Top Banner
Accumulation and Compression of Billions of Ions using CRIMP in SLIM Significantly Improves Sensitivity and Ion Mobility Resolution Liulin Deng , Sandilya V. B. Garimella, Ahmed M. Hamid, Ian K. Webb, Xueyun Zheng, Roza Wojcik, Spencer A. Prost, Gordon A. Anderson, Erin S. Baker, Yehia M. Ibrahim, Richard D. Smith Biological Sciences Division, Pacific Northwest National Laboratory
38

Accumulation and Compression of Billions of Ions using CRIMP in … · 2017. 8. 2. · May 30, 2017 Garimella, V. B. et al. Anal. Chem. 2016, 88, 11877-11885 23 Accumulation Compression

Feb 18, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Accumulation and Compression of Billions of Ions using

    CRIMP in SLIM Significantly Improves Sensitivity and Ion Mobility Resolution

    Liulin Deng, Sandilya V. B. Garimella, Ahmed M. Hamid, Ian K. Webb, Xueyun Zheng, Roza Wojcik, Spencer A. Prost, Gordon A. Anderson, Erin S. Baker, Yehia M. Ibrahim,

    Richard D. Smith

    Biological Sciences Division, Pacific Northwest National Laboratory

  • Ion Mobility (IM) Separations

    Ion mobility can distinguish species based upon shapes

    May 30, 2017 2

    velocity is constant

    v = K E

    K = ion mobility

    E

    in out

    Drift Time

    Pulse of 2 ions with

    same m/z but different

    shape

    Different conformers separate

    in time with peak heights representing

    the amount of each

    Drift Cell

  • Ion Mobility (IM) Separations

    May 30, 2017 3

    What can ion mobility do?

    Separate ions by shape, mass and charge state

    Distinguish different classes of compounds

    Separate different isomers or conformations of a single m/z

    Address increased sample complexity when coupling with LC and MS

    Limitation

    Low resolving power of conventional IM (~50-250)

  • Ion Mobility (IM) Separations

    May 30, 2017 4

    Potential solution:

    Increase ion path length

    Challenges:

    Drift tube IM high voltage needed

    Length of drift tube needed

  • Traveling Waves (TW)

    May 30, 2017 Hamid, A. M. et al. Anal. Chem. 2015, 87, 11301−11308 5

    Ions “quantized” into TW bins

    “TW bin”

    Low TW amplitude

    Potentially unlimited length

    Use of traveling waves eliminates the need for increasingly high voltages as the drift length increases

  • IM in Structures for Lossless Ion Manipulations (SLIM)

    May 30, 2017 6

    Electrodes patterned on two parallel surfaces

    Ions confined in an electric field conduit; potentials applied (color representation) to move ions

    ‘Ion Conduit’

    Volts

    Challenge:

    How to extend the ion drift path?

  • IM in Structures for Lossless Ion Manipulations (SLIM)

    May 30, 2017

    Hamid, A. M. et al. Anal. Chem. 2016, 88, 8949−8956

    Deng, L. et al. Anal. Chem. 2016, 88, 8957−8964 7

    3 mm gap

    Serpentine path Electrode arrays on two mirror image surfaces

  • SLIM IM-MS

    May 30, 2017 Deng, L. et al. ChemistrySelect. 2016, 1, 2396−2399 8

    Ion Funnel Trap

    SLIM

    Rear Ion Funnel

    IM separation approach coupled to MS

    13 meter path

  • High IM resolution achieved

    May 30, 2017 Deng, L. et al. ChemistrySelect. 2016, 1, 2396−2399 9

    24 26 280

    1

    Drift Time (ms)

    560 580 6000

    1

    Drift Time (ms)

    Reverse peptide sequences:

    (Ser-Asp-Gly-Arg-Gly + H)+ and (Gly-Arg-Gly-Asp-Ser + H)+

    90 cm Drift Tube IM 13 m SLIM IM

  • High peak capacities achieved

    May 30, 2017 10

    550 heavy labeled peptidesPeak capacity ~250

    Deng, L. et al. Anal. Chem. 2016, 88, 8957−8964

    13 m SLIM IM

  • Multi-pass Serpentine Ultra-long Path with Extended Routing (SUPER) IM

    May 30, 2017 11

    To recycle

    MS

    Switch ON

    Switch OFF

    DC

    Ion switch

    Deng, L. et al. Anal. Chem., 2017, 89, 4628-4634

    SLIM switch routes ions for additional passes through serpentine path

  • Challenges of long path IM separations

    May 30, 2017 12

    500 meters130 meters13 meters

    IM resolution increases, but signal intensities drop and peak widths increase

  • Improving Sensitivity

    Improving ion transmission to IM

    Eliminating ion losses

    Using larger ion populations

    Compression of IM peaks

    May 30, 2017Deng, L. et al. Anal. Chem. 2017, Accepted

    Garimella, V. B. et al. Anal. Chem. 2016, 88, 11877-1188513

  • Two new SLIM functions

    May 30, 2017 14

    Accumulation Compression

  • May 30, 2017 15

    Accumulation Compression

    ESI Source

    Trapping Ion Funnel

    Accumulation limited by trap size(Volume ~3 cm3)

    Conventional Ion Funnel

    Two new SLIM functions

  • May 30, 2017 Deng, L. et al. Anal. Chem. 2017, Accepted 16

    Accumulation Compression

    ESI Source

    Trapping Ion Funnel

    Accumulation limited by trap size(Volume ~3 cm3)

    Conventional Ion Funnel

    9 m section of SLIM Board(Volume ~146 cm3)

    Wave MotionNo

    Wave Motion

    ESI Source

    Two new SLIM functions

  • May 30, 2017 Deng, L. et al. Anal. Chem. 2017, Accepted 17

    ESI Source

    Trapping Ion Funnel

    Accumulation limited by trap size(Volume ~3 cm3)

    Conventional Ion Funnel

    9 m section of SLIM Board(Volume ~146 cm3)

    Wave MotionNo

    Wave Motion

    ESI Source

    Accumulation Compression

    Ion Filling

    Two new SLIM functions

  • May 30, 2017 Deng, L. et al. Anal. Chem. 2017, Accepted 18

    ESI Source

    Trapping Ion Funnel

    Accumulation limited by trap size(Volume ~3 cm3)

    Conventional Ion Funnel

    9 m section of SLIM Board(Volume ~146 cm3)

    Wave MotionNo

    Wave Motion

    ESI Source

    Accumulation Compression

    Ion Filling

    Two new SLIM functions

  • May 30, 2017 Deng, L. et al. Anal. Chem. 2017, Accepted 19

    Accumulation Compression

    ESI Source

    Trapping Ion Funnel

    Accumulation limited by trap size(Volume ~3 cm3)

    9 m section of SLIM Board(Volume ~146 cm3)

    Conventional Ion Funnel

    Wave MotionNo

    Wave Motion

    ESI Source

    Ion Filling

    Two new SLIM functions

  • May 30, 2017 Deng, L. et al. Anal. Chem. 2017, Accepted 20

    Accumulation Compression

    ESI Source

    Trapping Ion Funnel

    Accumulation limited by trap size(Volume ~3 cm3)

    9 m section of SLIM Board(Volume ~146 cm3)

    Conventional Ion Funnel

    Wave MotionNo

    Wave Motion

    ESI Source

    Extended Time

    Ion Filling

    Two new SLIM functions

  • May 30, 2017 Deng, L. et al. Anal. Chem. 2017, Accepted 21

    Accumulation Compression

    ESI Source

    Trapping Ion Funnel

    Accumulation limited by trap size(Volume ~3 cm3)

    9 m section of SLIM Board(Volume ~146 cm3)

    Conventional Ion Funnel

    Wave Motion

    ESI Source

    Ion Ejection Wave Motion

    Two new SLIM functions

  • More than five billion ions accumulated in a 9 m SLIM region

    May 30, 2017 Deng, L. et al. Anal. Chem. 2017, Accepted 22

    0 20 40 60 80

    0

    2

    4

    6

    Accumulation Time (s)

    Num

    ber

    of C

    harg

    es (

    bill

    ion)

    R2: 0.9998

    IFT: Charge capacity: ~20 million(Linear range: ~1 million)

  • May 30, 2017 Garimella, V. B. et al. Anal. Chem. 2016, 88, 11877-11885 23

    Accumulation Compression

    ESI Source

    Trapping Ion Funnel

    Accumulation limited by trap size(Volume ~3 cm3)

    9 m section of SLIM board(Volume ~146 cm3)

    Conventional Ion Funnel

    Wave Motion

    ESI Source

    Ion Ejection Wave Motion

    Halted half the time(2X compression)

    ESI Source

    9 m section of SLIM board

    Normal Wave Motion

    Two new SLIM functions

  • May 30, 2017 24

    Accumulation Compression

    ESI Source

    Trapping Ion Funnel

    Accumulation limited by trap size(Volume ~3 cm3)

    9 m section of SLIM board(Volume ~146 cm3)

    Conventional Ion Funnel

    Wave Motion

    ESI Source

    Ion Ejection Wave Motion

    Halted half the time(2X compression)

    ESI Source

    9 m section of SLIM board

    Normal Wave Motion

    Two new SLIM functions

    Garimella, V. B. et al. Anal. Chem. 2016, 88, 11877-11885

  • May 30, 2017 25

    Accumulation Compression

    ESI Source

    Trapping Ion Funnel

    Accumulation limited by trap size(Volume ~3 cm3)

    9 m section of SLIM bBoard(Volume ~146 cm3)

    Conventional Ion Funnel

    Wave Motion

    ESI Source

    Ion Ejection Wave Motion

    ESI Source

    9 m section of SLIM board

    Normal Wave Motion

    Two new SLIM functions

    Halted half the time(2X compression)

    Garimella, V. B. et al. Anal. Chem. 2016, 88, 11877-11885

  • Two new SLIM functions

    May 30, 2017 26

    Accumulation Compression

    ESI Source

    Trapping Ion Funnel

    Accumulation limited by trap size(Volume ~3 cm3)

    9 m section of SLIM Board(Volume ~146 cm3)

    Conventional Ion Funnel

    Wave Motion

    ESI Source

    Ion Ejection Wave Motion

    ESI Source

    9 m section of SLIM Board

    Normal Wave Motion Halted half the time(2X compression)

    Garimella, V. B. et al. Anal. Chem. 2016, 88, 11877-11885

  • Halted half the time(2X compression)

    May 30, 2017 27

    Accumulation Compression

    ESI Source

    Trapping Ion Funnel

    Accumulation limited by trap size(Volume ~3 cm3)

    9 m section of SLIM Board(Volume ~146 cm3)

    Conventional Ion Funnel

    Wave Motion

    ESI Source

    Ion Ejection Wave Motion

    ESI Source

    9 m section of SLIM Board

    Normal Wave Motion

    Two new SLIM functions

    Garimella, V. B. et al. Anal. Chem. 2016, 88, 11877-11885

  • Compression Evaluation

    May 30, 2017 Deng, L. et al. Anal. Chem. 2017, Accepted 28

    100 150 200 250 3000.0

    0.3

    0.6Io

    n C

    urr

    en

    t (n

    A)

    100 ms ion band

    No Compression

    Drift Time (ms)

  • Compression Evaluation

    May 30, 2017 Deng, L. et al. Anal. Chem. 2017, Accepted 29

    100 150 200 250 3000.0

    0.3

    0.6Io

    n C

    urr

    en

    t (n

    A)

    100 150 200 250 3000.0

    0.3

    0.6

    Ion

    Cu

    rre

    nt

    (nA

    )100 ms ion band

    2X Compression

    No Compression

    Drift Time (ms)

  • Compression Evaluation

    May 30, 2017 Deng, L. et al. Anal. Chem. 2017, Accepted 30

    100 150 200 250 3000.0

    0.3

    0.6Io

    n C

    urr

    en

    t (n

    A)

    100 150 200 250 3000.0

    0.3

    0.6

    Ion

    Cu

    rre

    nt

    (nA

    )

    100 150 200 250 3000.0

    0.3

    0.6

    Ion

    Cu

    rre

    nt

    (nA

    )100 ms ion band

    4X Compression

    Drift Time (ms)

    2X Compression

    No Compression

  • 100 150 200 250 3000.0

    0.3

    0.6

    Ion C

    urr

    en

    t (n

    A)

    100 150 200 250 3000.0

    0.3

    0.6Io

    n C

    urr

    en

    t (n

    A)

    Compression Evaluation

    May 30, 2017 31

    100 150 200 250 3000.0

    0.3

    0.6

    Ion

    Cu

    rre

    nt

    (nA

    )

    50X Compression

    20X Compression

    10X Compression

    Deng, L. et al. Anal. Chem. 2017, Accepted

    Drift Time (ms)

  • Compression Evaluation

    May 30, 2017 Deng, L. et al. Anal. Chem. 2017, Accepted 32

    0 10 20 30 40 50

    0

    5

    10

    15

    20

    25

    Initia

    l fw

    hm

    /Ob

    se

    rve

    d f

    wh

    m

    Compression Ratio (CR)

    R2: 0.9994

    Excessive compression

  • Integration of ion accumulation and IM peak compression in SLIM

    May 30, 2017 Struwe, W. B. et al, Chem. Commun., 52, 12353-12356, 2016 33

    Lacto-N-hexaose (LNH)

    Lacto-N-neohexaose (LNnH)Both molecules have identical LC retention times

    HPLC chromatograms (C18)

  • May 30, 2017 Deng, L. et al. Anal. Chem., 2017, 89, 4628-4634 34

    [M+K+H]2+m/z=556

    IFT Accumulation 13 m Separation

    130 140 1500

    1

    Drift Time (ms)

    LNnH

    LNHc

    a & b

    Integration of ion accumulation and IM peak compression in SLIM

  • May 30, 2017 Deng, L. et al. Anal. Chem., 2017, 89, 4628-4634 35

    [M+K+H]2+m/z=556

    SLIM Accumulation135 m Separation

    IFT Accumulation 13 m Separation

    1480 1520 15600

    1

    LNH

    cb

    Drift Time (ms)

    a

    LNnH

    130 140 1500

    1

    Drift Time (ms)

    LNnH

    LNHc

    a & b

    Integration of ion accumulation and IM peak compression in SLIM

  • May 30, 2017 Deng, L. et al. Anal. Chem., 2017, 89, 4628-4634 36

    1480 1520 15600

    1

    LNH

    cb

    Drift Time (ms)

    a

    LNnH

    1480 1500 15200

    1

    Drift Time (ms)

    LNH

    cba

    LNnH

    [M+K+H]2+m/z=556

    130 140 1500

    1

    Drift Time (ms)

    LNnH

    LNHc

    a & b

    SLIM Accumulation135 m Separation2X Compression

    SLIM Accumulation135 m Separation

    IFT Accumulation 13 m Separation

    Integration of ion accumulation and IM peak compression in SLIM

  • Conclusions

    Ion accumulation and IM peak compression achieved in SLIM

    More than 5 billion ions accumulated in a 9 m SLIM trapping region

    Ion population compression limited only by space charge

    Improved sensitivity and IM resolution achieved using SLIM SUPER IM

    May 30, 2017 37

  • Acknowledgements

    May 30, 2017 38

    National Institute of General Medical SciencesBiomedical Technology Research Resource at PNNL

    DOE Office of Biological and Environmental Research

    PNNL SLIM and IM-MS team