Top Banner
1 Challenge the future Flight and Orbital Mechanics Lecture slides
73

Ae2104 flight-mechanics-slides 6

May 06, 2015

Download

Business

These are the lecture slides to the fifth lecture of the course AE2104 Flight and Orbital mechanics.
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Ae2104 flight-mechanics-slides 6

1Challenge the future

Flight and Orbital Mechanics

Lecture slides

Page 2: Ae2104 flight-mechanics-slides 6

Semester 1 - 2012

Challenge the future

DelftUniversity ofTechnology

Flight and Orbital MechanicsLecture hours 11, 12 – Cruise

Mark Voskuijl

Page 3: Ae2104 flight-mechanics-slides 6

2AE2104 Flight and Orbital Mechanics |

Content

• Introduction

• Optimum cruise profile

• Optimal airspeed for given H, W

• Effect of altitude

• Effect of weight

• Best flying strategy

• Analytic Range equations

• Story

• Weight breakdown

• Economics

• Summary

Page 4: Ae2104 flight-mechanics-slides 6

3AE2104 Flight and Orbital Mechanics |

Content

• Introduction

• Optimum cruise profile

• Optimal airspeed for given H, W

• Effect of altitude

• Effect of weight

• Best flying strategy

• Analytic Range equations

• Story

• Weight breakdown

• Economics

• Summary

Page 5: Ae2104 flight-mechanics-slides 6

4AE2104 Flight and Orbital Mechanics |

IntroductionTypical cruise flight

Page 6: Ae2104 flight-mechanics-slides 6

5AE2104 Flight and Orbital Mechanics |

Introduction

• Range (distance)

• Endurance (Maximum time)

Objective

Page 7: Ae2104 flight-mechanics-slides 6

6AE2104 Flight and Orbital Mechanics |

Introduction

General 2D equations of motion and power equation

Unsteady curved symmetric flight

cos sin

cos sin

T

T

a r

W dVT D W

g dt

W dL W T V

g dt

P P V dVRC

W g dt

Cruise flight

Quasi steady (dV/dt 0), quasi-rectilinear, (d/dt 0)

Weight of the aircraft is not constant

Small flight path angle cos = 1, sin 0

Assume that the thrust vector acts in the direction of flight (T 0)

Equations of motion

Page 8: Ae2104 flight-mechanics-slides 6

7AE2104 Flight and Orbital Mechanics |

Introduction

Equations of motion cruise flight

0 sin

( quasi rectilinear )

gT D W

W

L W

cos

sin

dsV

dt

dHV

dt

Kinematic equations

, ,dW

F V Hdt

Additional equation

Equations of motion

Page 9: Ae2104 flight-mechanics-slides 6

8AE2104 Flight and Orbital Mechanics |

Introduction

Pilot can choose a certain airspeed and altitude: H(t), V(t)

What is the best flight condition?

1. Optimal initial conditions (V, H at initial weight)2. Optimal flying strategy (V, H at decreasing weight)

Problem definition

Page 10: Ae2104 flight-mechanics-slides 6

9AE2104 Flight and Orbital Mechanics |

Introduction

2. Maximum range R:Specific range (V/F)max at every point in time

3. Given range, minimum fuel: Specific range (V/F)max at every point in time

1. Maximum endurance E: Fuel flow Fmin at every point in time

Criteria for optimal flight

Page 11: Ae2104 flight-mechanics-slides 6

10AE2104 Flight and Orbital Mechanics |

Content

• Introduction

• Optimum cruise profile

• Optimal airspeed for given H, W

• Effect of altitude

• Effect of weight

• Best flying strategy

• Analytic Range equations

• Story

• Weight breakdown

• Economics

• Summary

Page 12: Ae2104 flight-mechanics-slides 6

11AE2104 Flight and Orbital Mechanics |

Optimum cruise profile (Jet)

Thrust, Drag

Airspeed

For basic flight mechanics applications, thrust of a turbojet can be assumed to be constant with airspeed for a given flight altitude

0

2

LD D

CC C

Ae Drag follows from:

Performance diagram - Jet

Page 13: Ae2104 flight-mechanics-slides 6

12AE2104 Flight and Orbital Mechanics |

Optimum cruise profile (Jet)

Power

Airspeed

For basic flight mechanics applications, thrust of a turbojet can be assumed to be constant with airspeed for a given flight altitude

Performance diagram - Jet

a

r

P TV

P DV

Page 14: Ae2104 flight-mechanics-slides 6

13AE2104 Flight and Orbital Mechanics |

Optimum cruise profile (Jet)

T T

V V V

F c T c D

D, T

VVopt

Specific range

TF c T

Thrust specific fuel consumption

max min

if V D

F V

Additional assumption: cT constant

What is the corresponding airspeed?

D

T

Page 15: Ae2104 flight-mechanics-slides 6

14AE2104 Flight and Orbital Mechanics |

Optimum cruise profile (Jet)

(D/V)min CLX / CD

Y CL

Optimumcriterion

Lift over dragratio

Angle ofattack

Method to calculate the best airspeed

Airspeed(for given H,W)

V

Optimal airspeed for given altitude and weight

Page 16: Ae2104 flight-mechanics-slides 6

15AE2104 Flight and Orbital Mechanics |

Optimum cruise profile (Jet)

min max

D V

V D

2

max max

L

D

CV

D C

2 1

L

WV

S C

2

1L

D

CV

D C

D

L

CLD D W

L C

L W

2

2 1

1 2L L

D D

L

W

S C CV

CD W S CWC

1. Optimum criterion

2. Airspeed

3. Drag

4. Ratio

5. For a given weight

6. Angle of attack for given altitude

Airspeed

Page 17: Ae2104 flight-mechanics-slides 6

16AE2104 Flight and Orbital Mechanics |

Optimum cruise profile (Jet)

0

2

max max max

13opt

L

D

lift drag polar

L D

CV V

F D C

C C Ae

0

0

2 2

max

2

4

4

2

1 12 2

13

0

2 1

0

2

0

2

L L

D L D

DL D D

L

D

D L

L

D

LD

L D

L L

L D

C Cd

C dC C

dCC C C

dC

C

dC C

dC Ae

C

CC

C C Ae

Ae C C

C C Ae

First year:

,

2 1

L opt

L W

WV

S C

Airspeed for given altitude and weight

Airspeed

Page 18: Ae2104 flight-mechanics-slides 6

17AE2104 Flight and Orbital Mechanics |

Optimum cruise profile (Jet)

Aircraft Weight W = 300.000 [N] (start of cruise)

What is the best airspeed to fly (for max range) at 9000 [m] altitude?

(ρ = 0.4663 [kg/m3], T = 229.65 [K])

Example question

Page 19: Ae2104 flight-mechanics-slides 6

18AE2104 Flight and Orbital Mechanics |

Content

• Introduction

• Optimum cruise profile

• Optimal airspeed for given H, W

• Effect of altitude

• Effect of weight

• Best flying strategy

• Analytic Range equations

• Story

• Weight breakdown

• Economics

• Summary

Page 20: Ae2104 flight-mechanics-slides 6

19AE2104 Flight and Orbital Mechanics |

Effect of altitude

2 1 1

L

WV

S C Increasing H

D

V

0D

L

CD W

C

Angle of attack is constantfor a given point on the drag curve

Performance diagram

Page 21: Ae2104 flight-mechanics-slides 6

20AE2104 Flight and Orbital Mechanics |

Page 22: Ae2104 flight-mechanics-slides 6

21AE2104 Flight and Orbital Mechanics |

Effect of altitude

Altitude 0 m

T at cruise

T at cruise

V

T, DOptimum cruise level

Specific range

Page 23: Ae2104 flight-mechanics-slides 6

22AE2104 Flight and Orbital Mechanics |

Effect of altitude

At increasing altitude:

- V/F increases

- V increases

- Engine more efficient

Thus: fly as high as possible ! (up to the limits of the engine)

Conclusion

Page 24: Ae2104 flight-mechanics-slides 6

23AE2104 Flight and Orbital Mechanics |

Effect of altitudeTheoretical ceiling at cruise

Optimum cruise level at cruise

Tcruise

Tth

Hcr < Hth (at cruise)Optimum Hcr Hs (service ceiling)

Page 25: Ae2104 flight-mechanics-slides 6

24AE2104 Flight and Orbital Mechanics |

Effect of altitude

VVlim

D

Increasing H

In the presence of speed limits (e.g. MMO )

Page 26: Ae2104 flight-mechanics-slides 6

25AE2104 Flight and Orbital Mechanics |

Effect of altitude

• Optimum V/F at V = Vlim

• In case of speed limits, the optimum altitude is

not determined by the engine

0

0

min

max

2

lim

2 1

LL D

D

opt

D

CD C C Ae

C

W

S V C Ae

0

0

max

2

2

2

0

1

0

2

0

2

L L

D L D

DL D

L

D

D L

L

D

LD

L D

L L

L D

C Cd

C dC C

dCC C

dC

C

dC C

dC Ae

C

CC

C C AeAe C C

C C Ae

First year:

In the presence of speed limits (e.g. MMO )

Page 27: Ae2104 flight-mechanics-slides 6

26AE2104 Flight and Orbital Mechanics |

Summary – Jet aircraft

• Choose V such that (V/F)max (CL / CD2)max

• H as high as possible (limited by the engine)

• If the speed limit is reached at lower altitude:

• V = Vlim

• H is such that CL / CD is max

Page 28: Ae2104 flight-mechanics-slides 6

27AE2104 Flight and Orbital Mechanics |

Content

• Introduction

• Optimum cruise profile

• Optimal airspeed for given H, W

• Effect of altitude

• Effect of weight

• Best flying strategy

• Analytic Range equations

• Story

• Weight breakdown

• Economics

• Summary

Page 29: Ae2104 flight-mechanics-slides 6

28AE2104 Flight and Orbital Mechanics |

Effect of weight

2

3

2 1

at constant

at constant

L

D

L

r

r

WV W

S C

CD W W

C

P DV W W

D V

P V

D

VDecreasing W

Page 30: Ae2104 flight-mechanics-slides 6

29AE2104 Flight and Orbital Mechanics |

Page 31: Ae2104 flight-mechanics-slides 6

30AE2104 Flight and Orbital Mechanics |

Content

• Introduction

• Optimum cruise profile

• Optimal airspeed for given H, W

• Effect of altitude

• Effect of weight

• Best flying strategy

• Analytic Range equations

• Story

• Weight breakdown

• Economics

• Summary

Page 32: Ae2104 flight-mechanics-slides 6

31AE2104 Flight and Orbital Mechanics |

Page 33: Ae2104 flight-mechanics-slides 6

32AE2104 Flight and Orbital Mechanics |

Best flying strategy

W1, H1W2 < W1, H1

W2, H2 > H1

V

D

Strategies:I: constant altitude and engine settingII: constant altitude and airspeedIII: constant angle of attackIV: Climb and constant VV: Climb and change of V

Page 34: Ae2104 flight-mechanics-slides 6

33AE2104 Flight and Orbital Mechanics |

Best flying strategy

Constant altitude

I. = constant: (V/F) << (V/F)opt but V

II. V = constant (V/F) < (V/F)opt

III. = constant, V but (V/F) = (V/F)opt

Climb

IV. = constant, V = constant, (V/F) = (V/F)opt, even > (V/F)0

V. = constant, changing V?

Page 35: Ae2104 flight-mechanics-slides 6

34AE2104 Flight and Orbital Mechanics |

Best flying strategy

Strategy IV 2 = 1 (CL is constant) and V2 = V1

Optimum cruise climb possible?

11

1

22

2

2 1

constant2 1

L

L

D

L

WV

S C W

WV

S C

CT D W

C

Is this possible? Are the engines capable of providing enough thrust at higher altitude and lower weight?

Page 36: Ae2104 flight-mechanics-slides 6

35AE2104 Flight and Orbital Mechanics |

Best flying strategyTypical turbojet performance

Page 37: Ae2104 flight-mechanics-slides 6

36AE2104 Flight and Orbital Mechanics |

Best flying strategy

Strategy IV 2 = 1 (CL is constant) and V2 = V1

Optimum cruise climb possible?

2 1

2 1

2

2 2 2

1 1 11

= constant

D

L

D

L

D

L

W WW

CT D W

C

CW

T C W

CT WW

C

• This is exactly how a typical turbojet behaves above 11km. So there will be enough thrust.

• Strategy V is not feasible• Below 11km there will be

enough thrust as well

Page 38: Ae2104 flight-mechanics-slides 6

37AE2104 Flight and Orbital Mechanics |

Best flying strategy

Strategy IV 2 = 1 (CL is constant) and V2 = V1

The engines can provide just enough thrust

(strategy V not possible)

What happens in case of Mlim?

Mach number is constant at constant airspeed above 11km

No problem

Optimum cruise climb possible?

Page 39: Ae2104 flight-mechanics-slides 6

38AE2104 Flight and Orbital Mechanics |

Best flying strategy

Page 40: Ae2104 flight-mechanics-slides 6

39AE2104 Flight and Orbital Mechanics |

Best flying strategy

Page 41: Ae2104 flight-mechanics-slides 6

40AE2104 Flight and Orbital Mechanics |

Content

• Introduction

• Optimum cruise profile

• Optimal airspeed for given H, W

• Effect of altitude

• Effect of weight

• Best flying strategy

• Analytic Range equations

• Story

• Weight breakdown

• Economics

• Summary

Page 42: Ae2104 flight-mechanics-slides 6

41AE2104 Flight and Orbital Mechanics |

Analytic range equations

• Range

Breguet range equation

dW dWV F

dt ds

01

0 1

Ws

s W

VR ds dW

F

Page 43: Ae2104 flight-mechanics-slides 6

42AE2104 Flight and Orbital Mechanics |

Analytic range equations

• Jet aircraft optimum climb cruise (, V and cT are constant during variation of W

Breguet range equation for jet aircraft

0

1

W

W

VR dW

F

0

1

W

TW

VR dW

c D

0

1

W

L

T DW

CV dWR

c C W

0

1

W

L

T D W

CV dWR

c C W

0

1

lnL

T D

WCVR

c C W

Page 44: Ae2104 flight-mechanics-slides 6

43AE2104 Flight and Orbital Mechanics |

Analytic range equationsBreguet range equation for jet aircraft

• If V is not limited: Rmax at (V CL / CD)max

(CL / CD2)max and min

• If V is limited:

Rmax at V = Vlim and such that (CL / CD)max

0

1

lnL

T D

WCVR

c C W

Page 45: Ae2104 flight-mechanics-slides 6

44AE2104 Flight and Orbital Mechanics |

Analytic range equationsBreguet range equation for propeller aircraft

Cruise flight with constant , cp and j:

0

1

W

W

VR dW

F

p p

p br a

j j

c cF c P P TV

1 1 1j j j L

p p p D

CV

F c T c D c C W

0

1

lnj L

p D

WCR

c C W

Page 46: Ae2104 flight-mechanics-slides 6

45AE2104 Flight and Orbital Mechanics |

Analytic range equations

Conclusion: Altitude is not important w.r.t V/F

But V is larger at high altitude

P

V

Pr Dmin

Breguet range equation for propeller aircraft

Page 47: Ae2104 flight-mechanics-slides 6

46AE2104 Flight and Orbital Mechanics |

Analytic range equationsUnified Breguet range equation

• Jet aircraft

• Propeller aircraft

• Both:

tot

T

TV V g

F c HH

g

j

tot

p

TV g

F c HH

g

0

1

lnLtot

D

WCHR

g C W

Fuel quality Propulsion efficiency aerodynamic quality

Structural characteristics

Page 48: Ae2104 flight-mechanics-slides 6

47AE2104 Flight and Orbital Mechanics |

Analytic equations

Time 1920 Lindbergh Present

H 43000 kJ/kg 43000 kJ/kg 43000 kJ/kg

tot 0.20 0.20 – 0.30 >0.40

L/D 10 11 16-18

W1/W0 0.6 – 0.7 0.5 0.5

Unified Breguet range equation

Page 49: Ae2104 flight-mechanics-slides 6

48AE2104 Flight and Orbital Mechanics |

Content

• Introduction

• Optimum cruise profile

• Optimal airspeed for given H, W

• Effect of altitude

• Effect of weight

• Best flying strategy

• Analytic Range equations

• Story

• Weight breakdown

• Economics

• Summary

Page 50: Ae2104 flight-mechanics-slides 6

49AE2104 Flight and Orbital Mechanics |

StoryHistory

• 1919: Alcock / Brown: Newfoundland Ireland

• Fonck, Nungesser/Coli, Lindbergh: New York Paris

Passengers

Fuel

OEW (OperationalEmpty Weight)

Overload

- Structural safety factor- Take – off length (W2)- Climb gradient after take off- Tailwind west east

Page 51: Ae2104 flight-mechanics-slides 6

50AE2104 Flight and Orbital Mechanics |

StorySpirit of St. Louis

• Charles Lindbergh, 1927

• First solo, nonstop flight across

the Atlantic Ocean

Page 52: Ae2104 flight-mechanics-slides 6

51AE2104 Flight and Orbital Mechanics |

StorySpirit of St. Louis

• Charles Lindbergh had to decrease airspeed to achieve maximum

range

Pr, for decreasing weight

V

Pr

Page 53: Ae2104 flight-mechanics-slides 6

52AE2104 Flight and Orbital Mechanics |

Page 55: Ae2104 flight-mechanics-slides 6

54AE2104 Flight and Orbital Mechanics |

Story

• First part of flight: insufficient strength to withstand gusts

• Best glide ratio: 1:37

• ( CL / CD )max = 37

• CD0 = 0.018 e = 0.85

• Hcr = 45000 ft = 13.716 m = 0.2377

• Distance flown 38000 km

• Time 66 hrs

• Fuel lost 2600 lbs actual fuel fraction 71%

Global flyer

Page 56: Ae2104 flight-mechanics-slides 6

55AE2104 Flight and Orbital Mechanics |

Story

• (V/F)max :

• V for (V/F)max, 45000 ft, Wgross: V = 175 m/s

• Time for 40.000 km at constant V: 64 hrs

• Guesstimate of tot :

• High bypass fans at 1000 km/h: tot = 40%

• Medium bypass fans tot = 35%, th = 50%, j = 70% Vj / V = 1.86

• Correction for lower flight speed:

• Vj / V = 3 j = 0.5 tot = 25%

• Range in ideal climbing cruise: R = 53000 km

0

13

0.72

0.024 30

L D

LD

D

C C Ae

CC

C

Global flyer

Page 57: Ae2104 flight-mechanics-slides 6

56AE2104 Flight and Orbital Mechanics |

Story

• Cruise at V = constant and Hcr = constant: R = 37.500 km

• At fuel fraction 70%: R = 28000 km

• Influence wind ?

Global flyer

Page 58: Ae2104 flight-mechanics-slides 6

57AE2104 Flight and Orbital Mechanics |

Content

• Introduction

• Optimum cruise profile

• Optimal airspeed for given H, W

• Effect of altitude

• Effect of weight

• Best flying strategy

• Analytic Range equations

• Story

• Weight breakdown

• Economics

• Summary

Page 59: Ae2104 flight-mechanics-slides 6

58AE2104 Flight and Orbital Mechanics |

Weight breakdown

Total fuel

OEW

Payload

Payload

Total fuel

OEW

Wide-body airplane with turbofan engines

Supersonic transport with turbojet engines

Useful load

Page 60: Ae2104 flight-mechanics-slides 6

59AE2104 Flight and Orbital Mechanics |

Weight breakdown

Fuel tank capacity

Design range

Weight

fuelMZFW

Reserve fuelOEW

MTOW

R

Payload

Ultimate range

Payload

R

Payload

MTOW = maximum take-off weightMZFW = maximum zero fuel weightOEW = operational empty weight

Payload range diagram

Page 61: Ae2104 flight-mechanics-slides 6

60AE2104 Flight and Orbital Mechanics |

Weight breakdown

MZFW limited, amongst others by bending moment of the wing

MTOW > MZFW at same bending moment. MTOW limited e.g. by landing gear

MZFW

L/2L/2

MZFW

L/2L/2

Wf / 2Wf / 2

Maximum zero fuel weight

Page 62: Ae2104 flight-mechanics-slides 6

61AE2104 Flight and Orbital Mechanics |

Weight breakdown

• Reserve fuel

• In general:

• Fuel to alternate

• 45 minutes holding at altitude

• Fuel shortage:

• In general:

• Management problem

• CRM Cockpit resource management

Reserve fuel

Page 63: Ae2104 flight-mechanics-slides 6

62AE2104 Flight and Orbital Mechanics |

Content

• Introduction

• Optimum cruise profile

• Optimal airspeed for given H, W

• Effect of altitude

• Effect of weight

• Best flying strategy

• Analytic Range equations

• Story

• Weight breakdown

• Economics

• Summary

Page 64: Ae2104 flight-mechanics-slides 6

63AE2104 Flight and Orbital Mechanics |

Economics

Key Parameters

Range R

Payload P

Block time EB

Block speed VB

Transport product PR

Transport productivity Ph

Revenue earning capacity Py

Block time and block speed

Page 65: Ae2104 flight-mechanics-slides 6

64AE2104 Flight and Orbital Mechanics |

Economics

Page 66: Ae2104 flight-mechanics-slides 6

65AE2104 Flight and Orbital Mechanics |

Economics

! Cost (direct operating cost) must be considered as well of course

Conclusion:Maximum transport productivity is achieved at the design range

Transport productivity

Page 67: Ae2104 flight-mechanics-slides 6

66AE2104 Flight and Orbital Mechanics |

Content

• Introduction

• Optimum cruise profile

• Optimal airspeed for given H, W

• Effect of altitude

• Effect of weight

• Best flying strategy

• Analytic Range equations

• Story

• Weight breakdown

• Economics

• Summary

Page 68: Ae2104 flight-mechanics-slides 6

67AE2104 Flight and Orbital Mechanics |

Summary

Key parameter:Specific range V/F[V]/[F] = [m/s]/[kg/s] = [m/kg]So it is the distance travelled per unit of fuel

The objective is to minimize fuel for a given range

Performance diagram for jet aircraft

Page 69: Ae2104 flight-mechanics-slides 6

68AE2104 Flight and Orbital Mechanics |

SummaryEffect of weight and altitude

Page 70: Ae2104 flight-mechanics-slides 6

69AE2104 Flight and Orbital Mechanics |

Summary

Propeller aircraft (analytical approximation)1. Conclusion: Altitude is not important

w.r.t V/F2. But V is larger at high altitude

Jet aircraft (analytical approximation)1. Choose V such that (V/F)max (CL /

CD2)max

2. H as high as possible (limited by the engine)3. If the speed limit is reached at lower

altitude: V = Vlim, H is such that CL / CD is max

Key conclusions

Page 71: Ae2104 flight-mechanics-slides 6

70AE2104 Flight and Orbital Mechanics |

Summary

01

0 1

WW

W W

VR ds dW

F

0

1

W

L

T DW

CV dWR

c C W

0

1

W

j L

p DW

C dWR

c C W

Jet aircraft(analytical approximation)

Propeller aircraft(analytical approximation)

0

1

lnL

T D

WCVR

c C W

0

1

lnj L

p D

WCR

c C W

Optimum cruise climb Cruise flight with constant , cp and j:

Breguet range equation

Page 72: Ae2104 flight-mechanics-slides 6

71AE2104 Flight and Orbital Mechanics |

SummaryUnified Breguet range equation

• Jet aircraft

• Propeller aircraft

• Both:

tot

T

TV V g

F c HH

g

j

tot

p

TV g

F c HH

g

0

1

lnLtot

D

WCHR

g C W

Fuel quality Propulsion efficiency aerodynamic quality

Structural characteristics

Page 73: Ae2104 flight-mechanics-slides 6

72AE2104 Flight and Orbital Mechanics |

Questions?