Top Banner
ANALISA GENERATOR LISTRIK MENGGUNAKAN MESIN INDUKSI PADA BEBAN HUBUNG BINTANG (Y) DELTA (∆) PADA LABORATORIUM TEKNIK ELEKTRO DASAR UNIVERSITAS GUNADARMA Oleh : Bambang Dwinanto, ST.,MT Debi Kurniawan ABSTRAKSI Kata Kunci : Perangkat, Inverter, Frekuensi, Motor Induksi, Generator. Membangkitkan listrik menggunakan mesin induksi adalah salah satu cara untuk membangkitkan listrik dengan cara menggunakan listrik untuk menggerakan turbin listrik sehingga menghasilkan listrik sesuai yang dikehendaki, misal dengan tegangan sumber 220 V dapat kita bangkitkan tegangan 380 V. Dengan kata lain kita dapat mendapatkan tegangan yang lebih besar dari tegangan sumber dengan cara menginduksikan tegangan yang sumber yang kita peroleh. Untuk menghasilkan tegangan generator yang kita inginkan digunakanlah Inverter, besar frekuensi yang diinputkan pada inverter digunakan untuk mengatur kecepatan motor induksi 3 fasa, kemudian sebagai penggerak generator (turbin) motor induksi 3 fasa yang berputar diberi kopel ke generator induksi, generator induksi inilah yang akan menghasilkan output tegangan yang nantinya akan digunakan pada beban. Beban itu sendiri pada percobaan ini beban yang digunakan memakai lampu bohlam yang dipasang hubung bintang (Y) dan hubung delta (∆). 1. Pendahuluan Listrik adalah kebutuhan pokok dalam kehidupan manusia, dimana seperti yang telah diketahui hampir semua kegiatan dan aktivitas saat ini tidak lepas dari peran dan fungsi listrik. Listrik sendiri adalah sumber energi yang disalurkan melalui kabel, arus listrik timbul karena muatan listrik mengalir dari saluran positif ke saluran negatif. Membangkitkan listrik menggunakan mesin induksi adalah salah satu cara untuk membangkitkan listrik dengan cara menggunakan listrik untuk menggerakan turbin listrik sehingga menghasilkan listrik sesuai yang dikehendaki, misal dengan tegangan sumber 220 V dapat kita bangkitkan tegangan 380 V. Dengan kata lain kita dapat mendapatkan tegangan yang lebih besar dari tegangan sumber dengan cara menginduksikan tegangan yang sumber yang kita peroleh. 2. Metode Penelitian Dalam penulisan ilmiah ini telah menerapkan beberapa metode sebagai berikut : a) Metode Observasi, yaitu melakukan penelitian atau pengamatan langsung pada Laboratorium Teknik Elektro Dasar Universitas Gunadarma khususnya mengenai objek-objek yang berkaitan dengan judul yang penulis ambil. b) Metode diskusi, yaitu melakukan diskusi dengan para asisten Laboratorium Teknik Elektro Universitas Gunadarma. c) Metode Studi Literatur, yaitu membaca buku-buku referensi.
16

ANALISA GENERATOR LISTRIK MENGGUNAKAN MESIN INDUKSI ...

Dec 31, 2016

Download

Documents

truongthuan
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: ANALISA GENERATOR LISTRIK MENGGUNAKAN MESIN INDUKSI ...

ANALISA GENERATOR LISTRIK MENGGUNAKAN MESIN INDUKSI

PADA BEBAN HUBUNG BINTANG (Y) – DELTA (∆)

PADA LABORATORIUM TEKNIK ELEKTRO DASAR

UNIVERSITAS GUNADARMA

Oleh : Bambang Dwinanto, ST.,MT

Debi Kurniawan

ABSTRAKSI

Kata Kunci : Perangkat, Inverter, Frekuensi, Motor Induksi, Generator.

Membangkitkan listrik menggunakan mesin induksi adalah salah satu cara untuk

membangkitkan listrik dengan cara menggunakan listrik untuk menggerakan turbin listrik sehingga

menghasilkan listrik sesuai yang dikehendaki, misal dengan tegangan sumber 220 V dapat kita

bangkitkan tegangan 380 V. Dengan kata lain kita dapat mendapatkan tegangan yang lebih besar dari

tegangan sumber dengan cara menginduksikan tegangan yang sumber yang kita peroleh.

Untuk menghasilkan tegangan generator yang kita inginkan digunakanlah Inverter, besar

frekuensi yang diinputkan pada inverter digunakan untuk mengatur kecepatan motor induksi 3 fasa,

kemudian sebagai penggerak generator (turbin) motor induksi 3 fasa yang berputar diberi kopel ke

generator induksi, generator induksi inilah yang akan menghasilkan output tegangan yang nantinya

akan digunakan pada beban. Beban itu sendiri pada percobaan ini beban yang digunakan memakai

lampu bohlam yang dipasang hubung bintang (Y) dan hubung delta (∆).

1. Pendahuluan

Listrik adalah kebutuhan pokok dalam kehidupan manusia, dimana seperti yang telah

diketahui hampir semua kegiatan dan aktivitas saat ini tidak lepas dari peran dan fungsi listrik. Listrik

sendiri adalah sumber energi yang disalurkan melalui kabel, arus listrik timbul karena muatan listrik

mengalir dari saluran positif ke saluran negatif.

Membangkitkan listrik menggunakan mesin induksi adalah salah satu cara untuk

membangkitkan listrik dengan cara menggunakan listrik untuk menggerakan turbin listrik sehingga

menghasilkan listrik sesuai yang dikehendaki, misal dengan tegangan sumber 220 V dapat kita

bangkitkan tegangan 380 V. Dengan kata lain kita dapat mendapatkan tegangan yang lebih besar dari

tegangan sumber dengan cara menginduksikan tegangan yang sumber yang kita peroleh.

2. Metode Penelitian

Dalam penulisan ilmiah ini telah menerapkan beberapa metode sebagai berikut :

a) Metode Observasi, yaitu melakukan penelitian atau pengamatan langsung pada Laboratorium

Teknik Elektro Dasar Universitas Gunadarma khususnya mengenai objek-objek yang

berkaitan dengan judul yang penulis ambil.

b) Metode diskusi, yaitu melakukan diskusi dengan para asisten Laboratorium Teknik Elektro

Universitas Gunadarma.

c) Metode Studi Literatur, yaitu membaca buku-buku referensi.

Page 2: ANALISA GENERATOR LISTRIK MENGGUNAKAN MESIN INDUKSI ...

3. Perancangan dan cara kerja alat

3.1. Perancangan Alat

Dalam membuat suatu perangkat proses perancangan sangat diperlukan yang digunakan

sebagai tolak ukur dalam pembuatan suatu perangkat serta untuk menentukan spesifikasi alat yang

akan digunakan pada perangkat. Disamping itu dengan adanya proses perancangan kemungkinan -

kemungkinan yang dapat menghambat dalam pembuatan perangkat dapat dihindari.

3.1.1. Blok Diagram

Blok diagram merupakan salah satu tahapan dari perancangan perangkat. Pembuatan blok

diagram dilakukan yang bertujuan untuk menentukan urutan kerja alat dan komponen yang ada pada

perangkat. Dimana setiap blok mempunyai fungsi tertentu dan gabungan dari tiap – tiap blok tersebut

akan membentuk suatu sistem.

Gambar 3.1. Gambar Blok Diagram Perencanaan Perangkat

Misal seperti pada diagram blok diatas jika dibaca setiap blok dapat dibaca mula – mula

tegangan satu fasa digunakan sebagai tegangan sumber untuk menjalankan inverter, keluaran inverter

sendiri berupa tegangan 3 fasa digunakan untuk menjalankan motor induksi 3 fasa, kemudian motor

induksi 3 fasa yang berputar diberi kopel ke generator induksi yang dimaksudkan sebagai penggerak

generator 3 fasa, generator induksi 3 fasa inilah yang akan menghasilkan output tegangan yang

nantinya akan digunakan pada beban hubung bintang (Y) dan hubung delta (∆).

3.1.2. Gambar Skematik Langkah selanjutnya dalam perancangan perangkat adalah pembuatan gambar skematik.

Gambar Skematik dibuat untuk mempermudah pada saat merancang perangkat yakni untuk

menentukan jarak antar alat serta sebagai dasar dan acuan dalam membuat perangkat Generator Listrik

menggunakan Mesin Induksi dengan Beban Hubung Y - ∆.

Page 3: ANALISA GENERATOR LISTRIK MENGGUNAKAN MESIN INDUKSI ...

Gambar 3.2. Gambar Skematik Rancangan Perangkat

Dengan menggambar gambar skematik juga akan mempermudah proses perancangan

perangkat dalam merealisasikan perakitan atau perancangan perangkat sesuai dengan perbandingan

spesifikasi perangkat yang akan dirakit dan karakteristik setiap komponen yang memenuhi

karakteristik perangkat sesuai yang diinginkan.

3.1.3. Perakitan dan Pengkabelan

Berikutnya setiap komponen dipasangkan pada papan perangkat sesuai jalur yang telah dibuat

pada gambar skematik sebelumnya. Setelah itu dilakukan wiring atau pengkabelan pada perangkat,

yang dimaksudkan untuk membuat jalur instalasi listrik untuk mengalirnya tegangan ke setiap

komponen yang ada pada perangkat.

Page 4: ANALISA GENERATOR LISTRIK MENGGUNAKAN MESIN INDUKSI ...

Gambar 3.3. Pemasangan Gambar Skematik Pada Papan

Gambar 3.4. Pengeboran Pada Papan Perangkat

Page 5: ANALISA GENERATOR LISTRIK MENGGUNAKAN MESIN INDUKSI ...

Gambar 3.5. Pemasangan Komponen Pada Papan Perangkat

Gambar 3.6. Pengkabelan Komponen Yang Ada Pada Papan Perangkat

Gambar 3.3. sampai 3.6. diatas menggambarkan langkah - langkah dalam pembuatan

perangkat mulai dari penempelan hasil print gambar skematik pada papan triplek yang nantinya

digunakan sebagai tempat dudukan – dudukan komponen. Kemudian setelah penempelan selesai

langkah selanjutnya adalah pengeboran papan triplek yang dimaksudkan untuk membuat lubang –

lubang pada papan perangkat.

Selanjutnya adalah memasangkan komponen pada pada perangkat dengan memasangkan baut

dan mur pada lubang hasil pengeboran pada papan perangkat ataupun pemasangan komponen dapat

juga dipasang menggunakan paku spiral. Langkah terakhir adalah proses wiring atau pengkabelan yang

bertujuan untuk membuat jalur lewatnya listrik pada setiap komponen dengan cara memasangkan

kabel pada setiap komponen yang akan dihubungkan.

Contoh pemasangan kabel dari MCB akan dihubungkan ke handle switch, yang bertujuan

agar tegangan akan mengalir pada handle switch jika MCB dalam kondisi ON. Begitu pula sebaliknya

jika MCB dalam kondisi OFF maka tegangan yang mengalir pada handle switch dari MCB akan

terputus.

3.1.4. Persiapan dan Pengecekan Sebelum perangkat dijalankan sebaiknya dilakukan persiapan dan pengecekan kesiapan alat

sebelum dipergunakan. Pada tahap ini pengecekan dilakukan pada keseluruhan komponen dan mesin

yang ada pada perangkat untuk meminimalkan terjadinya kecelakaan maupun kesalahan yang dapat

mengganggu proses pengambilan dan analisa data. Sehingga data yang diambil pada saat pengambilan

dan analisa akan lebih akurat.

Pertama sumber tegangan 1 fasa atau 220 V dihubungkan ke inverter untuk mengaktifkan

inverter, tetapi inverter tidak diaktifkan dahulu.

Page 6: ANALISA GENERATOR LISTRIK MENGGUNAKAN MESIN INDUKSI ...

Kemudian untuk menghubungkan motor induksi 3 fasa dengan generator, karet kopel

dipasangkan pada roda motor dan roda generator.

Setelah itu semua kabel hubung ( jumper) seperti jumper output keluaran dari Inverter, jumper

motor induksi 3 fasa dan jumper output generator dipastikan dihubungkan ke papan perangkat.

Terakhir pemasangan semua lampu bohlam yang digunakan sebagai beban pada percobaan,

namun cek Watt setiap lampu karena pada percobaan ini beban lampu yang dipakai

menggunakan lampu bohlam dengan daya sebesar 60 Watt, 75 Watt dan 100 Watt.

Hasil dari tahap persiapan dan pengecekan perangkat akan menghasilkan suatu perangkat

yang semoga dapat dipergunakan dengan kondisi yang baik dan tidak terdapat masalah pada saat

pelaksanaan pengambilan dan analisa data.

3.2. Cara Kerja Alat Setelah semua persiapan dan pengecekan selesai dilakukan barulah langkah selanjutnya

adalah menjalankan perangkat. Seperti pada blok diagram pada gambar 3.1. diatas dijelaskan bahwa

pada tahap perancangan perangkat dibuat per blok. Maka langkah kerja alat akan diuraikan secara

tahap demi tahap sesuai lajur blok diagram.

a. Langkah awal dalam menjalankan perangkat, pertama inverter yang telah terhubung dengan

sumber tegangan diaktifkan terlebih dahulu. Kemudian dengan memasukkan nilai frekuensi

pada tombol keypad pada inverter akan mempengaruhi besar nilai tegangan yang dikeluarkan

oleh inverter.

b. Keluaran Inverter yang berupa tegangan 3 fasa dihubungkan ke papan perangkat. Pada papan

perangkat, kabel jumper keluaran dari inverter dan kabel jumper dari motor dihubungkan.

Dengan mengubah tegangan keluaran 3 fasa dari inverter menjadi energi mekanik, maka roda

motor induksi 3 fasa akan berputar. Kecepatan motor induksi sendiri bergantung pada nilai

frekuensi yang diinputkan pada inverter.

c. Selanjutnya sesuai langkah persiapan dan pengecekan sebelumnya. Roda motor induksi yang

telah diberi karet kopel dan dihubungkan pada roda generator AC. Akan menggerakkan roda

generator AC dan memutar turbin yang ada pada generator. Putaran turbin akan merubah

energi mekanik yang didapat generator menjadi energi listrik berupa tegangan 3 fasa.

d. Energi listrik yang dihasilkan oleh generator berupa tegangan 3 fasa akan dihubungkan pada

papan perangkat. Sehingga listrik dapat mengalir pada setiap komponen melalui kabel sesuai

jalur hubung tegangan yang dibuat pada tahap wiring atau pengkabelan.

e. Setelah listrik mengalir pada papan perangkat, MCB dan handle switch dirubah keposisi ON

sehingga listrik mengalir pada rangkaian instalasi yang ada pada papan perangkat.

f. Dengan menggunakan saklar tukar dan fungsi magnetic contactor, jalur listrik dapat diatur

dan diarahkan ke salah satu beban. Yaitu beban hubung Y atau beban hubung ∆.

4. Pengujian dan Analisa

4.1. Pengujian Alat

Setelah perangkat telah dijalankan selanjutnya dapat dilakukan pengujian perangkat. Pengujian

perangkat dilakukan pada dengan menggunakan alat bantu dan ukur yakni multimeter. Pada pengujian

perangkat, multimeter yang digunakan adalah multimeter digital. Pemakaian multimeter digital

dikarenakan multimeter digital memiliki akurasi yang tinggi dan memiliki satuan – satuan yang lebih

teliti. Sehingga data yang didapat saat pengujian akan lebih akurat.

Page 7: ANALISA GENERATOR LISTRIK MENGGUNAKAN MESIN INDUKSI ...

Gambar 4.1. Contoh Multimeter Digital

Pada proses pengujian perangkat Generator Listrik menggunakan Mesin Induksi pada Beban Hubung

Bintang (Y) – Delta (∆), dilakukan beberapa pengujian, yaitu :

1. Pengujian Keluaran Inverter dan Kecepatan Motor.

2. Pengujian Keluaran Generator.

3. Pengujian Pada Beban Y Setimbang dan Tak Setimbang.

4. Pengujian Pada Beban ∆ Setimbang dan Tak Setimbang.

Dilakukannya beberapa pengujian, bertujuan untuk mendapatkan perkembangan data tegangan listrik

yang dihasilkan pada percobaan ini.

Berikut ini adalah cara pengambilan data berdasarkan tiap pengujian :

1. Pengujian Keluaran Inverter dan Kecepatan Motor.

Sesuai besar nilai frekuensi yang diinput, maka data yang diambil pada pengujian ini adalah data

tegangan keluaran yang dihasilkan oleh inverter dan data kecepatan putar motor induksi 3 fasa.

Pengambilan data pada pengujian ini dilakukan dengan cara :

a. Untuk Data Keluaran Inverter.

Pengambilan data dilakukan dengan memasukkan kabel test pin positif dan test pin negatif multimeter

pada jack R – S, R – T, dan S – T keluaran inverter.

Gambar 4.2. Jack R, S dan T

Page 8: ANALISA GENERATOR LISTRIK MENGGUNAKAN MESIN INDUKSI ...

b. Untuk Kecepatan Putar Motor.

Pengambilan data dilakukan dengan menghitung kecepatan putar motor induksi 3 fasa dengan

menggunakan alat pengukur kecepatan putaran yaitu tachometer.

Gambar 4.3. Tachometer Digital

2. Pengujian Keluaran Generator.

Data yang diambil pada pengujian ini adalah kecepatan putar roda generator AC 3 fasa dan tegangan

listrik 3 fasa yang dihasilkan oleh generator. Untuk pengambilan data pada pengujian ini dilakukan

dengan cara :

a. Untuk Data Hasil Keluaran Generator.

Pengambilan data dilakukan dengan memasukkan kabel test pin postitif dan test pin negatif multimeter

pada jack R – S, R – T, dan S – T keluaran pada generator.

Gambar 4.4. Tempat Hasil Keluaran Generator

Page 9: ANALISA GENERATOR LISTRIK MENGGUNAKAN MESIN INDUKSI ...

b. Untuk Kecepatan Putar Generator.

Pengambilan data dilakukan dengan menghitung kecepatan putar roda generator AC 3 fasa pada saat

mengerakkan turbin dengan menggunakan tachometer.

3. Pengujian Pada Beban Y Setimbang dan Tak Setimbang.

Data yang diambil pada pengujian ini adalah tegangan antar fasa, arus yang mengalir dan terang nyala

lampu.

Gambar 4.5. Rangkaian Beban Hubung Bintang Y

a. Untuk Beban Setimbang.

Dengan memakai beban lampu dengan Watt yang sama pada masing – masing fasa. Untuk

pengambilan data V1, V2, V3, A1, A2 dan A3 dilakukan dengan memasukkan kabel test pin postif dan

positif multimeter pada jack seperti pada gambar 4.4. Untuk data terang nyala lampu, dapat dilihat saat

pengujian berlangsung. Dengan membandingkan terang nyala lampu yang 1 dengan yang lain,

berdasarkan perubahan Watt lampu dan frekuensi inverter.

b. Untuk Beban Tak Setimbang.

Dengan memakai beban lampu dengan Watt yang berbeda pada masing – masing fasa. Untuk

pengambilan data V1, V2, V3, A1, A2 dan A3 dilakukan dengan memasukkan kabel test pin postif dan

positif multimeter pada jack seperti pada gambar 4.4. Untuk data terang nyala lampu, dapat dilihat saat

pengujian berlangsung. Dengan membandingkan terang nyala lampu yang 1 dengan yang lain,

berdasarkan perubahan Watt lampu dan frekuensi inverter.

4. Pengujian Pada Beban ∆ Setimbang dan Tak Setimbang.

Data yang diambil pada pengujian ini adalah tegangan antar fasa, arus yang mengalir dan terang nyala

lampu.

Page 10: ANALISA GENERATOR LISTRIK MENGGUNAKAN MESIN INDUKSI ...

Gambar 4.6. Rangkaian Beban Hubung Delta ∆

a. Untuk Beban Setimbang.

Dengan memakai beban lampu dengan Watt yang sama pada masing – masing fasa. Untuk

pengambilan data V1, V2, V3, A1, A2, A3, A4, A5 dan A6 dilakukan dengan memasukkan kabel test

pin postif dan positif multimeter pada jack seperti pada gambar 4.4. Untuk data terang nyala lampu,

dapat dilihat saat pengujian berlangsung. Dengan membandingkan terang nyala lampu yang 1 dengan

yang lain, berdasarkan perubahan Watt lampu dan frekuensi inverter.

b. Untuk Beban Tak Setimbang.

Dengan memakai beban lampu dengan Watt yang berbeda pada masing – masing fasa. Untuk

pengambilan data V1, V2, V3, A1, A2, A3, A4, A5 dan A6 dilakukan dengan memasukkan kabel test

pin postif dan positif multimeter pada jack seperti pada gambar 4.4. Untuk data terang nyala lampu,

dapat dilihat saat pengujian berlangsung. Dengan membandingkan terang nyala lampu yang 1 dengan

yang lain, berdasarkan perubahan Watt lampu dan frekuensi inverter.

4.2. Analisa Data Hasil Pengujian

Analisa data pada penelitian ini dilakukan untuk memperoleh jawaban terhadap hipotesis

yang ada dan analisa dapat dipakai sebagai bahan untuk membuat kesimpulan dan saran – saran yang

berguna untuk penelitian selanjutnya.

Tabel 4.1. Data Hasil Pengujian Keluaran Inverter dan Kecepatan Motor

No. Frekuensi

(Hz)

Tegangan Keluaran Inverter (V) Kecepatan Motor (rpm)

R - S R - T S - T

1. 5 54 54 56 150

2. 10 75 76 77 302

3. 15 94 95 97 452

4. 20 115 116 116 603

5. 25 138 137 139 750

6. 30 162 161 160 903

7. 35 185 186 185 1052

8. 40 206 208 210 1202

9. 45 222 224 224 1352

10. 50 225 227 229 1500

Page 11: ANALISA GENERATOR LISTRIK MENGGUNAKAN MESIN INDUKSI ...

Pengujian keluaran inverter dan kecepatan motor dilakukan dengan cara mengubah frekuensi inverter.

Frekuensi yang digunakan adalah angka kelipatan 5 mulai dari fekuensi 5 Hz sampai 50 Hz.

Berdasarkan data yang diperoleh pada pengujian keluaran inverter dan kecepatan motor. Setiap

kenaikkan nilai frekuensi inverter, tegangan keluaran yang dihasilkan oleh inverter juga semakin besar.

Begitu juga dengan kecepatan putar motor, kecepatan akan bertambah setiap naiknya nilai frekuensi.

Seperti yang terlihat pada tabel 4.1, tegangan yang dihasilkan inverter dengan frekuensi 5 Hz hanya

berkisar antara 54 – 56 Volt dan kecepatan putar yang dihasilkan motor induksi 3 fasa sekitar 150 rpm.

Kemudian ketika mencapai nilai frekuensi maksimal inverter yaitu 50 Hz, tegangan yang dihasilkan

inverter berkisar antara 225 – 229 Volt dan kecepatan putar yang dihasilkan motor induksi 3 fasa

mencapai

1500 rpm.

Gambar 4.7. Grafik Tegangan Keluaran Inverter Terhadap Perubahan Frekuensi

Grafik hasil pengujian tegangan keluaran inverter menunjukkan bahwa besar nilai frekuensi

mempengaruhi besarnya tegangan yang dihasilkan oleh inverter. Hal tersebut dapat dilihat pada

Gambar 4.7, frekuensi inverter dengan nilai 5 Hz menghasilkan tegangan sebesar 50 Volt dan dengan

nilai maksimal frekuensi 50 Hz akan menghasilkan tegangan sebesar 229 Volt. Semakin besar nilai

frekuensi pada inverter maka semakin besar pula tegangan yang dihasilkan.

Gambar 4.8. Grafik Kecepatan Motor Terhadap Perubahan Frekuensi Grafik hasil pengujian kecepatan menunjukkan bahwa besar nilai frekuensi mempengaruhi kecepatan

putaran roda motor induksi. Hal tersebut dapat dilihat pada Gambar 4.8, pada frekuensi inverter 5 Hz

kecepatan putaran yang dihasilkan motor induksi sebesar 150 rpm. Dengan nilai kenaikkan frekuensi

berikutnya maka kecepatan putaran yang dihasilkan motor induksi akan semakin cepat. Semakin besar

nilai frekuensi pada inverter maka semakin cepat putaran roda motor induksi.

Tabel 4.2. Data Hasil Pengujian Keluaran Generator

Page 12: ANALISA GENERATOR LISTRIK MENGGUNAKAN MESIN INDUKSI ...

No. Frekuensi

(Hz)

Kecepatan Generator

(rpm)

Tegangan Keluaran Generator (V)

R - S R - T S - T

1. 5 263 0 0 0

2. 10 539 42 41 41

3. 15 797 149 148 149

4. 20 1052 251 251 251

5. 25 1313 343 343 343

6. 30 1567 414 409 407

7. 35 1792 496 490 487

8. 40 1848 512 510 509

9. 45 1953 643 643 642

10. 50 - - - -

Pengujian keluaran generator dilakukan dengan cara mengubah frekuensi inverter. Frekuensi yang

digunakan adalah angka kelipatan 5 mulai dari fekuensi 5 Hz sampai 50 Hz. Data yang didapat pada

saat pengujian hanya sampai frekuensi 45 Hz. Saat dilakukannya pengujian dengan nilai frekuensi 50

Hz tidak mendapatkan hasil, dikarenakan saat pengujian inverter mati mendadak dan tidak mampu

menggerakkan motor untuk memutar roda turbin generator pada frekuensi 50 Hz.

Untuk data pengujian yang diperoleh, dapat dilihat pada tabel 4.2. . Dimulai dari frekuensi 5 Hz,

kecepatan putaran roda generator untuk memutar turbin hanya sebesar 263 Volt sehingga generator

tidak dapat menghasilkan tegangan. Berikutnya pada pengujian dengan nilai frekuensi sebesar 10 Hz,

kecepatan putaran roda generator untuk memutar turbin sebesar 539 rpm sehingga tegangan yang

dihasilkan generator berkisar 41 – 42 Volt.

Gambar 4.9. Grafik Tegangan Keluaran Generator Terhadap Perubahan Frekuensi

Grafik hasil pengujian tegangan keluaran generator menunjukkan bahwa besar nilai frekuensi

mempengaruhi besarnya tegangan yang dihasilkan oleh generator AC. Hal tersebut dapat dilihat pada

Gambar 4.9, frekuensi inverter dengan nilai 10 Hz menghasilkan tegangan pada generator sekitar 42

Volt dan dengan nilai frekuensi 45 Hz akan menghasilkan tegangan sekitar 643 Volt. Semakin besar

nilai frekuensi pada inverter maka semakin besar pula tegangan 3 fasa yang dihasilkan oleh generator.

Page 13: ANALISA GENERATOR LISTRIK MENGGUNAKAN MESIN INDUKSI ...

Gambar 4.10. Grafik Kecepatan Generator Terhadap Perubahan Frekuensi

Grafik hasil pengujian kecepatan menunjukkan bahwa besar nilai frekuensi mempengaruhi kecepatan

putaran roda turbin generator. Hal tersebut dapat dilihat pada Gambar 4.10, pada frekuensi inverter 5

Hz kecepatan putaran yang dihasilkan generator sebesar 263 rpm. Dengan nilai kenaikkan frekuensi

berikutnya maka kecepatan putaran generator akan semakin cepat. Semakin besar nilai frekuensi pada

inverter maka semakin cepat putaran roda turbin generator.

Tabel 4.3. Data Hasil Pengujian Pada Beban Y Setimbang

No Frekuensi

(Hz)

Lampu Fasa (Watt) Tegangan (V) Arus (A)

Z1 Z2 Z3 V1 V2 V3 A1 A2 A3

1. 15 100 100 100 156 156 157 0,23 0,26 0,24

2. 20 100 100 100 240 239 242 0,29 0,29 0,28

3. 25 100 100 100 314 313 315 0,36 0,36 0,36

Pengujian ini dilakukan dengan menggunakan frekuensi 15 Hz, 20 Hz dan 25 Hz. Untuk pengujian

pada beban hubung Y setimbang, digunakanlah lampu bohlam dengan Watt yang sama pada setiap

beban. Dalam pengujian ini memakai lampu 100 Watt.

Data yang didapat untuk pengujian Y setimbang menyatakan bahwa tegangan antar fasa dan arus yang

mengalir pada tiap fasa, tidak banyak memiliki perbedaan besar nilai. Hal ini dapat dilihat pada tabel

4.3, tegangan antar fasa dan arus yang mengalir pada tiap beban memiliki besar nilai yang hampir

sama. Seperti pada pengujian dengan frekuensi 20 Hz, data yang didapat adalah V1 = 240, V2 = 239,

V3 = 242, A1 = 0,29, A2= 0,29 dan A3 = 0,28.

Tabel 4.4. Data Nyala Lampu Beban Y Setimbang

No Frekuensi

(Hz)

Lampu (Watt) Nyala Lampu

Z1 Z2 Z3

1. 15 100 100 100 Ketiganya sama redup

2. 20 100 100 100 Ketiganya sama terang

3. 25 100 100 100 Ketiganya sama terang

Tabel data di atas menunjukkan bahwa nyala lampu pada Z1, Z2 dan Z3 sama terangnya. Hal ini

dikarenakan karena pada setiap beban, memakai lampu dengan beban yang sama yaitu 100 Watt.

Page 14: ANALISA GENERATOR LISTRIK MENGGUNAKAN MESIN INDUKSI ...

Tabel 4.5. Data Hasil Pengujian Pada Beban Y Tak Setimbang

No Frekuensi

(Hz)

Lampu Fasa (Watt) Tegangan (V) Arus (A)

Z1 Z2 Z3 V1 V2 V3 A1 A2 A3

1. 15 100 60 75 162 161 162 0,20 0,12 0,15

2. 20 100 60 75 243 242 245 0,28 0,16 0,23

3. 25 100 60 75 319 319 320 0,32 0,20 0,27

Untuk pengujian pada beban hubung Y tak setimbang, digunakanlah lampu bohlam dengan Watt yang

berbeda pada setiap beban. Dalam pengujian ini untuk Z1 memakai lampu 100 Watt, Z2 memakai

lampu 60 Watt dan Z3 memakai lampu 75 Watt.

Data yang didapat untuk pengujian Y tak setimbang menyatakan bahwa tegangan antar fasa tidak

banyak memiliki perbedaan besar nilai. Tetapi arus yang mengalir pada setiap beban memiliki nilai

yang berbeda, hal ini disebabkan setiap fasa memakai lampu dengan beban yang berbeda. Seperti pada

pengujian dengan frekuensi 20 Hz, data yang didapat adalah V1 = 243, V2 = 242, V3 = 245, A1 =

0,28, A2 = 0,16 dan A3 = 0,23.

Tabel 4.6. Data Nyala Lampu Beban Y Tak Setimbang

No Frekuensi

(Hz)

Lampu Fasa (Watt) Nyala Lampu

Z1 Z2 Z3

1. 15 100 60 75 Ketiganya sama redup

2. 20 100 60 75 Lampu pada fasa R paling terang

3. 25 100 60 75 Lampu pada fasa R paling terang

Tabel data di atas menunjukkan bahwa nyala lampu pada Z1, Z2 dan Z3 memiliki nyala terang lampu

yang berbeda. Hal ini dikarenakan karena pada setiap fasa memakai lampu dengan beban yang berbeda

yaitu Z1 = 100 Watt, Z2 = 60 Watt dan Z3 = 75 Watt. Nyala lampu pada Z1 lebih terang

dikarenakan memakai lampu dengan beban 100 Watt sedangkan nyala lampu pada Z2 lebih redup

dikarenakan memakai lampu dengan beban 60 Watt. Karena semakin besar nilai Watt pada lampu

maka makin terang pula nyalanya.

Tabel 4.7. Data Hasil Pengujian Pada Beban ∆ Setimbang

No Frekuensi

(Hz)

Lampu Fasa (Watt) Tegangan (V) Arus (A)

Z1 Z2 Z3 V1 V2 V3 A1 A2 A3 A4 A5 A6

1. 15 100 60 75

161 161 161 0,25 0,30 0,37 0,06 0,11 0,20 100 60 75

2. 20 100 60 75

240 242 241 0,33 0,38 0,45 0,14 0,19 0,28 100 60 75

3. 25 100 60 75

314 315 315 0,41 0,46 0,53 0,22 0,27 0,36 100 60 75

Pada pengujian ∆ setimbang diperoleh tegangan pada V1, V2 dan V3 dengan nilai yang hampir sama.

Tetapi untuk nilai arus yang diperoleh sangat berbeda, hal ini dikarenakan pada setiap beban memakai

lampu dengan daya yang berbeda, kedua lampu untuk Z1 bernilai 100 Watt, Z2 bernilai 60 Watt dan

Z3 bernilai 75 Watt. Dapat dilihat pada tabel 4.7. bahwa arus yang didapat pada A1 sampai A6

berbeda. Semakin besar nilai daya lampu semakin besar pula besar nilai arusnya.

Page 15: ANALISA GENERATOR LISTRIK MENGGUNAKAN MESIN INDUKSI ...

Tabel 4.8. Data Nyala Lampu Beban ∆ Setimbang

No Frekuensi

(Hz)

Lampu Fasa (Watt) Nyala Lampu

Z1 Z2 Z3

1. 15 100 60 75

Semua nyala lampu redup 100 60 75

2. 20 100 60 75 Lampu dengan beban 100 Wat

lebih terang 100 60 75

3. 25 100 60 75 Lampu dengan beban 100 Watt

lebih terang 100 60 75

Sama seperti data nyala lampu untuk beban Y, semakin besar nilai daya lampu yang dipakai maka

nyala lampu akan semakin terang. Tetapi untuk percobaan dengan memakai frekuensi 15 Hz, semua

lampu pada Z1, Z2 dan Z3 redup. Hal ini disebabkan energi listrik yang keluarkan generator pada

frekuensi 15 Hz tidak mampu memenuhi kebutuhan daya untuk pemasangan 6 lampu.

Tabel 4.9. Data Hasil Pengujian Pada Beban ∆ Tak Setimbang

No Frekuensi

(Hz)

Lampu Fasa (Watt) Tegangan (V) Arus (A)

Z1 Z2 Z3 V1 V2 V3 A1 A2 A3 A4 A5 A6

1. 15 100 60 75

161 161 161 0,28 0,26 0,29 0,13 0,12 0,10 60 100 75

2. 20 100 60 75

243 245 244 0,36 0,34 0,37 0,21 0,20 0,18 100 60 75

3. 25 100 60 75

315 316 317 0,44 0,42 0,45 0,29 0,28 0,26 100 60 75

Sama seperti pada pengujian ∆ setimbang, pada pengujian ∆ tak setimbang diperoleh pula tegangan

pada V1, V2 dan V3 dengan nilai yang hampir sama. Namun untuk nilai arus yang diperoleh berbeda

dengan pengujian ∆ setimbang, hal ini dikarenakan pada pengujian ∆ tak setimbang, 1 dari 2 lampu

dari Z1 dan Z2 ditukar. Sehingga Z1 memakai 100 Watt dan 60 Watt, Z2 memakai 60 Watt dan 100

Watt dan kedua lampu pada Z3 tetap memakai 75 Watt. Dapat dilihat pada tabel 4.9. bahwa arus yang

didapat pada Z1 dan Z2 hampir sama, ini dikarenakan beban pada Z1 dan Z2 mempunyai nilai yang

sama.

Tabel 4.10. Data Nyala Lampu Beban ∆ Tak Setimbang

No Frekuensi

(Hz)

Lampu Fasa (Watt) Nyala Lampu

Z1 Z2 Z3

1. 15 100 60 75

Semua nyala lampu redup 60 100 75

2. 20 100 60 75

Lampu dengan beban 60 Watt

paling terang sedangkan

100 Watt paling redup 60 100 75

3. 25 100 60 75

Lampu dengan beban 60 Watt

paling terang sedangkan

100 Watt paling redup 60 100 75

Pada pengujian ∆ tak setimbang pada Z1 dan Z2 nyala lampu 60 Watt sangat terang, namun

nyala lampu 100 Watt menjadi sangat redup. Sedangkan pada Z3, terang nyala lampu sama seperti Z3

pada data nyala lampu beban ∆ setimbang.

Page 16: ANALISA GENERATOR LISTRIK MENGGUNAKAN MESIN INDUKSI ...

5. Kesimpulan

Dari hasil penelitian yang diperoleh berdasarkan pengujian dan analisa

perangkat dapat disimpulkan. Semakin besar nilai frekuensi yang diinput pada

inverter maka semakin besar pula tegangan 3 fasa yang diperoleh motor induksi 3

fasa. Semakin besar tegangan keluaran inverter maka semakin cepat pula putaran

roda motor induksi 3 fasa. Semakin cepat putaran motor induksi 3 fasa maka semakin

besar pula tegangan yang dihasilkan oleh generator AC.

Besar nilai tegangan dan arus pada beban dipengaruhi oleh tegangan sumber

yang diterima dan beban pemakaian yang dipakai pada suatu instalasi. Sehingga

dengan menentukkan besar nilai frekuensi pada inverter, akan mempengaruhi besar

tegangan generator AC yang dihasilkan untuk memenuhi kebutuhan beban listrik.

6. Saran

Sebelum melakukan pengujian dan pengambilan data pada percobaan

generator listrik menggunakan mesin induksi ini sebaiknya dilakukan pengecekkan

kesiapan perangkat dan alat. Sehingga dapat meminimalkan terjadinya kesalahan dan

kecelakaan yang akan mengganggu proses pengambilan data. Pada proses

pengambilan data sebaiknya dilakukan oleh 2 orang, agar data hasil percobaan yang

didapat bisa lebih maksimal dan akurat.

7. daftar Pustaka

[1] Bridgestone. 1996. “ Dasar Kontrol Listrik ”. LLKBS. Bekasi.

[2] Electric, Duta Fuji. 14 Oktober 2011. Basic Inverter.

[3] Rijono, Yon. 1997. “ Dasar Teknik Tenaga Listrik “. Andi. Yogyakarta.

[4] Simbolon, Revan. 2012. “ Analisa Hubungan Frekuensi Inverter

Dengan Tegangan Keluaran Generator Pada Laboratorium Teknik Elektro

Universitas Gunadarma ”. Universitas Gunadarma. Jakarta.

[5] Van. P. Harten. Instalasi Listrik Arus Kuat Jilid 1; Edisi Bahasa Indonesia oleh

Setiawan. E. Ir., Bina Cipta. Bandung.