Top Banner
58

A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

Apr 22, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

A Level-Set Framework for Shape Optimisation

Daniel Kraft

November 30th, 2015

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 1

Page 2: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

Overview

1. The Level-Set MethodLevel Sets and the Speed MethodThe Hopf-Lax Formula

2. Gradient-Descent MethodsShape CalculusSteepest-Descent Directions

3. Numerical ResultsImage SegmentationPDE-Constrained Shape Optimisation

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 2

Page 3: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

The Level-Set Method

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 3

Page 4: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

The Level-Set Function

Geometries as level sets of φ : D ⊂ Rn → R:

Ω = Ω(φ) = x ∈ D | φ(x) < 0Γ = ∂Ω = x ∈ D | φ(x) = 0

Also irregular shapes are possible:

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 4

Page 5: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

The Level-Set Function

Geometries as level sets of φ : D ⊂ Rn → R:

Ω = Ω(φ) = x ∈ D | φ(x) < 0Γ = ∂Ω = x ∈ D | φ(x) = 0

Also irregular shapes are possible:

φ(x , y) =√x2 + y2 − 1 or φ(x , y) = x2 + y2 − 1

D Γ

Ω

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 4

Page 6: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

The Level-Set Function

Geometries as level sets of φ : D ⊂ Rn → R:

Ω = Ω(φ) = x ∈ D | φ(x) < 0Γ = ∂Ω = x ∈ D | φ(x) = 0

Also irregular shapes are possible:

φ(x , y) = max (|x | − 1, |y | − 1)

D Γ

Ω

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 4

Page 7: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

The Level-Set Function

Geometries as level sets of φ : D ⊂ Rn → R:

Ω = Ω(φ) = x ∈ D | φ(x) < 0Γ = ∂Ω = x ∈ D | φ(x) = 0

Also irregular shapes are possible:

φ(x , y) = min(√

(x − 2)2 + y2 − 1,√(x + 2)2 + y2 − 2

)− c

D D D

c = 0 c = 12 c = 1

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 4

Page 8: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

The Speed Method in Normal Direction

Speed eld F : D → R in normal direction:

a

b

c

Level-Set Equation

φt(x , t) + F (x) |∇φ(x , t)| = 0, φ0(x , 0) = φ0(x)

It has a unique viscosity solution, see Crandall, Ishii, Lions [3] and Giga [5].Original work by Osher, Sethian [6].

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 5

Page 9: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

The Speed Method in Normal Direction

Speed eld F : D → R in normal direction:

a

b

c

Level-Set Equation

φt(x , t) + F (x) |∇φ(x , t)| = 0, φ0(x , 0) = φ0(x)

It has a unique viscosity solution, see Crandall, Ishii, Lions [3] and Giga [5].Original work by Osher, Sethian [6].

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 5

Page 10: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

Changes in Topology Are Possible

-4 -2 0 2 4

-4

-2

0

2

4

0

0.2

0.4

0.6

0.8

1

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 6

Page 11: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

Changes in Topology Are Possible

-4 -2 0 2 4

-4

-2

0

2

4

-4

-2

0

2

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 6

Page 12: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

The Sign of F

Important is the sign of F :

Theorem

Let F = F+ − F− be the decomposition in positive and negative parts, and

φ±t (x , t) + F±(x)∣∣∇φ±(x , t)∣∣ = 0, φ±(x , 0) = ±φ0(x).

Then:

φ(x , t) =

φ+(x , t) F (x) > 0φ0(x) F (x) = 0

−φ−(x , t) F (x) < 0

F (x) = 0 means φ(x , ·) is constant: → Geometric constraints!

One can reduce all considerations to the case F ≥ 0.

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 7

Page 13: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

The Sign of F

Important is the sign of F :

Theorem

Let F = F+ − F− be the decomposition in positive and negative parts, and

φ±t (x , t) + F±(x)∣∣∇φ±(x , t)∣∣ = 0, φ±(x , 0) = ±φ0(x).

Then:

φ(x , t) =

φ+(x , t) F (x) > 0φ0(x) F (x) = 0

−φ−(x , t) F (x) < 0

F (x) = 0 means φ(x , ·) is constant: → Geometric constraints!

One can reduce all considerations to the case F ≥ 0.

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 7

Page 14: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

Mayer's Problem

Paths suited to F ≥ 0:

St(x) =ξ ∈W 1,∞([0, t]) | ξ(0) = x , |ξ′(τ)| ≤ F (ξ(τ)) for all τ ∈ [0, t]

Reachable set:

Rt(x) = ξ(t) | ξ ∈ St(x)

Mayer's Problem

V (x , t) = infξ∈St (x)

φ0(ξ(t)) = infy∈Rt (x)

φ0(y)

Hamilton-Jacobi-Bellman: The level-set equation!

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 8

Page 15: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

Mayer's Problem

Paths suited to F ≥ 0:

St(x) =ξ ∈W 1,∞([0, t]) | ξ(0) = x , |ξ′(τ)| ≤ F (ξ(τ)) for all τ ∈ [0, t]

Reachable set:

Rt(x) = ξ(t) | ξ ∈ St(x)

Mayer's Problem

V (x , t) = infξ∈St (x)

φ0(ξ(t)) = infy∈Rt (x)

φ0(y)

Hamilton-Jacobi-Bellman: The level-set equation!

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 8

Page 16: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

The Hopf-Lax Formula

Optimal-control theory implies a Hopf-Lax Formula:

Let d solve the Eikonal equation for the speed F :

F (x) |∇d(x)| = 1

d is the F -induced distance.

Theorem (Hopf-Lax Formula)

Let F ≥ 0 be Lipschitz continuous and have compact support in D. For all x

with F (x) > 0 and φ0(x) > 0, the solution of the level-set equation is given as:

φ(x , t) = inf φ0(y) | d(x , y) ≤ t

See also Falcone, Giorgi, Loreti [4] and Capuzzo-Dolcetta [2].

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 9

Page 17: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

The Hopf-Lax Formula

Optimal-control theory implies a Hopf-Lax Formula:

Let d solve the Eikonal equation for the speed F :

F (x) |∇d(x)| = 1

d is the F -induced distance.

Theorem (Hopf-Lax Formula)

Let F ≥ 0 be Lipschitz continuous and have compact support in D. For all x

with F (x) > 0 and φ0(x) > 0, the solution of the level-set equation is given as:

φ(x , t) = inf φ0(y) | d(x , y) ≤ t

See also Falcone, Giorgi, Loreti [4] and Capuzzo-Dolcetta [2].

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 9

Page 18: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

Representation of the Level-Set Domain

Distance to Initial Geometry

d0(x) = infy∈Ω0

d(x , y)

→ When does the advancing front hit x?

Ecient computation possible with Fast Marching (Sethian [7]).

Theorem (Representation Formula)

Let F ≥ 0. The time evolution of Ω0 is given by:

Ωt = x ∈ D | d0(x) < tΓt = x ∈ D | d0(x) = t

Generalisation is possible for arbitrary signs of F :→ Composite Fast Marching

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 10

Page 19: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

Representation of the Level-Set Domain

Distance to Initial Geometry

d0(x) = infy∈Ω0

d(x , y)

→ When does the advancing front hit x?

Ecient computation possible with Fast Marching (Sethian [7]).

Theorem (Representation Formula)

Let F ≥ 0. The time evolution of Ω0 is given by:

Ωt = x ∈ D | d0(x) < tΓt = x ∈ D | d0(x) = t

Generalisation is possible for arbitrary signs of F :→ Composite Fast Marching

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 10

Page 20: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

Demonstration

-4 -2 0 2 4

-4

-2

0

2

4

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 11

Page 21: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

Non-Fattening

Classical result for Γt = ∂Ωt : Non-fattening in a topological sense, consideringthe space-time. (See Barles, Soner, Souganidis [1].)

Based on our formula, one can easily deduce:

Theorem (Topological Non-Fattening)

Let F ≥ 0 and Ω0 = Ω0 ∪ Γ0. Then Ωt = Ωt ∪ Γt for all t ≥ 0.If F ≤ 0 and (Ω0 ∪ Γ0) = Ω0, then (Ωt ∪ Γt) = Ωt for all t ≥ 0.

Theorem (Measure-Theoretic Non-Fattening)

Let |Γ0| = 0. Then |Γt | = 0 for all t ≥ 0.

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 12

Page 22: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

Non-Fattening

Classical result for Γt = ∂Ωt : Non-fattening in a topological sense, consideringthe space-time. (See Barles, Soner, Souganidis [1].)

Based on our formula, one can easily deduce:

Theorem (Topological Non-Fattening)

Let F ≥ 0 and Ω0 = Ω0 ∪ Γ0. Then Ωt = Ωt ∪ Γt for all t ≥ 0.If F ≤ 0 and (Ω0 ∪ Γ0) = Ω0, then (Ωt ∪ Γt) = Ωt for all t ≥ 0.

Theorem (Measure-Theoretic Non-Fattening)

Let |Γ0| = 0. Then |Γt | = 0 for all t ≥ 0.

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 12

Page 23: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

Non-Fattening

Classical result for Γt = ∂Ωt : Non-fattening in a topological sense, consideringthe space-time. (See Barles, Soner, Souganidis [1].)

Based on our formula, one can easily deduce:

Theorem (Topological Non-Fattening)

Let F ≥ 0 and Ω0 = Ω0 ∪ Γ0. Then Ωt = Ωt ∪ Γt for all t ≥ 0.If F ≤ 0 and (Ω0 ∪ Γ0) = Ω0, then (Ωt ∪ Γt) = Ωt for all t ≥ 0.

Theorem (Measure-Theoretic Non-Fattening)

Let |Γ0| = 0. Then |Γt | = 0 for all t ≥ 0.

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 12

Page 24: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

Gradient-Descent Methods

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 13

Page 25: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

Shape Calculus

Theorem

Let f ∈ L1loc(D) and assume F ≥ 0. Then:

J(t) =

∫Ωt

f dx =

∫Ω0

f dx +

∫ t

0

∫Γs

Ff dσ ds

This yields the shape derivative of J:

dJ (Ωt ;F ) = J ′(t) =

∫Γt

Ff dσ

(In a weak sense, since J is absolutely continuous.)

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 14

Page 26: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

Shape Calculus

Theorem

Let f ∈ L1loc(D) and assume F ≥ 0. Then:

J(t) =

∫Ωt

f dx =

∫Ω0

f dx +

∫ t

0

∫Γs

Ff dσ ds

This yields the shape derivative of J:

dJ (Ωt ;F ) = J ′(t) =

∫Γt

Ff dσ

(In a weak sense, since J is absolutely continuous.)

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 14

Page 27: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

Total Shape Dierential

For a shape-dependent integrand:

J(Ω) =

∫Ω

f (x , Ω) dx ,

where for all xed x ∈ D:

f (x , Ωt) = f (x , Ω0) +

∫ t

0

f ′(x , Ωs) ds.

Theorem (Total Shape Dierential)

Denote J(t) = J(Ωt). Then J is absolutely continuous and

dJ (Ωt ;F ) = J ′(t) =

∫Γt

Ff dσ +

∫Ωt

f ′ dx .

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 15

Page 28: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

Total Shape Dierential

For a shape-dependent integrand:

J(Ω) =

∫Ω

f (x , Ω) dx ,

where for all xed x ∈ D:

f (x , Ωt) = f (x , Ω0) +

∫ t

0

f ′(x , Ωs) ds.

Theorem (Total Shape Dierential)

Denote J(t) = J(Ωt). Then J is absolutely continuous and

dJ (Ωt ;F ) = J ′(t) =

∫Γt

Ff dσ +

∫Ωt

f ′ dx .

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 15

Page 29: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

A Chain Rule

Scalar, shape-dependent quantity:

J(Ω) =

∫Ω

f (x ,G (Ω)) dx

(Multiple G 's are also possible.)

Theorem (Chain Rule)

Let f ∈ C 1, then t 7→ J(t) = J(Ωt) is absolutely continuous and

dJ (Ωt ;F ) = J ′(t) =

∫Γt

Ff dσ +

∫Ωt

∂f

∂GG ′ dx .

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 16

Page 30: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

A Chain Rule

Scalar, shape-dependent quantity:

J(Ω) =

∫Ω

f (x ,G (Ω)) dx

(Multiple G 's are also possible.)

Theorem (Chain Rule)

Let f ∈ C 1, then t 7→ J(t) = J(Ωt) is absolutely continuous and

dJ (Ωt ;F ) = J ′(t) =

∫Γt

Ff dσ +

∫Ωt

∂f

∂GG ′ dx .

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 16

Page 31: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

Gradients in H1

Generic form of the shape derivative:

dJ (Ω;F ) =

∫Γ

f (. . .)F dσ

→ linear functional in H1(D), operating on F

dJ (Ω; ·) lives on the boundary Γ (Hadamard-Zolésio structure theorem)

H1 Shape Gradient

Riesz representative F ∈ H1(D) of dJ (Ω; ·) as gradient:

∀G ∈ H1(D) : 〈F ,G 〉

β

=

∫D

(FG +

β

〈∇F ,∇G 〉) dx = dJ (Ω;G )

→ the solution denes a speed eld on the domain D

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 17

Page 32: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

Gradients in H1

Generic form of the shape derivative:

dJ (Ω;F ) =

∫Γ

f (. . .)F dσ

→ linear functional in H1(D), operating on F

dJ (Ω; ·) lives on the boundary Γ (Hadamard-Zolésio structure theorem)

H1 Shape Gradient

Riesz representative F ∈ H1(D) of dJ (Ω; ·) as gradient:

∀G ∈ H1(D) : 〈F ,G 〉

β

=

∫D

(FG +

β

〈∇F ,∇G 〉) dx = dJ (Ω;G )

→ the solution denes a speed eld on the domain D

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 17

Page 33: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

Gradients in H1

Generic form of the shape derivative:

dJ (Ω;F ) =

∫Γ

f (. . .)F dσ

→ linear functional in H1(D), operating on F

dJ (Ω; ·) lives on the boundary Γ (Hadamard-Zolésio structure theorem)

H1 Shape Gradient

Riesz representative F ∈ H1(D) of dJ (Ω; ·) as gradient:

∀G ∈ H1(D) : 〈F ,G 〉β =

∫D

(FG + β 〈∇F ,∇G 〉) dx = dJ (Ω;G )

→ the solution denes a speed eld on the domain D

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 17

Page 34: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

Gradient-Descent Method

One step in the gradient descent:

1. evaluate shape-dependent quantities for Ω

2. calculate functional dJ (Ω; ·)3. nd Riesz representative: gradient F

4. evolve Ω with a line search in direction −F

Repeat until no more changes are made.

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 18

Page 35: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

Numerical Results

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 19

Page 36: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

Image Segmentation

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 20

Page 37: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

Image Segmentation

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 20

Page 38: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

Cost and Shape Derivative

Consider D ⊂ Rn, e. g., D = [0, 1]2.Let u : D → R be a grey-scale image.

Denition (Cost Function)

J(Ω) =

∫Ω

(u − u)2 dx − 2γ · σ · |Ω| for ∅ 6= Ω ⊂ D

Shape Derivative

dJ (Ω;F ) =

∫Γ

((u − u)2

(1−

γ

σ

)− γσ

)F dσ

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 21

Page 39: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

Cost and Shape Derivative

Consider D ⊂ Rn, e. g., D = [0, 1]2.Let u : D → R be a grey-scale image.

Denition (Cost Function)

J(Ω) =

∫Ω

(u − u)2 dx − 2γ · σ · |Ω| for ∅ 6= Ω ⊂ D

Shape Derivative

dJ (Ω;F ) =

∫Γ

((u − u)2

(1−

γ

σ

)− γσ

)F dσ

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 21

Page 40: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

Cost and Shape Derivative

Consider D ⊂ Rn, e. g., D = [0, 1]2.Let u : D → R be a grey-scale image.

Denition (Cost Function)

J(Ω) =

∫Ω

(u − u)2 dx − 2γ · σ · |Ω| for ∅ 6= Ω ⊂ D

Shape Derivative

dJ (Ω;F ) =

∫Γ

((u − u)2

(1−

γ

σ

)− γσ

)F dσ

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 21

Page 41: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

Eect of β

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 22

Page 42: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

Eect of β

β = 1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 22

Page 43: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

Eect of β

β = 10−2

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

-1

0

1

2

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 22

Page 44: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

Descent Run

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 23

Page 45: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

Descent Run

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 23

Page 46: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

Descent Run

0 20 40 60 80 1001e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

1e+1

Steps

Cost

Gradient Norm

Step Length

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 23

Page 47: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

PDE-Constrained Shape Optimisation

Let D ⊂ R2 be compact, B ⊂ D, f ∈ L2(D) and ud ∈ L2(B).

Denition (Cost Function)

Find Ω with B ⊂ Ω ⊂ D that minimises

J(Ω) =1

2‖u − ud‖2L2(B) + α |Γ | .

State Equation

u ∈ H1(Ω) solves the state equation:−∆u + u = f in Ω

∂u∂ν = 0 on Γ

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 24

Page 48: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

PDE-Constrained Shape Optimisation

Let D ⊂ R2 be compact, B ⊂ D, f ∈ L2(D) and ud ∈ L2(B).

Denition (Cost Function)

Find Ω with B ⊂ Ω ⊂ D that minimises

J(Ω) =1

2‖u − ud‖2L2(B) + α |Γ | .

State Equation

u ∈ H1(Ω) solves the state equation:−∆u + u = f in Ω

∂u∂ν = 0 on Γ

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 24

Page 49: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

The Shape Derivative

Equations in Weak Form

Find u and p such that (for each v ∈ H1(D)):∫Ω

(〈∇u,∇v〉+ uv) dx =

∫Ω

fv dx∫Ω

(〈∇p,∇v〉+ pv) dx =

∫B

(u − ud)v dx

Shape Derivative

dJ (Ω;F ) =

∫Γ

(fp − 〈∇u,∇p〉 − up + ακ)F dσ

We require: F = 0 on B

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 25

Page 50: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

The Shape Derivative

Equations in Weak Form

Find u and p such that (for each v ∈ H1(D)):∫Ω

(〈∇u,∇v〉+ uv) dx =

∫Ω

fv dx∫Ω

(〈∇p,∇v〉+ pv) dx =

∫B

(u − ud)v dx

Shape Derivative

dJ (Ω;F ) =

∫Γ

(fp − 〈∇u,∇p〉 − up + ακ)F dσ

We require: F = 0 on B

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 25

Page 51: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

Descent Run

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 26

Page 52: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

Descent Run

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 26

Page 53: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

Descent Run

0 100 200 300 400 500 600 7001e-5

1e-4

1e-3

1e-2

1e-1

1e+0

1e+1

1e+2

Steps

Cost

Gradient Norm

Step Length

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 26

Page 54: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

Conclusion

I Level sets allow a exible description of shapes.

I A Hopf-Lax formula can be employed for the time evolution.

I This yields a special shape calculus.

I One can formulate gradient methods for shape optimisation.

Thanks for your attention!

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 27

Page 55: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

Conclusion

I Level sets allow a exible description of shapes.

I A Hopf-Lax formula can be employed for the time evolution.

I This yields a special shape calculus.

I One can formulate gradient methods for shape optimisation.

Thanks for your attention!

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 27

Page 56: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

References I

I G. Barles, H. M. Soner, and P. E. Souganidis.Front Propagation and Phase Field Theory.SIAM Journal on Control and Optimization, 31(2):439469, March 1993.

I Italo Capuzzo-Dolcetta.A Generalized Hopf-Lax Formula: Analytical and Approximations Aspects.In Fabio Ancona, editor, Geometric Control and Nonsmooth Analysis,volume 76 of Series on Advances in Mathematics for Applied Sciences, pages136150. World Scientic, 2008.

I Michael G. Crandall, Hitoshi Ishii, and Pierre-Louis Lions.User's Guide to Viscosity Solutions of Second Order Partial DierentialEquations.Bulletin of the American Mathematical Society, 27(1):167, July 1992.

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 28

Page 57: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

References II

I M. Falcone, T. Giorgi, and P. Loreti.Level Sets of Viscosity Solutions: Some Applications to Fronts andRendez-Vous Problems.SIAM Journal on Applied Mathematics, 54(5):13351354, 1994.

I Yoshikazu Giga.Surface Evolution Equations: A Level Set Approach, volume 99 ofMonographs in Mathematics.Birkhäuser, 2006.

I Stanley J. Osher and James A. Sethian.Fronts Propagating with Curvature-Dependent Speed: Algorithms Based onHamilton-Jacobi Formulations.Journal of Computational Physics, 79:1249, 1988.

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 29

Page 58: A Level-Set Framework for Shape OptimisationInternational Research rainingT Group IGDK 1754 A Level-Set Framework for Shape Optimisation Daniel Kraft November 30th, 2015 Daniel KraftA

International Research Training Group IGDK 1754

References III

I James A. Sethian.A Fast Marching Level Set Method for Monotonically Advancing Fronts.Proceedings of the National Academy of Sciences, 93(4):15911595, 1996.

Daniel Kraft A Level-Set Framework for Shape Optimisation November 30th, 2015 30