Top Banner
University of Toronto 2007 1 65-nm CMOS, W-band Receivers for Imaging Applications Keith Tang Mehdi Khanpour Patrice Garcia* Christophe Garnier* Sorin Voinigescu University of Toronto, *STMicroelectronics
29

65-nm CMOS, W-band Receivers for Imaging Applicationssorinv/papers/kt_cicc_2007_slides.pdf · University of Toronto 2007 1 65-nm CMOS, W-band Receivers for Imaging Applications Keith

Dec 02, 2018

Download

Documents

dangtuong
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 65-nm CMOS, W-band Receivers for Imaging Applicationssorinv/papers/kt_cicc_2007_slides.pdf · University of Toronto 2007 1 65-nm CMOS, W-band Receivers for Imaging Applications Keith

University of Toronto 2007 1

65-nm CMOS, W-band Receivers for Imaging Applications

Keith TangMehdi Khanpour

Patrice Garcia*Christophe Garnier*

Sorin Voinigescu

University of Toronto, *STMicroelectronics

Page 2: 65-nm CMOS, W-band Receivers for Imaging Applicationssorinv/papers/kt_cicc_2007_slides.pdf · University of Toronto 2007 1 65-nm CMOS, W-band Receivers for Imaging Applications Keith

University of Toronto 2007 2

Table of Content

• Motivation

• Circuit Schematics

• Fabrication

• Measurement Results

• Conclusion

Page 3: 65-nm CMOS, W-band Receivers for Imaging Applicationssorinv/papers/kt_cicc_2007_slides.pdf · University of Toronto 2007 1 65-nm CMOS, W-band Receivers for Imaging Applications Keith

University of Toronto 2007 3

Motivation• Investigation of W-band receivers in 65-nm GP CMOS

• CMOS might provide alternatives to III-V and SiGe technology in imaging arrays:•

Broadband (multi-GHz) •

Low noise

Low power •

Small area

• Comparison of two LNA feedback topologies

• Series-series feedback with inductor

• Shunt-series feedback with transformer

Page 4: 65-nm CMOS, W-band Receivers for Imaging Applicationssorinv/papers/kt_cicc_2007_slides.pdf · University of Toronto 2007 1 65-nm CMOS, W-band Receivers for Imaging Applications Keith

University of Toronto 2007 4

Receiver Block Diagram

Page 5: 65-nm CMOS, W-band Receivers for Imaging Applicationssorinv/papers/kt_cicc_2007_slides.pdf · University of Toronto 2007 1 65-nm CMOS, W-band Receivers for Imaging Applications Keith

University of Toronto 2007 5

• Inductive (series-series) feedback LNA

• Input matched by LG and LS

• Noise impedance matched by transistor sizing and biasingSGSTIN RRLfZ ++=ℜ π2}{

LNA – Schematic

Page 6: 65-nm CMOS, W-band Receivers for Imaging Applicationssorinv/papers/kt_cicc_2007_slides.pdf · University of Toronto 2007 1 65-nm CMOS, W-band Receivers for Imaging Applications Keith

University of Toronto 2007 6

• Transformer (shunt-series) feedback LNA

• Input matched by LP , LS and M

• Noise impedance matched by transistor sizing and biasingSP

m

PIN LLkM

MgLZ =⋅

≈ℜ ,}{

LNA – Schematic (2)

Page 7: 65-nm CMOS, W-band Receivers for Imaging Applicationssorinv/papers/kt_cicc_2007_slides.pdf · University of Toronto 2007 1 65-nm CMOS, W-band Receivers for Imaging Applications Keith

University of Toronto 2007 7

• S11 , Γopt < -10 dB from 74-100 GHz for both designs

50 60 70 80 90 100FREQUENCY [GHz]

-30 -30

-25 -25

-20 -20

-15 -15

-10 -10

-5 -5

0 0

5 5

10 10

15 15

20 20

[dB

]

S21S11Γopt

NF50NFMIN

50 60 70 80 90 100FREQUENCY [GHz]

-30 -30

-25 -25

-20 -20

-15 -15

-10 -10

-5 -5

0 0

5 5

10 10

15 15

20 20

[dB

]

S21S11Γopt

NF50NFMIN

LNA – Simulation

ind-feedback xfmr-feedback

Page 8: 65-nm CMOS, W-band Receivers for Imaging Applicationssorinv/papers/kt_cicc_2007_slides.pdf · University of Toronto 2007 1 65-nm CMOS, W-band Receivers for Imaging Applications Keith

University of Toronto 2007 8

Mixer – Schematic

• Gilbert cell mixer with inductive broad-banding

Page 9: 65-nm CMOS, W-band Receivers for Imaging Applicationssorinv/papers/kt_cicc_2007_slides.pdf · University of Toronto 2007 1 65-nm CMOS, W-band Receivers for Imaging Applications Keith

University of Toronto 2007 9

Fabrication• 65-nm GP/LP digital CMOS process

• 7 metal layers

• GP n-MOSFETs (80×60nm×1μm) with gate contacted on one side: fT /fMAX =170 GHz/200 GHz at VDS = 0.7 V

• GP MOSFETs 30% faster than LP MOSFETs and require lower VGS and VDS → lower power

• Gate leakage does not affect mm-wave performance

Page 10: 65-nm CMOS, W-band Receivers for Imaging Applicationssorinv/papers/kt_cicc_2007_slides.pdf · University of Toronto 2007 1 65-nm CMOS, W-band Receivers for Imaging Applications Keith

University of Toronto 2007 10

LNA breakouts – Die Photos

IND-feedback XFMR-feedback

IND

XFMR

490 um x 300um (pad) 120 um x 170 um (core)

Page 11: 65-nm CMOS, W-band Receivers for Imaging Applicationssorinv/papers/kt_cicc_2007_slides.pdf · University of Toronto 2007 1 65-nm CMOS, W-band Receivers for Imaging Applications Keith

University of Toronto 2007 11

Mixer breakout – Die Photo

RFIN

LOIN

IFP

IFN

470 um x 560 um (pad) 190um x 160 um (core)

Page 12: 65-nm CMOS, W-band Receivers for Imaging Applicationssorinv/papers/kt_cicc_2007_slides.pdf · University of Toronto 2007 1 65-nm CMOS, W-band Receivers for Imaging Applications Keith

University of Toronto 2007 12

Receiver – Die Photos

IND-feedback Receiver XFMR-feedback Receiver460 um x 500 um (pad) 160 um x 370 um (core)

Page 13: 65-nm CMOS, W-band Receivers for Imaging Applicationssorinv/papers/kt_cicc_2007_slides.pdf · University of Toronto 2007 1 65-nm CMOS, W-band Receivers for Imaging Applications Keith

University of Toronto 2007 13

60 65 70 75 80 85 90 95FREQUENCY (GHz)

-30 -30

-25 -25

-20 -20

-15 -15

-10 -10

-5 -5

0 0

5 5

10 10

15 15

S21

, S11

(d

B)

S21 (sim.)S21 (meas.)S11 (sim.)S11 (meas.)

60 65 70 75 80 85 90 95FREQUENCY (GHz)

-30 -30

-25 -25

-20 -20

-15 -15

-10 -10

-5 -5

0 0

5 5

10 10

15 15

S21

, S11

(d

B)

S21 (sim.) S21 (meas.)S11 (sim.)S11 (meas.)

Meas. LNA – 1st Spin

ind-feedback xfmr-feedback

• Requires 2.2 V VDD for 8 – 9 dB gain

• 4 – 5 dB below simulation

Page 14: 65-nm CMOS, W-band Receivers for Imaging Applicationssorinv/papers/kt_cicc_2007_slides.pdf · University of Toronto 2007 1 65-nm CMOS, W-band Receivers for Imaging Applications Keith

University of Toronto 2007 14

Measurements for 2nd Spin with Modified Layout

Series resistance in ground metallization of LNA was found in the first spin.

A second spin of the design was fabricated with:• Wider metal lines in ground mesh at top level

• Increased number of vias (even between M5 and M6)

• LNA inductance values adjusted to match @ 80 GHz

Page 15: 65-nm CMOS, W-band Receivers for Imaging Applicationssorinv/papers/kt_cicc_2007_slides.pdf · University of Toronto 2007 1 65-nm CMOS, W-band Receivers for Imaging Applications Keith

University of Toronto 2007 15

65 70 75 80 85 90 95FREQUENCY [GHz]

0

2

4

6

8

10

12

14

16

18

20

22

GA

IN [

dB

]

VDD=1.8V (1st

spin)

VDD=2.2V (1st

spin)

VDD=1.2V (2nd

spin)

VDD=1.5V (2nd

spin)

VDD=1.8V (2nd

spin)

65 70 75 80 85 90 95FREQUENCY [GHz]

0

2

4

6

8

10

12

14

16

18

20

22

GA

IN [

dB

]

VDD=1.8V (1st

spin)

VDD=2.2V (1st

spin)

VDD=1.2V (2nd

spin)

VDD=1.5V (2nd

spin)

VDD=1.8V (2nd

spin)

Meas. LNA – 2nd Spin

• Measured gain @ 1.5 V VDD = 13 dB

ind-feedback xfmr-feedback

Page 16: 65-nm CMOS, W-band Receivers for Imaging Applicationssorinv/papers/kt_cicc_2007_slides.pdf · University of Toronto 2007 1 65-nm CMOS, W-band Receivers for Imaging Applications Keith

University of Toronto 2007 16

65 70 75 80 85 90 95FREQUENCY (GHz)

-40 -40

-30 -30

-20 -20

-10 -10

0 0

10 10

20 20

S21

, S11

(d

B)

S21 (sim.)S11 (sim.)S21 (meas.)S11 (meas.)

65 70 75 80 85 90 95FREQUENCY (GHz)

-40 -40

-30 -30

-20 -20

-10 -10

0 0

10 10

20 20

S21

, S11

(d

B)

S21 (sim.)S11 (sim.)S21 (meas.)S11 (meas.)

2nd Spin LNA – meas. vs sims.

• Meas. gain @ VDD = 1.5 V is 1 – 2 dB below sims.

• S11 < -20 dB from 80 – 90 GHz (xfmr-feedback)

ind-feedback xfmr-feedback

Page 17: 65-nm CMOS, W-band Receivers for Imaging Applicationssorinv/papers/kt_cicc_2007_slides.pdf · University of Toronto 2007 1 65-nm CMOS, W-band Receivers for Imaging Applications Keith

University of Toronto 2007 17

50 60 70 80 90 100FREQUENCY [GHz]

-20 -20

-18 -18

-16 -16

-14 -14

-12 -12

-10 -10

-8 -8

-6 -6

-4 -4

-2 -2

0 0

[dB

]

S11S22S21MAG

Meas. Transformer S-params.

• MAG (loss) < -2 dB between 75 – 95 GHz

Page 18: 65-nm CMOS, W-band Receivers for Imaging Applicationssorinv/papers/kt_cicc_2007_slides.pdf · University of Toronto 2007 1 65-nm CMOS, W-band Receivers for Imaging Applications Keith

University of Toronto 2007 18

70 75 80 85 90 95 100RF FREQUENCY [GHz]

0

1

2

3

4

5

6

7

8

9C

ON

VE

RS

ION

GA

IN [

dB

]

VDD=1.5VVDD=1.8VVDD=1.8V (sim.)

IF = 1GHz

Meas. Mixer – Conversion Gain

• 1 – 2 dB below simulation

Page 19: 65-nm CMOS, W-band Receivers for Imaging Applicationssorinv/papers/kt_cicc_2007_slides.pdf · University of Toronto 2007 1 65-nm CMOS, W-band Receivers for Imaging Applications Keith

University of Toronto 2007 19

74 76 78 80 82 84 86 88 90 92 94 96 98RF FREQUENCY [GHz]

0

2

4

6

8

10

12

14

16

NO

ISE

FIG

UR

E [

dB

]

NFMIXER, VDD=1.5VNFMIXER, VDD=1.8V

IF = 1GHz

Meas. Mixer – NFDSB

• Includes ~2 dB transformer loss

• Lowest NFDSB mixer at 80 – 90 GHz in silicon

Page 20: 65-nm CMOS, W-band Receivers for Imaging Applicationssorinv/papers/kt_cicc_2007_slides.pdf · University of Toronto 2007 1 65-nm CMOS, W-band Receivers for Imaging Applications Keith

University of Toronto 2007 20

0 5 10 15 20IF FREQUENCY [GHz]

0 0

5 5

10 10

15 15

20 20

NF

DS

B [

dB

]

VDD=1.2VVDD=1.5VVDD=1.8V

0 5 10 15 20IF FREQUENCY [GHz]

0 0

5 5

10 10

15 15

20 20

CO

NV

ER

SIO

N G

AIN

[d

B]

VDD=1.2VVDD=1.5VVDD=1.8V

Meas. Rx Gain, NFDSB vs IF

• NFDSB ~7 – 8 dB, LO @ 89 GHzXFMR-feedback RCVR

Page 21: 65-nm CMOS, W-band Receivers for Imaging Applicationssorinv/papers/kt_cicc_2007_slides.pdf · University of Toronto 2007 1 65-nm CMOS, W-band Receivers for Imaging Applications Keith

University of Toronto 2007 21

70 75 80 85 90 95RF FREQUENCY [GHz]

0

5

10

15G

AIN

, NF

[d

B]

GAINRCVRNFDSB RCVR

-40

-30

-20

-10

0

10

20

S11

[d

B]

S11

IF = 1GHz

Meas. Rx Gain, NFDSB vs RF

• 3dB-bandwidth: 75- – 91 GHz

Page 22: 65-nm CMOS, W-band Receivers for Imaging Applicationssorinv/papers/kt_cicc_2007_slides.pdf · University of Toronto 2007 1 65-nm CMOS, W-band Receivers for Imaging Applications Keith

University of Toronto 2007 22

-30 -25 -20 -15 -10 -5 0PIN [dBm]

-15

-10

-5

0

5

10

15G

AIN

[d

B]

-15

-10

-5

0

5

10

15

PO

UT [

dB

m]

LO = 75GHzRF = 80GHz

P1dB = -16.2dBm

• LO @ 75 GHz due to equipment limitation

Receiver – P1dB

Page 23: 65-nm CMOS, W-band Receivers for Imaging Applicationssorinv/papers/kt_cicc_2007_slides.pdf · University of Toronto 2007 1 65-nm CMOS, W-band Receivers for Imaging Applications Keith

University of Toronto 2007 23

75 80 85 90FREQUENCY [GHz]

0 0

2 2

4 4

6 6

8 8

10 10

12 12

14 14

16 16

[dB

]

GAIN, VDD=1.5VGAIN, VDD=1.8VNF50, VDD=1.5VNF50, VDD=1.8V

LNA

MIXERRCVRLNA

MIXERRCVRLNA

GFFF

GGG1−

−=

−=Estimated LNA NF

XFMR-feedback LNA

• LNA gain peaks at frequency higher than measured (output pad capacitance removed)

• LNA NF50 ~6 – 7 dB

Page 24: 65-nm CMOS, W-band Receivers for Imaging Applicationssorinv/papers/kt_cicc_2007_slides.pdf · University of Toronto 2007 1 65-nm CMOS, W-band Receivers for Imaging Applications Keith

University of Toronto 2007 24

2nd

Spin

1.2 24 11.1 20 48 6.1 9 – 10< -10

(74-95+ GHz)1.5 34 13.4 30 71 13.6 7 – 8

1.8 48 14.9 45 104 17.7 6 – 7

1st

Spin

VDD

[V]

LNA IF Buffer Receiver

Pdiss

[mW]

Gain

[dB]

Pdiss

[mW]

Pdiss

[mW]

Gain

[dB]

NF

[dB]

S11

[dB]

1.8 38 5.8 47 95 11.6 9 – 10 < -10

(80-95+ GHz)2.2 57 7.8 75 150 13.5 8 – 9

Summary of Results

• Dramatic increase in performance just with better top-level ground mesh and vias

• ~ ½ of Pdiss used in IF buffer to drive 50Ω

off-chip

Page 25: 65-nm CMOS, W-band Receivers for Imaging Applicationssorinv/papers/kt_cicc_2007_slides.pdf · University of Toronto 2007 1 65-nm CMOS, W-band Receivers for Imaging Applications Keith

University of Toronto 2007 25

Conclusion• 74 – 94 GHz receiver with 8 dB NF and 13 dB gain

demonstrated in 65 nm GP CMOS technology.

• Inductive-feedback and transformer-feedback LNA topologies presented:

• Similar performance achieved by different matching procedures

• Layout style significantly affects circuit performance.

• Post-layout simulation at top-level, with ground mesh must be carried out.

Page 26: 65-nm CMOS, W-band Receivers for Imaging Applicationssorinv/papers/kt_cicc_2007_slides.pdf · University of Toronto 2007 1 65-nm CMOS, W-band Receivers for Imaging Applications Keith

University of Toronto 2007 26

Acknowledgement• Katya Laskin for measurements on the second-spin

• Alex Tomkins for inductor and transformer measurements

• Jaro Pristupa and CMC for CAD tools

• Bernard Sautreuil of STM for facilitating the technology access

• CITO for funding

• ECTI, NSERC, CFI and OIF for equipment

Page 27: 65-nm CMOS, W-band Receivers for Imaging Applicationssorinv/papers/kt_cicc_2007_slides.pdf · University of Toronto 2007 1 65-nm CMOS, W-band Receivers for Imaging Applications Keith

University of Toronto 2007 27

• S11 matched at 93 GHz for inductive-feedback LNA (increase LG )

65 70 75 80 85 90 95FREQUENCY [GHz]

-30 -30

-25 -25

-20 -20

-15 -15

-10 -10

-5 -5

0 0

5 5

10 10

15 15

20 20

S11

, S21

[d

B]

VDD=1.2VVDD=1.5VVDD=1.8V

65 70 75 80 85 90 95FREQUENCY [GHz]

-30 -30

-25 -25

-20 -20

-15 -15

-10 -10

-5 -5

0 0

5 5

10 10

15 15

20 20

S11

, S21

[d

B]

VDD=1.2VVDD=1.5VVDD=1.8V

2nd spin LNA – Meas. Gain

IND-feedback LNA XFMR-feedback LNA

Page 28: 65-nm CMOS, W-band Receivers for Imaging Applicationssorinv/papers/kt_cicc_2007_slides.pdf · University of Toronto 2007 1 65-nm CMOS, W-band Receivers for Imaging Applications Keith

University of Toronto 2007 28

-15 -10 -5 0 5

LO POWER [dBm]

-5

0

5

10

15

20

CO

NV

ER

SIO

N G

AIN

[d

B]

VDD=1.8VVDD=2.0VVDD=2.2V

LO = 85GHzRF = 84.5GHz

-15 -10 -5 0 5

LO POWER [dBm]

-5

0

5

10

15

20

CO

NV

ER

SIO

N G

AIN

[d

B]

VDD=1.8VVDD=2.0VVDD=2.2V

VDD=1.2V (2nd

spin)

VDD=1.5V (2nd

spin)

VDD=1.8V (2nd

spin)

LO = 85GHzRF = 84.5GHz

ind-feedback xfmr-feedback

Receiver – vs LO Power

• Requires 2 – 3 dBm (1st spin) and > 5 dBm (2nd spin) LO power

Page 29: 65-nm CMOS, W-band Receivers for Imaging Applicationssorinv/papers/kt_cicc_2007_slides.pdf · University of Toronto 2007 1 65-nm CMOS, W-band Receivers for Imaging Applications Keith

University of Toronto 2007 29

-30 -25 -20 -15 -10PIN [dBm]

-25

-20

-15

-10

-5

0

5

PO

UT [

dB

m]

0

2

4

6

8

10

12

GA

IN [

dB

]

LO=77GHz, RF=75GHz

-30 -25 -20 -15 -10PIN [dBm]

-25

-20

-15

-10

-5

0

5

PO

UT [

dB

m]

0

2

4

6

8

10

12

GA

IN [

dB

]

LO=77GHz, RF=75GHz

IND-feedback Receiver XFMR-feedback Receiver

Receiver – P1dB

• RF at 75 GHz due to equipment limitation