Top Banner
ARDUINO 1 By Wilmer Arellano
68

Arduino 1

Jan 20, 2016

Download

Documents

tria maulana

Arduino 1. By Wilmer Arellano. Arduino. http://www.arduino.cc/. Arduino is an open-source electronics prototyping platform based on flexible, easy-to-use hardware and software. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Arduino  1

ARDUINO 1

By Wilmer Arellano

Page 2: Arduino  1

Arduino. http://www.arduino.cc/

Arduino is an open-source electronics prototyping platform based on flexible, easy-to-use hardware and software.

It's intended for, artists, designers, hobbyists, and anyone interested in creating interactive objects or environments.

Arduino can sense the environment by receiving input from a variety of sensors and can affect its surroundings by controlling lights, motors, and other actuators.

Page 3: Arduino  1

Download the latest version from the page: http://arduino.cc/en/Main/Software

Page 4: Arduino  1
Page 5: Arduino  1

The power pins are as follows: •Vin. The input voltage to the Arduino board when it's using an external power source (as opposed to 5 volts from the USB connection or other regulated power source). You can supply voltage through this pin, or, if supplying voltage via the power jack, access it through this pin. •5V. The regulated power supply used to power the microcontroller and other components on the board. This can come either from Vin via an on-board regulator, or be supplied by USB or another regulated 5V supply. •3V3. A 3.3 volt supply generated by the on-board FTDI chip. Maximum current draw is 50 mA. •GND. Ground pins.

Power connector

USB connector

Vin5V output3V3 output

Arduino Microcontroller Boards5

Page 6: Arduino  1

Basics

In the Arduino environment programs are referred to as sketches

http://www.arduino.cc/ http://arduino.cc/en/Reference/HomePag

e http://arduino.cc/en/Tutorial/Foundations

Page 7: Arduino  1

Digital / Analog

Page 8: Arduino  1

breadboards

A breadboard is used to make up temporary circuits for testing or to try out an idea.

No soldering is required so it is easy to change connections and replace components.

Parts will not be damaged so they will be available to re-use afterwards.

http://www.kpsec.freeuk.com/breadb.htm

Page 9: Arduino  1
Page 10: Arduino  1
Page 11: Arduino  1
Page 12: Arduino  1
Page 13: Arduino  1
Page 14: Arduino  1

Basic Programming

void setup() { }

void loop() { }

Page 15: Arduino  1
Page 16: Arduino  1
Page 17: Arduino  1

ASCII Table

Page 18: Arduino  1

int

Example int ledPin = 13;

Syntax int var = val;

Page 19: Arduino  1
Page 20: Arduino  1
Page 21: Arduino  1
Page 22: Arduino  1

/*

* “Hello World!”

* This is the Hello World! for Arduino.

* It shows how to send data to the computer

*/

void setup() // run once, when the sketch starts

{

Serial.begin(9600); // set up Serial library at 9600 bps

Serial.println("Is anybody out there?"); // prints phrase with ending line break

}

void loop() // run over and over again

{

// do nothing!

}

// After sending program to the Arduino, press Reset button on the board and watch Serial monitor

Page 23: Arduino  1

Basic Programming

The digitalWrite() functions outputs a value on a pin.

Possible values are: LOW (0 V)or HIGH (5 V)

For example: digitalWrite(13, HIGH); digitalWrite(11, LOW);

Page 24: Arduino  1

Basic Programming

The delay() causes the Arduino to wait for the specified number of milliseconds before continuing on to the next line.

There are 1000 milliseconds in a second, so the line: delay(1000);

creates a delay of one second.

Page 25: Arduino  1

http://oomlout.com/a/products/ardx/

Find code examples here

Page 26: Arduino  1
Page 27: Arduino  1

/*  *Blink  *Turns on an LED on for one second, then off for one second, repeatedly.  *The circuit:  * LED connected from digital pin 13 to ground.  * Note: On most Arduino boards, there is already an LED on the board  * connected to pin 13, so you don't need any extra components for this example.    *Created 1 June 2005  *By David Cuartielles  *http://arduino.cc/en/Tutorial/Blink  *based on an orginal by H. Barragan for the Wiring i/o board*/ int ledPin =  13;    // LED connected to digital pin 13 // The setup() method runs once, when the sketch starts void setup()   {                  // initialize the digital pin as an output:  pinMode(ledPin, OUTPUT);     } // the loop() method runs over and over again,// as long as the Arduino has power void loop()                     {  digitalWrite(ledPin, HIGH);   // set the LED on  delay(1000);                  // wait for a second  digitalWrite(ledPin, LOW);    // set the LED off  delay(1000);                  // wait for a second}

Page 28: Arduino  1

int ledPin =  13;    // LED connected to digital pin 13 void setup()   {                

  pinMode(ledPin, OUTPUT);     } void loop()                     {  digitalWrite(ledPin, HIGH);   // set the LED on  delay(1000);                  // wait for a second  digitalWrite(ledPin, LOW);    // set the LED off  delay(1000);                  // wait for a second}

Page 29: Arduino  1

Making it Better?

Changing the pin: The LED is connected to pin 13 but we can

use any of the Arduino's pins. To change it take the wire plugged into pin 13 and move it to a pin of your choice (from 0-13) (you can also use analog 0-5 analog 0 is 14...)

Then in the code change the line: int ledPin = 13; -> int ledPin = newpin; Then upload the sketch: (ctrl-u)

Page 30: Arduino  1

Making it Better?

Change the Blink Time: Unhappy with one second on one second

off? In the code change the lines:

digitalWrite(ledPin, HIGH); delay(time on); //(seconds * 1000) digitalWrite(ledPin, LOW); delay(time off); //(seconds * 1000)

Page 31: Arduino  1

Making it Better?

Control the Brightness: Along with digital (on/off) control the Arduino can

control some pins in an analog (brightness) fashion. (more details on this in later circuits). To play around with it.

Change the LED to pin 9: (also change the wire) ledPin = 13; -> int ledPin = 9; Replace the code inside the { }'s of loop() with this: analogWrite(ledPin, new number); (new number) = any number between 0 and 255. 0 =

off, 255 = on, in between = different brightness

Page 32: Arduino  1

Making it Better?

Fading:

We will use another included example program. To open go to.

File > Examples > Analog > Fading Then upload to your board and watch as the LED

fades in and then out.

Page 33: Arduino  1

What is this?

Int ledRed = 13; int ledGreen = 11;int ledYellow = 12;

void setup(){  pinMode(ledRed, OUTPUT);      // sets the digital pin as output  pinMode(ledYellow, OUTPUT);      // sets the digital pin as output  pinMode(ledGreen, OUTPUT);      // sets the digital pin as output}

void loop(){  digitalWrite(ledGreen, HIGH);   // sets the Green LED on  delay(1000);                  // waits for a second  digitalWrite(ledGreen, LOW);    // sets the Green LED off  digitalWrite(ledYellow,HIGH);   // sets the Yellow LED on  delay(1000);                  // waits for a second  digitalWrite(ledYellow, LOW);    // sets the Yellow LED off  digitalWrite(ledRed, HIGH);   // sets the Red LED on  delay(1000);                  // waits for a second  digitalWrite(ledRed, LOW);    // sets the Reed LED off}

Page 34: Arduino  1

//LED Pin Variables

int ledPins[] = {2,3,4,5,6,7,8,9}; //An array to hold the pin each LED is connected to                                   //i.e. LED #0 is connected to pin 2, LED #1, 3 and so on                                   //to address an array use ledPins[0] this would equal 2                                   //and ledPins[7] would equal 9 /* * setup() - this function runs once when you turn your Arduino on * We the three control pins to outputs */

Page 35: Arduino  1

void setup(){    //Set each pin connected to an LED to output mode (pulling high (on) or low (off)  for(int i = 0; i < 8; i++){         //this is a loop and will repeat eight times      pinMode(ledPins[i],OUTPUT); //we use this to set each LED pin to output  }                                   //the code this replaces is below   /* (commented code will not run)   * these are the lines replaced by the for loop above they do exactly the   * same thing the one above just uses less typing  pinMode(ledPins[0],OUTPUT);  pinMode(ledPins[1],OUTPUT);  pinMode(ledPins[2],OUTPUT);  pinMode(ledPins[3],OUTPUT);  pinMode(ledPins[4],OUTPUT);  pinMode(ledPins[5],OUTPUT);  pinMode(ledPins[6],OUTPUT);  pinMode(ledPins[7],OUTPUT);  (end of commented code)*/}

Page 36: Arduino  1

/* * loop() - this function will start after setup finishes and then repeat * we call a function called oneAfterAnother(). if you would like a different behaviour * uncomment (delete the two slashes) one of the other lines */void loop()                     // run over and over again{  oneAfterAnotherNoLoop();   //this will turn on each LED one by one then turn each off  //oneAfterAnotherLoop();   //does the same as oneAfterAnotherNoLoop but with                              //much less typing  //oneOnAtATime();          //this will turn one LED on then turn the next one                             //on turning the                              //former off (one LED will look like it is scrolling                              //along the line  //inAndOut();              //lights the two middle LEDs then moves them out then back                              //in again

Page 37: Arduino  1

void oneAfterAnotherNoLoop(){  int delayTime = 100; //the time (in milliseconds) to pause between LEDs                       //make smaller for quicker switching and larger for slower  digitalWrite(ledPins[0], HIGH);  //Turns on LED #0 (connected to pin 2 )  delay(delayTime);                //waits delayTime milliseconds  digitalWrite(ledPins[1], HIGH);  //Turns on LED #1 (connected to pin 3 )  delay(delayTime);                //waits delayTime milliseconds  digitalWrite(ledPins[2], HIGH);  //Turns on LED #2 (connected to pin 4 )  delay(delayTime);                //waits delayTime milliseconds  digitalWrite(ledPins[3], HIGH);  //Turns on LED #3 (connected to pin 5 )  delay(delayTime);                //waits delayTime milliseconds  digitalWrite(ledPins[4], HIGH);  //Turns on LED #4 (connected to pin 6 )  delay(delayTime);                //waits delayTime milliseconds  digitalWrite(ledPins[5], HIGH);  //Turns on LED #5 (connected to pin 7 )  delay(delayTime);                //waits delayTime milliseconds  digitalWrite(ledPins[6], HIGH);  //Turns on LED #6 (connected to pin 8 )  delay(delayTime);                //waits delayTime milliseconds  digitalWrite(ledPins[7], HIGH);  //Turns on LED #7 (connected to pin 9 )  delay(delayTime);                //waits delayTime milliseconds  

Page 38: Arduino  1

//Turns Each LED Off  digitalWrite(ledPins[7], LOW);  //Turns on LED #0 (connected to pin 2 )  delay(delayTime);                //waits delayTime milliseconds  digitalWrite(ledPins[6], LOW);  //Turns on LED #1 (connected to pin 3 )  delay(delayTime);                //waits delayTime milliseconds  digitalWrite(ledPins[5], LOW);  //Turns on LED #2 (connected to pin 4 )  delay(delayTime);                //waits delayTime milliseconds  digitalWrite(ledPins[4], LOW);  //Turns on LED #3 (connected to pin 5 )  delay(delayTime);                //waits delayTime milliseconds  digitalWrite(ledPins[3], LOW);  //Turns on LED #4 (connected to pin 6 )  delay(delayTime);                //waits delayTime milliseconds  digitalWrite(ledPins[2], LOW);  //Turns on LED #5 (connected to pin 7 )  delay(delayTime);                //waits delayTime milliseconds  digitalWrite(ledPins[1], LOW);  //Turns on LED #6 (connected to pin 8 )  delay(delayTime);                //waits delayTime milliseconds  digitalWrite(ledPins[0], LOW);  //Turns on LED #7 (connected to pin 9 )  delay(delayTime);                //waits delayTime milliseconds  }

Page 39: Arduino  1

void oneAfterAnotherLoop(){  int delayTime = 100; //the time (in milliseconds) to pause between LEDs                       //make smaller for quicker switching and larger for slower //Turn Each LED on one after another  for(int i = 0; i <= 7; i++){    digitalWrite(ledPins[i], HIGH);  //Turns on LED #i each time this runs i    delay(delayTime);                //gets one added to it so this will repeat   }                                  //8 times the first time i will = 0 the final                                     //time i will equal 7; //Turn Each LED off one after another  for(int i = 7; i >= 0; i--){  //same as above but rather than starting at 0 and counting up                                //we start at seven and count down    digitalWrite(ledPins[i], LOW);  //Turns off LED #i each time this runs i    delay(delayTime);                //gets one subtracted from it so this will repeat   }                                  //8 times the first time i will = 7 the final                                     //time it will equal 0                                                                   }

Page 40: Arduino  1

Your Turn

Try and explain the functions bellow.

//oneOnAtATime();        //inAndOut();            

Page 41: Arduino  1
Page 42: Arduino  1

Function Call

1. Program will jump to  ”motorOnThenOff()”

2. Code inside {} of  motorOnThenOff() will be executed

3. Program will comback one instruction bellow  motorOnThenOff();

void loop()                     // run over and over again{ motorOnThenOff(); //motorOnThenOffWithSpeed(); //motorAcceleration();}

Page 43: Arduino  1

void motorOnThenOff(){  int onTime = 2500;  //the number of milliseconds for the motor to turn on for  int offTime = 1000; //the number of milliseconds for the motor to turn off for    digitalWrite(motorPin, HIGH); // turns the motor On  delay(onTime);                // waits for onTime milliseconds  digitalWrite(motorPin, LOW);  // turns the motor Off  delay(offTime);               // waits for offTime milliseconds}

Page 44: Arduino  1

motorOnThenOffWithSpeed() 

/* * motorOnThenOffWithSpeed() - turns motor on then off but uses speed values as well  * (notice this code is identical to the code we used for * the blinking LED) */void motorOnThenOffWithSpeed(){    int onSpeed = 200;  // a number between 0 (stopped) and 255 (full speed)   int onTime = 2500;  //the number of milliseconds for the motor to turn on for    int offSpeed = 50;  // a number between 0 (stopped) and 255 (full speed)   int offTime = 1000; //the number of milliseconds for the motor to turn off for    analogWrite(motorPin, onSpeed);   // turns the motor On  delay(onTime);                    // waits for onTime milliseconds  analogWrite(motorPin, offSpeed);  // turns the motor Off  delay(offTime);                   // waits for offTime milliseconds}

Page 45: Arduino  1

motorAcceleration()

/* * motorAcceleration() - accelerates the motor to full speed then * back down to zero*/void motorAcceleration(){  int delayTime = 50; //milliseconds between each speed step    //Accelerates the motor  for(int i = 0; i < 256; i++){ //goes through each speed from 0 to 255    analogWrite(motorPin, i);   //sets the new speed    delay(delayTime);           // waits for delayTime milliseconds  }    //Decelerates the motor  for(int i = 255; i >= 0; i--){ //goes through each speed from 255 to 0    analogWrite(motorPin, i);   //sets the new speed    delay(delayTime);           // waits for delayTime milliseconds  }}

Page 46: Arduino  1

ARDX

Practice examples: 1, 2, 3, 6, 7, 8

Page 47: Arduino  1

Button

Pushbuttons or switches connect two points in a circuit when you press them. This example turns on the built-in LED on pin 13 when you press the button.

Page 48: Arduino  1

int buttonPin = 2; // the number of the pushbutton pinint ledPin = 13; // the number of the LED pinint buttonState = 0; // variable for reading the pushbutton status

void setup() { pinMode(ledPin, OUTPUT); // initialize the LED pin as an output: pinMode(buttonPin, INPUT); // initialize the pushbutton pin as an input: }

void loop(){ buttonState = digitalRead(buttonPin); // read the state of the pushbutton value:

if (buttonState == HIGH) { // check if the pushbutton is pressed. If it is, the buttonState is HIGH: digitalWrite(ledPin, HIGH); // turn LED on: } else { digitalWrite(ledPin, LOW); // turn LED off: }}

Page 49: Arduino  1

Button

The problem with the last program is that the switch has to remain pressed in order for the LED to turn on

We want the LED to change state when we press the button and to stay in the new state when the button is released

Page 50: Arduino  1

int buttonPin = 2; // the pin that the pushbutton is attached toint ledPin = 13; // the pin that the LED is attached toint buttonState = 0; // current state of the buttonint lastLEDState = 0; // previous state of the button

void setup() { pinMode(buttonPin, INPUT); // initialize the button pin as a input: pinMode(ledPin, OUTPUT); // initialize the LED as an output:}

void loop() { buttonState = digitalRead(buttonPin); // read the pushbutton input pin: if (buttonState == HIGH) { // Determine if button State is HIGH if (lastLEDState == HIGH) { // if the current state is HIGH then turn LED off digitalWrite(ledPin, LOW); lastLEDState = LOW; } else {// if the current state is LOW then turn LED on digitalWrite(ledPin, HIGH); lastLEDState = HIGH; } while(buttonState == HIGH){ buttonState = digitalRead(buttonPin); // read the pushbutton input pin: }; delay(250); } }

Page 51: Arduino  1

/* Math */

int a = 5;

int b = 10;

int c = 20;

void setup()

{

Serial.begin(9600); // set up Serial library at 9600 bps

Serial.println("Here is some math: ");

Serial.print("a = ");

Serial.println(a);

Serial.print("b = ");

Serial.println(b);

Serial.print("c = ");

Serial.println(c);

Serial.print("a + b = "); // add

Serial.println(a + b);

Serial.print("a * c = "); // multiply

Serial.println(a * c);

Serial.print("c / b = "); // divide

Serial.println(c / b);

Serial.print("b - c = "); // subtract

Serial.println(b - c);

}

void loop() // we need this to be here even though its empty

{

}

Run this program.

What do you see on the Serial Monitor?

Replace format “int” with “float”

Run this program again.

What do you see on the Serial Monitor?

Page 52: Arduino  1

Playing tones

/*Syntaxtone(pin, frequency)tone(pin, frequency, duration)

Parameterspin: the pin on which to generate the tonefrequency: the frequency of the tone in hertzduration: the duration of the tone in milliseconds (optional) */

int speakerPin = 11;

void setup() {pinMode(speakerPin, OUTPUT);}void loop() {

tone(speakerPin, 262, 1000); // Generate tonedelay(2000);

}

Page 53: Arduino  1

Playing tunes

#include "pitches.h"

int speakerPin = 11;int i = 0;int length = 15; // the number of notesint melody[] = {n_C4, n_C4, n_G4, n_G4, n_A4, n_A4, n_G4, n_F4, n_F4, n_E4, n_E4, n_D4, n_D4, n_C4, n_P}; // P represents a restint beats[] = { 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 4 };int tempo = 300;

void setup() {pinMode(speakerPin, OUTPUT);}void loop() {while (i < length) {tone(speakerPin, melody[i],beats[i]*tempo);delay(beats[i]*tempo + tempo / 2); // pause between notesi = i + 1;}}

Page 54: Arduino  1

#include

Download and install under Arduino libraries

Pitches

/************************************************* * Public Constants *************************************************/

#define P 0#define B0 31#define C1 33#define CS1 35#define D1 37#define DS1 39#define E1 41#define F1 44#define FS1 46#define G1 49#define GS1 52#define A1 55#define AS1 58#define B1 62#define C2 65#define CS2 69#define D2 73

Page 55: Arduino  1

#include "pitches.h"

int speakerPin = 11;int i = 0;int length = 15; // the number of notesint melody[] = {n_C4, n_C4, n_G4, n_G4, n_A4, n_A4, n_G4, n_F4, n_F4, n_E4, n_E4, n_D4, n_D4, n_C4, n_P}; // P represents a restint beats[] = { 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 4 };int tempo = 300;

void setup() {delay(1000);pinMode(speakerPin, OUTPUT);}void loop() {

while (digitalRead(1)&&(i<length)) {// Plays only if pin 1 is HIGHtone(speakerPin, melody[i],beats[i]*tempo);delay(beats[i]*tempo + tempo / 2); // pause between notesi = i + 1;}i=0;}

Page 56: Arduino  1

#include "pitches.h"int speakerPin = 11;int i = 0;int length = 15; // the number of notesint melody[] = {n_C4, n_C4, n_G4, n_G4, n_A4, n_A4, n_G4, n_F4, n_F4, n_E4, n_E4, n_D4, n_D4, n_C4, n_P}; // P represents a restint beats[] = { 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 4 };int tempo = 300;

void setup() {delay(1000);pinMode(speakerPin, OUTPUT);pinMode(1, OUTPUT);digitalWrite(1, LOW);}void loop() {

while ((i<length)) {digitalWrite(1, HIGH);tone(speakerPin, melody[i],beats[i]*tempo);delay(beats[i]*tempo + tempo / 2); // pause between notesi = i + 1;}i=0;digitalWrite(1, LOW);}

Page 57: Arduino  1
Page 58: Arduino  1
Page 59: Arduino  1

DE F

BA

G

Page 60: Arduino  1
Page 61: Arduino  1
Page 62: Arduino  1
Page 63: Arduino  1
Page 64: Arduino  1

Keyboard 1

#include "pitches.h"int speakerPin = 11;int key1 = 1, key2 = 2, key3 = 3;

int melody[] = {0,A4}; int keep_on = 20;int play;

void setup() {pinMode(speakerPin, OUTPUT);pinMode(key1, INPUT);}

void loop() { play = digitalRead(key1); if(play == 1){ tone(speakerPin, melody[key1], keep_on); play = 0; }}

Page 65: Arduino  1

#include "pitches.h"int speakerPin = 11;int key1 = 1, key2 = 2, key3 = 3;

int melody[] = {0,A4, B4, C3 }; int keep_on = 20;int play;

void setup() {pinMode(speakerPin, OUTPUT);pinMode(key1, INPUT);pinMode(key2, INPUT);pinMode(key3, INPUT);}

void loop() {

play = digitalRead(key1); if(play == 1){ tone(speakerPin, melody[key1], keep_on); play = 0; } play = digitalRead(key2); if(play == 1){ tone(speakerPin, melody[key2], keep_on); play = 0; } play = digitalRead(key3); if(play == 1){ tone(speakerPin, melody[key3], keep_on); play = 0; }}

Page 66: Arduino  1

Voltage measurement

unsigned int voltage1, distance1;

int sensor1 = 0;

void setup()

{

Serial.begin(9600); // setup serial

}

void loop()

{

voltage1 = analogRead(sensor1);

Serial.println(voltage1); // debug value

delay(1000);

}

Page 67: Arduino  1

distance = 32/voltageGood for voltage < 2.6 V,distance > 10 cm

Page 68: Arduino  1

Voltage measurement

int analogRead(pin) Description

Reads the value from the specified analog pin. The Arduino board contains a 6 channel (8 channels on the Mini and Nano), 10-bit analog to digital converter. This means that it will map input voltages between 0 and 5 volts into integer values between 0 and 1023. This yields a resolution between readings of: 5 volts / 1024 units or, .0049 volts (4.9 mV) per unit. It takes about 100 us (0.0001 s) to read an analog input, so the maximum reading rate is about 10,000 times a second.