Top Banner
1 Acid-Base Balance Seminar No. 11
68

Acid-Base Balance

Jan 03, 2016

Download

Documents

Carlos Chase

Acid-Base Balance. Seminar No. 11. Parameters of acid base balance. Measured in arterial blood pH = 7.40 ± 0.04 = 7.36 – 7.44 pCO 2 = 4.8 – 5.8 kPa supporting data: pO 2 , tHb, s O 2 , HbO 2 , COHb, MetHb Calculated [HCO 3 - ] = 24 ± 3 mmol/l (from H.-H. eq.) - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Acid-Base Balance

1

Acid-Base Balance

Seminar No. 11

Page 2: Acid-Base Balance

2

Parameters of acid base balance

Measured in arterial blood

• pH = 7.40 ± 0.04 = 7.36 – 7.44

• pCO2 = 4.8 – 5.8 kPa

• supporting data: pO2, tHb, sO2, HbO2, COHb, MetHb

Calculated

• [HCO3-] = 24 ± 3 mmol/l (from H.-H. eq.)

• BE = 0 ± 3 mmol/l (from S.-A. nomogram, see physilogy)

• BBs = 42 ± 3 mmol/l

• BBb = 48 ± 3 mmol/l

Page 3: Acid-Base Balance

3

Q. 1

Page 4: Acid-Base Balance

4

Buffer bases in (arterial) plasma

Buffer base mmol/l

HCO3-

Protein-His

HPO42-

----------

Total

24

17*

1

-------------

42

* Molarity of negative charge binding sites for H+

Page 5: Acid-Base Balance

5

Q. 2

Page 6: Acid-Base Balance

6

A. 2

BBs = 42 ± 3 mmol/l

BBb = 48 ± 3 mmol/l

hemoglobin in erythrocytes

increases BBb by 6-8 mmol/l

Page 7: Acid-Base Balance

7

Q. 3

Page 8: Acid-Base Balance

8

Abr. Name Reference values

sO2

tHb

COHb

MetHb

HbA1c

Oxygen parameters and hemoglobin derivatives

Page 9: Acid-Base Balance

9

Abr. Name Reference values

sO2saturation of Hb by oxygen

94 – 99 %

tHb total Hb2.15 – 2.65 mmol/l (tetramer)

120-175 g/l (diff. males × females)

COHb carbonylHb 1-2 % (nonsmokers)

MetHb methemoglobin 0.5 – 1.5 %

HbA1c glycated Hb 2.8 - 4 %

Oxygen parameters and hemoglobin derivatives

Tissue hypoxia of any origin leads to lactic acidosis

Page 10: Acid-Base Balance

10

Q. 4

Page 11: Acid-Base Balance

11

A. 4

7.4 = 6.1 + log [HCO3-] / 0.22 × 5.3

1.3 = log [HCO3-] / 1.2

101.3 = [HCO3-] / 1.2

20 = [HCO3-] / 1.2

[HCO3-] = 24 mmol/l

Page 12: Acid-Base Balance

12

Four types of acid-base disorders

pH = 6.1 + log2

3

pCO22.0

][HCO

Changes in [HCO3-]

metabolic acidosis

metabolic alkalosis

Changes in pCO2

respiratory alkalosis

respiratory acidosis

Page 13: Acid-Base Balance

13

Maintanance of constant pH in body

System / Organ What is altered? How quickly?

Buffers in ECF/ICF pH sec / min

Lungs pCO2 hours

Liver way of NH3 detoxication days

KidneyNH4

+ / H2PO4- excretion

HCO3- resorption

days

Page 14: Acid-Base Balance

14

Responses to acute change

• compensation

• correction

Page 15: Acid-Base Balance

15

Q. 6

Page 16: Acid-Base Balance

16

A. 6

Feature Plasma ICF

Main cation

Main anion

Protein content

Main buffer base

Na+

Cl-

HCO3-

K+

HPO42-

HPO42-

Page 17: Acid-Base Balance

17

Metabolic acidosis is the most common condition

Metabolic alkalosis isthe most dangerous condition

Page 18: Acid-Base Balance

18

Q. 8

Page 19: Acid-Base Balance

19

Na+

Cl-

HCO3-

AGK+

normal status hyperchloremic MAC normochloremic MAC

Page 20: Acid-Base Balance

20

Na+

Cl-

HCO3-

AGK+

Cl-

HCO3- ↓

AGno change

Cl-

no change

HCO3- ↓

AG

normal status hyperchloremic MAC normochloremic MAC

See Q. 11NaCl infusions

Page 21: Acid-Base Balance

21

Q. 9

Page 22: Acid-Base Balance

22

A. 9 Excessive infusions of NaCl isotonic solution lead to metabolic acidosis

Blood plasma (mmol/l) Isotonic solution (mmol/l)

Na+ Cl- Na+ Cl-

133-150 97-108 154 154

Ratio ~ 1 : 0.7 Ratio 1 : 1

Isotonic solution of NaCl has elevated concentration of Cl- compared to plasma

Blood plasma is diluted by infusion solution [HCO3-] decreases

pCO2 in alveolar air is the same

the ratio [A-] / [HA] in H.-H. equation decreases pH < 7.40 (acidosis)

Page 23: Acid-Base Balance

23

Q. 10

Page 24: Acid-Base Balance

24

Hyperchloremic MAc

• excessive infusions of NaCl solution

• the loss of HCO3- + Na+ + water (diarrhoea, renal disorders)

relative higher concentration of chlorides in plasma

Page 25: Acid-Base Balance

25

Q. 11

How is AG calculated?

Page 26: Acid-Base Balance

26

AG

Na+

Cl-

HCO3-

AGK+

AG composition = HPO42- + Prot- + SO4

2- + OA

AG calculation = [Na+] + [K+] - [Cl-] - [HCO3-]

Page 27: Acid-Base Balance

27

A. 11 MAc with increased AG

• Hypoxia of tissues – insufficient supply of O2 anaerobic

glycolysis: glucose 2 lactate

• elevated AG – lactoacidosis

• Starvation, diabetes

• TAG FA (β-oxidation in liver) acetyl-CoA (excess, over the capacity of CAC) KB production

• elevated AG - ketoacidosis

• Renal insufficiency – elevated phosphates, sulfates

• Various intoxications

Page 28: Acid-Base Balance

28

Q. 12

Page 29: Acid-Base Balance

29

A. 12

• AG – normal values

• SID – buffer bases (mainly HCO3-) – decreased

• compare Q. 8a)

Page 30: Acid-Base Balance

30

Q. 13 Metabolic acidosis

Parameter Physiol. st. Ac. change Compensation Correction

[HCO3-] 24 mmol/l N

pCO2 5.3 kPa N

[A-] / [HA] 20 : 1 < 20 : 1

pH 7.40 ± 0.04 < 7.36

System lungs kidney

Process hyperventilation HCO3

- resorption

NH4+ / H2PO4

- excr.

Page 31: Acid-Base Balance

31

Q. 15

Methanol intoxication

Page 32: Acid-Base Balance

32

Metabolic oxidation of methanol provides

a rather strong formic acid

CH3OH CHH

OCH

OH

OCH

O H

O

formaldehyde formic acid formate

Consequences:

• formate in plasma elevated AG acidosis

• excess of NADH lactoacidosis

Page 33: Acid-Base Balance

33

Compare two acids

ethanol

acetic acid

pKA = 4.75

KA = 1.8 10-5

methanol

formic acid

pKA = 3.75

KA = 1.8 10-4

KA (formic ac.) : KA (acetic ac.) = 10 : 1

formic acid is 10 stronger than acetic acid

Page 34: Acid-Base Balance

34

ethylene glycol intoxication

Page 35: Acid-Base Balance

35

Intoxication by ethylene glycol

HO CH2 CH2 OH C COH

OO

HO

C CO

OO

O

oxalic acid oxalate

Consequences:

• oxalic acid is rather strong acid (pKA1 = 1.25, pKA2 = 4.29)

• oxalate in plasma elevated AG acidosis

• excess of NADH lactoacidosis

• in urine calcium oxalate concrements

Page 36: Acid-Base Balance

36

Calcium oxalate is insoluble chelate

Draw formula

Page 37: Acid-Base Balance

37

Calcium oxalate is insoluble chelate

C

CO

Ca

OO

O

Page 38: Acid-Base Balance

38

Why MAc occurs in anemia?

Page 39: Acid-Base Balance

39

Not enough hemoglobin insufficient supply of O2

hypoxia anaerobic glycolysis to lactate

elevated AG – lactoacidosis

Page 40: Acid-Base Balance

40

Q. 16

Page 41: Acid-Base Balance

41

Metabolic oxidation of ethanol leads to excess of NADH

H3C C

H

H

O

H

+ NAD H3C C

H

O+

alkoholdehydrogenasa

aldehyddehydrogenasa

+ H2O H3C C

OH

H

O

H

H3C C

OH

ONAD- 2H

NADH+H

H3C C

H

O

acetaldehyd

aldehyd-hydrát octová kyselina

acetaldehyde dehydrogenase

alcohol dehydrogenase (ADH)

acetaldehyde

acetaldehyde hydrate acetic acid

- NADH+H+

Page 42: Acid-Base Balance

42

Metabolic consequences of EtOH biotransformation

Ethanol

ADH

MEOS

acetaldehydepart. soluble in membrane

PL

toxic efects on CNS

adducts with proteins, NA, biog. amines

acetate

acetyl-CoA

FA synthesis liver steatosis

ADH

the excess of NADH in cytosol is

reoxidized by pyruvate to lactate

lactoacidosisvarious products

causing hangover

Page 43: Acid-Base Balance

43

Q. 17

Page 44: Acid-Base Balance

44

• thiamine is the cofactor of aerobic decarboxylation of pyruvate

• thiamine deficit pyruvate cannot be converted to acetyl-CoA

• therefore pyruvate is hydrogenated to lactate

• even in aerobic conditions: glucose lactate

• increased plasma lactate elevated AG lactoacidosis

CH3-CO-COOH + CoA-SH + NAD+ CO2 + CH3-CO-S-CoA + NADH+H+

1. Thiamin diphosphate2. Lipoate3. Coenzym A4. FAD5. NAD+

Page 45: Acid-Base Balance

45

Q. 18

Page 46: Acid-Base Balance

46

A. 18

CO

O

CO

OCa

acidosis

HC

HO

O

CO

OH

Ca

2

• calcium cations make electrostatic interactions with carboxylate anions in

side chains of glutamate and aspartate (in various proteins)

• increased [H+] (= decreased pH) of plasma leads to a partial cation exchange

• one calcium ion is liberated and replaced by two protons

Page 47: Acid-Base Balance

47

Causes of metabolic alkalosis

• Repeated vomiting – the loss of chloride (Cl-) anion hypochloremic alkalosis

• Direct administration of buffer base HCO3-

per os: baking soda, some mineral waters

intravenous infusions of sodium bicarbonate

• Hypoalbuminemia

severe malnutrition

liver damage, kidney damage

Page 48: Acid-Base Balance

48

What is baking soda?

Page 49: Acid-Base Balance

49

A.

NaHCO3

sodium hydrogen carbonate (sodium bicarbonate)

sold in pharmacy

Page 50: Acid-Base Balance

50

Q. 19

How is SID calculated?

Page 51: Acid-Base Balance

51

Na+

Cl-

SID

K+

SID composition = HCO3- + HPO4

2- + Prot-

SID corresponds to buffer bases of plasma

In MAlk SID increases

SID calculation = [Na+] + [K+] - [Cl-]

Page 52: Acid-Base Balance

52

Q. 20

Page 53: Acid-Base Balance

53

Na+

Cl-

HCO3-

AGK+

Cl-

HCO3- ↑

AGno change

Cl-

no change

HCO3- ↑

AG

normal status hypochloremic MAlk normochloremic MAlk

vomiting hypoalbuminemia

Page 54: Acid-Base Balance

54

Q. 21 Metabolic alkalosis

Parameter Physiol. st. Ac. change Compensation Correction

[HCO3-] 24 mmol/l N

pCO2 5.3 kPa N

[A-] / [HA] 20 : 1 > 20 : 1

pH 7.40 ± 0.04 > 7.44

System lungs kidney

Process hypoventilation HCO3- excretion

Page 55: Acid-Base Balance

55

Q. 23

Page 56: Acid-Base Balance

56

A. 23

pCO2 = 5.5 kPa .......................... OK

[HCO3-] = 39 mmol/l .................. elevated

pH = 7.6 ..................................... elevated

status: metabolic alkalosis

pCO2 will increase during compensation (hypoventilation)

Page 57: Acid-Base Balance

57

Solution Effect Explanation

NaCl

KHCO3

NH4Cl

NaHCO3

Na lactate

Q. 25

Page 58: Acid-Base Balance

58

Solution Effect Explanation

NaCl acid. plasma dilution [HCO3-] while pCO2 is constant

KHCO3 alkal. direct addition of the main buffer base

NH4Cl acid. NH4+ excreted by urine, Cl- remains in plasma [HCO3

-]

NaHCO3 alkal. direct addition of the main buffer base

Na lactate alkal.lactate anion goes from plasma to liver (gluconeogenesis), Na+ remains in plasma its pos. charge is balanced by extra HCO3

- (similar effect like in vegetarian diet)

Page 59: Acid-Base Balance

59

Q. 26 Respiratory acidosis

Parameter Physiol. st. Ac. change Compensation Correction

[HCO3-] 24 mmol/l N, -

pCO2 5.3 kPa N

[A-] / [HA] 20 : 1

pH 7.40 ± 0.04

System kidney lungs

ProcessHCO3

- resorption

NH4+ / H2PO4

- excr.hyperventilation

Page 60: Acid-Base Balance

60

Q. 27

Describe the scheme on p. 5

Page 61: Acid-Base Balance

61

• Excess of CO2 in the body produces more H2CO3 in blood

• Carbonic acid in buffering reaction with proteins gives

HCO3- ion

• Hydrogen carbonate ion is driven to ICF

• Therefore the level of HCO3- in ECF is normal or slightly

elevated

Page 62: Acid-Base Balance

62

Q. 29

Page 63: Acid-Base Balance

63

A. 29

pH 7.32 ........................................

pCO2 9.3 kPa .............................

[HCO3-] = 39 mmol/l ..................

[Na+] = 136 mmol/l ......................OK

[K+] = 4.5 mmol/l .........................OK

[Cl-] = 92 mmol/l ..........................

AG = 136 + 4.5 - 39 – 92 = 9.5 mmol/l ....... no MAc

Conclusion: compensated RAc

Page 64: Acid-Base Balance

64

Q. 30 Respiratory alkalosis

Parameter Physiol. st. Ac. change Compensation Correction

[HCO3-] 24 mmol/l N, -

pCO2 5.3 kPa - N

[A-] / [HA] 20 : 1

pH 7.40 ± 0.04

System kidney lungs

Process Excretion of HCO3- hypoventilation

(if possible)

Page 65: Acid-Base Balance

65

Combined disorders

Q. 33

Page 66: Acid-Base Balance

66

A. 33

pH 7. 4 ............................. OK

pCO2 5.13 kPa .......................OK

BE 1 mmol/l ............................OK HCO3- = 25 mmol/l ....... OK

Na+ 140 mmol/l ......................OK

K+ 4.6 mmol/l ........................OK

Cl- 89 mmol/l .........................

AG = 140 + 4.6 – 25 – 89 = 30.6 mmol/l ...............

SID = 140 + 4.6 – 89 = 55.6 mmol/l .......................

Conclusion: MAc + MAlk

Page 67: Acid-Base Balance

67

Q. 34

Page 68: Acid-Base Balance

68

A. 34

Q. Explanation

a) MAc - lactoacidosis (alcohol) + loss of Cl- (vomiting) - MAlk

b)MAc - ketoacidosis (starvation) + loss of Cl- (vomiting after overeating) - MAlk

c) RAlk (stimulation of resp. centre) + MAc (salicylate – AG )

d) MAc (ketoacidosis) + RAc (heart failure – circulation insuff.)