Top Banner

of 6

A New Heating-cooling System to Improve Controllability of Batch Reactors

Apr 14, 2018

Download

Documents

Clarence AG Yue
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/30/2019 A New Heating-cooling System to Improve Controllability of Batch Reactors

    1/6

    Pergamon C h e m i c a l En g i n e e ri n g S c i e n c e , Vol. 51, N o. I 1, pp. 3163--3168, 1996Copyr ight O 1996 E l s e v i e r S c i e nc e Lt dPr in ted in Or ea t Britain. All r igh ts r tmerved0009-2509/96 $15.00 + 0.00S0009-2509(96)00214-X

    A N E W H E A T I N G - C O O L I N G S Y S T E M T O I M P R O V EC O N T R O L L A B I L I T Y O F B A T C H R E A C T O R SZ . L O U L E H , M . C A B A S S U D , M . V . L E L A N N , A . C H A M A Y O U a n d G . C A S A M A T T A

    Laboratoi re de 06n ie Chimique - URA CN RS 192Ecole N ationale Sup6rieure d'Ing6nieurs de G6nie Chim ique18, Chemin de la loge - 31078 TOULOU SE Cedex - FRANCETel. : (33) 62 25 23 68 - Fax : (33) 62 25 23 18 - email : Michel.Cabassud@en sigct .frAbstract - T h e m a t h e m a t i c a l m o d e l l i n g a n d t h e d e v e l o p m e n t o f a n u m e r i c a l s i m u l a t o r o f ap i l o t - p l a n t b a t c h r e a c t o r a r e p r e s e n t e d . I n t h i s p a p e r , d y n a m i c s i m u l a t i o n a n d a d v a n c e d c o n t r o ls t r a te g y a r e g i v e n . T h i s w o r k p r e s e n t s t h e d e v e l o p m e n t a n d c h a r a c t e r i s a ti o n o f a m u l t i p u r p o s eb a t c h r e a c t o r w i t h a v a r i a b l e h e a t i n g / c o o l in g s t r u c tu r e f o r t e m p e r a t u r e c o n t ro l . T h i s s t r a t e g y i sb a s e d o n t h e u s e o f t h e t h e r m a l f l u x a s t h e m a n i p u l a t e d v a r ia b l e . T h e c o n t r o l l e r ( t h e G e n e r a l i s e dP r e d i c t i v e C o n t r o l l e r ) c o m p u t e s a t e a c h s a m p l i n g t i m e t h e t h e r m a l f l u x t o b e e x c h a n g e d w i t h t h et h e r m a l f l u i d f l o w i n g i n t h e j a c k e t t o a c h i e v e t h e d e s i r e d r e a c t o r t e m p e r a t u r e p r o f i l e . T h i si n f o r m a t i o n i s t h e n u s e d t o s e l e c t t h e t h e r m a l f l u i d o n t h e b a s i s o f t h e m a x i m a l a n d m i n i m a lt h e r m a l f l u x c a p a c i t i e s c o m p u t e d o n - l i n e f o r e a c h u t il i ty . T h i s m e t h o d o l o g y a l l o w s t o o v e r c o m et h e d i s c o n t i n u i t i e s d u e t o u t i l it y f l u id s w i t c h i n g f r e q u e n t l y e n c o u n t e r e d d u r i n g t h e b a t c h r e a c t o rope r a t i on .

    I N T R O D U C T I O NA l a r g e n u m b e r o f i n d u s t r i a l p r o c e s s e s , s u c h a s t h e p r o d u c t i o n o f p o l y m e r s , s p e c i a l i t y a n d f i n e c h e m i c a l s ,pha r m ac eu t i c a l s , b i opr od uc t s , a s w e l l a s o t he r p r oduc t s fo r w hi c h c on t i nuous p r odu c t i on i s no t f ea s i b l e , a r e ope r a t edb a t c h w i se . I n m a n y c a s e s t h i s m o d e o f o p e r a t i o n i s u s e d t o m a n u f a c t u r e a v a r i e t y o f p r o d u c t s t h a t n e e d s i g n i fi c a n t lyd i f f e r en t c ha r ac t e r i s t i cs suc h a s c onv e r s i on t i me , h ea t o f r eac t i on . . .e tc .G o od c on t r o l in suc h r eac t o r s i s qu i t e o f t en d i f f i c u l t t o ac h i eve ( J uba and H am er , 1986) due t o t he i r f l ex i b l e andm u l t i p u r p o s e c h a r a c t e r ( d i f f e r e n t o p e r a t in g c o n f i g u r a ti o n s a n d t h e u s e o f t h e s e r e a c t o r s f o r d i f f e r e n t p ro d u c t s ) . T og u a r a n t e e b a t c h - t o - b a t c h re p r o d u c i b i l i t y a n d i m p r o v e y i e l d s a n d s e l e c ti v i ti e s , a u t o m a t i o n o f b a t c h r e a c t o r s m u s t b ew i d e l y i n c r e a s e d . D u e t o t h e c o m p l e x i t y o f t h e r e a c ti o n m i x t u r e a n d t h e d i f f i c u l t y t o p e r f o r m o n - l i n e c o m p o s i t i o nm e a s u r e m e n t s , c o n t r o l o f b a t c h r e a c t o r s i s e s s e n t i a l l y a p r o b l e m o f t e m p e r a t u re c o n t r o l ( F r i e d r i c a n d P e m e , 1 9 95 ).M o r e o v e r , t h e c o n t r o l p e r fo r m a n c e s a r e m a i n l y d e p e n d e n t o n t h e h e a t i n g - c o o li n g s y s t e m a s s o c i a t e d w i th t h e r e a c t o r(Berber, 1995)T w o m a i n t y p e s o f h e a t i n g - c o o l i n g s y s t e m s a r e c o m m o n l y u s e d i n i n d u s t r y : th e a l t e r n a t e s y s te m o r m u l t i fl u i ds y s t e m a n d t h e m o n o f l u i d s y s t e m . T h e w e l l - k n o w n a l te r n a t e sy s t e m m a k e s u t i l i ty fl u i d s f l o w a l t e r n a t i v e l y i n t h ej a c k e t . T h e s e t h e r m a l f l u i d s a r e a v a i l a b l e a t g i v e n t e m p e r a t u r e ( p l a n t u t i li t ie s ) . It r e p r e s e n t s t h e m o s t w i d e l y u s e ds y s t e m i n i n d u s t r y ( m o r e t h a n 9 0 % ) d u e t o t h e r e l a t i v e e a s e o f d e s i g n a n d l o w c o s t ( d i r e c t u s e o f p l a n t u t i li t ie s ) .N e v e r t h e l e s s , b e s i d e s t h e w o r k u n d e r t a k e n i n o u r l a b o r a t o r y C Le L a n n e t a l . , 1 9 9 5 ) o n l y a f e w p a p e r s h a v e b e e np u b l i s h e d o n t h e s u b j e c t ( M a r r o q u i n a n d L u y b e n , 1 9 7 2 ; C h y l l a a n d R a n d a l l , 1 9 9 3) . T h e r e f o r e , t h e c o n t r o l t a s k o ft h i s t y p e o f p r o c e s s i s r a th e r d i f f ic u l t a n d c a n b e d i v i d e d i n t o t w o p a r t s : f i r s t ly t h e c h o i c e o f t h e r i g h t f l u i d a n ds e c o n d l y t h e a p p r o p r i a t e a c t i o n o n t h e f l o w r a t e o f t h i s u t i l i t y f l u i d i n o r d e r t o t r a c k s a t i s f a c t o r i l y t h e d e s i r e dt e m p e r a t u r e p r o f i l e . T h u s , t o g o f r o m h e a t i n g t o c o o l i n g , a c h a n g e o v e r o f f l u i d i s r e q u i r e d w h i c h r e s u l t s i n ad i s c o n t i n u i t y i n t h e o p e r a t i o n . A n a l t e r n a t i v e c o n f i g u r a t i o n is t h e m o n o f l u i d s y s t e m . T h i s s y s t e m u s e s o n l y o n ef l u i d w h o s e t e m p e r a t u r e c a n b e m o d i f i e d t o a c h i e v e t h e d e s i r e d r e a c t o r t e m p e r a t u re b y a n i n t e r m e d i a t e t h e r m a l l o o pw h i c h m a y i n c l u d e h e a t e x c h a n g e r s , p o w e r h e a t e rs , e t c . .. N e v e r t h e l e s s, t h e d y n a m i c s o f t h i s e x t e r n a l t h e r m a l l o o p sc a n b e p e n a l i s in g , e s p e c i a l l y i n t h e c a s e o f u r g e n t n e e d o f a r a p i d c o o l i n g o r h e a t i n g .I n t h i s p a p e r , w e d e s c r i b e a n e w h e a t i n g - c o o l i n g s y s te m w h i c h t a k e s a d v a n t a g e o f t h e l a r g e h e a t i n g ( c o o l i n g )c a p a b i l i ti e s o f s t e a m ( g l y c o l / w a t e r ) w h e n r a p i d h e a t i n g ( c o o l i n g ) i s n e e d e d . O n t h e o t h e r h a n d , f o r n o r m a l o p e r a t in gc ond i t i ons , t he u se a s i n g l e f l u i d c i r c u l a t ing a t a su f f i c i en t l y r ap i d f l ow - r a t e t o ensu r e g ood he a t t r ans fe r c oe f f i c i en t si s p r e f e r r e d . A n e w m e t h o d o l o g y f o r c o n t r o l a n d s u p e r v i s i o n h a s b e e n d e v e l o p e d . I t i s b a s e d o n t h e o n - l i n ec o m p u t a t i o n o f t h e m a x i m a l t h e r m a l f l u x c a p a c i t i e s o f e a c h c o n f i g u r a t i o n ( i . e . : s t e a m , i n t e r m e d i a t e f l u i d ,g l y c o l / w a t e r ) a n d t h e c o m p u t a t i o n b y t h e c o n t r o l l e r o f t h e t h e r m a l f l u x ( m a n i p u l a t e d v a r i a b l e ) n e e d e d t o t r a c k t h er e a c t o r t e m p e r a tu r e s e t - p o i n t .D Y N A M I C S I M U L A T I O N A N D P R E D I C T I V E C O N T R O L L E RT h e a c c u r a c y a n d c o m p l e x i t y o f t h e m a t h e m a t i ca l p ro c e s s m o d e l n e e d e d i n d e v e l o p i n g a c o n t r o l s y s t e m d e p e n d u p o nt h e p r o c e s s i n g o b j e c t i v e s , t h e c o n t r o l o b j e c t i v e s , a n d t h e d e g r e e o f a u t o m a t i o n r e q u i r e d . A d y n a m i c s i m u l a t i o n

    3163

  • 7/30/2019 A New Heating-cooling System to Improve Controllability of Batch Reactors

    2/6

    316 4 Z. LOULEH t a l .program me o f b a tch reac to rs f i tt ed ou t w i th a mu l t if lu id hea t ing -coo l ing s ys tem has b een dev e loped and p re s en tede l s ewhe re (Cab as s u d e t a l . , 1994) . I t i n teg ra tes b o th the mo de l l ing o f the dyn am ic b ehav iou r o f a j a ck e ted b a tchreac to r and the s u pe rv i s o ry con t ro l s t ra t egy fo r the ope ra t ion o f th i s hea t ing /coo l ing s ys tem and the t em pe ra tu recontrol by an adva nced control le r . In th is paper , the s imula ted jack eted reacto r correspon ds to a rea l p i lot p lant f it tedou t w i th the new he a t ing -coo l ing s ys tem u nde r considera tion . A d es cr ip tion o f the ove ra l l p roces s i s g iven in thefol lowin g sect ion.T h e d yn a m i c s i m u l a t i o n m o d e lThe s e t o f d if fe ren t ia l eq u a t ions rep re s en t ing the dynam ic b ehav iou r ha s b een e s t ab l i shed f rom m as s and ene rgybalances on the react ive m ixture with the description of the heat t ransfers be twee n the circula t ing f lu id in the jacket ,the jack e t w a l l and the reac t ive mix tu re . Da ta and m ode l s s u pp l i ed to the dynam ic s imu la to r inc lu de the reac t ionkinetics and the necessa ry corre la tions to ca lcula te the heat t ransfer co eff icients and the p hys ica l propert ies . I t shouldb e em phas i s ed tha t th is s imu la t ion s o f twa re a l lows s ca l ing -u p s ince i t i n teg ra te s the geom e t r i ca l s t ru ctu re o f thes imu la ted reac to r . The mode l ha s b een e s t ab l i s hed a s s u ming tha t the reac to r i s pe r f ec t ly mix ed wi th u n i fo rmtempera ture and conc entra t ion of reactants . T he com posi t ion of the react ion mixture , i ts tempera ture and the jacke twai l tempera ture are com puted by a numerical solu tion o f the sys tem o f dif ferentia l and a lgebra ic equations .T h e a d a p t i v e c o n t r o l a l g o r i t h mAn adapt ive and predictive control ler ( the Genera lised Predict ive Controller w ith Mode l Reference : GPC MR ) is usedto com pute the necessary f lux (manipula ted variable) to be exchan ged between the react ion m ixture and the jacke t ino rde r to t rack the de s i red reac to r t empe ra tu re p ro fi le . Th i s adap t ive con t ro l l e r i s b a s ed on the l inea r inpu t -ou tpu trepre sen ta tion o f the p roces s . The on- l ine e s t ima t ion o f the mod e l pa rame te rs a l lows to fo l low the chan ges in thedynam ics occu r r ing du r ing the d i f f e ren t s t eps : hea t ing , re ac t ion , coo l ing . I t is a l s o a p red ic t ive con t ro l l e r wh ichcom putes the manipula ted variable m inimis ing the square errors be tween the fu ture se t-points ( reference prof ile) andthe ou tpu t p red ic t ions ( t empe ra tu re in the reac to r ) on a reced ing hor izon . De ta i l s o f th is a lgo r i thm and i t s u s e fo rt empe ra tu re con t ro l o f b a tch reac to r can b e fou nd in L e L an n e t a l . , 1995.P R O C E S S D E S C R I P T IO NThe character ist ics of the s im ula ted reactor corre spon d to a rea l p i lot p lant cons is t ing o f a ba tch reactor , i ts jack etand the heat ing-coo l ing hyb rid sys tem described abo ve. The reactor is a 16 l i te rs -DeDietrich type glass- l ined reactorwi th a max imu m ope ra t ing vo lu m e o f 12 li te r s. Three u t i li ty f lu ids a re ava i l ab le a t g iven t empe ra tu re s : s t e am (6b a rs ), c o ld wa te r ( a t ab ou t 15 C) , mix tu re o f mo noprop y lene g lyco l /wa te r (50 /50 we igh t% a t a t empe ra ture o f -10C) . The in te rmed ia te f lu id i s ob ta ined b y d i rec t mix ing o f co ld wa te r and s t eam, wi th a max imu m reachab letempera ture of 70 C. The reactor has the fol lowin g phy s ica l specif ica t ions : in ternal d iam eter of 0 .3 m, externald iame te r o f 0 . 4 m, a he igh t o f 0 .3 m , a j a ck e t hea t t r ans f e r a rea o f 0 .2 m 2 , a j a ck e t v o lu m e o f 0 . 012 m 3 , a wa l lth ick nes s o f 0 .01 m wi th a the rma l con du c t iv i ty o f 0. 005 k ca l s -1 m ' l K -1 and a w e igh t o f 27 0 k g . A s k e tch o f thepi lot p lan t is g iven in Fig. 1 .

    II

    !

    ~ ~ s t

    u id

    ~ "'-~ntermed iate ]G ly co l/W a te r ~ f l u i d I

    F ig 1 . Schem e o f the p i lo t p l an tA NE W M E T H O D O L O G Y F O R S U P E R V I S O R Y A N D C O N T R OL O F B A T C H R E A C T O R SA new s t ra t egy in teg ra t ing s u pe rv i s o ry and con t ro l toge the r i s p ropos ed . The con t ro l l e r (GPCMR ) compu te s thethe rma l f lu x neces s a ry to ach ieve the req u i red reac to r t empe ra tu re p ro f i l e . The max ima l and min ima l the rma lcapacit ies of each therm al f lu id (s team, intermedia te f luid , g lycol/water) a re then determ ined an d used to choo se the"right" f lu id accord ing to these therm al l imit capaci ties with a priori ty to the f lu id present in the jacket . T he l imitcapac it ie s o f hea t ing and coo l ing o f e ach the rma l f lu id a re ca lcu la ted on - l ine b y a p ro cedu re invo lv ing the reac t ion

  • 7/30/2019 A New Heating-cooling System to Improve Controllability of Batch Reactors

    3/6

    Controllability of batch reactors 3165mix tu re t empe ra tu re , the jack e t in l e t and ou t l e t t empe ra tu re s , t he phys ica l p rope r t i e s o f the f lu ids and theman ipu la ted va r i ab le v a lu e de l ive red b y the con t ro l le r . W hen th is de s i red f lu x ove rs hoo t s the l imi t capac i t ie s o f thep re s en t f lu id , a chang eove r o f the rma l f lu id is pe r fo rmed . A n a i r pu rge o f the jack e t i s ca r r i ed ou t b e fo re f eed ing thejack e t w i th the " r igh t " f lu id . In com par i s on wi th m os t o f the p rev iou s work s , the ch ange ove r o f f lu ids i s thu s no tpe r fo rm ed accord ing to a p rede f ined t empe ra tu re a l a rm s y s tem b u t accord ing to the phys ica l capac i ty o f the hea texchanges.M o r e o v e r , t o o v e r c o m e t h e s t r o n g d i s c o n ti n u it i es d u e t o t h e c h a n g e o v e r f r o m h o t t o c o l d u t il it ie s a s d o n et rad it iona lly wi th mu l t i f lu id s ys tems , we p ropos e to u s e an in te rmediate s ys tem ob ta ined b y m ix ing co ld w a te r ands team. Th i s new hea t ing -coo l ing s ys tem i s an hyb r id conf igu ra t ion (Cab as s u d e t a L , 1995) which integra tes theadvan tages o f b o th the mon of lu id and mu l ti fluid s ys tems :- during norm al condit ions, a unique f lu id ( intermedia te f luid) ci rcula tes a t a f ixed f lowrate (high eno ugh to ensuregoo d hea t t r ans f e r coe f fi c i en t s ) and i ts t empe ratu re i s mod i f i ed accord ing to the req u i red the rm a l f lu x com pu ted b ythe con t ro l l e r b y ac t ing o n the q u an t i ty o f in jec ted s t eam.- f o r ex t reme t em pe ra tu re cond i t ions s t e am o r g lyco l /wa te r a re d i rec tly u s ed ( a s in the m u l t i flu id s ys tem) ; t heut il i ty f lowrate is ch ang ed accord ing to the required thermal f lux .I t may b e no ted tha t the advan tages o f th i s s t ra t egy , b a s ed on s u pe rv i s o ry con t ro l a ccord ing to the rma l f lu xl imi t s, no t on ly mak es the hea t ex change ca pac i ty va ry con t inu ou s ly b u t enab le s an adeq u a te chang e o f s ys temconf igura t ion , f rom mu lt i f lu id to mon of lu id configurat ion.At each s ampl ing pe r iod the fo l low ing two s t eps p rocedu re i s pe r fo rmed : in a f i r s t s tep , the the rm a l f lu x l imi tcapacit ies in each conf ig ura t ion are com puted (s team, intermediate fu i d , g lycol /w ater) . This leads to the cho ice ofthe " r igh t " f lu id . Then , in a s econd s t ep , the rea l con t ro l a c t ion va lu e (va lve open ing degree fo r s t e am andglycol/water) is com puted depe nding on the u t il i ty involved.M o d e l b a s e d s u p e r v i s o r y c o n t r o lTh e therm al flux del ivered by the thermal f lu id to the reactor is expressed b y : Q1 = f Cp(TJin-Tjout) (1)The the rma l f lu x ex changed b y the therma l f lu id and the reac to r i s g iven b y : Q2 = Ua A0m (2)A0 m is the m ean tempera ture dif ference between the jacket and the reactor :

    a 0 m = {(Tjin - Tr ) + (Tjout - Tr)} (3)2The who le m e thod o logy re li e s on the a s s u mpt ion tha t b o th the rma l f lu x a re eq u a l : Q1 = Q2D e t e r m i n a t i o n o f t he t h e r m a l f l u x l i m i t c a p a c i t i e s f o r e a c h u t i li t y fl u idIn this case, the therm al fluid inlet temperature (Tjin) and its f low-ra te (f) a re k nown.I t s max imu m va lu e co r re s ponds to a ze ro f lowra te s o : Qm ax g w = 0 (4)The m in im u m v a lu e co r re s po nds to the m ax im u m f lowrate , fmax g w, o f the g lyco l /wa te r s t re am ava i lab le a t atempera ture Tug w (-10 C in practice).Th e f lowrate ( f ir) of the intermedia te f lu id is obta ine d by mixing the co ld water s t ream (f ixed f low rate fcw) with f i lesteam flowrate : f if=fcw+fst (5)I t i s a s s u me d tha t the in te rmed ia te f lu id ha s the s am e p rope r t i e s (Cp) a s the co ld wa te r (m a in wa te r) . The s t e amflowra te fs t is com puted as fol lowin g : f s t =1~.c v s . ~ s t - P c w (6)whe re Ps t is the s team pressure (6 bars in pract ice) , Pcw is the pressure of the co ld water (m ain water), 13 the va lveop enin g degree, cvs the valv e characteristic coefficient.Th e intermedia te f lu id tempera ture (after mixing) is g iven by:

    f st ( C p c w [ T u s t - T u cw ] + L v )Tim Tucw-~ (7 )C p c w f i fwhe re Tucw is the inle t tempera ture of cold water (main water , in pract ice abou t 15C) . Tus t is the tempera ture ofthe inle t s team (boi l ing tempera ture a t Ps t).{ Tif [ 2 f i f . C p c w - U . a ] + 2 T r . U . a }Fro m Eq. (1) , (2) and (3) we obta in Tjout : Tjout = (8)(2 . f i r . Cp c w + U . a )

    Qm axif is de termined for f i fmax c orrespo nding to fs lmax, i . e . 13=1. In pract ice , the s team c ontro l va lve has beenchos en in o rde r to ge t a max im u m temperature o f 7 0 C .The m inim um therm al f lux corresponds to the case where on ly cold water is used as in termedia te f luid , so :Qm inif = fcwC pcw (Tucw-Tjout) (9)s t e a mThe the rma l f lu x ex changed b y s t eam in the jack e t and the reac to r mix tu re i s p ropor t iona l to the l a t en t hea t o fcondensation :

  • 7/30/2019 A New Heating-cooling System to Improve Controllability of Batch Reactors

    4/6

    3166 Z. LOULEHet aLQ st = fs t L v (10)W e have a l so t he hea t exc han ge expr es s i on : Q s t = U .a (T j s t -Tr ) (11)

    Th e s team f low rate i s giv en by : fs t =[~. cvs . NVP-~ - Pj (12)T h e m a x i m u m v a l u e i s o b t a i n e d f o r [ 3 = l. T h e p r e ss u r e P j c a n b e d e r i v e d f r o m t h e p r e s s u r e o f a i r i n t h e j a c k e t a n dt he pa r t i a l p r e s su r e o f t he s t eam i n t he j ac k e t ac c or d i ng t o :

    p j = Pa i r ' T j s t + PJ st (T j s t ) (13)293T h e s t e a m t e m p e r a t u r e in t h e j a c k e t , T j st , i s d e t e r m i n e d a s t h e b o i l i n g t e m p e r a t u r e c o r r e s p o n d i n g t o t h e p a r t i a lp r e s s u r e P J st in t h e j a c k e t . S o , t o d e t e r m i n e t h e s t e a m t e m p e r a t u r e c o r r e s p o n d i n g t o t h e m a x i m u m f l o w r a t e o fs t eam, w e ha ve t o so l v e a non- l i ne a r func t i on by an i t e r a t i ve p r oc edu r e .T h e m i n i m a l t h e r m a l f l u x i s o b t a i n w h e n t h e v a l v e i s c l o s e d : Q m i n s t = 0 ( 14 )C o m p u t a t i o n o f t h e t h e r m a l f l u i d f l o w r a t eD i f f e r e n t m a n i p u l a t e d v a r i a b l e s h a v e t o b e c o n t r o l l e d . T h i s p r o b l e m i s s o l v e d b y c a s c a d i n g t h e c o n t r o l l o o p . T h em a s t e r c o n t r o l l e r c o m p u t e s t h e h e a t i n g / c o o l in g f l u x t o b e d e l i v e r e d / r e m o v e d t o t h e r e a c t i o n m i x t u r e . T h i s v a l u e i st h e n u s e d , in a s l a v e - l i k e l o o p , t o e v a l u a t e t h e o p e n i n g v a l u e o f t h e c o n t r o l v a l v e . T h i s c o m p u t a t io n i s m a d e i n t w os t eps : in t he f i r s t one , i t i s de t e r mi n ed w he t he r t he t he r m a l f l ux c an be f ea s i b l y r ea l i s ed w i t h t he f l u i d c i r c u l a t ing i nt h e j a c k e t o r w h e t h e r a c h a n g e o v e r t o a n o t h e r f l u id i s n e e d e d ; in a s e c o n d s t e p , t h e c o m p u t a t io n o f t h e c o n t r o l v a lv eo p e n i n g d e g r e e i s c a r d e d o u t.T h e f l u x t o b e e x c h a n g e d b y t h e c h o s e n t h e r m a l f l u id ( E q . 1 f o r li q u i d fl u i d , E q . 1 1 f o r s te a m ) i s c o m p u t e d b yt h e c o n t r o l l e r ( Q c o n 0 . T h u s , c o n t r a r y t o t h e p r e v i o u s p r o c e d u r e , t h e o b j e c t i v e o f t h e c o m p u t a t i o n i s t o d e t e r m i n et h e f l o w r a t e o f t h e f l u i d b y u s i n g t h e e q u a t i o n s g i v e n a b o v e . L e t u s r e c a l l th a t , f o r t h e i n t e r m e d i a t e f l u id , t h i sf l o w r a te c o r r e s p o n d s t o t h e a m o u n t o f i n j e c te d s t e a m i n t h e c o l d w a t e r. T h e a c t u a l m a n i p u l a t e d v a r i a b l e is t h e v a l v eopen i ng d egr ee c om pu t ed ac c or d i ng t o t he c a l i b r a t ion c ha r ac t e r i s t ic s o f t he va l ve .R e c y c l i n g o f h o t w a t e r a t t h e o u t l e t o f th e j a c k e tE n e r g y c a n b e s a v e d b y r e c y c l in g t h e i n t e r m e d i a te f lu i d a n d t h e r e f o re b y u s in g e x a c t q u a n ti ti e s o f s t e a m o r c o l d w a t e rn e c e s s a r y t o g e t t h e d e s i r e d t e m p e r a t u r e a t t h e j a c k e t i n l e t . In t h i s c a s e , a c o m p a r i s o n b e t w e e n t h e c a l c u l a t e d in l e tt emper a t u r e , T j in , a n d t h e m e a s u r e d o u t l e t j a c k e t t e m p e r a t u r e T j o u t a l l o w s t o c h o o s e t h e f l u i d t o b e i n j e c t e d a n d t od e t e r m i n e t h e c o r r e s p o n d i n g v a l v e o p e n i n g d e g r e e . M o r e o v e r , i n p r a c t i c e t h e f l o w r a t e o f t h e i n t e r m e d i a t e f l u i d i skep t c ons t an t ( f i fc ) by a t r ap .- I f T jou t _> Ti f i n j ec t i on o f c o l d w a t e r i s needed . The f l ow o f f r e sh c o l d w a t e r ( fw ) t o be i n t r oduc e d i s g i ven by :

    fw = f i f e . T j i n - T j u t (15)Tucw - Tj in- I f T jou t < T i f , t he quan t i t y o f s t eam t o be i n t r od uc ed i s g i ven by :

    T j in - Tjoutf s t f i f e . C p c w ' [ L v _ C P cw (Tj i n - Tus t ) ] (16)S I M U L A T I O N R E S U L T ST o d e m o n s t r a te t h e g o o d p e r f o r m a n c e o f t h is n e w m e t h o d o l o g y , s i m u l a t io n s t u d i es h a v e b e e n p e r f o r m e d . T h es i m u l a t e d re a c t o r c o r r e s p o n d s t o t h e p i l o t p l a n t p r e v i o u s l y d e s c r i b e d . T h e r e a c t o r i s a s s u m e d t o b e f e d w i t h 1 2 1 o fw a t e r a t 22 C . R eac t o r t emp er a t u r e c on t r o l , ac c or d i ng t o a 4 s t eps t emper a t u r e s e t - po i n t p r o f i l e , ha s been s t ud i ed fo rva r i ous c ond i t i ons :

    - 1s t pha se : hea t i ng f r om 2 2 C t o t he des i r ed tem per a t u r e i n 1500 s- 2 ri d pha se : c ons t an t tem per a t u r e s e t - po i n t du r i ng 4500 s- 3 r d phase : c oo l i ng t o 30 C i n 2800 s- 4 t h phase : c ons t an t t em per a t u r e s e t po i n t a t 30 C du r i ng 1200 s .T h e f i r s t s i m u l a t i o n ru n d e a l s w i t h a d e s i r e d c o n s t a n t t e m p e r a t u r e o f 4 5 C ( T c o n s ) . F i g u r e 2 g i v e s t h e t im ee v o l u t i o n o f t h e r e a c t o r t e m p e r a t u r e , t h e s e t - p o i n t a n d t h e a c t u a l m a n i p u l a t e d v a r i a b l e ( th e v a l v e o p e n i n g d e g r e e ) .L e t u s r e c a l l t h a t t h e r e i s n o t u n i q u e v a l v e b u t f o u r : o n e f o r t h e s t e a m w h e n i t i s u s e d a l o n e , o n e f o r t h e s t e a mi n j e c ti o n i n c o l d w a t e r , o n e f o r c o l d w a t e r w h e n t h e i n t e r m e d i a t e f lu i d i s r e c y c l e d a n d f i n a l l y o n e f o r g l y c o l / w a t e r.The p l o t t ed va l ve open i ng deg r ee (~) c o r r e spond s t o t he s i mu l a t i on r un pe r fo r m ed w i t h r ec yc l e d in t e r med i a t e f l u id .F i g u r e 3 g i v e s t h e t i m e e v o l u t i o n o f t h e i n l e t a n d o u t l e t j a c k e t t e m p e r a t u r e s . I n F i g . 4 , t i m e e v o l u t i o n s o f t h el i m i t c a p a c i t ie s f o r e a c h f l u i d a n d o f t h e t h e r m a l f l u x r e q u i r e d ( Q c o n t c o m p u t e d b y t h e c o n t r o l l er ) a r e p l o t te d . T o g e ta m o r e r e a d a b l e f ig u r e , t h e m a x i m a l s t e a m t h e r m a l f l u x h a s n o t b e e n p l o t t e d ( ~- 5 k e a l / s ) . T h e s e t w o f i g u r e s s la o wt h a t t h e i n t e r m e d i a t e f l u i d is u s e d d u r i n g a l m o s t t h e e n t i r e p r o f i l e . J u s t a t t h e e n d o f t h e p r e h e a t i n g s t e p ( a r o u n d1 7 50 s ) , a c h a n g e o v e r o f u t i li t y h a s b e e n p e r f o r m e d f r o m i n t e r m e d i a t e f lu i d t o s t e a m , a s t h e r e q u i r e d t h e r m a l f l u xc o m p u t e d b y t h e c o n t r o l le r o v e r s h o o t s t h e m a x i m u m c a p a c i t y o f t h e i n t e r m e d i a t e fl u i d ( F ig . 4 ) . T h i s c h a n g e o v e r i sa c c o m p a n i e d b y a n a i r p u r g e w h i c h c o r r e s p o n d s t o a n i n l e t j a c k e t t e m p e r a t u r e o f 2 0 C ( F i g . 3 ). A s s o o n a s t h ec o n s t a n t t e m p e r a t u r e s t e p i s r e a c h e d , t h e c o m p u t e d t h e r m a l f l u x b e c o m e s n e g a t i v e ( F i g . 4 ) . T h u s , t h e r e i s a n o t h e rc h a n g e o v e r f r o m s t e a m t o i n t e r m e d i a t e f l u id w i t h a n a i r p u r g e ( F i g . 3 ). W h e n t h e i n t e r m e d i a t e f l u id i s u s e d , o n e c a nn o t i c e a s m o o t h e v o l u t i o n o f t h e i n l e t j a c k e t t e m p e r a t u r e ( F i g . 3 ) . T h i s e x a m p l e s h o w s t h e d o u b l e r o l e o f t h e

  • 7/30/2019 A New Heating-cooling System to Improve Controllability of Batch Reactors

    5/6

    Controllability of batch reactors 3167i n t e r m e d i a t e f l u id w h i ch ca n b e u s e d b o t h f o r h e a t in g a n d co o l i n g . I n F i g . 5 , t h e f l o w r a t e o f s t e a m i n j e c t e d i n w a t e rt o p r o d u ce t h e i n te r m e d i a t e f l u i d h a s b e e n p l o t t e d f o r b o th co n d i t i o n s ( w i t h a n d w i t h o u t r e cy c l e ) . I t ca n b e n o t i c e dt ha t th e r e cy c l e a l l o w s h i g h e n e r g y s a v i n g s . I n a dd it io n , t h is a r r an g e m en t e n a b l e s a g o o d a d j u s t m e n t o f t h e h o t w a t e rt em p e ra tu re a t t he j a ck e t i n l e t b y f e e d i n g s m a l l a m o u n t s o f s t e a m o r co l d w a t e r a s a f u n c t i o n o f t h e r e qu ir e d t h er m a lf l u x .

    Temperature (*C) valv e opening 155 0 F - - ~ - - ~ - - ~ - ~ . . . * . ~ . ~ . ~ . . ~ r ~ ` . ~ . - ~ - ~ - - - - r - ~ - . ~ . ~ . ~ . : ~ . ~ : ~ ~ 1

    / - - - - T c o n s X I ; ! 0 . 63 0 3 5 ! / . . . . . . [~ '!~ "~ J ', ~ 0 . 4

    i / ii h i" ~ - - 4 : .i : V t . , . . . . . . . . . . . . . . ! . . . . . . . i 00 2 0 0 0 4 0 0 0 6 0 0 0 S0 0 0 1 0 0 0 0Figure 2 : Temperature and manipulated variable

    Temperature ( C )80 " . . . . . . . . . . . . . . . . . ' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r . . . . . . . . . . . . . . . . : . . . . . . . . . . . . . . . . .0605040302010

    time s)' ' '2--000' ' ' ~ . . . . . . . . . . .0 0 0 6 0 0 0 8 0 0 0 10000

    Figure 3 : In le t and o ut le t jac ke t temperatures

    Th e r mal f lu x (kcal . s - t )2; ' : - ; , - , -

    1 ,5 k . . . . . Q m ~ x\ I . . . . . K r m m . f ~ . . . . . .1 .~ % ~ - - i n ' . . " "

    o - ~

    t i m e ( s )- 1 0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0

    Figure 4 : Limits and con tro l va lue o f the thermal f lux

    1. 61. 41. 21.(30 .80 .60 .40 .2

    S te am f lowr ate in j e c te d in th e in te r me d ia te f lu id (k g / s ) x 1 0 "

    - - w i t h o u t r e c y c l e I~ ] . . . . recycle I!

    t............ ~ ~ . : n . . , _ ~ . g ~

    F i g u re 5 : F l o w r a t e o f s t e a m w i t h a n d w i t h o u t r e cy c l eT o s t u d y t h e f l e x i b i l i t y o f t h i s s t r a t e g y , a n o t h e r s i m u l a t i o n r u n h a s b e e n p e r f o r m e d f o r a d i f f e r e n t co n s t a n t

    t e m p e r a t ur e s e t - p o i n t : 6 0 C . L e t u s n o t i c e t h a t a ch a n g e o f t h i s te m p er a tu r e i m p l i e s g r e a t e r he a t i n g a n d c o o l i n grates . F ig . 6 shows that the reactor temperature fo l lows perfect ly the se t -point prof i l e . As prev ious ly ment ioned , theo p e n i n g v a l v e d e g r e e ( 6 ) c o r r e s p o n d s t o t h e fo u r di f f er e n t v a l v e s a n d t o t he ca s e o f r e cy c l e d i n t e r m e d i a te f lu id . F i g .7g i v e s t h e e v o l u t i o n o f t h e r m a l f l u x l i m i t s f o r e a ch u t i l it y fl u i d a n d t h e th er m a l f l u x ca l cu l a t e d b y t h e co n t r o l l er . A sexpec ted , due to the h igher temperature lev e l , the required capac i t ie s o f heat ing and coo l ing are larger. Com pared tothe previous c ondi t io ns (F ig . 5 ) , a l l the d i f ferent ut i l i ty f lu ids hav e had to be used . In particu lar , dur ing the heat ingphase , s tea m i s required ins tead o f intermediate f lu id. S im i lar ly , a t the end of the coo l ing phase (around 800 0 s ) , theh i g h e r co o l i n g r a t e i m p l i e s a ch a n g e o v e r f r o m i n t e r m e d i a t e f l u i d t o g l y co l / w a t e r . T h e s e ch a n g e o v e r s o f f l u i d s a r edecide d automat ic a l ly by the supervi sory contro l s trategy based on the thermal f lux c omputat ion .

    Temperature ( C ) v a l v e o p e n i n g 1370 t . . . . . . . . . t . . . . l ~ " ' ' i 1t ~ T r I ~ [[ . . . . . T c o n s | t l I60 L ~ .~ .~ i - ~ o 8_ l , . ~ ,, o i ! 4 , 6t i i \ t ~ , , Io f / , f l .io ,,

    ~ / I , ! t i " k . ; i I3 og v ! [ i i ! , i ! L i jzv~^ r J i , " ~ s _ . . . . . . . . . . . . k d . . . . . ':.iv ' L . :' ^0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0 uFigure 6 : Temperature and m anipulated variable

    Th e r mal f lu x l imi t s (kcal . s t )2 " - - ~ " - , . . . . . . . . . r " ' ~ ' ' ~ . . . . . . . . r ' ' ~ ' ' ~ . .. . .. .. r ' " ~ ' " ~ ' " ~ " ' r . .. . .. .. . " ' " ~ " "

    I - - Q c o n t1 , 5 ~ [ . . . . Q m a x i t' t I . . . . Q m a x1 " [ ~ f ~ . . . . . Q m m . - " . . . .I N I 4 - - Q m i n , ,, " " , 1 L '= " i0 , 5 " . . , . . . ~ "

    - 0 , 5 " " " " " , " 4 ~. . . . . . . . . . . . . t i m e { s )

    - 1 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 10000Figure 7 : Lim its and contro l va lue o f the thermal f lux

  • 7/30/2019 A New Heating-cooling System to Improve Controllability of Batch Reactors

    6/6

    316 8 Z. LOULEHet a l .C O N C L U S I O NT h i s s t u d y d e m o n s t r a t e s t h e f e a s i b i l i t y o f t h e d e v e l o p e d s u p e r v i s o r y c o n t r o l s t ra t e g y b a s e d o n t h e t h e r m a l f l u xc o m p u t a t i o n . T h e r e s u l t s e x e m p l i f y t h e m u l t ip u r p o s e c h a r a c te r o f t h e p r o p o s e d m e t h o d o l o g y w h i c h i s a n e c e s s a r yc ond i t i on fo r a suc c es s fu l au t oma t i on o f ba t c h c hem i c a l r eac t o r s .T h e s t r a te g y p r e s e n t s t h e a d v a n t a g e s o f a m u l t i - fl u i d th e r m a l s y s t e m ( p o s s i b i l i ty t o u s e u t i l i ty f l u id s d i r e c t l ya v a i l a b l e o n a p l a n t ) a n d t h o s e o f m o n o f l u i d t h e r m a l s y s t e m ( c h a r a c t e r i s e d b y h i g h d y n a m i c p e r f o r m a n c e a n dc o n t i n u i t y o f t h e r m a l c o n t r o l ) . T h e m o d e l b a s e d s u p e r v i s o r y c o n t r o l a l l o w s a n a d e q u a t e c h a n g e o v e r o f t h e r m a lu t i l i ty f l u i d a s a func t i on o f t he f e a s i b l e c apac i t y o f t he t he r m a l c onf i gu r a t i on .N O T A T I O N-a- C p- c v s- f- L v- Pcw-P j- Ps t-Q- Q c o n t- Q m a x , Q m i n- T-x j- T r- T u- U

    hea t t r ans fe r a r ea (m 2)spec i f i c hea t (kc a l K g -1 K -1)va l ve spec i f i c a t i on (kg s - 1 ba r 1 / 2)ma ss f l ow r a t e (kg s - 1 )l a t e n t h e a t o f s t e a m ( k c al k g - 1 )m a i n w a t e r p r e s s u r e b a rs t e a m p r e s s u r e i n t h e j a c k e t b a rfeed s t eam pr es su r e ba rt he r ma l f l ux exc hang ed be t w een j ac ke t f l u i d and r eac t i on mi x t u r e (kc a l s - I )t he r ma l f l ux c om pu t ed by t he c on t r o l l e r (kc a l s - I )m a x i m a l a n d m i n i m a l v a l u e s o f t h e t h e r m a l f l u x ( k c a l s - 1 )t emper a t u r e (K )j ac ke t t emper a t u r e (K )r eac t i on mi x t u r e t emper a t u r e (K )sou r c e t emp er a t u r e o f u t i l it y f l u i d (K )hea t t r ans fe r c oe f f i c i en t (kc a l m - 2 s - 1 K - 1 )

    G r e e k c h a r a c t e r s-8- AOmS u b s c r i p t scwg wifino u ts t

    v a l v e o p e n i n g d e g r e emean t emper a t u r e d i f f e renc ec o l d w a t e rg l y c o l / w a t e ri n t e r med i a t e f l u i di n l e to u t l e ts t eam

    (% )(K )

    R E F E R E N C E SB er be r R . , 1995 , C on t r o l o f ba t c h r eac t o r s : a r ev i ew , M et h ods o f M ode l B a sed P roce ss C on t ro l , R . B er be r ( ed . ) ,K l uw er Ac a dem i c Pub l i she r s , D or dr ec h t , 459- 493 .C a b a s s u d M . , L e L a n n M . V . , E t t e d g u i B . a n d C a s a m a t t a G . , 1 9 9 4, A g e n e r a l s i m u l a t i o n m o d e l o f b a t ch c h e m i c a lr e a c t o rs f o r t h e r m a l c o n t r o l i n v e s t i g a t io n s , C h e m , E n g . T e c h n ol . 17 , 225- 268 .C a b a s s u d M . , C h a m a y o u A . , P o l l in i L ., L o u l e h Z . , L e L a n n M . V . a n d C a s a m a t t a G . , 1 9 9 5 , P r o c 6 d e d e c o nt r6 1 et he r mi que d 'un r 6ac t eu r d i sc on t i nu po l yv a l en t ~ pa r t i r d 'une p l u r a l i t6 de sou r c es de f l u i des the r m i ques , e t d i spos i t i fde ra i s e en oeuvre de ce proc6A6, Patent N95.03753.C h y l l a R . W . a n d D . R a n d a l l H a s s e , 1 9 93 , T e m p e r a t u r e c o n t r o l o f s e m i - b a t c h p o l y m e r i z a t i o n r e a c to r s , C om put .C h e n ~ E n g n g 17 N 3 , 257 - 264 .J u b a M . R . a n d J . W . H a m e r , 1 9 8 6 , P r o g r e s s a n d c h a l l e n g e s i n b a t c h p r o c e s s c o n t r o l , P roc . C P C I II . C A C H E ,E l s e v ie r , A m s t e r d a m .L e L a n n M . V . , M . C a b a s s u d a n d C a s a m a t t a G . , 1 9 9 5 , A d a p t i v e m o d e l p r e d i c t iv e c o n tr o l , M et h ods o f M ode l B a sedProcess Control , R . B er be r ( ed . ), K l uw er A c ade m i c Pub l i she r s , D or dr ec h t , 426- 458L i p t a k B . G . , C o n t r o l li n g a n d o p t i m i z i n g c h e m i c a l r e a c t o r s , C h e m . E n g r . , M ay 26 , 1986 , 69- 81M ar r oqu i n , G . an d L uyben , W .L . , 1972 , Expe r i me n t a l eva l ua t i on o f non l i nea r c a sc ade c on t r o l l e r s fo r ba t c h r eac to r s ,In d . E n g . C h e m . F un d a m . 11 N 4 , 552 - 556 .F r i e d r i c M . a n d R . P e r n e , 1 9 9 5 , D e s i g n a n d c o n t r o l o f b a t c h r e a c t o r s : a n i n d u s t r i a l v i e w p o i n t , C o m p . C h e m .E n g n g 1 9 , $ 3 5 7 - $ 3 6 8 .