Top Banner
1 Challenge the future Flight and Orbital Mechanics Lecture slides
62

Ae2104 orbital-mechanics-slides 13

May 25, 2015

Download

Education

These are the lecture slides to the ninth lecture of the course AE2104 Flight and Orbital mechanics.
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Ae2104 orbital-mechanics-slides 13

1Challenge the future

Flight and Orbital Mechanics

Lecture slides

Page 2: Ae2104 orbital-mechanics-slides 13

1AE2104 Flight and Orbital Mechanics |

Flight and Orbital Mechanics

AE2-104, lecture hours 25+26: Launchers

Ron Noomen

October 1, 2012

Page 3: Ae2104 orbital-mechanics-slides 13

2AE2104 Flight and Orbital Mechanics |

Example: Ariane 5

[Arianespace, 2010]

Questions:• what is the

payload of this launcher?

• why does it have 2 stages and 2 boosters?

• what are the characteristics of each stage?

• ….

Page 4: Ae2104 orbital-mechanics-slides 13

3AE2104 Flight and Orbital Mechanics |

Overview

• Ideal single-stage launcher

• Ideal multi-stage launcher

• Real single-stage launcher (gravity, atmosphere)

• Real multi-stage launcher (idem)

• Overall performance (Pegasus)

• Design (Pegasus)

Page 5: Ae2104 orbital-mechanics-slides 13

4AE2104 Flight and Orbital Mechanics |

Learning goals

The student should be able to:• derive, describe and explain Tsiolkovsky’s equation• describe and explain the concept of a multi-stage launcher

and quantify its performance• describe and quantify the performance of a launcher in

realistic conditions, i.e., under the influence of gravity and drag

• make a 1st-order design of a new launcher from scratch• ….

Lecture material:• these slides (incl. footnotes)

Page 6: Ae2104 orbital-mechanics-slides 13

5AE2104 Flight and Orbital Mechanics |

Principles

Principles + performance ideal rocket: partial recap of ae1-102

Page 7: Ae2104 orbital-mechanics-slides 13

6AE2104 Flight and Orbital Mechanics |

Principles (cnt’d)

• vehicle contains payload, structure, propellant• exhaust velocity propellant w• conservation of momentum of system• vehicle accelerates

before

during

afterw

Page 8: Ae2104 orbital-mechanics-slides 13

7AE2104 Flight and Orbital Mechanics |

Principles (cnt’d)

• system = launcher + expelled propellant

• momentum system = constant

Solidification Principle:

• M = instantaneous mass of rocket [kg]• m = expelled (gaseous) mass per unit of time, or mass flow [kg/s]• V = inertial velocity of launcher [m/s]• w = relative exhaust velocity of expelled propellant [m/s]

wmdt

dVMaMF

wdt

dM

dt

dVM

Page 9: Ae2104 orbital-mechanics-slides 13

8AE2104 Flight and Orbital Mechanics |

Ideal single stage rocket

Equation of motion (vacuum, no gravity):

Integration:

Tsiolkovsky’s Equation (a.k.a. ”the rocket equation”)

Note: w = Isp g0

endM

beginMwV ln

wdt

dM

dt

dVM

Page 10: Ae2104 orbital-mechanics-slides 13

9AE2104 Flight and Orbital Mechanics |

Ideal single stage rocket (cnt’d)

Characteristic parameters:

• thrust-to-weight ratio:

• mass ratio:

So:• burn time:

• end velocity

• burnout altitude:

1ln1

0

20

ln0

11

0

000

spIgends

gspIendV

spI

m

endMbeginMbt

endM

beginM

gM

F

Page 11: Ae2104 orbital-mechanics-slides 13

10AE2104 Flight and Orbital Mechanics |

Ideal single stage rocket (cnt’d)

*: impulsive shot: all propellants are ejected in 1 instant

“normal” impulsive shot *

Λ Mbegin / Mend

tb (Isp / Ψ0) (1 – 1/Λ) 0

Ψ0 F / (M0 g0) ∞

Vend Isp g0 ln(Λ)

send g0 Isp2 / Ψ0 (1 – (ln(Λ)-1)/Λ) 0

Page 12: Ae2104 orbital-mechanics-slides 13

11AE2104 Flight and Orbital Mechanics |

Ideal single stage rocket (cnt’d)

Do not forget (cf. ae1-102):

• Ψ0 > 1

• structural loading at burnout

Page 13: Ae2104 orbital-mechanics-slides 13

12AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Definition of parameters:

• Mtotal = total mass (i.e., before firing)

• Mpayload = payload mass ( )

• Mconstr = construction mass ( )

• Mprop = propellant mass ( )

• Mbegin = Mtotal = Mpayload + Mconstr + Mprop

• Mend = Mpayload + Mconstr

Page 14: Ae2104 orbital-mechanics-slides 13

13AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket

0

0

0

ln

ln

exp

totalsp

total prop

totalsp

constr payload

payloadconstr

total total sp

MV g I

M M

MV g I

M M

MM V

M M I g

Page 15: Ae2104 orbital-mechanics-slides 13

14AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Example 1:

ΔV = 10 km/s, Isp = 400 s, Mconstr/Mtotal = 8 %, Mpayload = 500 kg

• Mtotal = Mbegin = ???

• Mprop = ???

• Mconstr = ???

Page 16: Ae2104 orbital-mechanics-slides 13

15AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Example 1 (cnt’d):

NO SOLUTION !

Page 17: Ae2104 orbital-mechanics-slides 13

16AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Options:

• reduce required Mpayload

• use engine/propellant with higher Isp

• use lighter construction

• multi-staging

Page 18: Ae2104 orbital-mechanics-slides 13

17AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Example 2: ΔV = 10 km/s, Isp = 400 s, Mconstr/Mtotal = 8 %, Mpayload = 250 kg

Page 19: Ae2104 orbital-mechanics-slides 13

18AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Example 3:

ΔV = 10 km/s, Isp = 500 s, Mconstr/Mtotal = 8 %, Mpayload = 500 kg

Page 20: Ae2104 orbital-mechanics-slides 13

19AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Example 3 (cnt’d):

ΔV = 10 km/s, Isp = 500 s, Mconstr/Mtotal = 8 %, Mpayload = 500 kg

• Mpayload/Mtotal = 0.0502

• Mtotal = Mbegin = 9960 kg

• Mconstr = 797 kg

• Mprop = 8663 kg

• Mprop/Mtotal = 87.0 %

OPTIMAL SOLUTION? FEASIBLE SOLUTION?

Page 21: Ae2104 orbital-mechanics-slides 13

20AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Example 4:

ΔV = 10 km/s, Isp = 400 s, Mconstr/Mtotal = 4 %, Mpayload = 500 kg

Page 22: Ae2104 orbital-mechanics-slides 13

21AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Example 4 (cnt’d):

ΔV = 10 km/s, Isp = 400 s, Mconstr/Mtotal = 4 %, Mpayload = 500 kg

• Mpayload/Mtotal = 0.0382

• Mtotal = Mbegin = 13089 kg

• Mconstr = 524 kg

• Mprop = 12065 kg

• Mprop/Mtotal = 92.2 %

OPTIMAL SOLUTION? FEASIBLE SOLUTION?

Page 23: Ae2104 orbital-mechanics-slides 13

22AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Example 5: no construction mass ………..

Page 24: Ae2104 orbital-mechanics-slides 13

23AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Example 6a:

ΔV = 5 km/s, Isp = 400 s, Mconstr/Mtotal = 8 %, Mpayload = 500 kg

• Mpayload/Mtotal = 0.1997

• Mtotal = Mbegin = 2504 kg

• Mconstr = 200 kg

• Mprop = 1804 kg

• Mprop/Mtotal = 72.0 %

OPTIMAL SOLUTION? FEASIBLE SOLUTION?

Page 25: Ae2104 orbital-mechanics-slides 13

24AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Example 6b:

ΔV = 5 km/s, Isp = 400 s, Mconstr/Mtotal = 8 %, Mpayload = 2504 kg

• Mpayload/Mtotal = 0.1997

• Mtotal = Mbegin = 12,539 kg

• Mconstr = 1003 kg

• Mprop = 9032 kg

• Mprop/Mtotal = 72.0 %

OPTIMAL SOLUTION? FEASIBLE SOLUTION?

Page 26: Ae2104 orbital-mechanics-slides 13

25AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Add numbers examples 6a+b:

Example 6a Example 6b total

ΔV [km/s] 5.0 5.0 10.0

Mprop [kg] 1804 9032 10836

Mconstr [kg] 200 1003 1203

Mpayload [kg] 500 2504 500

Mtotal [kg] 2504 12539 12539

stage 2 stage 1

Page 27: Ae2104 orbital-mechanics-slides 13

26AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Compare examples:

Example 1 Example 3 Example 4 Example

6a+b

ΔV [km/s] 10.0

Mpayload [kg] 500

Isp [s] 400 500 400 400

Mconstr/Mtotal [%] 8 8 4 8

# stages 1 1 1 2

Mprop [kg] n.a. 8663 12065 10836

Mconstr [kg] n.a. 797 524 1203

Mtotal [kg] n.a. 9960 13089 12539

Page 28: Ae2104 orbital-mechanics-slides 13

27AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Compare examples:

Conclusion: 50% gain in payload (ratio) !!

Page 29: Ae2104 orbital-mechanics-slides 13

28AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Multi-staging:

Advantages:

• no need to accelerate total construction mass until final velocity upper stages perform more efficiently

o more payload capacity

o more ΔV capacity

Disadvantages:

• more complexity (engines, piping, …)

• more risk (jettison, ignition, …)

Page 30: Ae2104 orbital-mechanics-slides 13

29AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Definition of parameters:

• Mtotal,i = total mass of stage “i” (i.e., before firing)

• Mpayload,i = payload mass of stage “i”

• Mconstr,i = construction mass of stage “i”

• Mprop,i = propellant mass of stage “i”

• Note: Mpayload,i = Mtotal,i+1

Page 31: Ae2104 orbital-mechanics-slides 13

30AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Stage 1 2 3 4

green = payload

Page 32: Ae2104 orbital-mechanics-slides 13

31AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

pgspIV

pconstrMpayloadM

propMconstrMpayloadM

endM

beginM

propMconstrM

beginMpayloadMp

endM

beginMgspIV

1ln0

so

1

then

/

/

define

ln0

:stage single y,Tsiolkovsk

(after [Fortescue, Stark & Swinerd, 2003])

Page 33: Ae2104 orbital-mechanics-slides 13

32AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

pppppp

pp

p

propMpropMp

p

propMp

endM

beginM

propMp

beginM

propMpropMconstrMbeginMp

propMconstrMbeginMpbeginM

propMconstrMbeginMppayloadM

11

)1()1(

1

1

1

1

1

1

1

1

1

:equation sy'Tsiolkovskfor ratio mass

1

1

or

)1()1(

becomeswhich

so

and

Derivation of 4th equation on previous sheet:

Page 34: Ae2104 orbital-mechanics-slides 13

33AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

sip

sgspItotV

si

spIispI

iip

igispIiVtotV

iip

igispIiV

1ln0

so

,

assume

1ln0,

:launcher total

1ln0,

:only i"" stage

(after [Fortescue, Stark & Swinerd, 2003])

Page 35: Ae2104 orbital-mechanics-slides 13

34AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

)}ln()1{ln(0

so

:)derivation (w.o.solution optimal

.....321

:definitionby

NtotPssNgspItotV

NtotPip

ipNpppptotP

(after [Fortescue, Stark & Swinerd, 2003])

Page 36: Ae2104 orbital-mechanics-slides 13

35AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

• #stages typically 3 or 4

• single stage: ΔV/(Ispg0) 1.7 – 2.4 (factor 1.4)

• 4 stages: ΔV/(Ispg0) 2.0 – 5.5 (factor 2.8)

• staging very attractive (for modest P)

• high P: gain multi-staging limited ( 2 stages for Ariane-

5, Delta IV, Titan V, …) real challenge!

N P

Véronique 1 0.044

Ariane-4 2 0.02-0.03

Page 37: Ae2104 orbital-mechanics-slides 13

36AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Question 1

The performance of a rocket (i.e., the ΔV that can be obtained) is determined by the ratio Mbegin/Mend, amongst others. New parameters ”p” and ”σ” can be defined: p=Mpayload/Mbegin and σ=Mconstr/Mprop.

Derive the following equation:

Mbegin/Mend = (1+σ)/(p+σ)

Page 38: Ae2104 orbital-mechanics-slides 13

37AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Question 2

The performance of a rocket (i.e., the ΔV that can be obtained) is determined by the ratio Mbegin/Mend, amongst others. New parameters ”pi” and ”σi” can be defined for each possible stage “i”: pi=Mpayload,i/Mbegin,i and σi=Mconstr,i/Mprop,i.

Derive the following equation which holds for an arbitrary number of stages N (where it is assumed that the parameters σi are equal to “s” for all stages, and the payload fractions of all stages pi are equal to (N)√Ptot (i.e., the Nth root of Ptot):

)}ln()1{ln(0N

totPssNgspItotV

Page 39: Ae2104 orbital-mechanics-slides 13

38AE2104 Flight and Orbital Mechanics |

Ideal multi-stage rocket (cnt’d)

Question 3

Given the equation

1. What do the various parameters represent?

2. What does the equation express?

3. Make a sketch of the behaviour of ΔVtot/(Isp g0) as a function of parameter N, for the case Ptot = 0.001 and the case Ptot = 0.010 (parameter “s” is equal to 10%). Clearly indicate the

(range of) numerical values for ΔVtot/(Isp g0).

4. Discuss the consequences of increasing N for both cases of Ptot.

)}ln()1{ln(0N

totPssNgspItotV

Page 40: Ae2104 orbital-mechanics-slides 13

39AE2104 Flight and Orbital Mechanics |

Real single-stage launcher

In direction of flight: M dV/dt = F cos(α+δ) – M g sin(γ) - D

[Fortescue & Stark, 1995]

Page 41: Ae2104 orbital-mechanics-slides 13

40AE2104 Flight and Orbital Mechanics |

Real single-stage launcher (cnt’d)

1. Thrust misalignment: α+δ ≠ 0°

(α needed to counteract gravity, δ

for steering cannot be avoided)

2. Gravity loss: γ ≠ 0° (launcher lifts

off in vertical direction

unavoidable)

3. Drag loss: D ≠ 0 (first part of

trajectory through atmosphere

unavoidable)

In direction of flight: M dV/dt = F cos(α+δ) – M g sin(γ) – D

Page 42: Ae2104 orbital-mechanics-slides 13

41AE2104 Flight and Orbital Mechanics |

Real single-stage launcher (cnt’d)

btggV

gspIidealendV

dVgVidealendV

dtM

Ddtg

M

dMwendV

dtM

Ddtg

M

dMwdV

0

)ln(0,

where

,

:nintegratio

:flight vertical

Page 43: Ae2104 orbital-mechanics-slides 13

42AE2104 Flight and Orbital Mechanics |

Real single-stage launcher (cnt’d)

)ln(

:nculminatio until time

11

)ln()(2ln02

1

0

02

:nculminatioat altitude

21

102

11)ln(1

0

02

:burnoutat altitude

11

0

1)ln(0

:burnoutat velocity

spIculmt

gspIculmh

gspIburnouth

gspIburnoutV

• including gravity losses

• w/o drag losses

Page 44: Ae2104 orbital-mechanics-slides 13

43AE2104 Flight and Orbital Mechanics |

Real single-stage launcher (cnt’d)

Data:

• specific impulse Isp = 300 s

• Ψ0 = 1.5

• Λ = 5

Results:w/o gravity with gravity

burn time [s] 160.0

burnout velocity [m/s] 4736.6 3167.0

burnout height [km] 281.4 155.8

culmination time [s] - 482.8

culmination height [km] - 667.0

culmination height for impulsive shot [km]

- 1143.5

Page 45: Ae2104 orbital-mechanics-slides 13

44AE2104 Flight and Orbital Mechanics |

Real single-stage launcher (cnt’d)

Culmination altitudes of single-stage launchers, for Isp = 200 s (left) and 400 s (right). Maximum acceleration = 10g.

Page 46: Ae2104 orbital-mechanics-slides 13

45AE2104 Flight and Orbital Mechanics |

Real single-stage launcher (cnt’d)

Gravity loss: minimize by shifting to horizontal flight a.s.a.p.

Drag loss: minimize by reducing trajectory through atmosphere

CONFLICT !!

Solution 1: start in vertical directory, then turn to (more)

horizontal direction.

Solution 2: use air-launched vehicle.

Page 47: Ae2104 orbital-mechanics-slides 13

46AE2104 Flight and Orbital Mechanics |

Example: Pegasus

Requirements [OSC, 2003]:

• maximum payload 455 kg into LEO

• cost-effective

• reliable

• flexible

• minimum ground support

• multiple payload capability

• short lead time

• (released at 12 km altitude)[OSC, 2010]

Page 48: Ae2104 orbital-mechanics-slides 13

47AE2104 Flight and Orbital Mechanics |

Example: Pegasus (cnt’d)

Pegasus XL mission profile [OSC, 2007]

Page 49: Ae2104 orbital-mechanics-slides 13

48AE2104 Flight and Orbital Mechanics |

Overall performance

[OSC, 2000]

Can we (easily) reproduce these numbers?

Page 50: Ae2104 orbital-mechanics-slides 13

49AE2104 Flight and Orbital Mechanics |

Overall performance (cnt’d)

Specific energy (i.e., energy per unit of mass):

Eorbit = Epot,begin + Ekin,eff – ΔEpot

• Eorbit = total energy in orbit (sum of kinetic+potential)

• Epot,begin = potential energy at launch

• Ekin,eff = effective kinetic energy

• ΔEpot = gain in potential energy

Page 51: Ae2104 orbital-mechanics-slides 13

50AE2104 Flight and Orbital Mechanics |

Overall performance (cnt’d)

Substitution:

2

0 1 2 3

e e

1

2 R 2 Rd g

launch launch

V V V V Va h a h

• μ = gravitational parameter Earth

• a = semi-major axis of orbit

• hlaunch = altitude of launch platform

• V0 = velocity of launch platform

• ΔV1,2,3 = velocity increment delivered by stage 1,2,3

• ΔVd+g velocity loss due to atmosphere and gravity

Page 52: Ae2104 orbital-mechanics-slides 13

51AE2104 Flight and Orbital Mechanics |

Overall performance (cnt’d)

0

cos( )0.463 cos( ) 0.222

cos( )launch

launch

iV

Pegasus carrier:

Pegasus vehicle:

a = f(i, δlaunch, hlaunch, payload mass)

stage Isp [s] Mprop [kg] Mconstr

[kg]

Mbegin [kg]

3 289.3 770 126 Mpayload+Mprop,3+Mconstr,3

2 291.3 3925 416 Mbegin,3+Mprop,2+Mconstr,2

1 295.9 15014 1369 Mbegin,2+Mprop,1+Mconstr,1

velocity L1011velocity Earth

Page 53: Ae2104 orbital-mechanics-slides 13

52AE2104 Flight and Orbital Mechanics |

Overall performance (cnt’d)

[Wertz&Larson, 1991]:

• Drag+gravity losses 1.5-2.0 km/s

• Drag loss: 0.3 km/s

Pegasus: small launcher

• Drag+gravity losses 1.5 km/s

• Drag loss 0.3 km/s

• Gravity loss 1.5 – 0.3 = 1.2 km/s

Page 54: Ae2104 orbital-mechanics-slides 13

53AE2104 Flight and Orbital Mechanics |

Overall performance (cnt’d)

Results for launches due East from KSC (δ=28.5°) and WTR (δ=34.6°):

Page 55: Ae2104 orbital-mechanics-slides 13

54AE2104 Flight and Orbital Mechanics |

Overall performance (cnt’d)

Orbit altitude as a function of carrier velocity (Mpayload = 300 kg, launch at equator):

Page 56: Ae2104 orbital-mechanics-slides 13

55AE2104 Flight and Orbital Mechanics |

Design

Can we (easily) reproduce the overall layout of a launcher?

Example: Pegasus

Page 57: Ae2104 orbital-mechanics-slides 13

56AE2104 Flight and Orbital Mechanics |

Design (cnt’d)

Some data and assumptions:

• 3 stages

• Isp identical for all stages (290 s)

• Mconstr/Mtotal identical for all stages (0.08)

• Vc = 7.784 km/s at h=200 km

• Vearth = 0.464 km/s at equator

• Vcarrier = 0.222 km/s w.r.t. Earth

• Vpegasus,initial = 0.686 km/s

• ΔVideal = 7.784 – 0.686 = 7.098 km/s

Page 58: Ae2104 orbital-mechanics-slides 13

57AE2104 Flight and Orbital Mechanics |

Design (cnt’d)

• Drag loss 0.3 km/s

• Gravity loss 1.2 km/s

1st order approach:

• ΔVideal equally distributed over 3 stages

• Drag loss on account of 1st stage

• Gravity loss equally distributed over 3 stages

• Stage 1: ΔV = 2.366 + 0.3 + 0.4 = 3.066 km/s

• Stage 2 and 3: ΔV = 2.366 + 0.4 = 2.766 km/s (each)

Page 59: Ae2104 orbital-mechanics-slides 13

58AE2104 Flight and Orbital Mechanics |

Design (cnt’d)

Tsiolkovsky’s rocket equation:

0

0

0

ln

ln

exp

totalsp

total prop

totalsp

constr payload

payloadconstr

total total sp

MV g I

M M

MV g I

M M

MM V

M M I g

Page 60: Ae2104 orbital-mechanics-slides 13

59AE2104 Flight and Orbital Mechanics |

Design (cnt’d)

Stage 3:

Mpayload = 455 kg, Isp = 290 s, Mconstr / Mtotal ~ 0.08:

so:

• Mtotal = 1526 kg

• Mconstr = 122 kg

• Mpayload = 455 kg

• Mprop = 949 kg

Next: total mass of stage 3 is equal to payload mass of stage 2.

Page 61: Ae2104 orbital-mechanics-slides 13

60AE2104 Flight and Orbital Mechanics |

Design (cnt’d)

stage 3 stage 2 stage 1

re-eng

[kg]

real

[kg]

Δ

[%]

re-eng

[kg]

real

[kg]

Δ

[%]

re-eng

[kg]

real

[kg]

Δ

[%]

payload 455 455 0.0 1526 1351 12.9 5116 5692 -10.1

constr. 122 126 -3.1 409 416 -1.6 1572 1369 14.8

prop. 949 770 23.2 3181 3925 -19.0 12961 15014 -13.7

total 1526 1351 12.9 5116 5692 -10.1 19649 22075 -11.0

Page 62: Ae2104 orbital-mechanics-slides 13

61AE2104 Flight and Orbital Mechanics |

Further reading

• Koelle, D.E., Cost Analysis of Present Expendable Launch Vehicles as contribution

to Low Cost Access to Space Study. In: (2nd ed.), Technical Note TCS-TN-147

(96), TransCostSystems, Ottobrun, Germany (December 1966).

• Parkinson, R.C., Total System Costing of Risk in a Launch Vehicle. In: 44th

International Astronautical Congress (2nd ed.), AA-6.1-93-735 (16–22 Oct., 1993)

Graz, Austria .

• Isakowitz, S.J.. In: (2nd ed.), International Reference Guide to Space Launch

Systems, American Institute for Aeronautics and Astronautics, Washington DC

(1991).

• “ESA Launch Vehicle Catalogue”, European Space Agency, Paris, Revision 8:

December 1997.

• http://www.orbital.com info on Pegasus, Taurus and Minotaur

• users.commkey.net/Braeunig/space/specs/pegasus.htm

• http://arianespace.com/english/leader_launches/html

• http://www.boeing.com/defence-space/space/delta/record.htm)