Top Banner
Cours M2 ASTR - module FRS - Commande Robuste Annexe - LMI et Outils d’optimisation Linear Matrix Inequalities & Optimization tools n Convex cones l A set K is a cone if for every x 2 K and λ 0 we have λx 2 K. l A set is a convex cone if it is convex and a cone. Cours M2 UPS - Commande robuste 2 Dec 2013 - F´ ev 2014, Toulouse Linear Matrix Inequalities & Optimization tools n Convex cones s Convex cone of positive reals : x = x 1 ... x n 2 R n + s Second order (Lorentz) cone : K n soc = n x = x 1 ... x n , x 2 1 + ... x 2 n-1 x 2 n o K 3 soc : Cours M2 UPS - Commande robuste 3 Dec 2013 - F´ ev 2014, Toulouse Linear Matrix Inequalities & Optimization tools n Convex cones s Convex cone of positive reals : x 2 R + s Second order (Lorentz) cone : K n soc = n x = x 1 ... x n , x 2 1 + ... x 2 n-1 x 2 n o s Positive semi-definite matrices : K n psd = 8 > > > < > > > : x = x 1 ··· x n 2 , mat(x) = mat(x) T = 2 6 6 6 4 x 1 x n+1 ··· x n(n-1)+1 . . . . . . x n x 2n ··· x n 2 3 7 7 7 5 0 9 > > > = > > > ; K 2 psd : 2 4 x 1 x 2 x 2 x 3 3 5 0 Cours M2 UPS - Commande robuste 4 Dec 2013 - F´ ev 2014, Toulouse
6

Annexe - LMI et Outils d’optimisationhomepages.laas.fr/peaucell/cours/ups/LMI.pdf · Cours M2 ASTR - module FRS - Commande Robuste Annexe - LMI et Outils d’optimisation Linear

Aug 15, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Annexe - LMI et Outils d’optimisationhomepages.laas.fr/peaucell/cours/ups/LMI.pdf · Cours M2 ASTR - module FRS - Commande Robuste Annexe - LMI et Outils d’optimisation Linear

Cours M2 ASTR - module FRS - Commande Robuste

Annexe - LMI et Outils d’optimisation

Linear Matrix Inequalities & Optimization tools

n Convex cones

l A set K is a cone if for every x 2 K and � � 0 we have �x 2 K.

l A set is a convex cone if it is convex and a cone.

Cours M2 UPS - Commande robuste 2 Dec 2013 - Fev 2014, Toulouse

Linear Matrix Inequalities & Optimization tools

n Convex cones

s Convex cone of positive reals : x =

x1

. . . xn

2 Rn+

s Second order (Lorentz) cone : Knsoc =

n

x =

x1

. . . xn

, x2

1

+ . . . x2

n�1

x2

n

o

K3

soc :

Cours M2 UPS - Commande robuste 3 Dec 2013 - Fev 2014, Toulouse

Linear Matrix Inequalities & Optimization tools

n Convex cones

s Convex cone of positive reals : x 2 R+

s Second order (Lorentz) cone : Knsoc =

n

x =

x1

. . . xn

, x2

1

+ . . . x2

n�1

x2

n

o

s Positive semi-definite matrices :

Knpsd =

8

>

>

>

<

>

>

>

:

x =

x1

· · · xn2

⌘ ,mat(x)

= mat(x)T=

2

6

6

6

4

x1

xn+1

· · · xn(n�1)+1

......

xn x2n · · · xn2

3

7

7

7

5

� 0

9

>

>

>

=

>

>

>

;

K2

psd :

2

4

x1

x2

x2

x3

3

5 � 0

Cours M2 UPS - Commande robuste 4 Dec 2013 - Fev 2014, Toulouse

Page 2: Annexe - LMI et Outils d’optimisationhomepages.laas.fr/peaucell/cours/ups/LMI.pdf · Cours M2 ASTR - module FRS - Commande Robuste Annexe - LMI et Outils d’optimisation Linear

Linear Matrix Inequalities & Optimization tools

n Convex cones

s Convex cone of positive reals : x 2 R+

s Second order (Lorentz) cone : Knsoc =

n

x =

x1

. . . xn

, x2

1

+ . . . x2

n�1

x2

n

o

s Positive semi-definite matrices : Knpsd =

n

x =

x1

· · · xn2

, mat(x) � 0o

s Unions of such : K = R+

⇥ · · · ⇥ Kn1soc ⇥ . . . ⇥ Kn

q

psd ⇥ · · ·

Cours M2 UPS - Commande robuste 5 Dec 2013 - Fev 2014, Toulouse

Linear Matrix Inequalities & Optimization tools

n Optimization over convex cones

p? = min cx : Ax = b , x 2 K

s Linear programming : K = R+

⇥ · · ·R+

.

s Semi-definite programming : K = Kn1psd ⇥ · · · Kn

q

psd

l Dual problem

d? = max bT y : AT y � cT = z , z 2 K

s Primal feasible ! Dual infeasible

s Dual feasible ! Primal infeasible

s If primal and dual strictly feasible p? = d?

l Polynomial-time algorithms (O(n6.5log(1/✏)))

Cours M2 UPS - Commande robuste 6 Dec 2013 - Fev 2014, Toulouse

Linear Matrix Inequalities & Optimization tools

n Optimization over convex cones

p? = min cx : Ax = b , x 2 K

l Dual problem

d? = max bT y : AT y � cT = z , z 2 K

l Possibility to perform convex optimization, primal/dual, interior-point methods, etc.

s Interior-point methods [Nesterov, Nemirovski 1988] - Matlab Control Toolbox [Gahinet et al.]

s Primal-dual path-following predictor-corrector algorithms :

SeDuMi (Sturm), SDPT3 (Toh, Tutuncu, Todd), CSDP (Borchers), SDPA (Kojima et al.)

s Primal-dual potential reduction : MAXDET (Wu, Vandenberghe, Boyd)

s Dual-scaling path-following algorithms : DSDP (Benson, Ye, Zhang)

s Barrier method and augmented Lagrangian : PENSDP (Kocvara, Stingl)

s Cutting plane algorithms ...

Cours M2 UPS - Commande robuste 7 Dec 2013 - Fev 2014, Toulouse

Linear Matrix Inequalities & Optimization tools

n Semi-Definite Programming and LMIs

l SDP formulation

8

<

:

p? = min cx : Ax = b , x 2 Kd? = max bT y : AT y � cT = z , z 2 K

l LMI formalism

8

<

:

d? = min

P

giyi : F0

+

P

Fiyi � 0

p? = max Tr(F0

X) : Tr(FiX) + gi = 0 , X � 0

l In control problems : variables are matrices

s The H1 norm computation example for G(s) ⇠ (A, B, C, D) :

kG(s)k2

1 = min � : P > 0 ,

2

4

ATP + PA + CTC BP + CTD

PBT+ DTC ��1+ DTD

3

5

| {z }

2

664CT

DT

3

775

2

664CT

DT

3

775

T

��

2

6640

1

3

775

2

6640

1

3

775

T

+p11...

< 0

n Need for a nice parser

Cours M2 UPS - Commande robuste 8 Dec 2013 - Fev 2014, Toulouse

Page 3: Annexe - LMI et Outils d’optimisationhomepages.laas.fr/peaucell/cours/ups/LMI.pdf · Cours M2 ASTR - module FRS - Commande Robuste Annexe - LMI et Outils d’optimisation Linear

Linear Matrix Inequalities & Optimization tools

n Parsers : LMIlab, tklmitool, sdpsol, SeDuMiInterface...

l YALMIP

s Convert LMIs to SDP solver format (all available solvers !)

s Simple to use

>> P = sdpvar( 3, 3, ’symmetric’);

>> lmiprob = lmi ( A’*P+P*A<0 ) + lmi ( P>0 );

>> solvesdp( lmiprob );

s Works in Matlab - free !

http://users.isy.liu.se/johanl/yalmip

s Extends to other non-SDP optimization problems (BMI...)

s SDP dedicated version in Scilab [S. Solovyev]

http://www.laas.fr/OLOCEP/SciYalmip

Cours M2 UPS - Commande robuste 9 Dec 2013 - Fev 2014, Toulouse

Linear Matrix Inequalities & Optimization tools

n SDP-LMI issues and prospectives

l Any SDP representable problem is ”solved” (numerical problems due to size and structure)

s Find ”SDP-ables” problems

(linear systems, performances, robustness, LPV, saturations, delays, singular systems...)

s Equivalent SDP formulations ˛ distinguish which are numerically efficient

s New SDP solvers : faster, precise, robust (need for benchmark examples)

Cours M2 UPS - Commande robuste 10 Dec 2013 - Fev 2014, Toulouse

Linear Matrix Inequalities & Optimization tools

n SDP-LMI issues and prospectives

l Any SDP representable problem is ”solved” (numerical problems due to size and structure)

s Find ”SDP-ables” problems

(linear systems, performances, robustness, LPV, saturations, delays, singular systems...)

s Equivalent SDP formulations ˛ distinguish which are numerically efficient

s New SDP solvers : faster, precise, robust (need for benchmark examples)

l Any ”SDP-able” problem has a dual interpretation

s New theoretical results (worst case)

s New proofs (Lyapunov functions = Lagrange multipliers ; related to SOS)

s SDP formulas numerically stable (KYP-lemma)

Cours M2 UPS - Commande robuste 11 Dec 2013 - Fev 2014, Toulouse

Linear Matrix Inequalities & Optimization tools

n SDP-LMI issues and prospectives

l Any SDP representable problem is ”solved” (numerical problems due to size and structure)

s Find ”SDP-ables” problems

(linear systems, performances, robustness, LPV, saturations, delays, singular systems...)

s Equivalent SDP formulations ˛ distinguish which are numerically efficient

s New SDP solvers : faster, precise, robust (need for benchmark examples)

l Any ”SDP-able” problem has a dual interpretation

s New theoretical results (worst case)

s New proofs (Lyapunov functions = Lagrange multipliers ; related to SOS)

s SDP formulas numerically stable (KYP-lemma)

l Non ”SDP-able” : Robustness & Multi-objective & Relaxation of NP-hard problems

s Optimistic / Pessimistic (conservative) results

s Reduce the gap (upper/lower bounds) while handling numerical complexity growth.

Cours M2 UPS - Commande robuste 12 Dec 2013 - Fev 2014, Toulouse

Page 4: Annexe - LMI et Outils d’optimisationhomepages.laas.fr/peaucell/cours/ups/LMI.pdf · Cours M2 ASTR - module FRS - Commande Robuste Annexe - LMI et Outils d’optimisation Linear

Linear Matrix Inequalities & Optimization tools

n SDP-LMI issues and prospectives

l Any SDP representable problem is ”solved” (numerical problems due to size and structure)

s Find ”SDP-ables” problems

(linear systems, performances, robustness, LPV, saturations, delays, singular systems...)

s Equivalent SDP formulations ˛ distinguish which are numerically efficient

s New SDP solvers : faster, precise, robust (need for benchmark examples)

l Any ”SDP-able” problem has a dual interpretation

s New theoretical results (worst case)

s New proofs (Lyapunov functions = Lagrange multipliers ; related to SOS)

s SDP formulas numerically stable (KYP-lemma)

l Non ”SDP-able” : Robustesse & Multi-objective & Relaxation of NP-hard problems

s Optimistic / Pessimistic (conservative) results

s Reduce the gap (upper/lower bounds) while handling numerical complexity growth.

l Develop software for ”industrial” application / adapted to the application field

˛ RoMulOC toolbox

Cours M2 UPS - Commande robuste 13 Dec 2013 - Fev 2014, Toulouse

Manipulating inequalities to obtain LMI results

n Congruence

l A > 0 , for any non zero vector x : xTAx > 0.

l A > 0 ) for any full column rank matrix B : BTAB > 0.

l A > 0 ) for any matrix B : BTAB � 0.

l A > 0 , exists a square non-singular matrix B : BTAB > 0.

s Most LMI results are formulated as (sufficiency)

If 9P . . . : L(P . . .) > 0 then the system x = f(x, w . . .) is such that...

To prove these results : perform congruence with vectors x, w . . .

s Example (Lyapunov) :

If 9P : P > 0 , ATP + PA < 0 then the system x = Ax is stable.

Proof : V (x) = xTPx > 0, ˙V (x) = xT(ATP + PA)x = 2xTPx < 0 for all x 6= 0.

Cours M2 UPS - Commande robuste 14 Dec 2013 - Fev 2014, Toulouse

Manipulating inequalities to obtain LMI results

n Examples of nominal performance analysis : (P > 0)

l Stability (discrete-time) ATPA � P < 0

l Regional pole placementh

1 A⇤i

2

4

r11

P r12

P

r⇤12

P r22

P

3

5

2

4

1

A

3

5 < 0

l H1 norm

2

4

ATP + PA + CTz Cz PBw + CT

z Dzw

BTwP + DT

zwCz ��21+ DTzwDzw

3

5 < 0

l H2

normATP + PA + CT

z Cz < 0

trace(BTwPBw) < �2

l Impulse-to-peakATP + PA < 0 BT

wPBw < �21

CTz Cz < P DT

zwDzw < �21

Cours M2 UPS - Commande robuste 15 Dec 2013 - Fev 2014, Toulouse

Manipulating inequalities to obtain LMI results

n Tools to ‘build’ LMI results

l Schur complement8

<

:

A > BC�1BT

C > 0,

2

4

A B

BT C

3

5 > 0

s Example :8

<

:

(AX + BS)X�1

(XAT+ STBT

) � X < 0

X > 0

,

2

4

�X AX + BS

XAT+ STBT �X

3

5 < 0

Cours M2 UPS - Commande robuste 16 Dec 2013 - Fev 2014, Toulouse

Page 5: Annexe - LMI et Outils d’optimisationhomepages.laas.fr/peaucell/cours/ups/LMI.pdf · Cours M2 ASTR - module FRS - Commande Robuste Annexe - LMI et Outils d’optimisation Linear

Manipulating inequalities to obtain LMI results

n Tools to ‘build’ LMI results

l Finsler lemma - Elimination lemma - Creation lemma

xTAx < 0 8x : Bx = 0 , 9⌧ 2 R : A < ⌧BTB

, 9X = XT: A < BTXB

, 9G : A < BTGT+ GB

, B?TAB? < 0

s where B? columns generate the null space of B :

B 2 Rp⇥m , rank(B) = r < m , BB?= 0 , B? 2 Rm⇥(m�r) , B?TB? > 0

s G is a ’Slack variable’ (Lagrange multiplier)

Cours M2 UPS - Commande robuste 17 Dec 2013 - Fev 2014, Toulouse

Manipulating inequalities to obtain LMI results

n Tools to ‘build’ LMI results

l Finsler lemma - Elimination lemma - Creation lemma

xTAx < 0 8x : Bx = 0 , 9⌧ 2 R : A < ⌧BTB

, 9X = XT: A < BTXB

, 9G : A < BTGT+ GB

, B?TAB? < 0

s Example :

˙V (x) =

0

@

x

x

1

A

T 2

4

0 P

P 0

3

5

0

@

x

x

1

A < 0 , 8h

1 �Ai

0

@

x

x

1

A

= 0

, 9G :

2

4

0 P

P 0

3

5

+

2

4

�1

AT

3

5GT+ G

h

�1 Ai

< 0

Cours M2 UPS - Commande robuste 18 Dec 2013 - Fev 2014, Toulouse

Manipulating inequalities to obtain LMI results

n Tools to ‘build’ LMI results

l Finsler lemma - Elimination lemma - Creation lemma8

<

:

C?TAC? < 0

B?TAB? < 0, 9H : A < BTHTC + CTHB

s Example8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�P =

h

0 1i

2

4

P 0

0 �P

3

5

2

4

0

1

3

5 < 0

ATPA � P =

h

A 1i

2

4

P 0

0 �P

3

5

2

4

A

1

3

5 < 0

, 9H :

2

4

P 0

0 �P

3

5 <

2

4

�1

AT

3

5HTh

1 0i

+

2

4

1

0

3

5Hh

�1 Ai

Cours M2 UPS - Commande robuste 19 Dec 2013 - Fev 2014, Toulouse

Manipulating inequalities to obtain LMI results

n Tools to ‘build’ LMI results

l S-procedure [Yakubovich]

xTMx < 0 8x : xTNx 0 , 9⌧ > 0 : M < ⌧N

s Example :

2

4

1

3

5

T

M

2

4

1

3

5 < 0, 8�T� 1

,

0

@

z�

w�

1

A

T

M

0

@

z�

w�

1

A < 0, 8

0

@

z�

w�

1

A

T 2

4

�1 0

0 1

3

5

0

@

z�

w�

1

A 0

, 9⌧ > 0 : M < ⌧

2

4

�1 0

0 1

3

5

Cours M2 UPS - Commande robuste 20 Dec 2013 - Fev 2014, Toulouse

Page 6: Annexe - LMI et Outils d’optimisationhomepages.laas.fr/peaucell/cours/ups/LMI.pdf · Cours M2 ASTR - module FRS - Commande Robuste Annexe - LMI et Outils d’optimisation Linear

Manipulating inequalities to obtain LMI results

n Tools to ‘build’ LMI results

l S-procedure [Yakubovich]

xTMx < 0 8x : xTNx 0 , 9⌧ > 0 : M < ⌧N

s Example :2

4

1

�(1 � D�)

�1C

3

5

T

M

2

4

1

�(1 � D�)

�1C

3

5 < 0, 8�T� 1

,

0

@

x

w�

1

A

T

M

0

@

x

w�

1

A < 0, 8

0

@

z�

w�

1

A

T 2

4

�1 0

0 1

3

5

0

@

z�

w�

1

A 0

z�

= Cx + Dw�

, 9⌧ > 0 : M < ⌧

2

4

C D

0 1

3

5

T 2

4

�1 0

0 1

3

5

2

4

C D

0 1

3

5

s Special case :

X + CT�

TBT+ B�C < 0, 8�T

� 1 , 9⌧ > 0 : X + ⌧CTC + ⌧�1BBT < 0

Cours M2 UPS - Commande robuste 21 Dec 2013 - Fev 2014, Toulouse

Manipulating inequalities to obtain LMI results

n Tools to ‘build’ LMI results

l D and DG-scalling

2

4

1

�(1 � D�)

�1C

3

5

T

M

2

4

1

�(1 � D�)

�1C

3

5 < 0, 8� = �1 : � 2 C , |�| 1

, 9Q > 0 : M <

2

4

C D

0 1

3

5

T 2

4

�Q 0

0 Q

3

5

2

4

C D

0 1

3

5

2

4

1

�(1 � D�)

�1C

3

5

T

M

2

4

1

�(1 � D�)

�1C

3

5 < 0, 8� = �1 : � 2 R , |�| 1

, 9Q > 0, T = �TT: M <

2

4

C D

0 1

3

5

T 2

4

�Q T

TT Q

3

5

2

4

C D

0 1

3

5

Cours M2 UPS - Commande robuste 22 Dec 2013 - Fev 2014, Toulouse

Manipulating inequalities to obtain LMI results

n Tools to ‘build’ LMI results

l Kalman-Yakubovich-Popov KYP lemma2

4

1

(j!1 � A)

�1B

3

5

M

2

4

1

(j!1 � A)

�1B

3

5 < 0, 8! 2 R

, 9Q : M <

2

4

A B

0 1

3

5

T 2

4

0 Q

Q 0

3

5

2

4

A B

0 1

3

5

l And so on... Full-Block S-procedure [Scherer], Quadratic Separation [Iwasaki]2

4

1

�(1 � D�)

�1C

3

5

M

2

4

1

�(1 � D�)

�1C

3

5 < 0, 8� 2 ��

, M <

2

4

C D

0 1

3

5

T

2

4

C D

0 1

3

5 ,

2

4

1

3

5

2

4

1

3

5 < 0 8� 2 ��

s Difficulty : build the ‘separator’ ⇥, losslessly...

Cours M2 UPS - Commande robuste 23 Dec 2013 - Fev 2014, Toulouse

Manipulating inequalities to obtain LMI results

n Tools to ‘build’ LMI results

l S-procedure [Yakubovich]

xTMx < 0 8x : xTNx 0 , 9⌧ > 0 : M < ⌧N

xTMx < 0 8x :

8

>

>

>

<

>

>

>

:

xTN1

x 0

...

xTNpx 0

(9⌧

1

> 0, . . . ⌧p > 0 :

M < ⌧1

N1

+ · · · ⌧pNp

s Not lossless except in few special cases : � composed of

• mr scalar real repeated,

• mc scalar complex repeated,

• mF full complex non-repeated blocks

[Meinsma et al.] DG-scalling lossless if 2(mr + mc) + mF 3 !

Cours M2 UPS - Commande robuste 24 Dec 2013 - Fev 2014, Toulouse