Top Banner
Introduction The semiparametric volatility model Monte carlo evidence Application to empirical data and density forecast evaluation Conclusion A New Semiparametric Volatility Model Jiangyu Ji Andr´ e Lucas VU University Amsterdam, Tinbergen Institute, and Duisenberg school of finance Workshop on Dynamic Models driven by the Score of Predictive Likelihoods, Amsterdam, January 2013 Jiangyu Ji, Andr´ e Lucas A New Semiparametric Volatility Model
17

A New Semiparametric Volatility Model

Feb 03, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: A New Semiparametric Volatility Model

IntroductionThe semiparametric volatility model

Monte carlo evidenceApplication to empirical data and density forecast evaluation

Conclusion

A New Semiparametric Volatility Model

Jiangyu Ji Andre Lucas

VU University Amsterdam, Tinbergen Institute, and Duisenberg school of finance

Workshop on Dynamic Models driven by the Score ofPredictive Likelihoods,

Amsterdam, January 2013

Jiangyu Ji, Andre Lucas A New Semiparametric Volatility Model

Page 2: A New Semiparametric Volatility Model

IntroductionThe semiparametric volatility model

Monte carlo evidenceApplication to empirical data and density forecast evaluation

Conclusion

Introduction

We propose a new volatility model in which:

the skewed and fat-tailed shape of the innovation distributiondirectly affects volatility dynamics;the innovation distribution is estimated by kernel densitymethod.

related literature: Creal, Koopman, and Lucas (2012), Engle andGonzalez-Rivera (1991), Drost and Klaassen (1997), Harvey(2008).

Jiangyu Ji, Andre Lucas A New Semiparametric Volatility Model

Page 3: A New Semiparametric Volatility Model

IntroductionThe semiparametric volatility model

Monte carlo evidenceApplication to empirical data and density forecast evaluation

Conclusion

Model specificationEstimationsemiparametric estimation

Model specification

We apply the GAS framework to our need. We consider a univariatereturn series yt and

yt = µ+ ξt = µ+ σtεt , εt ∼ pε(·) (1)

In order to make sure that the volatility σt is always positive, we letft = log σ2

t and choose a GAS(1,1) specification,

ft+1 = ω + αst + βft (2)

where ω, α ∈ R, |β| < 1 and we choose unit scaling (St = 1) for thedensity score,

st = St∇t = 1× ∂ ln pε(yt |ft ,Ft ; θ)

∂ft. (3)

Jiangyu Ji, Andre Lucas A New Semiparametric Volatility Model

Page 4: A New Semiparametric Volatility Model

IntroductionThe semiparametric volatility model

Monte carlo evidenceApplication to empirical data and density forecast evaluation

Conclusion

Model specificationEstimationsemiparametric estimation

Estimation

Parameter estimation of the model is straightforward, since themodel is defined in conditional terms similar to the standardGARCH model.

Calculation of ∇t :

∂ ln py (yt |ft ,Ft ; θ)

∂ft= −1

2− 1

2

p′ε(e− ft

2 (yt − µ))(yt − µ)e−ft2

pε(e−ft2 (yt − µ))

. (4)

We can iteratively update s1, f2, s2, f3, · · ·, fn−1, sn−1, fn. Then wecan evaluate the likelihood as

L =1

n

n∑t=1

lt =1

n

n∑t=1

ln1

σtpε

(yt − µσt|ft ,Ft ; θ

). (5)

Jiangyu Ji, Andre Lucas A New Semiparametric Volatility Model

Page 5: A New Semiparametric Volatility Model

IntroductionThe semiparametric volatility model

Monte carlo evidenceApplication to empirical data and density forecast evaluation

Conclusion

Model specificationEstimationsemiparametric estimation

Semiparametric estimation

We first estimate the model assuming normality, then we calculatestandardized residuals and use kernel density estimator to determinethe error density and replace pε by its estimate pε,

pε(x) =1

nh

n∑t=1

k

(εt − x

h

), (6)

We use the standard normal kernel

k(v) =1√2π

e12 v

2

,−∞ < v <∞, (7)

with a bandwidth of h = 0.5.

bandwidth: reasonable changes of the bandwidth, say0.3 ≤ h ≤ 0.8;

Jiangyu Ji, Andre Lucas A New Semiparametric Volatility Model

Page 6: A New Semiparametric Volatility Model

IntroductionThe semiparametric volatility model

Monte carlo evidenceApplication to empirical data and density forecast evaluation

Conclusion

Results under correct specificationwhat matters: number of iteration or sample size?Simulation results under mis-specification

Results under correct specification

we use the new model as DGP to simulate return series andinvestigate volatility forecast accuracy of this model.

simulation scheme

B = 100 samples; length of n = 2000; parameter(µ, ω, α, β) = (0, 0.2, 0.3, 0.9);error density: standard normal, Student’s t with ν = 3, and 5degrees of freedom, and a mixture of normals.

we estimated the parameters by four different estimation methods:GAS-true, GAS-normal, GAS-t(ν) and semi-GAS.

Jiangyu Ji, Andre Lucas A New Semiparametric Volatility Model

Page 7: A New Semiparametric Volatility Model

Table 1: Simulation results under correct specificationmedian of RMSE of σt N t(5) MN(χ2(6))

GAS-true 0.104 0.128 0.116GAS-normal 0.104 0.474 0.430

GAS-t(ν) 0.105 0.147 0.419semi-GAS 0.207 0.241 0.257

Page 8: A New Semiparametric Volatility Model

IntroductionThe semiparametric volatility model

Monte carlo evidenceApplication to empirical data and density forecast evaluation

Conclusion

Results under correct specificationwhat matters: number of iteration or sample size?Simulation results under mis-specification

what matters: number of iteration or sample size? t(5), α

400 1600 6400 MLE-128000

800 3200 128000 digonal

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

0.02

0.04

0.06

0.08

0.10

0.12

400 1600 6400 MLE-128000

800 3200 128000 digonal

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

0.0065

0.0070

0.0075

0.0080

0.0085

0.0090 128000 MLE-128000

Figure : what matters: number of iteration or sample size?

Jiangyu Ji, Andre Lucas A New Semiparametric Volatility Model

Page 9: A New Semiparametric Volatility Model

IntroductionThe semiparametric volatility model

Monte carlo evidenceApplication to empirical data and density forecast evaluation

Conclusion

Results under correct specificationwhat matters: number of iteration or sample size?Simulation results under mis-specification

Simulation with stochastic volatility

In reality, we do not know the DGP and models are onlyapproximate to the DGP.

Therefore, we choose a stochastic volatility process such that thevolatility models are only statistical models to approximatetime-varying volatility.

The stochastic volatility DGP SV is specified as yt ∼ p(0, σ2t ) with

σ2t = exp(αt) and αt = 0.01 + 0.98αt−1 + ηt , whereηt ∼ N(0, 0.12), for t = 1, . . . , n.

Jiangyu Ji, Andre Lucas A New Semiparametric Volatility Model

Page 10: A New Semiparametric Volatility Model

Table 2: Simulation results under mis-specification:stochastic volatility

median of RMSE of σt GARCH GASN GAS-normal 0.237 0.236

GAS-t(ν) 0.237 0.235semi-GAS 0.237 0.243

t(3) GAS-normal 0.351 0.375GAS-t(ν) 0.345 0.280∗∗∗

semi-GAS 0.334 0.295∗∗

MN(χ2(6)) GAS-normal 0.247 0.246GAS-t(ν) 0.255 0.251semi-GAS 0.243 0.231∗∗

Page 11: A New Semiparametric Volatility Model

IntroductionThe semiparametric volatility model

Monte carlo evidenceApplication to empirical data and density forecast evaluation

Conclusion

Estimation and plots of score functionsDensity forecast evaluation

Empirical application with IBM daily return series

-.25

-.20

-.15

-.10

-.05

.00

.05

.10

.15

86 88 90 92 94 96 98 00 02 04 06 08 10

in-sample out-of-sample

Figure : Daily IBM ReturnsJiangyu Ji, Andre Lucas A New Semiparametric Volatility Model

Page 12: A New Semiparametric Volatility Model

IntroductionThe semiparametric volatility model

Monte carlo evidenceApplication to empirical data and density forecast evaluation

Conclusion

Estimation and plots of score functionsDensity forecast evaluation

Estimation results

Table 3: Empirical Estimation Results

GAS GAS∗ GAS GAS GARCH GARCH GARCHnormal t(ν) t(ν) semi normal t(ν) semi

µ 0.061 0.012 0.017 0.041 µ 0.067 0.012 0.033(0.023) (0.020) (0.019) (0.019) (0.021) (0.019) (0.020)

ω 0.016 0.007 0.007 0.012 ω 0.041 0.015 0.024(0.003) (0.002) (0.003) (0.002) (0.009) (0.005) (0.006)

α 0.059 0.016 0.131 0.142 α 0.079 0.033 0.046(0.007) (0.002) (0.019) (0.010) (0.010) (0.006) (0.006)

β 0.985 0.993 0.994 0.991 α + β 0.995 0.995 0.994(0.002) (0.002) (0.002) (0.002) (0.003) (0.002) (0.002)

ν 4.743 5.174 ν 5.006(0.300) (0.345) (0.330)

log-lik -10000.80 -9631.35 -9576.68 -9570.8 -9917.2 -9599.78 -9597.3

Jiangyu Ji, Andre Lucas A New Semiparametric Volatility Model

Page 13: A New Semiparametric Volatility Model

IntroductionThe semiparametric volatility model

Monte carlo evidenceApplication to empirical data and density forecast evaluation

Conclusion

Estimation and plots of score functionsDensity forecast evaluation

To know more about the volatility dynamics

We want to know: how does the volatility react to the news, εt?Does the volatility react to positive news and negative news equally?We plot score functions against standardized residuals for eachestimation method.

-10 -8 -6 -4 -2 0 2 4 6

0.0

0.5

1.0

1.5

2.0

2.5

3.0score

(y−µ)/σ

GAS-normal

-10 -8 -6 -4 -2 0 2 4 6

0.0

0.5

1.0

1.5

2.0

2.5

3.0score

GAS-t(ν)

(y−µ)/σ

-10 -8 -6 -4 -2 0 2 4 6

0.0

0.5

1.0

1.5

2.0

2.5

3.0score

(y−µ)/σ

semi-GAS

Jiangyu Ji, Andre Lucas A New Semiparametric Volatility Model

Page 14: A New Semiparametric Volatility Model

IntroductionThe semiparametric volatility model

Monte carlo evidenceApplication to empirical data and density forecast evaluation

Conclusion

Estimation and plots of score functionsDensity forecast evaluation

To generate density forecasts and evaluate them

After we estimate the model by one method, we freeze it, and use itto generate out-of-sample volatility forecasts and density forecasts.We denote the forecast of pε at time t as pt .

For GAS-normal, GAS-t(ν), semi-GAS and Semi-GARCH.

Method by Diebold, Gunther, and Tay (1998). True density is{pt(yt |Ft)}mt=1; Density forecast is {pt(yt |Ft)}mt=1. We can evaluatedensity forecasts by assessing the distribution of a series called theprobability integral transform, zt , with zt =

∫ yt−∞ pt(u)du.

Jiangyu Ji, Andre Lucas A New Semiparametric Volatility Model

Page 15: A New Semiparametric Volatility Model

IntroductionThe semiparametric volatility model

Monte carlo evidenceApplication to empirical data and density forecast evaluation

Conclusion

Estimation and plots of score functionsDensity forecast evaluation

Density forecast evaluation results: histogram

0.0

0.4

0.8

1.2

1.6

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

GAS-normal

0.0

0.4

0.8

1.2

1.6

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

GAS-t(v)

0.0

0.4

0.8

1.2

1.6

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

semi-GARCH

0.0

0.4

0.8

1.2

1.6

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

semi-GAS

Figure : Density Forecast Evaluation: density estimates of ztJiangyu Ji, Andre Lucas A New Semiparametric Volatility Model

Page 16: A New Semiparametric Volatility Model

IntroductionThe semiparametric volatility model

Monte carlo evidenceApplication to empirical data and density forecast evaluation

Conclusion

Estimation and plots of score functionsDensity forecast evaluation

Density forecast evaluation results: Correlogram of(zt − z)2

0 50 100 150 200

-0.1

0.0

0.1

0.2 GAS-normal

0 50 100 150 200

-0.1

0.0

0.1

0.2 GAS-t(ν)

0 50 100 150 200

-0.1

0.0

0.1

0.2 semi-GAS

0 50 100 150 200

-0.1

0.0

0.1

0.2Semi-GARCH

Jiangyu Ji, Andre Lucas A New Semiparametric Volatility Model

Page 17: A New Semiparametric Volatility Model

IntroductionThe semiparametric volatility model

Monte carlo evidenceApplication to empirical data and density forecast evaluation

Conclusion

Conclusion: main results

We introduce a new semiparametric time-varying volatility model. In this

model,

we use kernel density methods to estimate the error density;the form of the error distribution also governs the specificationof volatility dynamics;

Monte carlo evidence and application to real data:

simulations results show that the new model provides accuratevolatility forecasts.the new model does a good job of generating density forecasts

Jiangyu Ji, Andre Lucas A New Semiparametric Volatility Model