WH, Law TC, Chiu A, Ng W, Lam WF, HongMK, Popma JJ. 2005. First human experience withangiopeptin-eluting stent: A quantitative coronaryangiography and three-dimensional intravascular ultrasoundstudy. Catheter Cardiovasc Interv 66(4):541–546.

75. Airoldi F, Di Mario C, Ribichini F, Presbitero P,Sganzerla P, Ferrero V, Vassanelli C et al. 2005.17-Betaestradiol eluting stent versusphosphorylcholine-coated stent for the treatment of nativecoronary artery disease. Am J Cardiol 96(5):664–667.

76. Rodriguez A, Rodríguez Alemparte M, Fernández PereiraC, Sampaolesi A, da Rocha Loures Bueno R, Vigo F, ObregónA, Palacios IF; LASMAL investigators. 2005. Latin Americanrandomized trial of balloon angioplasty vs coronary

Page 449: Polymeric Biomaterials - Taylor & Francis eBooks

stenting for small vessels (LASMAL): Immediate andlong-term results. Am J Med 118(7):743–751.

77. Bakhai A, Booth J, Delahunty N, Nugara F, Clayton T,McNeill J, Davies SW, Cumberland DC, Stables RH; SV StentInvestigators. 2005. The SV stent study: A prospective,multicentre, angiographic evaluation of the BiodivYsiophosphorylcholine coated small vessel stent in smallcoronary vessels. Int J Cardiol 102(1):95–102.

78. Shinozaki N, Yok oi H, Iwabuchi M, Nosaka H, Kadota K,Mitsudo K, Nobuyoshi M. 2005. Initial and follow-upresults of the BiodivYsio phosphorylcholine coated stentfor treatment of coronary artery disease. Circ J69(3):295–300.

79. Hausleiter J, Kastrati A, Mehilli J, Schühlen H, PacheJ, Dotzer F, Glatthor C, Siebert S, Dirschinger J, SchömigA; ISAR-SMART-2 Investigators. 2004. A randomized trialcomparing phosphorylcholinecoated stenting with balloonangioplasty as well as abciximab with placebo forrestenosis reduction in small coronary arteries. J InternMed 256(5):388–397.

80. Boland JL, Corbeij HA, Van Der Giessen W, Seabra-GomesR, Suryapranata H, Wijns W, Hanet C et al. 2000.Multicenter evaluation of the phosphorylcholine-coatedbiodivYsio stent in short de novo coronary lesions: TheSOPHOS study. Int J Cardiovasc Intervent 3(4):215–225.

81. Kuiper KK, Nordrehaug JE. 2000. Early mobilizationafter protamine reversal of heparin following implantationof phosphorylcholine-coated stents in totally occludedcoronary arteries. Am J Cardiol 85(6):698–702.

82. Grenadier E, Roguin A, Hertz I, Peled B, Boulos M,Nikolsky E, Amikam S, Kerner A, Cohen S, Beyar R. 2002.Stenting very small coronary narrowings (<2 mm) using thebiocompatible phosphorylcholinecoated coronary stent.Catheter Cardiovasc Interv 55(3):303–308.

83. Kyomoto M, Moro T, Konno T, Takadama H, Yamawaki N,Kawaguchi H, Takatori Y, Nakamura K, Ishihara K. 2007.Enhanced wear resistance of modi�ed cross-linkedpolyethylene by grafting with poly(2-methacryloyloxyethylphosphorylcholine). J Biomed Mater Res A 82(1):10–17.

84. Kyomoto M, Moro T, Miyaji F, Hashimoto M, Kawaguchi H,Takatori Y, Nakamura K, Ishihara K. 2008. Effect of2-methacryloyloxyethyl phosphorylcholine concentration on

Page 450: Polymeric Biomaterials - Taylor & Francis eBooks

photo-induced graft polymerization of polyethylene inreducing the wear of orthopaedic bearing surface. J BiomedMater Res A 86(2):439–447.

85. Kyomoto M, Moro T, Miyaji F, Hashimoto M, Kawaguchi H,Takatori Y, Nakamura K, Ishihara K. 2009. Effects ofmobility/immobility of surface modi�cation by2-methacryloyloxyethyl phosphorylcholine polymer on thedurability of polyethylene for arti�cial joints. J BiomedMater Res A 90(2):362–371.

86. Brown SA, Hastings RS, Mason JJ, Moet A. 1990.Characterization of short-�bre reinforced thermoplasticsfor fracture �xation devices. Biomaterials 11(8):541–547.

87. Kurtz SM, Devine JN. 2007. PEEK biomaterials in trauma,orthopedic, and spinal implants. Biomaterials28(32):4845–4869.

88. Wang A, Lin R, Stark C, Dumbleton JH. 1999. Suitabilityand limitations of carbon �ber reinforced PEEK compositesas bearing surfaces for total joint replacements. Wear225–229:724–727.

89. Joyce TJ, Rieker C, Unsworth A. 2006. Comparative invitro wear testing of PEEK and UHMWPE cappedmetacarpophalangeal prostheses. Biomed Mater Eng16(1):1–10.

90. Latif AM, Mehats A, Elcocks M, Rushton N, Field RE,Jones E. 2008. Pre-clinical studies to validate the MITCHPCR Cup: A ¥exible and anatomically shaped acetabularcomponent with novel bearing characteristics. J Mater Sci:Mater Med 19(4):1729–1736.

91. Yu S, Hariram KP, Kumar R, Cheang P, Aik KK. 2005. Invitro apatite formation and its growth kinetics onhydroxyapatite/polyetheretherketone biocomposites.Biomaterials 26(15):2343–2352.

92. Fan JP, Tsui CP, Tang CY, Chow CL. 2004. In¥uence ofinterphase layer on the overall elasto-plastic behaviorsof HA/PEEK biocomposite. Biomaterials 25(23):5363–5373.

93. Kyomoto M, Ishihara K. 2009. Self-initiated surfacegraft polymerization of 2-methacryloyloxyethylphosphorylcholine on poly(ether-ether-ketone) byphoto-irradiation. ACS Appl Mater Interfaces 1(3):537–542.

94. Kyomoto M, Moro T, Takatori Y, Kawaguchi H, Nakamura K,

Page 451: Polymeric Biomaterials - Taylor & Francis eBooks

Ishihara K. 2010. Self-initiated surface grafting withpoly(2-methacryloyloxyethyl phosphorylcholine) onpoly(ether-ether-ketone). Biomaterials 31(6):1017–1024.

95. Giancaterina S, Rossi A, Rivaton A, Gardette JL. 2000.Photochemical evolution of poly(ether ether ketone). PolymDegrad Stab 68(1):133–144.

96. Wang H, Brown HR, Li Z. 2007. Aliphaticketones/water/alcohol as a new photoinitiating system forthe photografting of methacrylic acid onto high-densitypolyethylene. Polymer 48(4):939–948.

97. Yang W, Rånby B. 1999. Photoinitiation performance ofsome ketones in the LDPE–acrylic acid surfacephotografting system. Eur Polym J 35(8):1557–1568.

98. Qiu C, Nguyen QT, Ping Z. 2007. Surface modi�cation ofcardo polyetherketone ultra�ltration membrane byphoto-grafted copolymers to obtain nano�ltration membranes.J Membr Sci 295(1–2):88–94.

99. Nguyen HX, Ishida H. 1986. Molecular analysis of themelting behaviour of poly(aryl-ether-etherketone). Polymer27(9):1400–1405.

100. Cole KC, Casella IG. 1992. Fourier transform infraredspectroscopic study of thermal degradation in �lms ofpoly(etheretherketone). Thermochim Acta 211:209–228.

101. Qiu KY, Si K. 1996. Grafting reaction ofmacromolecules with pendant amino groups viaphotoinitiation with benzophenone. Macromol Chem Phys197:2403–2413.

102. Kuehn KD, Ege W, Gopp U. 2005. Acrylic bone cements:Composition and properties. Orthop Clin North Am36(1):17–28.

103. Charnley J. 1964. The bonding of prostheses to bone bycement. J Bone J oint Surg Br 46:518–529.

104. Buchholz HW, Elson RA, Engelbrecht E, Lodenkämper H,Röttger J, Siegel A. 1981. Management of deep infection oftotal hip replacement. J Bone Joint Surg Br 63(3):342–353.

105. Wahlig H, Dingeldein E. 1980. Antibiotics and bonecements. Experimental and clinical long-term observations.Acta Orthop Scand 51(1):49–56.

Page 452: Polymeric Biomaterials - Taylor & Francis eBooks

106. Hope PG, Kristinsson KG, Norman P, Elson RA. 1989.Deep infection of cemented total hip arthroplasties causedby coagulase-negati ve staphylococci. J Bone Joint Surg Br71(5):851–855.

107. Ishihara K, Arai J, Nakabayashi N, Morita S, FuruyaK. 1992. Adhesive bone cement containing hydroxyapatiteparticle as bone compatible �ller. J Biomed Mater Res26(7):937–945.

108. Lee RR, Ogiso M, Watanabe A, Ishihara K. 1997.Examination of hydroxyapatite �lled 4-META/MMATBB adhesivebone cement in vitro and in vivo environment. J BiomedMater Res 38(1):11–16.

109. Morita S, Kaw achi S, Yamamoto H, Shinomiya K,Nakabayashi N, Ishihara K. 1999. Total hip arthroplastyusing bone cement containing tri-n-butylborane as theinitiator. J Biomed Mater Res 48(5):759–763.

110. Sakai T, Morita S, Shinomiya K, Watanabe A,Nakabayashi N, Ishihara K. 2000. Prevention of �brouslayer formation between bone and adhesive bone cement: Invivo evaluation of bone impregnation with 4-META/MMA-TBBcement. J Biomed Mater Res 52(1):24–29.

111. Sakai T, Morita S, Shinomiya K, Watanabe A,Nakabayashi N, Ishihara K. 2000. In vivo evaluation of thebond strength of adhesive 4-META/MMA-TBB bone cement underweight-bearing conditions. J Biomed Mater Res52(1):128–134.

112. Ohtsuki C, Miyazaki T , Kyomoto M, Tanihara M, OsakaA. 2001. Development of bioactive PMMA-based cement bymodi�cation with alkoxysilane and calcium salt. J MaterSci: Mater Med 12(10–12):895–899.

113. Miyazaki T, Ohtsuki C, Kyomoto M, Tanihara M, Mori A,Kuramoto K. 2003. Bioactive PMMA bone cement prepared bymodi�cation with methacryloxypropyltrimethoxysilane andcalcium chloride. J Biomed Mater Res A 67(4):1417–1423.