Top Banner
A CFD MODEL DEVELOPMENT AND PERFORMANCE INVESTIGATION OF FROST FREE REFRIGERATOR WITH NANOPARTICLES SUSPENDED IN THE LUBRICANT MUHAMMAD EHTESHAMUL HAQUE DOCTOR OF PHILOSOPHY UNIVERSITI MALAYSIA PAHANG
41

A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

Dec 18, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

A CFD MODEL DEVELOPMENT AND

PERFORMANCE INVESTIGATION OF FROST FREE

REFRIGERATOR WITH NANOPARTICLES

SUSPENDED IN THE LUBRICANT

MUHAMMAD EHTESHAMUL HAQUE

DOCTOR OF PHILOSOPHY

UNIVERSITI MALAYSIA PAHANG

Page 2: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

iii

SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate

in terms of scope and quality for the award of the degree of Doctor of Philosophy in

Mechanical Engineering.

__________________________________

Supervisor’s Signature

Full Name : PROF. DATO’ DR. ROSLI ABU BAKAR

Position : PROFESSOR

Date :

Page 3: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

iv

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for

quotations and citation which have been duly acknowledged. I also declare that it has

not been previously or concurrently submitted for any other degree at Universiti

Malaysia Pahang or any other institutions.

________________________________

Author’s Signature

Full Name : MUHAMMAD EHTESHAMUL HAQUE

ID Number : PMM12007

Date :

Page 4: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

i

A CFD MODEL DEVELOPMENT AND PERFORMANCE INVESTIGATION OF

FROST FREE REFRIGERATOR WITH NANOPARTICLES SUSPENDED IN THE

LUBRICANT

MUHAMMAD EHTESHAMUL HAQUE

Thesis submitted in fulfillment of the requirements for the award of the degree of

Doctor of Philosophy

Faculty of Mechanical Engineering

UNIVERSITI MALAYSIA PAHANG

MARCH 2019

Page 5: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

ii

DEDICATION

“This thesis is dedicated to my wife Zareen, and kids Maheen, Rafay, and Zayan”

For their immense and endless love; support and encouragement throughout the study

Page 6: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

iii

ACKNOWLEDGMENTS

In the name of Allah the most merciful, the most beneficent. All praise to Allah, the

Creator and Sustainer of the entire universe. Peace and blessings of Allah to his Last

messenger Prophet Muhammad صلى الله عليه وسلم. Thanks to Allah Almighty who granted me the

strength and ability to achieve this task.

I wish to express my sincere gratitude to my supervisor, Professor Dato’ Dr. Hj. Rosli

Bin Abu Bakar for his invaluable guidance, suggestion, and support throughout my

research. I would also like to thank my co-supervisor, Dr. Gan Leong Ming for his

timely support and assistance.

I am thankful to the Faculty of Mechanical Engineering and all staff. I would also like

to express my sincere gratitude to post grade students, faculty and staff of thermal

laboratory lab and HVAC lab in the mechanical faculty for their help in facilitation

during my experimental work. Special thanks to Billy Anak Anak for helping me in

making the test rig. I would also like to acknowledge the help and assistance provided

by Mr. Yousof Taib, and for providing me the refrigerator, tools, instrumentations, and

material for the project.

This research was financially supported by Universiti Malaysia Pahang under the grant

number GRS 140311. I wish to acknowledge the financial assistance provided by NED

University of Engineering and Technology and Higher Education Commission (HEC)

of Pakistan.

Finally, I would like to thank my wife and children for their patience and support during

my research project.

Muhammad Ehteshamul Haque

Page 7: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

iv

ABSTRACT

In a refrigerator, airflow and temperature distribution along with the properties of the

lubricating oil defines its efficiency and performance. The purpose of this work is to

develop a numerical model to predict the airflow and temperature inside the refrigerated

space and use nanoparticles in the compressor lubricating oil to improve the efficiency

of the refrigerating system. The present research focuses to improve the performance

and efficiency of the refrigerator through the analysis by CFD and nanotechnology. The

objective is to develop a CFD model for airflow and temperature distribution inside the

refrigerator and validated it with experimental results. The model is then used for

parametric study to modify the inside geometry of the refrigerator to improve better

airflow and temperature distribution. To improve the cyclic efficiency of the refrigerator

Nano-particles are added into the compressor lubricant to improve the lubricity of

Polyol ester oil (POE), thereby improving the performance of the refrigerator. In this

research work, CFD model has been developed for a domestic no-frost refrigerator. The

conservation equations of energy mass and momentum are solved by using Finite

Volume Method (FVM) in an environment of three-dimensional unstructured mesh.

Experiments were conducted on a no-frost domestic refrigerator to compare and

validate the results of the CFD model. Nano particles when added to the lubricating oil

is called Nano-lubricant. In the present study, three nanoparticles namely Al2O3, TiO2

and SiO2 have been added to the lubricant oil of a domestic refrigerator and experiments

have been performed to determine the enhancement in the performance of the

refrigerator. A CFD model for the selected refrigerator has been developed in Ansys

software. This CFD model has been validated by experimental results. A comparison of

CFD model and experimental results of surface temperature in freezer and refrigerator

compartment are within the acceptable range of 5% difference. In the freezer

compartment the difference in temperature on a vertical line at the center of freezer as

predict by the CFD model and experiment is less than one percent. Similarly, the

temperature difference, as measured by experiment and predicted by the CFD model, on

a central vertical line inside the refrigerator compartment, is less than three percent. The

result of the parametric study by using the developed CFD model showed improvement

in the temperature distribution inside the refrigerator compartment. Through this

research work, it is established that CFD can be used successfully to model the airflow

and temperature distribution inside the refrigerator. The results of experiments with

nanoparticles suspended in the lubricant oil of the compressor showed better

performance of the refrigerator as compared to pure Polyol Easter (POE) oil system.

The energy consumption of 0.05% SiO2 nanolubricant is 9.4% less than pure POE oil

system. Similarly, the energy consumption of compressor with 0.1% TiO2 nanoparticles

is 6.84% lower than the pure POE oil system. COP of the refrigerator increased by 29%

when 0.1% SiO2 nanoparticle was added to the compressor lubricant. Therefore, the

addition of nanoparticles in the refrigerator system has very good potential to improve

the energy consumption and COP of the unit.

Page 8: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

v

ABSTRAK

Dalam peti sejuk, aliran udara dan pengagihan suhu bersama-sama dengan sifat-sifat

minyak pelincir mentakrifkan kecekapan dan prestasinya. Tujuan kerja ini adalah untuk

membangunkan model berangka untuk meramalkan aliran udara dan suhu di dalam

ruang yang didinginkan dan menggunakan nanopartikel dalam minyak pelincir

pemampat untuk meningkatkan kecekapan sistem penyejukan. Penyelidikan kini

memberi tumpuan untuk meningkatkan prestasi dan kecekapan peti sejuk melalui

analisis oleh CFD dan nanoteknologi. Dalam kajian ini, model CFD telah dibangunkan

untuk peti sejuk beku domestik. Persamaan pemuliharaan jisim dan momentum energi

diselesaikan dengan menggunakan Kaedah Volum Hingga dalam persekitaran mesh tak

berstruktur tiga dimensi. Eksperimen dilakukan di peti sejuk domestik tanpa beku untuk

membandingkan dan mengesahkan keputusan model CFD. Nano zarah apabila

ditambah ke minyak pelincir dipanggil nanolubricant. Dalam kajian ini, tiga

nanopartikel iaitu Al2O3, TiO2 dan SiO2 telah ditambah kepada minyak pelincir kulkas

domestik dan eksperimen telah dilakukan untuk menentukan peningkatan dalam prestasi

peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian

Ansys. Model CFD ini telah disahkan oleh keputusan percubaan. Perbandingan model

CFD dan hasil eksperimen suhu permukaan dalam peti sejuk dan ruang peti sejuk

berada dalam julat yang boleh diterima. Dalam petak penyejuk beku perbezaan suhu

pada garis menegak di pusat beku seperti yang diramalkan oleh model CFD dan

eksperimen adalah kurang daripada satu peratus. Begitu juga, perbezaan suhu, seperti

yang diukur oleh percubaan dan diramalkan oleh model CFD, pada garis menegak pusat

di dalam petak peti sejuk, adalah kurang daripada tiga peratus. Hasil kajian parametrik

dengan menggunakan model CFD yang maju menunjukkan peningkatan dalam

pengedaran suhu di dalam ruang peti sejuk. Melalui kerja penyelidikan ini, didapati

CFD dapat digunakan dengan baik untuk memodelkan aliran udara dan pengedaran

suhu di dalam peti sejuk. Keputusan eksperimen dengan nanopartikel yang digantung di

minyak pelincir pemampat menunjukkan prestasi yang lebih baik dari peti sejuk

berbanding dengan sistem minyak Tulen Eolol (POE) tulen. Penggunaan tenaga 0.05%

SiO2 nanolubricant adalah 9.4% kurang daripada sistem minyak POE tulen. Begitu

juga, penggunaan tenaga pemampat dengan 0.1% TiO2 nanopartikel adalah 6.84% lebih

rendah daripada sistem minyak POE tulen. COP peti sejuk meningkat sebanyak 29%

apabila 0.1% SiO2 nanoparticle ditambah kepada pelincir pemampat. Oleh itu,

penambahan nanopartikel dalam sistem peti sejuk mempunyai potensi yang sangat baik

untuk meningkatkan penggunaan tenaga dan COP unit.

Page 9: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

vi

TABLE OF CONTENTS

DECLARATION

TITLE PAGE

DEDICATION ii

ACKNOWLEDGMENTS iii

ABSTRACT iv

ABSTRAK v

TABLE OF CONTENTS vi

LIST OF TABLES xi

LIST OF FIGURES xiii

LIST OF SYMBOLS xvii

LIST OF ABBREVIATIONS

xix

CHAPTER 1 INTRODUCTION 1

1.1 BACKGROUND 1

1.2 Vapor Compression Refrigeration Cycle 2

1.2.1 Refrigerants 5

1.3 Nanofluid 6

1.3.1 Nanofluid Preparation 6

1.3.2 Thermal Conductivity of Nanofluids 7

1.3.3 Viscosity of Nanofluid 7

1.3.4 Pressure Drop Caused By Nanoparticles 8

1.3.5 Coefficient Of Friction and Wear Rate of Nanofluids 8

1.4 CFD study of refrigerator 8

1.5 Problem statement 9

1.6 Research Objective 10

1.7 Statement of Novelty and Contribution 10

1.8 Scope of study 11

CHAPTER 2 LITERATURE REVIEW 12

Page 10: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

vii

2.1 Introduction 12

2.2 CFD modeling of refrigerator 13

2.2.1 Steps involved in CFD 13

2.2.1.1 Pre-Processing 13

2.2.1.2 Solving 14

2.2.1.3 Post-Processing 14

2.3 Mathematical models 18

2.3.1 Laminar Flow 18

2.3.2 Turbulent Flow 19

2.3.2.1 Direct Numerical Simulation (DNS) 19

2.3.2.2 Reynolds Averaged Navier-Stokes Model (RANS) 19

2.3.2.3The k-ε model 20

2.3.2.4 Large Eddy Simulation 21

2.4 Numerical Techniques 21

2.4.1 Discretization Procedure 21

2.4.2 Spatial Discretization of Conservation Equations 23

2.4.3 Central Differencing Scheme 24

2.4.4 First-Order Upwind Scheme 25

2.4.5 Second-Order Upwind Scheme 25

2.4.6 QUICK Scheme 26

2.4.7 Equations’ temporal discretization 26

2.4.8 Pressure-Velocity Coupling Algorithms 28

2.4.9 SIMPLE Algorithm 28

2.4.10 SIMPLEC Algorithm 33

2.4.11 Solution methods of Algebraic Equations 34

2.5 CFD And experimental studies of refrigerators and refrigerating

systems

34

2.5.1 Static Refrigerator 35

2.5.2 Ventilated Refrigerator 43

2.6 Nanofluid application in refrigerating systems 50

2.6.1 Preparation of Nanofluids 51

2.6.2 One-Step Method 52

2.6.3 Two-Step Method 52

Page 11: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

viii

2.6.4 Thermophysical Properties of Nanofluids 53

2.6.5 Thermal Conductivity (k) 54

2.6.6 Viscosity (µ) 55

2.7 Effect of nanofluid on performance of refrigerating systems 58

2.7.1 Heat Transfer Enhancement 59

2.7.2 Pool Boiling and Flow Boiling 59

2.7.3 Viscosity and pressure drop 62

2.7.4 Solubility of Refrigerant into Lubricating Oil 63

2.7.5 Friction Coefficient and Wear Rate 64

2.7.6 Effect of Surfactants 64

2.7.7 COP Enhancement 65

CHAPTER 3 METHODOLOGY 67

3.1 Numerical simulation of refrigerator 67

3.1.1 Importance of Numerical Simulation 67

3.1.2 Physical Model for Simulation 69

3.1.3 Geometry for the CFD Domain Development 72

3.1.4 Mesh Generation and Grid Independence 74

3.1.5 Solution Methods and Solution Controls 78

3.1.6 Convergence Criteria and Solution Monitoring 80

3.1.7 Solution Control and Under-Relaxation Factors 81

3.2 Assumptions and Boundary Conditions 82

3.2.1 Governing Equations of CFD 83

3.2.2 Continuity Equation 83

3.2.3 Momentum Equation 83

3.2.4 Energy Equation 84

3.3 Boundary Conditions 84

3.4 Experimental Setup and Procedure 94

3.4.1 Experimental Apparatus 94

3.4.2 Pressure Measurement 96

3.4.3 Temperature Measurement 98

3.4.4 Velocity Measurement 103

Page 12: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

ix

3.4.5 Energy and Power Measurement 103

3.4.6 Experimental Procedure for CFD model validation 104

3.5 Application of Nanoparticles 105

3.5.1 Preparation of Nanolubricants 106

3.5.2 Thermal Conductivity 109

3.5.3 Viscosity 109

3.5.4 System Evacuation 110

3.5.5 System Charging 112

3.5.6 Data Collection and Analysis 112

3.5.6.1 Coefficient of Performance (COP) 112

3.5.6.2 Performance Test 113

3.6 Summary 113

CHAPTER 4 RESULTS AND DISCUSSION 115

4.1 Introduction 115

4.2 Temperature and Velocity Simulations 115

4.2.1 Airflow Simulation in the Refrigerator and Freezer

Compartments

115

4.2.2 Temperature Simulation in Refrigerator and Freezer

Compartments

124

4.3 Validation of numerical model with experimental Results 131

4.3.1 Comparison of Temperature in Freezer Compartment 132

4.3.2 Comparison of Temperature in Refrigerator Compartment 133

4.3.3 Study of Nusselt Number 134

4.4 Parametric Study 138

4.4.1 Comparing temperature on a vertical line for parametric study 140

4.5 Performance of the refrigerator with nanoparticles based lubricants 142

4.5.1 Thermophysical Properties of Nanoparticles based Lubricants 142

4.5.1.1 Thermal Conductivity 143

4.5.1.2 Viscosity 145

4.5.2 POE Oil and Nanolubricant with 0.05% Nanoparticles 146

4.5.3 POE Oil and Nanolubricant with 0.1% Nanoparticles 151

Page 13: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

x

4.5.4 Results of Power and Energy Consumption 155

4.5.5 Results of Pressure Measurement 157

4.5.6 Coefficient of Performance of the Refrigerator with POE Oil

and Nanolubricant

159

4.6 Summary 162

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 165

5.1 Recommendations for future work 168

REFERENCES 170

LIST OF PUBLICATIONS 188

APPENDICES 190

Page 14: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

xi

LIST OF TABLES

Table 2.1 CFD application for refrigerator 16

Table 2.2 CFD simulations of refrigerators 49

Table 2.3 Models for thermal conductivity of nanofluids 55

Table 3.1 Specification of the refrigerator 69

Table 3.2 Parameters setting for mesh sizing 77

Table 3.3 Parameter settings for inflation layers 77

Table 3.4 Mesh Statistics and Mesh Metric for Skewness and Aspact Ratio 77

Table 3.5 Basic settings for CFD simulation 79

Table 3.6 Solution Method Settings 80

Table 3.7 Residual Monitors Settings 81

Table 3.8 Under Relaxation Factors 81

Table 3.9 Walls of refrigerator and freezer used for calculations 86

Table 3.10 Physical and thermal properties of wall materials 87

Table 3.11 Inside and outside temperatures of air and surfaces 87

Table 3.12 Thermal resistances of walls and overall heat transfer coefficient 93

Table 3.13 List of Instruments used and their specifications 104

Table 3.14 Thermophysical properties of Nanoparticles 107

Table 3.15 Test conditions for energy consumption procedures 114

Table 4.1 Comparison of numerical and experimental temperatures at

selected points on a vertical line in freezer

133

Table 4.2 Comparison of numerical and experimental temperatures at

selected points on a vertical line in refrigerator

134

Table 4.3 Empirical calculation for Nusselt number variation along the

height of the refrigerator

137

Table 4.4 The design parameter values 139

Table 4.5 Temperature values at three points of all parametric study 142

Table 4.6 Comparison of temperature on different surfaces inside the

freezer compartment with 0.05% by volume of nanoparticles

added to POE oil

148

Table 4.8 Comparison of temperatures on different surfaces inside the

freezer compartment with 0.1% by volume of nanoparticles

added to POE oil

152

Page 15: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

xii

Table 4.9 Comparison of temperatures on different surfaces inside the

refrigerator with 0.1% by volume of nanoparticles added to POE

oil

154

Table 4.10 Energy consumption of the systems with Lubricant and

nanolubricants

156

Table 4.11 Experimental data of system parameters 160

Table 4.12 COP calculation and analysis for all systems 160

Table 4.13 Comparison table for performance improvement of refrigeration

systems

163

Page 16: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

xiii

LIST OF FIGURES

Figure 1.1 Schematic diagram of vapor compression refrigeration system 3

Figure 1.2 T-s and p-h chart of Vapor compression cycle 4

Figure 2.1 Cell P and its neighbor cells 24

Figure 2.2 Face e and its interpolated value 25

Figure 2.3 Face e and its interpolated value (QUICK Scheme) 26

Figure 2.4 One dimensional grid point cluster 29

Figure 2.5 Wavy or zigzag velocity or pressure field 30

Figure 3.1 Flow chart for CFD simulation 68

Figure 3.2 Refrigerator used for the experiment 70

Figure 3.3 Air flow and heat transfer in refrigerator 71

Figure 3.4 A detail view of the simulated refrigerator 72

Figure 3.5 Inside detail view of the simulated refrigerator 73

Figure 3.6 Fluid Domain (a) Full domain (b) half domain 74

Figure 3.7 Mesh generation for the refrigerator 76

Figure 3.8 Temperature profile for Mesh A, B, and C along a vertical line 78

Figure 3.9 Designation of each wall 85

Figure 3.10 Schematic diagram of refrigerator walls 86

Figure 3.11 Thermal resistance network for walls of freezer compartment 88

Figure 3.12 Thermal resistance network for walls of refrigerator compartment 88

Figure 3.13 (a) Freezer back wall (b) Air box (c) Ducts for air inlet and outlet

from the refrigerator section (d) Air distributor for refrigerator

compartment

95

Figure 3.14 Evaporator and Defrost heater 96

Figure 3.15 Pressure Transducers 97

Figure 3.16 Pressure Meters 97

Figure 3.17 (a) Lutron temperature data logger (b) Pico temperature data

logger

99

Figure 3.18 Schematic diagram of inside and outside locations for

thermocouples to record temperatures

99

Figure 3.19 Inside surfaces at which temperature readings were recorded 100

Figure 3.20 Thermocouple settings in (a) freezer (b) refrigerator sections 101

Page 17: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

xiv

Figure 3.21 Thermocouple settings in refrigerator with shelf 102

Figure 3.22 Sealing the refrigerator to prevent air leakage 102

Figure 3.23. Velocity measurement with handheld anemometer 103

Figure 3.24 (a) Power Analyzer (b) Clamp meter 104

Figure 3.25 Flow diagram for experiment 106

Figure 3.26 FeSEM image of (a) TiO2 and (b) SiO2 nanoparticles 107

Figure 3.27 Electronic balance 108

Figure 3.28 (a) Stirring hotplate (b) Ultrasonic homogenizer 108

Figure 3.29 Thermal conductivity and specific heat measuring apparatus 109

Figure 3.30 Brookfield LVDV 11 Viscometer 110

Figure 3.31 Robinair model 15601 vacuum pump 111

Figure 3.32 Schematic sketch for charging and evacuation 111

Figure 4.1 (a) Velocity contour on symmetry plane (b) Velocity vector on

symmetry plane

117

Figure 4.2 (a) Velocity contour (b) Velocity vector, on XZ plane in freezer

compartment at Y=1.25 m

118

Figure 4.3 (a) Velocity contour (b) Velocity vector, on XZ plane in freezer

compartment at Y=0.7 m

118

Figure 4.4 Velocity in freezer along a vertical line (x=0.23, z=0.425) 119

Figure 4.5 Velocity in refrigerator along a vertical line (x=0.23,z=0.425) 120

Figure 4.6 Velocity variations in freezer at the line(y = 1.1, 1.2, 1.3 m, z =

0.425 m)

121

Figure 4.7 Velocity variations in freezer at the line (y = 1.2 m, x = 0.23 m) 122

Figure 4.8 Velocity variations in refrigerator at the line(y = 0.7m, z= 0.425

m)

123

Figure 4.9 Velocity variations in refrigerator at the line (y = 0.7 m, x = 0.23

m)

123

Figure 4.10 (a) Velocity streamlines (b) Velocity volume rendering 124

Figure 4.11 Temperature contour on Z=0.54 m plane 125

Figure 4.12 Temperature contour on Y=1.152 m plane 126

Figure 4.13 Temperature contour on Y=0.45 m plane

127

Figure 4.14 Temperature variations in freezer at the line (x = 0.23 m, z =

0.425 m)

128

Page 18: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

xv

Figure 4.15 Temperature variations in refrigerator at the line (x = 0.23 m, z =

0.425 m)

128

Figure 4.16 Temperature variations in freezer at line (y =1.152 m, z=0.425 m) 129

Figure 4.17 Temperature variations in freezer at the line (x = 0.23 m, y =

1.152 m)

130

Figure 4.18 Temperature variations in refrigerator at the line (y = 0.51 m, z =

0.425 m)

130

Figure 4.19 Temperature variations in refrigerator at the line (x = 0.23 m, y =

0.51 m)

131

Figure 4.20 Comparison of numerical and experimental temperature results at

symmetry plane of freezer (x=0.23 and z=0.425)

132

Figure 4.21 Comparison of numerical and experimental results at symmetry

plane of refrigerator (x=0.23 and z=0.425)

134

Figure 4.22 Points and lines used for Nusselt number calculation 135

Figure 4.23 Nusselt number variation along the length of the refrigerator 137

Figure 4.24 L-Shaped air distributor 138

Figure 4.25 Dimensions of L-shaped air distributor 139

Figure 4.26 Refrigerators with original and modified air distributors 140

Figure 4.27 Location of vertical line (dash line) in the refrigerator 141

Figure 4.28 Temperature variations along a vertical line at the center for

refrigerator

142

Figure 4.29 Al2O3 nanoparticles suspended in POE oil 144

Figure 4.30 TiO2 nanoparticles suspended in POE oil 144

Figure 4.31 SiO2 nanoparticles suspended in POE oil 145

Figure 4.32 Room temperature 146

Figure 4.33 Temperature variations on freezer floor and ceiling 147

Figure 4.34 Temperature variations on shelf of the freezer compartment 148

Figure 4.35 Temperature variations on two shelves of refrigerator

compartment

149

Figure 4.36 Temperature variations on vegetable shelf and back wall of

refrigerator compartment

150

Figure 4.37 Temperature variations on floor and ceiling of the freezer

compartment

151

Page 19: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

xvi

Figure 4.38 Temperature variations on shelf and back wall of the freezer

compartment

152

Figure 4.39 Temperature variations on two shelves of refrigerator

compartment for 0.1% nanoparticles by volume added to POE oil

153

Figure 4.40 Temperature variations on vegetable shelf and back wall of

refrigerator compartment with the addition of 0.1% nanoparticles

by volume into POE oil

154

Figure 4.41 Comparison of power consumption over a period of one hour 155

Figure 4.42 Comparison of average power consumption for lubricant and

nanolubricants

156

Figure 4.43 Compressor discharge pressure for POE oil and POE oil mix with

0.05% nanoparticles

158

Figure 4.44 Compressor discharge pressure for POE oil and POE oil mix with

0.1% nanoparticles

158

Figure 4.45 Compressor suction pressure for POE oil and POE oil mix with

0.05% nanoparticles

159

Figure 4.46 Compressor suction pressure for POE oil and POE oil mix with

0.1% nanoparticles

159

Figure 4.47 Comparison of COP values 161

Page 20: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

xvii

LIST OF SYMBOLS

g Acceleration due to gravity (m/s2)

h Specific enthalpy (kJ/kg K)

k turbulent kinetic energy

Lref Characteristic length of geometry. (m)

Ma Mach number

Nu Nusselt Number

p Pressure (Pa)

Q̇̇cond Conductive heat transfer rate (kW)

Q̇̇conv Convective heat transfer rate (kW)

QH Heat rejected from Condenser (kJ)

qH Heat rejected from condenser per unit mass (kJ/kg)

QL Heat absorbed in the evaporator (kJ)

qL Heat absorbed in evaporator per unit mass (kJ/kg)

Q̇̇rad Radiation heat transfer rate (kW)

R-11 Trichlorofluoromethane

R113 Trichlorotrifluoroethane.

R134a Refrigerant Tetrafluoroethane

R-744 Refrigerant grade Carbon Dioxide

Ra Rayleigh Number

RABS Thermal resistance of ABS plastic against heat conduction, (kW-1)

Rcond Thermal resistance of a layer against heat conduction, (kW-1)

RCV,i Thermal resistance by convection between the internal wall surfaces

and inside air (kW-1)

RCV,O Thermal resistance by convection between the outside air and

external wall surfaces (kW-1 )

RPU Thermal resistance of polyurethane foam against conduction, (kW-1)

RRAD,i Thermal resistance between the internal wall surfaces of the

refrigerator-freezer, (kW-1)

RRAD,O Thermal resistance between each external wall surface and the

neighbor surfaces, (kW-1)

RST Thermal resistance of steel against heat conduction, (kW-1)

Rtotal Total thermal resistance (m2 kW-1)

Page 21: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

xviii

re, rp, and rw Displacement vectors

s Specific entropy

S_∅ the source term for the general property

SiO2 Silicon dioxide

T Temperature

T∞ Ambient temperature (K)

Tb Bulk air temperature

TiO2 Titanium dioxide

TNS Absolute temperature of the neighboring surface (K)

Ts Surface temperature (K)

u Velocity in x-direction

v Velocity in y-direction

w Velocity in z-direction

wc Work done by compressor per unit mass

α Thermal diffusivity (m2/s)

β Coefficient of volume expansion (K-1)

ε turbulent kinetic energy dissipation rate

μ and μt Viscosity and turbulent viscosity

ν Kinematic viscosity of air (m2/s)

ρ Density (kg/m3)

σ_k Constant

σ_ε Constant

ϕ For a general fluid property such as temperature or pressure

Cμ, Cε1, Cε2 Coefficients in approximated turbulent transport equations

Page 22: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

xix

LIST OF ABBREVIATIONS

ABS Acrylonitrile Butadiene Styrene

AC Alternating Current

AHAM American Household Appliance Manufacturers

ANN Artificial Neural Network

ANSI American National Standards Institute

CFC Chlorofluorocarbons

CFCS CFCs

CFD Computational Fluid Dynamics

CNT Carbon Nano Tube

COP Coefficient of performance

CPU Central Processing Unit

CS Convection Scheme

CTAB Cetyltrimethyl Ammonium Bromide

DNS Direct Numerical Simulation

DO Discrete Ordinates

DOE Department of Energy

DTAB Dodecyltrimethylammonium Bromide

EFD Experimental Fluid Dynamics

EG Ethylene Glycol

EES Engineering Equation Solver

FDM Finite Difference Method

FEM Finite Element Method

FVM Finite Volume Method

GA Genetic Algorithm

GAMBIT Geometry and Model Building Intelligent Toolbox

GWP Global warming potential

GRS Graduate Research Scholarship

HC Hydrocarbon

HCFC Hydrochlorofluorocarbon

HCTAB Hexadecyltrimethylammonium bromide

HEC Higher Education Commission

Page 23: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

xx

HFC Hydro fluorocarbon

HVAC Heating Ventilation and Air-conditioning

IPCC Intergovernmental Panel on Climate Change

ISO International Organization For Standardization

JIS Japanese Industrial Standards

KWH Kilowatt Huor

LBM Lattice Boltzmann method

LES Large-Eddy Simulation

MD Molecular dynamic

MNRO mineral based refrigeration oil

MO Mineral oil

NS Not Specified

ODP Ozone depletion potential

Pe Peclet number

PVP Polyvinyl Pyrrolidone

PISO Pressure-Implicit Split-Operator

PIV particle image velocimetry

POD Proper Orthogonal decomposition

POE Polyol ester oil

PRESTO PREssure STaggering Options

PU Polyurethane

PVD Physical vapor deposition

QUICK Quadratic Upwind Interpolation for Convective Kinetics

RNG Renormalization group

RANS Reynolds Averaged Navier-Stokes

SAE Society Of Automotive Engineers

SDBS Sodium Dodecyl Benzene Sulphonate

SDS Sodium Dodecyl Sulfate

SIMPLE Semi-Implicit Method for Pressure Linked Equation

SIMPLEC SIMPLE-Consistent

ST Steel

UNEP United Nations Environment Program

USA The United States of America

Page 24: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

170

REFERENCES

Afonso, C., & Castro, M. (2010). Air infiltration in domestic refrigerators: The

influence of the magnetic seals conservation. International Journal of

Refrigeration, 33(4), 856-867. doi:10.1016/j.ijrefrig.2009.12.007

Afonso, C., & Matos, J. (2006). The effect of radiation shields around the air condenser

and compressor of a refrigerator on the temperature distribution inside it.

International Journal of Refrigeration, 29(7), 1144-1151.

doi:10.1016/j.ijrefrig.2006.01.006

Afonso, C. F. (2013). Household refrigerators: Forced air ventilation in the compressor

and its positive environmental impact. International Journal of Refrigeration,

36(3), 904-912. doi:10.1016/j.ijrefrig.2012.10.025

Agarwal, D. K., Vaidyanathan, A., & Sunil Kumar, S. (2013). Synthesis and

characterization of kerosene–alumina nanofluids. Applied Thermal Engineering,

60(1-2), 275-284. doi:10.1016/j.applthermaleng.2013.06.049

Alawi, O. A., & Sidik, N. A. C. (2014a). Influence of particle concentration and

temperature on the thermophysical properties of CuO/R134a nanorefrigerant.

International Communications in Heat and Mass Transfer, 58, 79-84.

doi:10.1016/j.icheatmasstransfer.2014.08.038

Alawi, O. A., & Sidik, N. A. C. (2014b). Mathematical correlations on factors affecting

the thermal conductivity and dynamic viscosity of nanorefrigerants.

International Communications in Heat and Mass Transfer, 58(0), 125-131.

doi:http://dx.doi.org/10.1016/j.icheatmasstransfer.2014.08.033

Alawi, O. A., Sidik, N. A. C., & Kherbeet, A. S. (2015). Measurements and correlations

of frictional pressure drop of TiO2/R123 flow boiling inside a horizontal smooth

tube. International Communications in Heat and Mass Transfer, 61, 42-48.

doi:10.1016/j.icheatmasstransfer.2014.12.006

Alawi, O. A., Sidik, N. A. C., & Mohammed, H. A. (2014). A comprehensive review of

fundamentals, preparation and applications of nanorefrigerants. International

Communications in Heat and Mass Transfer, 54(0), 81-95.

doi:http://dx.doi.org/10.1016/j.icheatmasstransfer.2014.03.001

Ansys. (2013). ANSYS Fluent User's Guide 15

Assael, M. J., Metaxa, I. N., Arvanitidis, J., Christofilos, D., & Lioutas, C. (2005).

Thermal Conductivity Enhancement in Aqueous Suspensions of Carbon Multi-

Walled and Double-Walled Nanotubes in the Presence of Two Different

Dispersants. International Journal of Thermophysics, 26(3), 647-664.

doi:10.1007/s10765-005-5569-3

Bansal, P., & Krüger, R. (1995). Test standards for household refrigerators and freezers

I: preliminary comparisons. International Journal of Refrigeration, 18(1), 4-20.

Bartelt, K., Park, Y., Liu, L., & Jacobi, A. (2008). Flow-boiling of R-134a/POE/CuO

nanofluids in a horizontal tube.

Page 25: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

171

Bashirnezhad, K., Rashidi, M. M., Yang, Z., Bazri, S., & Yan, W.-M. (2015). A

comprehensive review of last experimental studies on thermal conductivity of

nanofluids. Journal of Thermal Analysis and Calorimetry. doi:10.1007/s10973-

015-4820-9

Batchelor, G. (1977). The effect of Brownian motion on the bulk stress in a suspension

of spherical particles. Journal of Fluid Mechanics, 83(01), 97-117.

Bayer, O., Oskay, R., Paksoy, A., & Aradag, S. (2013). CFD simulations and reduced

order modeling of a refrigerator compartment including radiation effects. Energy

Conversion and Management, 69, 68-76. doi:10.1016/j.enconman.2013.01.024

Belman-Flores, J. M., Gallegos-Muñoz, A., & Puente-Delgado, A. (2014). Analysis of

the temperature stratification of a no-frost domestic refrigerator with bottom

mount configuration. Applied Thermal Engineering, 65(1-2), 299-307.

doi:10.1016/j.applthermaleng.2014.01.022

Ben Amara, S., Laguerre, O., Charrier-Mojtabi, M. C., Lartigue, B., & Flick, D. (2008).

PIV measurement of the flow field in a domestic refrigerator model:

Comparison with 3D simulations. International Journal of Refrigeration, 31(8),

1328-1340. doi:10.1016/j.ijrefrig.2008.04.005

Bi, S.-s., Shi, L., & Zhang, L.-l. (2008). Application of nanoparticles in domestic

refrigerators. Applied Thermal Engineering, 28(14-15), 1834-1843.

doi:10.1016/j.applthermaleng.2007.11.018

Bi, S., Guo, K., Liu, Z., & Wu, J. (2011). Performance of a domestic refrigerator using

TiO2-R600a nano-refrigerant as working fluid. Energy Conversion and

Management, 52(1), 733-737. doi:10.1016/j.enconman.2010.07.052

Billiard, F. (2005). Refrigerating Equipment, Energy Efficiency and Refrigerants.

Bulletin International Institute of Refrigeration, 85(1), 12-25.

Bobbo, S., Fedele, L., Fabrizio, M., Barison, S., Battiston, S., & Pagura, C. (2010).

Influence of nanoparticles dispersion in POE oils on lubricity and R134a

solubility. International Journal of Refrigeration, 33(6), 1180-1186.

doi:10.1016/j.ijrefrig.2010.04.009

Brinkman, H. C. (1952). The Viscosity of Concentrated Suspensions and Solutions. The

Journal of Chemical Physics, 20(4), 571-571.

doi:doi:http://dx.doi.org/10.1063/1.1700493

Bruggeman, D. A. G. (1935). Berechnung verschiedener physikalischer Konstanten von

heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der

Mischkörper aus isotropen Substanzen. Annalen der Physik, 416(8), 665-679.

doi:doi:10.1002/andp.19354160802

Burris, D. L., & Sawyer, W. G. (2006). Improved wear resistance in alumina-PTFE

nanocomposites with irregular shaped nanoparticles. Wear, 260(7-8), 915-918.

doi:10.1016/j.wear.2005.06.009

Caretto, L., Curr, R., & Spalding, D. (1972). Two numerical methods for three-

dimensional boundary layers. Computer Methods in Applied Mechanics and

Engineering, 1(1), 39-57.

Page 26: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

172

Catton, I. (1978). Natural convection in enclosures. Paper presented at the Proceedings

of the sixth international heat transfer conference.

Cengel. (2003). HEAT TRANSFER A Practicle Approach (pp. 874).

Çengel, Y. A., & Boles, M. A. (2006). Thermodynamics: An Engineering Approach:

McGraw-Hill.

Chandrasekar, M., Suresh, S., & Chandra Bose, A. (2010). Experimental investigations

and theoretical determination of thermal conductivity and viscosity of

Al2O3/water nanofluid. Experimental Thermal and Fluid Science, 34(2), 210-

216. doi:10.1016/j.expthermflusci.2009.10.022

Chang, H., Jwo, C. S., Fan, P. S., & Pai, S. H. (2006). Process optimization and material

properties for nanofluid manufacturing. The International Journal of Advanced

Manufacturing Technology, 34(3-4), 300-306. doi:10.1007/s00170-006-0597-0

Chen, L., Xie, H., Li, Y., & Yu, W. (2008). Nanofluids containing carbon nanotubes

treated by mechanochemical reaction. Thermochimica Acta, 477(1), 21-24.

Chen, S., & Doolen, G. D. (1998). Lattice Boltzmann method for fluid flows. Annual

review of fluid mechanics, 30(1), 329-364.

Cheng, L., & Liu, L. (2013). Boiling and two-phase flow phenomena of refrigerant-

based nanofluids: Fundamentals, applications and challenges. International

Journal of Refrigeration, 36(2), 421-446. doi:10.1016/j.ijrefrig.2012.11.010

Chevalier, J., Tillement, O., & Ayela, F. (2007). Rheological properties of nanofluids

flowing through microchannels. Applied physics letters, 91(23), 233103-

233103-233103.

Choi, S., Zhang, Z., Yu, W., Lockwood, F., & Grulke, E. (2001). Anomalous thermal

conductivity enhancement in nanotube suspensions. Applied physics letters,

79(14), 2252-2254.

Choi, S. U. S., & Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with

nanoparticles.

Colomer, G., Costa, M., Cònsul, R., & Oliva, A. (2004). Three-dimensional numerical

simulation of convection and radiation in a differentially heated cavity using the

discrete ordinates method. International Journal of heat and Mass transfer,

47(2), 257-269. doi:10.1016/s0017-9310(03)00387-9

Conceição António, C., & Afonso, C. F. (2011). Air temperature fields inside

refrigeration cabins: A comparison of results from CFD and ANN modelling.

Applied Thermal Engineering, 31(6-7), 1244-1251.

doi:10.1016/j.applthermaleng.2010.12.027

Cremaschi, L. (2004). EXPERIMENTAL AND THEORETICAL INVESTIGATION

OF OIL RETENTION IN VAPOR COMPRESSION SYSTEMS.

Das, S. K., Choi, S. U., Yu, W., & Pradeep, T. (2007). Nanofluids: Science and

Technology: JOHN WILEY & SONS, INC.

Page 27: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

173

Das, S. K., Choi, S. U. S., & Patel, H. E. (2006). Heat Transfer in Nanofluids—A

Review. Heat Transfer Engineering, 27(10), 3-19.

doi:10.1080/01457630600904593

Das, S. K., Putra, N., Thiesen, P., & Roetzel, W. (2003). Temperature Dependence of

Thermal Conductivity Enhancement for Nanofluids. Journal of Heat Transfer,

125(4), 567. doi:10.1115/1.1571080

De Bruijn, H. (1942). The viscosity of suspensions of spherical particles.(The

fundamental η‐ c and φ relations). Recueil des travaux chimiques des Pays-Bas,

61(12), 863-874.

Deng, Q.-H., & Tang, G.-F. (2002). Special treatment of pressure correction based on

continuity conservation in a pressure-based algorithm. Numerical Heat Transfer:

Part B: Fundamentals, 42(1), 73-92.

Ding, G.-L., Qiao, H.-T., & Lu, Z.-L. (2004). Ways to improve thermal uniformity

inside a refrigerator. Applied Thermal Engineering, 24(13), 1827-1840.

doi:10.1016/j.applthermaleng.2004.01.011

Ding, G., Peng, H., Jiang, W., & Gao, Y. (2009). The migration characteristics of

nanoparticles in the pool boiling process of nanorefrigerant and nanorefrigerant–

oil mixture. International Journal of Refrigeration, 32(1), 114-123.

doi:10.1016/j.ijrefrig.2008.08.007

Eastman, J., Choi, U., Li, S., Thompson, L., & Lee, S. (1996). Enhanced thermal

conductivity through the development of nanofluids. Paper presented at the MRS

proceedings.

Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., & Thompson, L. J. (2001). Anomalously

increased effective thermal conductivities of ethylene glycol-based nanofluids

containing copper nanoparticles. Applied physics letters, 78(6), 718-720.

doi:doi:http://dx.doi.org/10.1063/1.1341218

Eastman, J. A., Phillpot, S., Choi, S., & Keblinski, P. (2004). Thermal transport in

nanofluids. Annu. Rev. Mater. Res., 34, 219-246.

Eastman, S. U. S. C. a. J. A. (1995). Enhancing thermal conductivity of fluids with

nanoparticles. ASME International Mechanical Engineering Congress &

Exposition, November 12-17, 1995, San Francisco, CA.

Eilers, H. (1941). The viscosity of the emulsion of highly viscous substances as function

of concentration. Kolloid-Zeitschrift, 97(3), 313-321.

Einstein, A. (1906). Eine neue bestimmung der moleküldimensionen. Annalen der

Physik, 324(2), 289-306.

Einstein, A. (1906). A NEW DETERMINATION OF MOLECULAR DIMENSIONS.

Annalen der Physik, 324(2), 289-306. doi:10.1002/andp.19063240204

Elcock, D. (2007). Potential impacts of nanotechnology on energy transmission

applications and needs. Retrieved from

Page 28: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

174

Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion,

and related problems. Paper presented at the Proceedings of the Royal Society

of London A: Mathematical, Physical and Engineering Sciences.

Farbod, M., asl, R. K., & abadi, A. R. N. (2015). Morphology dependence of thermal

and rheological properties of oil-based nanofluids of CuO nanostructures.

Colloids and Surfaces A: Physicochemical and Engineering Aspects(0).

doi:http://dx.doi.org/10.1016/j.colsurfa.2015.02.049

Farid, M. M. (2010). Mathematical modeling of food processing: CRC Press.

Ferrouillat, S., Bontemps, A., Poncelet, O., Soriano, O., & Gruss, J.-A. (2013).

Influence of nanoparticle shape factor on convective heat transfer and energetic

performance of water-based SiO2 and ZnO nanofluids. Applied Thermal

Engineering, 51(1-2), 839-851. doi:10.1016/j.applthermaleng.2012.10.020

Frankel, N., & Acrivos, A. (1967). On the viscosity of a concentrated suspension of

solid spheres. Chemical Engineering Science, 22(6), 847-853.

Fu, L., Wang, R., Cong, W., Li, Q., & Wu, Y. (2008). Experiment study on

performance of refrigerator using nano-particle additive. Journal of Xi’an

Jiaotong University, 42, 852-854.

Fukuyo, K., Tanaami, T., & Ashida, H. (2003). Thermal uniformity and rapid cooling

inside refrigerators. International Journal of Rerfrigeration, 26, 249-255.

Garg, P., Alvarado, J. L., Marsh, C., Carlson, T. A., Kessler, D. A., & Annamalai, K.

(2009). An experimental study on the effect of ultrasonication on viscosity and

heat transfer performance of multi-wall carbon nanotube-based aqueous

nanofluids. International Journal of heat and Mass transfer, 52(21-22), 5090-

5101. doi:10.1016/j.ijheatmasstransfer.2009.04.029

Ghadimi, A., Saidur, R., & Metselaar, H. S. C. (2011). A review of nanofluid stability

properties and characterization in stationary conditions. International Journal of

heat and Mass transfer, 54(17-18), 4051-4068.

doi:10.1016/j.ijheatmasstransfer.2011.04.014

Gleiter, H. (1989). Nanocrystalline materials. progress in Materials Science, 33(4), 223-

315.

Goharshadi, E. K., Ding, Y., Jorabchi, M. N., & Nancarrow, P. (2009). Ultrasound-

assisted green synthesis of nanocrystalline ZnO in the ionic liquid

[hmim][NTf2]. Ultrason Sonochem, 16(1), 120-123.

doi:10.1016/j.ultsonch.2008.05.017

Grades, E. d. (2011). Modelling of domestic refrigerators’ energy consumption under

real life conditions in Europe. Rheinischen Friedrich-Wilhelms-Universität zu

Bonn.

Graham, A. L. (1981). On the viscosity of suspensions of solid spheres. Applied

Scientific Research, 37(3-4), 275-286.

Page 29: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

175

Gupta, J. K., Ram Gopal, M., & Chakraborty, S. (2007). Modeling of a domestic frost-

free refrigerator. International Journal of Refrigeration, 30(2), 311-322.

doi:10.1016/j.ijrefrig.2006.06.006

Hamilton, R. L., & Crosser, O. K. (1962). Thermal Conductivity of Heterogeneous

Two-Component Systems. Industrial & Engineering Chemistry Fundamentals,

1(3), 187-191. doi:10.1021/i160003a005

Harlow, F. H., & Welch, J. E. (1965). Numerical calculation of time-dependent viscous

incompressible flow of fluid with free surface. Physics of fluids, 8(12), 2182.

He, Y., Jin, Y., Chen, H., Ding, Y., Cang, D., & Lu, H. (2007). Heat transfer and flow

behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing

upward through a vertical pipe. International Journal of heat and Mass transfer,

50(11–12), 2272-2281.

doi:http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.10.024

Henderson, K., Park, Y.-G., Liu, L., & Jacobi, A. M. (2010). Flow-boiling heat transfer

of R-134a-based nanofluids in a horizontal tube. International Journal of heat

and Mass transfer, 53(5-6), 944-951.

doi:10.1016/j.ijheatmasstransfer.2009.11.026

Hu, Z. S., Lai, R., Lou, F., Wang, L., Chen, Z., Chen, G., & Dong, J. (2002).

Preparation and tribological properties of nanometer magnesium borate as

lubricating oil additive. Wear, 252(5), 370-374.

Huang, X., Neretina, S., & El-Sayed, M. A. (2009). Gold nanorods: from synthesis and

properties to biological and biomedical applications. Adv Mater, 21(48), 4880-

4910. doi:10.1002/adma.200802789

Hwang, Y., Lee, J.-K., Lee, J.-K., Jeong, Y.-M., Cheong, S.-i., Ahn, Y.-C., & Kim, S.

H. (2008). Production and dispersion stability of nanoparticles in nanofluids.

Powder Technology, 186(2), 145-153. doi:10.1016/j.powtec.2007.11.020

Hwang, Y., Park, H. S., Lee, J. K., & Jung, W. H. (2006). Thermal conductivity and

lubrication characteristics of nanofluids. Current Applied Physics, 6, e67-e71.

doi:10.1016/j.cap.2006.01.014

Hwang, Y. J., Ahn, Y. C., Shin, H. S., Lee, C. G., Kim, G. T., Park, H. S., & Lee, J. K.

(2006). Investigation on characteristics of thermal conductivity enhancement of

nanofluids. Current Applied Physics, 6(6), 1068-1071.

doi:10.1016/j.cap.2005.07.021

I.M. Mahbubul1*, R. S., 2 and M.A. Amalina1. (2012). INVESTIGATION OF

VISCOSITY OF R123-TIO2 NANOREFRIGERANT. International Journal of

Mechanical and Materials Engineering, Vol. 7(2), 146-151.

Incropera, F. P. (2007). Fundamentals of heat and mass transfer: John Wiley.

Intergovernmental Panel on Climate Change (IPCC). (2007). IPCC Fourth Assessment

Report: Climate Change 2007: Working Group 1: The Physical Science Basis:

2.10.2 Direct Global Warming Potentials

Page 30: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

176

Javadi, F. S., & Saidur, R. (2013). Energetic, economic and environmental impacts of

using nanorefrigerant in domestic refrigerators in Malaysia. Energy Conversion

and Management, 73, 335-339. doi:10.1016/j.enconman.2013.05.013

Jeong, J., Li, C., Kwon, Y., Lee, J., Kim, S. H., & Yun, R. (2013). Particle shape effect

on the viscosity and thermal conductivity of ZnO nanofluids. International

Journal of Refrigeration, 36(8), 2233-2241. doi:10.1016/j.ijrefrig.2013.07.024

Jiang, L., Gao, L., & Sun, J. (2003). Production of aqueous colloidal dispersions of

carbon nanotubes. J Colloid Interface Sci, 260(1), 89-94. doi:10.1016/s0021-

9797(02)00176-5

Jiang, W. T., Ding, G. L., & Peng, H. (2009). Measurement and model on thermal

conductivities of carbon nanotube nanorefrigerants. International Journal of

Thermal Sciences, 48(6), 1108-1115. doi:10.1016/j.ijthermalsci.2008.11.012

Jin, H., Xianju, W., Qiong, L., Xueyi, W., Yunjin, Z., & Liming, L. (2009, 14-16 Aug.

2009). Influence of pH on the Stability Characteristics of Nanofluids. Paper

presented at the Photonics and Optoelectronics, 2009. SOPO 2009. Symposium

on.

Jwo, C.-S., Jeng, L.-Y., Chang, H., & Teng, T.-P. (2008). Experimental study on

thermal conductivity of lubricant containing nanoparticles. Rev. Adv. Mater. Sci,

18, 660-666.

Jwo, C.-S., Jeng, L.-Y., Teng, T.-P., & Chang, H. (2009). Effects of nanolubricant on

performance of hydrocarbon refrigerant system. Journal of Vacuum Science &

Technology B: Microelectronics and Nanometer Structures, 27(3), 1473-1477.

Keblinski, P., Phillpot, S., Choi, S., & Eastman, J. (2002). Mechanisms of heat flow in

suspensions of nano-sized particles (nanofluids). International Journal of heat

and Mass transfer, 45(4), 855-863.

Kedzierski, M. (2012). R134a/Al2O3 nanolubricant mixture pool boiling on a

rectangular finned surface. Journal of Heat Transfer, 134(12), 121501.

Kedzierski, M. A. (2011). Effect of Al2O3 nanolubricant on R134a pool boiling heat

transfer. International Journal of Refrigeration, 34(2), 498-508.

doi:10.1016/j.ijrefrig.2010.10.007

Kedzierski, M. A. (2012). Effect of diamond nanolubricant on R134a pool boiling heat

transfer. Journal of Heat Transfer, 134(5), 051001.

Kedzierski, M. A. (2013). Viscosity and density of aluminum oxide nanolubricant.

International Journal of Refrigeration, 36(4), 1333-1340.

doi:10.1016/j.ijrefrig.2013.02.017

Kedzierski, M. A. (2015). Effect of concentration on R134a/Al2O3 nanolubricant

mixture boiling on a reentrant cavity surface. International Journal of

Refrigeration, 49, 36-48. doi:10.1016/j.ijrefrig.2014.09.012

Kedzierski, M. A., & Gong, M. (2009). Effect of CuO nanolubricant on R134a pool

boiling heat transfer. International Journal of Refrigeration, 32(5), 791-799.

doi:10.1016/j.ijrefrig.2008.12.007

Page 31: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

177

Khalifa, A.-J. N. (2001a). Natural convective heat transfer coefficent - a review

I. Isolated vertical and horizontal surfaces. Energy Conversion and Management, 42(4),

491-504.

Khalifa, A.-J. N. (2001b). Natural convective heat transfer coefficient–a review: II.

Surfaces in two-and three-dimensional enclosures. Energy Conversion and

Management, 42(4), 505-517.

Kim, H. S., Sim, J. S., & Ha, J. S. (2011). A study on the heat transfer characteristics

near the magnetic door gasket of a refrigerator. International Communications in

Heat and Mass Transfer, 38(9), 1226-1231.

doi:10.1016/j.icheatmasstransfer.2011.06.008

Knackstedt, L. N. (1995). A study of convective and mass heat transfer in a residential

refrigerator during open door conditions. Retrieved from

Koo, J., & Kleinstreuer, C. (2005). Laminar nanofluid flow in microheat-sinks.

International Journal of heat and Mass transfer, 48(13), 2652-2661.

doi:10.1016/j.ijheatmasstransfer.2005.01.029

Krieger, I. M. (1972). Rheology of monodisperse latices. Advances in Colloid and

Interface Science, 3(2), 111-136.

Krieger, I. M., & Dougherty, T. J. (1959). A mechanism for non‐ Newtonian flow in

suspensions of rigid spheres. Transactions of The Society of Rheology (1957-

1977), 3(1), 137-152.

Krishna Sabareesh, R., Gobinath, N., Sajith, V., Das, S., & Sobhan, C. B. (2012).

Application of TiO2 nanoparticles as a lubricant-additive for vapor compression

refrigeration systems – An experimental investigation. International Journal of

Refrigeration, 35(7), 1989-1996. doi:10.1016/j.ijrefrig.2012.07.002

Kulkarni, D. P., Das, D. K., & Chukwu, G. A. (2006). Temperature dependent

rheological property of copper oxide nanoparticles suspension (nanofluid).

Journal of nanoscience and nanotechnology, 6(4), 1150-1154.

Kumar, D. S., & Elansezhian, R. (2012). Experimental study on Al2O3-R134a nano

refrigerant in refrigeration system. International Journal of Modern Engineering

Research (IJMER), 2(5), 3927-3929.

Kumar, P., & Ganesan, R. (2012). A CFD study of turbulent convective heat transfer

enhancement in circular pipeflow. International Journal of Civil and

Environmental Engineering, 6, 385-392.

Kumar, R. R., Sridhar, K., & Narasimha, M. (2013). Heat transfer enhancement in

domestic refrigerator using R600a/mineral oil/nano-Al2O3 as working fluid.

International Journal of Computational Engineering Research, 3(4), 42-51.

Kumlutaş, D., Karadeniz, Z. H., Avcı, H., & Özşen, M. (2012). Investigation of design

parameters of a domestic refrigerator by artificial neural networks and numerical

simulations. International Journal of Refrigeration, 35(6), 1678-1689.

doi:10.1016/j.ijrefrig.2012.02.011

Page 32: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

178

Lacerda, V. T., Melo, C., Barbosa, J. R., & Duarte, P. O. O. (2005). Measurements of

the air flow field in the freezer compartment of a top-mount no-frost refrigerator:

the effect of temperature. International Journal of Refrigeration, 28(5), 774-783.

doi:10.1016/j.ijrefrig.2004.10.009

Laguerre, O. (2010). Heat Transfer and Air Flow in a Domestic Refrigerator

Mathematical modeling of food processing (pp. 445-474). Boca Raton, USA:

CRC Press.

Laguerre, O., Ben Amara, S., Charrier-Mojtabi, M. C., Lartigue, B., & Flick, D. (2008).

Experimental study of air flow by natural convection in a closed cavity:

Application in a domestic refrigerator. Journal of Food Engineering, 85(4), 547-

560. doi:10.1016/j.jfoodeng.2007.08.023

Laguerre, O., Ben Amara, S., & Flick, D. (2005). Experimental study of heat transfer by

natural convection in a closed cavity: application in a domestic refrigerator.

Journal of Food Engineering, 70(4), 523-537.

doi:10.1016/j.jfoodeng.2004.10.007

Laguerre, O., Ben Amara, S., Moureh, J., & Flick, D. (2007). Numerical simulation of

air flow and heat transfer in domestic refrigerators. Journal of Food

Engineering, 81(1), 144-156. doi:10.1016/j.jfoodeng.2006.10.029

Laguerre, O., Benamara, S., & Flick, D. (2010). Numerical simulation of simultaneous

heat and moisture transfer in a domestic refrigerator. International Journal of

Refrigeration, 33(7), 1425-1433. doi:10.1016/j.ijrefrig.2010.04.010

Laguerre, O., & Flick, D. (2004). Heat transfer by natural convection in domestic

refrigerators. Journal of Food Engineering, 62(1), 79-88. doi:10.1016/s0260-

8774(03)00173-0

LalKundan, G. S. D. (2013). Experimental Investigation of the Viscous Behavior of

Al2O3 Based Nanorefrigerant. International Journal on Theoretical and Applied

Research in Mechanical Engineering (IJTARME), 2(3).

Lee, J.-H., Hwang, K. S., Jang, S. P., Lee, B. H., Kim, J. H., Choi, S. U., & Choi, C. J.

(2008). Effective viscosities and thermal conductivities of aqueous nanofluids

containing low volume concentrations of Al2O3 nanoparticles. International

Journal of heat and Mass transfer, 51(11-12), 2651-2656.

Lee, J., Cho, S., Hwang, Y., Lee, C., & Kim, S. H. (2007). Enhancement of lubrication

properties of nano-oil by controlling the amount of fullerene nanoparticle

additives. Tribology Letters, 28(2), 203-208.

Lee, J. H. (2009). Convection performance of nanofluids for electronics cooling.

(3351458 Ph.D.), Stanford University, Ann Arbor. Retrieved from

http://search.proquest.com/docview/305000130?accountid=29391 ProQuest

Dissertations & Theses Global database.

Lee, K., Hwang, Y., Cheong, S., Kwon, L., Kim, S., & Lee, J. (2009). Performance

evaluation of nano-lubricants of fullerene nanoparticles in refrigeration mineral

oil. Current Applied Physics, 9(2), e128-e131. doi:10.1016/j.cap.2008.12.054

Page 33: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

179

Lee, S., Choi, S. U. S., Li, S., & Eastman, J. A. (1999). Measuring Thermal

Conductivity of Fluids Containing Oxide Nanoparticles. Journal of Heat

Transfer, 121(2), 280-289. doi:10.1115/1.2825978

Li, H., Wang, L., He, Y., Hu, Y., Zhu, J., & Jiang, B. (2014). Experimental

investigation of thermal conductivity and viscosity of ethylene glycol based ZnO

nanofluids. Applied Thermal Engineering.

doi:10.1016/j.applthermaleng.2014.10.071

Li, X., Zou, C., Lei, X., & Li, W. (2015). Stability and enhanced thermal conductivity

of ethylene glycol-based SiC nanofluids. International Journal of heat and Mass

transfer, 89, 613-619. doi:10.1016/j.ijheatmasstransfer.2015.05.096

Li, X. F., Zhu, D. S., Wang, X. J., Wang, N., Gao, J. W., & Li, H. (2008). Thermal

conductivity enhancement dependent pH and chemical surfactant for Cu-H2O

nanofluids. Thermochimica Acta, 469(1-2), 98-103.

doi:10.1016/j.tca.2008.01.008

Lin, S., & Tsai, M. (2011). An integrated study of the design method for small axial-

flow fans, based on the airfoil theory. Proceedings of the Institution of

Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,

225(4), 885-895.

Lin, W., & Armfield, S. (2001). Natural convection cooling of rectangular and

cylindrical containers. International Journal of Heat and Fluid Flow, 22(1), 72-

81.

Liu, Z.-h., Xiong, J.-g., & Bao, R. (2007). Boiling heat transfer characteristics of

nanofluids in a flat heat pipe evaporator with micro-grooved heating surface.

International Journal of Multiphase Flow, 33(12), 1284-1295.

doi:10.1016/j.ijmultiphaseflow.2007.06.009

Lu, W.-Q., & Fan, Q.-M. (2008). Study for the particle's scale effect on some

thermophysical properties of nanofluids by a simplified molecular dynamics

method. Engineering Analysis with Boundary Elements, 32(4), 282-289.

doi:10.1016/j.enganabound.2007.10.006

Lundgren, T. S. (1972). Slow flow through stationary random beds and suspensions of

spheres. Journal of Fluid Mechanics, 51(02), 273-299.

Madni, I., Hwang, C.-Y., Park, S.-D., Choa, Y.-H., & Kim, H.-T. (2010). Mixed

surfactant system for stable suspension of multiwalled carbon nanotubes.

Colloids and Surfaces A: Physicochemical and Engineering Aspects, 358(1-3),

101-107. doi:10.1016/j.colsurfa.2010.01.030

Mahbubul, I., Saidur, R., & Amalina, M. (2011). PRESSURE DROP

CHARACTERISTICS OF TIO2–R123 NANOREFRIGERANT IN A

CIRCULAR TUBE. Engineering e-Transaction (ISSN 1823-6379), 6(2), 124-

130.

Mahbubul, I. M., Fadhilah, S. A., Saidur, R., Leong, K. Y., & Amalina, M. A. (2013).

Thermophysical properties and heat transfer performance of Al2O3/R-134a

Page 34: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

180

nanorefrigerants. International Journal of heat and Mass transfer, 57(1), 100-

108. doi:10.1016/j.ijheatmasstransfer.2012.10.007

Mahbubul, I. M., Kamyar, A., Saidur, R., & Amalina, M. A. (2013). Migration

Properties of TiO2 Nanoparticles during the Pool Boiling of Nanorefrigerants.

Industrial & Engineering Chemistry Research, 52(17), 6032-6038.

doi:10.1021/ie302006n

Mahbubul, I. M., Khaleduzzaman, S. S., Saidur, R., & Amalina, M. A. (2014).

Rheological behavior of Al2O3/R141b nanorefrigerant. International Journal of

heat and Mass transfer, 73, 118-123.

doi:10.1016/j.ijheatmasstransfer.2014.01.073

Mahbubul, I. M., Saadah, A., Saidur, R., Khairul, M. A., & Kamyar, A. (2015). Thermal

performance analysis of Al2O3/R-134a nanorefrigerant. International Journal of

heat and Mass transfer, 85, 1034-1040.

doi:10.1016/j.ijheatmasstransfer.2015.02.038

Mahbubul, I. M., Saidur, R., & Amalina, M. A. (2013a). Heat Transfer and Pressure

Drop Characteristics of Al2O3-R141b Nanorefrigerant in Horizontal Smooth

Circular Tube. Procedia Engineering, 56, 323-329.

doi:10.1016/j.proeng.2013.03.126

Mahbubul, I. M., Saidur, R., & Amalina, M. A. (2013b). Influence of particle

concentration and temperature on thermal conductivity and viscosity of

Al2O3/R141b nanorefrigerant. International Communications in Heat and Mass

Transfer, 43, 100-104. doi:10.1016/j.icheatmasstransfer.2013.02.004

Mahbubul, I. M., Saidur, R., & Amalina, M. A. (2013c). Thermal Conductivity,

Viscosity and Density of R141b Refrigerant based Nanofluid. Procedia

Engineering, 56, 310-315. doi:10.1016/j.proeng.2013.03.124

Mahlia, T. M. I., Masjuki, H. H., Saidur, R., & Amalina, M. A. (2004). Cost–benefit

analysis of implementing minimum energy efficiency standards for household

refrigerator-freezers in Malaysia. Energy Policy, 32(16), 1819-1824.

doi:10.1016/s0301-4215(03)00169-1

Maïga, S. E. B., Palm, S. J., Nguyen, C. T., Roy, G., & Galanis, N. (2005). Heat transfer

enhancement by using nanofluids in forced convection flows. International

Journal of Heat and Fluid Flow, 26(4), 530-546.

doi:10.1016/j.ijheatfluidflow.2005.02.004

Mark, J. E. (2007). Physical Properties of Polymers Handbook: Springer New York.

Masi, M., & Lazzaretto, A. (2012). CFD models for the analysis of rotor-only industrial

axial-flow fans. Paper presented at the Proceedings of FAN 2012 Conference.

France.

Mason, P. J. (1994). Large‐ eddy simulation: A critical review of the technique.

Quarterly Journal of the Royal Meteorological Society, 120(515), 1-26.

Masoud Hosseini, S., Moghadassi, A., & Henneke, D. E. (2010). A new dimensionless

group model for determining the viscosity of nanofluids. Journal of Thermal

Analysis and Calorimetry, 100(3), 873-877.

Page 35: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

181

Maxwell, J. C., & Thompson, J. J. (1904). A treatise on electricity and magnetism (Vol.

2): Clarendon.

Melo, C., Knabben, F. T., & Pereira, P. V. (2013). An experimental study on defrost

heaters applied to frost-free household refrigerators. Applied Thermal

Engineering, 51(1-2), 239-245. doi:10.1016/j.applthermaleng.2012.08.044

Meriläinen, A., Seppälä, A., Saari, K., Seitsonen, J., Ruokolainen, J., Puisto, S., . . . Ala-

Nissila, T. (2013). Influence of particle size and shape on turbulent heat transfer

characteristics and pressure losses in water-based nanofluids. International

Journal of heat and Mass transfer, 61, 439-448.

doi:10.1016/j.ijheatmasstransfer.2013.02.032

Mooney, M. (1951). The viscosity of a concentrated suspension of spherical particles.

Journal of colloid science, 6(2), 162-170.

Munson, B. R., Young, D. F., Okiishi, T. H., & Huebsch, W. W. (2009). Fundamentals

of fluid mechanics: Wiley.

Murshed, S. M. S., Leong, K. C., & Yang, C. (2005). Enhanced thermal conductivity of

TiO2—water based nanofluids. International Journal of Thermal Sciences,

44(4), 367-373. doi:10.1016/j.ijthermalsci.2004.12.005

Murshed, S. M. S., Leong, K. C., & Yang, C. (2008). Investigations of thermal

conductivity and viscosity of nanofluids. International Journal of Thermal

Sciences, 47(5), 560-568. doi:10.1016/j.ijthermalsci.2007.05.004

Namburu, P. K., Kulkarni, D. P., Dandekar, A., & Das, D. K. (2007). Experimental

investigation of viscosity and specific heat of silicon dioxide nanofluids. Micro

Nano Lett, 2(3), 67-71. doi:10.1049/mnl:20070037

Namburu, P. K., Kulkarni, D. P., Misra, D., & Das, D. K. (2007). Viscosity of copper

oxide nanoparticles dispersed in ethylene glycol and water mixture.

Experimental Thermal and Fluid Science, 32(2), 397-402.

doi:10.1016/j.expthermflusci.2007.05.001

Naphon, P., & Thongjing, C. (2014). Pool boiling heat transfer characteristics of

refrigerant-nanoparticle mixtures. International Communications in Heat and

Mass Transfer, 52, 84-89. doi:10.1016/j.icheatmasstransfer.2014.01.014

Nguyen, C. T., Desgranges, F., Galanis, N., Roy, G., Maré, T., Boucher, S., & Angue

Mintsa, H. (2008). Viscosity data for Al2O3–water nanofluid—hysteresis: is

heat transfer enhancement using nanofluids reliable? International Journal of

Thermal Sciences, 47(2), 103-111. doi:10.1016/j.ijthermalsci.2007.01.033

Nguyen, C. T., Desgranges, F., Roy, G., Galanis, N., Maré, T., Boucher, S., & Angue

Mintsa, H. (2007). Temperature and particle-size dependent viscosity data for

water-based nanofluids – Hysteresis phenomenon. International Journal of Heat

and Fluid Flow, 28(6), 1492-1506. doi:10.1016/j.ijheatfluidflow.2007.02.004

Nielsen, L. E. (1970). Generalized equation for the elastic moduli of composite

materials. Journal of Applied Physics, 41(11), 4626-4627.

Page 36: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

182

Ohunakin, O. S., Adelekan, D. S., Gill, J., Atayero, A. A., Atiba, O. E., Okokpujie, I. P.,

& Abam, F. I. (2018). Performance of a hydrocarbon driven domestic

refrigerator based on varying concentration of SiO2 nano-lubricant.

International Journal of Refrigeration, 94, 59-70.

doi:https://doi.org/10.1016/j.ijrefrig.2018.07.022

Oro, J. M. F., Diaz, K. M. A., Morros, C. S., & Vega, M. G. (2011). Numerical

simulation of the unsteady stator‐ rotor interaction in a low‐ speed axial fan

including experimental validation. International Journal of Numerical Methods

for Heat & Fluid Flow, 21(2), 168-197. doi:doi:10.1108/09615531111105380

Padmanabhan, V. M. V., & Palanisamy, S. (2012). The use of TiO2 nanoparticles to

reduce refrigerator ir-reversibility. Energy Conversion and Management, 59,

122-132. doi:10.1016/j.enconman.2012.03.002

Pak, B. C., & Cho, Y. I. (1998). Hydrodynamic and Heat Transfer Study of Dispersed

Fluids with Submicron Metallic Oxide Particles. Experimental Heat Transfer,

11(2), 151-170. doi:10.1080/08916159808946559

Park, K.-J., & Jung, D. (2007a). Boiling heat transfer enhancement with carbon

nanotubes for refrigerants used in building air-conditioning. Energy and

Buildings, 39(9), 1061-1064. doi:10.1016/j.enbuild.2006.12.001

Park, K.-J., & Jung, D. (2007b). Enhancement of nucleate boiling heat transfer using

carbon nanotubes. International Journal of heat and Mass transfer, 50(21-22),

4499-4502. doi:10.1016/j.ijheatmasstransfer.2007.03.012

Pastoriza-Gallego, M. J., Casanova, C., Legido, J. L., & Piñeiro, M. M. (2011). CuO in

water nanofluid: Influence of particle size and polydispersity on volumetric

behaviour and viscosity. Fluid Phase Equilibria, 300(1-2), 188-196.

doi:10.1016/j.fluid.2010.10.015

Patankar, S. V., & Spalding, D. B. (1972). A calculation procedure for heat, mass and

momentum transfer in three-dimensional parabolic flows. International Journal

of heat and Mass transfer, 15(10), 1787-1806.

Patel, H. E., Das, S. K., Sundararajan, T., Sreekumaran Nair, A., George, B., &

Pradeep, T. (2003). Thermal conductivities of naked and monolayer protected

metal nanoparticle based nanofluids: Manifestation of anomalous enhancement

and chemical effects. Applied physics letters, 83(14), 2931-2933.

Paul, G., Philip, J., Raj, B., Das, P. K., & Manna, I. (2011). Synthesis, characterization,

and thermal property measurement of nano-Al95Zn05 dispersed nanofluid

prepared by a two-step process. International Journal of heat and Mass transfer,

54(15-16), 3783-3788. doi:10.1016/j.ijheatmasstransfer.2011.02.044

Peng, H., Ding, G., & Hu, H. (2011a). Effect of surfactant additives on nucleate pool

boiling heat transfer of refrigerant-based nanofluid. Experimental Thermal and

Fluid Science, 35(6), 960-970. doi:10.1016/j.expthermflusci.2011.01.016

Peng, H., Ding, G., & Hu, H. (2011b). Influences of refrigerant-based nanofluid

composition and heating condition on the migration of nanoparticles during pool

Page 37: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

183

boiling. Part I: Experimental measurement. International Journal of

Refrigeration, 34(8), 1823-1832. doi:10.1016/j.ijrefrig.2011.07.010

Peng, H., Ding, G., & Hu, H. (2011c). Influences of refrigerant-based nanofluid

composition and heating condition on the migration of nanoparticles during pool

boiling. Part II: Model development and validation. International Journal of

Refrigeration, 34(8), 1833-1845. doi:10.1016/j.ijrefrig.2011.07.009

Peng, H., Ding, G., Hu, H., & Jiang, W. (2011). Effect of nanoparticle size on nucleate

pool boiling heat transfer of refrigerant/oil mixture with nanoparticles.

International Journal of heat and Mass transfer, 54(9-10), 1839-1850.

doi:10.1016/j.ijheatmasstransfer.2010.12.035

Peng, H., Ding, G., Hu, H., Jiang, W., Zhuang, D., & Wang, K. (2010). Nucleate pool

boiling heat transfer characteristics of refrigerant/oil mixture with diamond

nanoparticles. International Journal of Refrigeration, 33(2), 347-358.

doi:10.1016/j.ijrefrig.2009.11.007

Peng, H., Ding, G., Jiang, W., Hu, H., & Gao, Y. (2009a). Heat transfer characteristics

of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube.

International Journal of Refrigeration, 32(6), 1259-1270.

doi:10.1016/j.ijrefrig.2009.01.025

Peng, H., Ding, G., Jiang, W., Hu, H., & Gao, Y. (2009b). Measurement and correlation

of frictional pressure drop of refrigerant-based nanofluid flow boiling inside a

horizontal smooth tube. International Journal of Refrigeration, 32(7), 1756-

1764. doi:10.1016/j.ijrefrig.2009.06.005

Prasher, R., Song, D., Wang, J., & Phelan, P. (2006). Measurements of nanofluid

viscosity and its implications for thermal applications. Applied physics letters,

89(13), 133108.

RAMAKRISHNAN, A. (2012). INVESTIGATION OF OIL RETENTION AND

PRESSURE DROP IN

SUCTION LINES USING R1234yf, R134a AND R410A WITH POE ISO 100. (Master of

Science), University of Illinois at Urbana-Champaign.

Rasti, M., Hatamipour, M. S., Aghamiri, S. F., & Tavakoli, M. (2012). Enhancement of

domestic refrigerator’s energy efficiency index using a hydrocarbon mixture

refrigerant. Measurement, 45(7), 1807-1813.

doi:http://dx.doi.org/10.1016/j.measurement.2012.04.002

Repice, C., & Stumpf, A. (2007). Energy efficiency in transport refrigeration. Paper

presented at the Proceedings, International Congress of Refrigeration, Beijing,

China, Paper No. ICR07-D2-362.

Reyes-Gavilan, J. L., Flak, G. T., & Tritcak, T. R. (1996). Lubricant return comparison

of naphthenic and polyol ester oils in R-134a household refrigeration

applications (0001-2505). Retrieved from

Robinson, J. V. (1949). The Viscosity of Suspensions of Spheres. The Journal of

Physical Chemistry, 53(7), 1042-1056.

Page 38: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

184

S. Lee, S. U.-S. C., S. Li, J. A. Eastman. (1999). Measuring Thermal Conductivity of

fluids containing oxide nanoparticles. Transaction of the ASME, 121.

Saidur, R., Kazi, S. N., Hossain, M. S., Rahman, M. M., & Mohammed, H. A. (2011). A

review on the performance of nanoparticles suspended with refrigerants and

lubricating oils in refrigeration systems. Renewable and Sustainable Energy

Reviews, 15(1), 310-323. doi:http://dx.doi.org/10.1016/j.rser.2010.08.018

Saitô, N. (1950). Concentration Dependence of the Viscosity of High Polymer

Solutions. I. Journal of the Physical Society of Japan, 5(1), 4-8.

doi:10.1143/JPSJ.5.4

Sajumon.K.T, J. V. J., Sreejith S, Aghil V Menon, Sreeraj Kurup P N, Sarath Sasi.

(2013, December 2013). PERFORMANCE ANALYSIS OF NANOFLUID

BASED LUBRICANT. Paper presented at the International Conference on

Energy and Environment-2013 (ICEE 2013), Department of Civil Engineering

and Mechanical Engineering of Rajiv Gandhi Institute of Technology,

Kottayam, Kerala, India.

Sanukrishna, S. S., Vishnu, S., & Jose Prakash, M. (2018). Experimental investigation

on thermal and rheological behaviour of PAG lubricant modified with SiO2

nanoparticles. Journal of Molecular Liquids, 261, 411-422.

doi:https://doi.org/10.1016/j.molliq.2018.04.066

Shengshan, B., & Lin, S. (2007). Experimental investigation of a refrigerator with a

nano-refrigerant [J]. Journal of Tsinghua University (Science and Technology),

11, 016.

Shoai Naini, S. (2015). Experimental investigation of heat leakage and air leakage in

domestic refrigerators.

Short, G., Rajewski, T., & Oberle, J. (1996). Refrigeration lubricants-Current practice

and future development. Paper presented at the International Refrigeration and

Air Conditioning Conference. http://docs.lib.purdue.edu/iracc/335

Simha, R. (1952). A treatment of the viscosity of concentrated suspensions. Journal of

Applied Physics, 23(9), 1020-1024.

Subramani, N., & Prakash, M. (2011). Experimental studies on a vapour compression

system using nanorefrigerants. International Journal of Engineering, Science

and Technology, 3(9), 95-102.

Subramani.N, A. M., Dr.Jose Prakash.M. (2013). PERFORMANCE STUDIES ON A

VAPOUR COMPRESSION REFRIGERATION SYSTEM USING NANO-

LUBRICANT. Paper presented at the International Conference on Energy and

Environment-2013 (ICEE 2013), Department of Civil Engineering and

Mechanical Engineering of Rajiv Gandhi Institute of Technology, Kottayam,

Kerala, India.

Sun, B., & Yang, D. (2013). Experimental study on the heat transfer characteristics of

nanorefrigerants in an internal thread copper tube. International Journal of heat

and Mass transfer, 64, 559-566. doi:10.1016/j.ijheatmasstransfer.2013.04.031

Page 39: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

185

Tang, X., Zhao, Y.-H., & Diao, Y.-h. (2014). Experimental investigation of the nucleate

pool boiling heat transfer characteristics of δ-Al2O3-R141b nanofluids on a

horizontal plate. Experimental Thermal and Fluid Science, 52, 88-96.

doi:10.1016/j.expthermflusci.2013.08.025

Timofeeva, E. V., Routbort, J. L., & Singh, D. (2009). Particle shape effects on

thermophysical properties of alumina nanofluids. Journal of Applied Physics,

106(1), 014304.

Timofeeva, E. V., Yu, W., France, D. M., Singh, D., & Routbort, J. L. (2011).

Nanofluids for heat transfer: an engineering approach. Nanoscale research

letters, 6(1), 1-7.

Tony John, T. S. K. (2013). Eperimental studies of thermal conductivity , viscosity and

stability of Ethylene Glycol nanofluids International Journal of Innovative

Research in Science, Engineering and Technology.

Trisaksri, V., & Wongwises, S. (2009). Nucleate pool boiling heat transfer of TiO2–

R141b nanofluids. International Journal of heat and Mass transfer, 52(5-6),

1582-1588. doi:10.1016/j.ijheatmasstransfer.2008.07.041

Tseng, W. J., & Lin, K.-C. (2003). Rheology and colloidal structure of aqueous TiO2

nanoparticle suspensions. Materials Science and Engineering: A, 355(1-2), 186-

192. doi:10.1016/s0921-5093(03)00063-7

Van Doormaal, J., & Raithby, G. (1984). Enhancements of the SIMPLE method for

predicting incompressible fluid flows. Numerical heat transfer, 7(2), 147-163.

Vand, V. (1948). Viscosity of solutions and suspensions. I. Theory. The Journal of

Physical Chemistry, 52(2), 277-299.

Verma, P., Chaturvedi, P., Rawat, J., Kumar, M., Pal, S., Bal, M., . . . Bhatnagar, P.

(2007). Elimination of current non-uniformity in carbon nanotube field emitters.

Journal of Materials Science: Materials in Electronics, 18(6), 677-680.

Versteeg, H. K., & Malalasekera, W. (2007). An Introduction to Computational Fluid

Dynamics: The Finite Volume Method: Pearson Education Limited.

Wang, R., Hao, B., Xie, G., & Li, H. (2003). A refrigerating system using HFC134a

and mineral lubricant appended with n-TiO2 (R) as working fluids. Paper

presented at the Proceedings of the 4th International Symposium on HAVC,

Tsinghua University Press, Beijing, China.

Wang, R., Wu, Q., & Wu, Y. (2010). Use of nanoparticles to make mineral oil

lubricants feasible for use in a residential air conditioner employing hydro-

fluorocarbons refrigerants. Energy and Buildings, 42(11), 2111-2117.

doi:10.1016/j.enbuild.2010.06.023

Wang, X.-j., Zhu, D.-s., & yang, S. (2009). Investigation of pH and SDBS on

enhancement of thermal conductivity in nanofluids. Chemical Physics Letters,

470(1-3), 107-111. doi:10.1016/j.cplett.2009.01.035

Page 40: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

186

Wang, X.-Q., & Mujumdar, A. S. (2007). Heat transfer characteristics of nanofluids: a

review. International Journal of Thermal Sciences, 46(1), 1-19.

doi:10.1016/j.ijthermalsci.2006.06.010

Wang, X., Xu, X., & S. Choi, S. U. (1999). Thermal conductivity of nanoparticle-fluid

mixture. Journal of thermophysics and heat transfer, 13(4), 474-480.

Wen, D., & Ding, Y. (2004). Effective thermal conductivity of aqueous suspensions of

carbon nanotubes (carbon nanotube nanofluids). Journal of thermophysics and

heat transfer, 18(4), 481-485.

Wen, D., & Ding, Y. (2005). Experimental investigation into the pool boiling heat

transfer of aqueous based γ-alumina nanofluids. Journal of Nanoparticle

Research, 7(2-3), 265-274.

Wood, D. J., & Rayes, A. (1981). Reliability of algorithms for pipe network analysis.

Journal of the Hydraulics Division, 107(10), 1145-1161.

Wu, J. M., & Zhao, J. (2013). A review of nanofluid heat transfer and critical heat flux

enhancement—Research gap to engineering application. Progress in Nuclear

Energy, 66, 13-24. doi:10.1016/j.pnucene.2013.03.009

Wu, T., & Lei, C. (2015). On numerical modelling of conjugate turbulent natural

convection and radiation in a differentially heated cavity. International Journal

of heat and Mass transfer, 91, 454-466.

doi:10.1016/j.ijheatmasstransfer.2015.07.113

Xian-Ju, W., & Xin-Fang, L. (2009). Influence of pH on nanofluids' viscosity and

thermal conductivity. Chinese Physics Letters, 26(5), 056601.

Xie, H., Wang, J., Xi, T., Liu, Y., Ai, F., & Wu, Q. (2002). Thermal conductivity

enhancement of suspensions containing nanosized alumina particles. Journal of

Applied Physics, 91(7), 4568-4572.

Xing, M., Wang, R., & Yu, J. (2014). Application of fullerene C60 nano-oil for

performance enhancement of domestic refrigerator compressors. International

Journal of Refrigeration, 40, 398-403. doi:10.1016/j.ijrefrig.2013.12.004

Xuan, Y., & Li, Q. (2000). Heat transfer enhancement of nanofluids. International

Journal of Heat and Fluid Flow, 21(1), 58-64.

doi:http://dx.doi.org/10.1016/S0142-727X(99)00067-3

Xuan, Y., & Li, Q. (2003). Investigation on Convective Heat Transfer and Flow

Features of Nanofluids. Journal of Heat Transfer, 125(1), 151.

doi:10.1115/1.1532008

Xuan, Y., & Roetzel, W. (2000). Conceptions for heat transfer correlation of nanofluids.

International Journal of heat and Mass transfer, 43(19), 3701-3707.

Yan, G., Chen, Q., & Sun, Z. (2015). Numerical and experimental study on heat transfer

characteristic and thermal load of the freezer gasket in frost-free refrigerators.

International Journal of Refrigeration. doi:10.1016/j.ijrefrig.2015.10.021

Page 41: A CFD MODEL DEVELOPMENT AND PERFORMANCE ...umpir.ump.edu.my/id/eprint/27974/1/A CFD model...peti sejuk. Model CFD untuk peti sejuk terpilih telah dibangunkan dalam perisian Ansys.

187

Yang, K.-S., Chang, W.-R., Chen, I.-Y., & Wang, C.-C. (2010). An investigation of a

top-mounted domestic refrigerator. Energy Conversion and Management, 51(7),

1422-1427. doi:10.1016/j.enconman.2010.01.016

Yu, W., Xie, H., Li, Y., & Chen, L. (2011). Experimental investigation on thermal

conductivity and viscosity of aluminum nitride nanofluid. Particuology, 9(2),

187-191. doi:10.1016/j.partic.2010.05.014

Zerradi, H., Ouaskit, S., Dezairi, A., Loulijat, H., & Mizani, S. (2014). New Nusselt

number correlations to predict the thermal conductivity of nanofluids. Advanced

Powder Technology, 25(3), 1124-1131. doi:10.1016/j.apt.2014.02.020

Zhao, W., Qu, Q., & Li, Q. (2013). Numerical investigation on the flow field of an axial

flow fan in a direct air-cooled condenser for a large power plant. Heat

Transfer—Asian Research, 42(1), 60-72. doi:10.1002/htj.21027

Zhu, D., Li, X., Wang, N., Wang, X., Gao, J., & Li, H. (2009). Dispersion behavior and

thermal conductivity characteristics of Al2O3–H2O nanofluids. Current Applied

Physics, 9(1), 131-139. doi:10.1016/j.cap.2007.12.008

Zhu, H., Zhang, C., Tang, Y., Wang, J., Ren, B., & Yin, Y. (2007). Preparation and

thermal conductivity of suspensions of graphite nanoparticles. Carbon, 45(1),

226-228.

Zhu, H. T., Lin, Y. S., & Yin, Y. S. (2004). A novel one-step chemical method for

preparation of copper nanofluids. J Colloid Interface Sci, 277(1), 100-103.

doi:10.1016/j.jcis.2004.04.026