Top Banner
10 nm CMOS: 10 nm CMOS: The Prospects for III-Vs J. A. del Alamo, Dae-Hyun Kim 1 , Donghyun Jin, and Taewoo Kim Microsystems Technology Laboratories, MIT 1 Presently with Teledyne Scientific 2010 European Materials Research Society Spring Meeting June 7-10 2010 Sponsors: Intel, FCRP-MSD Acknowledgements: June 7-10, 2010 1 Acknowledgements: Niamh Waldron, Ling Xia, Dimitri Antoniadis, Robert Chau MTL, NSL, SEBL
21

10 nm CMOS:10 nm CMOS: The Prospects for III-Vs nm CMOS:10 nm CMOS: The Prospects for III-Vs J. A. del Alamo, Dae-Hyun Kim1, Donghyun Jin, and Taewoo Kim Microsystems Technology Laboratories,

May 30, 2018

Download

Documents

Dang Thu
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 10 nm CMOS:10 nm CMOS: The Prospects for III-Vs nm CMOS:10 nm CMOS: The Prospects for III-Vs J. A. del Alamo, Dae-Hyun Kim1, Donghyun Jin, and Taewoo Kim Microsystems Technology Laboratories,

10 nm CMOS:10 nm CMOS: The Prospects for III-Vs

J. A. del Alamo, Dae-Hyun Kim1, Donghyun Jin, and Taewoo Kim

Microsystems Technology Laboratories, MIT1Presently with Teledyne Scientific

2010 European Materials Research Society Spring MeetingJune 7-10 2010

Sponsors: Intel, FCRP-MSD

Acknowledgements:

June 7-10, 2010

1

Acknowledgements:

Niamh Waldron, Ling Xia, Dimitri Antoniadis, Robert Chau

MTL, NSL, SEBL

Page 2: 10 nm CMOS:10 nm CMOS: The Prospects for III-Vs nm CMOS:10 nm CMOS: The Prospects for III-Vs J. A. del Alamo, Dae-Hyun Kim1, Donghyun Jin, and Taewoo Kim Microsystems Technology Laboratories,

Outline

• Introduction: Why III-Vs for CMOS?

• What have we learned from III-V HEMTs?

• What are the challenges for III-V CMOS?

• The prospects of 10 nm III-V CMOS

• Conclusions

22

Page 3: 10 nm CMOS:10 nm CMOS: The Prospects for III-Vs nm CMOS:10 nm CMOS: The Prospects for III-Vs J. A. del Alamo, Dae-Hyun Kim1, Donghyun Jin, and Taewoo Kim Microsystems Technology Laboratories,

Why III-Vs for CMOS?

• Si CMOS has entered era of “power-constrained scaling”:– CPU power density saturated at ~100 W/cm2

– CPU clock speed saturated at ~ 4 GHz

P N R 2010 http://www chem utoronto ca/ nlipkowi/pictures/cloPop, Nano Res 2010 http://www.chem.utoronto.ca/~nlipkowi/pictures/clockspeeds.gif

3

Page 4: 10 nm CMOS:10 nm CMOS: The Prospects for III-Vs nm CMOS:10 nm CMOS: The Prospects for III-Vs J. A. del Alamo, Dae-Hyun Kim1, Donghyun Jin, and Taewoo Kim Microsystems Technology Laboratories,

Why III-Vs for CMOS?• Under power-constrained scaling:

Power = active power + passive power

~ f CVDD2N N ↑ VDD↓

#1 goal

• But, VDD scaling very weakly:

f CVDD N N ↑ VDD ↓V D

D

4V

4Chen, IEDM 2009

Page 5: 10 nm CMOS:10 nm CMOS: The Prospects for III-Vs nm CMOS:10 nm CMOS: The Prospects for III-Vs J. A. del Alamo, Dae-Hyun Kim1, Donghyun Jin, and Taewoo Kim Microsystems Technology Laboratories,

Why III-Vs for CMOS?

• Need scaling approach that allows VDD reduction

• Goal of scaling: – reduce footprint – extract maximum ION for given IOFF

III V• III-Vs:– Much higher injection velocity than Si ION ↑ON

– Very tight carrier confinement possible S↓

55

Page 6: 10 nm CMOS:10 nm CMOS: The Prospects for III-Vs nm CMOS:10 nm CMOS: The Prospects for III-Vs J. A. del Alamo, Dae-Hyun Kim1, Donghyun Jin, and Taewoo Kim Microsystems Technology Laboratories,

III-V CMOS: What are the challenges?

“To kno here o are going o first ha e to“To know where you are going, you first have to know where you are.”

We are starting from:g

III-V High Electron Mobility Transistors

66

Page 7: 10 nm CMOS:10 nm CMOS: The Prospects for III-Vs nm CMOS:10 nm CMOS: The Prospects for III-Vs J. A. del Alamo, Dae-Hyun Kim1, Donghyun Jin, and Taewoo Kim Microsystems Technology Laboratories,

III-V HEMTs

• State-of-the-art: InAs-channel HEMT

- QW channel (tch = 10 nm) :- InAs core (tInAs = 5 nm)

- InGaAs cladding

- n,Hall = 13,200 cm2/V-sec

I AlA b i ( 4 )- InAlAs barrier (tins = 4 nm)

- Two-step recess

7777

- Pt/Ti/Mo/Au Schottky gate- Lg=30 nm Kim, IEDM 2008

Page 8: 10 nm CMOS:10 nm CMOS: The Prospects for III-Vs nm CMOS:10 nm CMOS: The Prospects for III-Vs J. A. del Alamo, Dae-Hyun Kim1, Donghyun Jin, and Taewoo Kim Microsystems Technology Laboratories,

III-V HEMTs

0.8

• Lg=30 nm InAs-channel HEMT Kim, IEDM 2008

2.0

0.6

V 0 4 Vm]

VGS = 0.5 V1.5

0.4

VGS = 0.4 V

I D [m

A/

m

1.0

g m [m

S/m

]0 0 0 2 0 4 0 6 0 8

0.0

0.2

-0 2 0 0 0 2 0 40.0

0.5

VDS = 0.5 V

0.0 0.2 0.4 0.6 0.8VDS [V]

• Large current drive: Ion=0.4 mA/µm at VDD=0.5 V

0.2 0.0 0.2 0.4

VGS - VT [V]

888

• Enhancement-mode FET: VT = 0.08 V• High transconductance: gmpk= 1.8 mS/um at VDD=0.5 V

8

Page 9: 10 nm CMOS:10 nm CMOS: The Prospects for III-Vs nm CMOS:10 nm CMOS: The Prospects for III-Vs J. A. del Alamo, Dae-Hyun Kim1, Donghyun Jin, and Taewoo Kim Microsystems Technology Laboratories,

III-V HEMTs

• Lg=30 nm InAs-channel HEMT

Kim, IEDM 2008

10-4

10-3

ID 40

50

dB] H21

10-6

10-5

IG

V = 0 5 VI G [A

/m

]

20

30

Ug,

MA

G [d

Ug

MAG

fT=601 GHzfmax=609 GHz

9

10-8

10-7 VDS = 0.5 V

I D, I

VDS = 0.05 V10

H21

, MAG

VDS = 0.5 V, VGS = 0.3 V

-0.50 -0.25 0.00 0.25 0.5010-9

VGS [V]109 1010 1011 1012

0

Frequency [GHz]

DS , GS

999

• S = 73 mV/dec, DIBL = 85 mV/V, Ion/Ioff=~104

• First transistor with both fT and fmax > 600 GHz9

Page 10: 10 nm CMOS:10 nm CMOS: The Prospects for III-Vs nm CMOS:10 nm CMOS: The Prospects for III-Vs J. A. del Alamo, Dae-Hyun Kim1, Donghyun Jin, and Taewoo Kim Microsystems Technology Laboratories,

Scaling of III-V HEMTs: Benchmarking with Si

180Si FETs (IEDM)Triple recess: IEDM 07

180Si FETs (IEDM)Triple recess: IEDM 07

180Si FETs (IEDM)*

180Si FETs (IEDM)*

e c a g t S10

iedm06

120

140

160

win

g [m

V/de

c.] Triple recess: IEDM 07

Pt sinking

120

140

160

win

g [m

V/de

c.] Triple recess: IEDM 07

Pt sinking

120

140

160

win

g [m

V/de

c.] Pt sinking: IEDM 08

120

140

160

win

g [m

V/de

c.] Pt sinking: IEDM 08

1iedm07

AY

[pse

c]

80

100

120

bthr

esho

ldsw

80

100

120

bthr

esho

ldsw

80

100

120

bthr

esho

ldsw

80

100

120

bthr

esho

ldsw

iedm06

InAs HEMTs(VCC = 0.5V)

GA

TE D

EL

Si NMOSFETsiedm08

10 10060

Sub

Gate Length [nm]10 100

60

Sub

Gate Length [nm]10 100

60

Sub

Gate Length [nm]10 100

60

Sub

Gate Length [nm]

iedm07iedm08

100 101 1020.1

Gate Length, Lg [nm]

(VCC = 1.1~1.3V) VDD=0.5 V

• Superior short-channel effects as compared to Si MOSFETsOS s

• Lower gate delay than Si MOSFETs at lower VDD

10

Page 11: 10 nm CMOS:10 nm CMOS: The Prospects for III-Vs nm CMOS:10 nm CMOS: The Prospects for III-Vs J. A. del Alamo, Dae-Hyun Kim1, Donghyun Jin, and Taewoo Kim Microsystems Technology Laboratories,

Scaling of III-V HEMTs: Benchmarking with Si

• ION @ IOFF=100 nA/µm, VDD=0.5 V: FOM that integrates short-channel effects and drive current

e c a g t S

(scaled to VDD=0.5 V)

III-V HEMTs: higher ION for same IOFF than Si11

Page 12: 10 nm CMOS:10 nm CMOS: The Prospects for III-Vs nm CMOS:10 nm CMOS: The Prospects for III-Vs J. A. del Alamo, Dae-Hyun Kim1, Donghyun Jin, and Taewoo Kim Microsystems Technology Laboratories,

What can we learn from III-V HEMTs?

1. Very high electron injection velocity at the virtual source

Evinj

Kim, IEDM 2009

EC

njL0 x

vinj ≡ electron injection

v inj

j

velocity at virtual source

(I G A ) i ith I A f ti i h l• vinj(InGaAs) increases with InAs fraction in channel• vinj(InGaAs) > 2vinj(Si) at less than half VDD

12

Page 13: 10 nm CMOS:10 nm CMOS: The Prospects for III-Vs nm CMOS:10 nm CMOS: The Prospects for III-Vs J. A. del Alamo, Dae-Hyun Kim1, Donghyun Jin, and Taewoo Kim Microsystems Technology Laboratories,

What can we learn from III-V HEMTs?2. Quantum-well channel key to outstanding short-channel

effectsKim IPRM 2010Kim, IPRM 2010

D ti i t i l t t ti i t it i thi• Dramatic improvement in electrostatic integrity in thin channel devices

13

Page 14: 10 nm CMOS:10 nm CMOS: The Prospects for III-Vs nm CMOS:10 nm CMOS: The Prospects for III-Vs J. A. del Alamo, Dae-Hyun Kim1, Donghyun Jin, and Taewoo Kim Microsystems Technology Laboratories,

What can we learn from III-V HEMTs?3. Quantum capacitance less of a bottleneck

than commonly believed

In0.7Ga0.3As channel tch = 13 nm

InAs channeltch = 10 nm

40 40

30

40

F/ m

2 ]

Experiment (CG)

Cins ( tins = 4 nm) 30

40

F/ m

2 ]

Experiment (CG)

Cins ( tins = 4 nm)

10

20

Cap

acita

nce

[fF

CQ1

CGCcent1 10

20C

apac

itanc

e [fF

Ccent1

CQ1 (m||* = 0.026me )

CG ( 0.07 ) C ( 0 05 )

-0.4 -0.2 0 0.2 0.40

10

VG [V]

C

-0.4 -0.2 0 0.2 0.40

10

VG [V]

C

CG (m||* = 0.026me ) CG ( 0.05 )

G

• Biaxial strain + non-parabolicity + strong quantization increase m||

* CG↑ Jin, IEDM 2009 14

Page 15: 10 nm CMOS:10 nm CMOS: The Prospects for III-Vs nm CMOS:10 nm CMOS: The Prospects for III-Vs J. A. del Alamo, Dae-Hyun Kim1, Donghyun Jin, and Taewoo Kim Microsystems Technology Laboratories,

Limit to III-V HEMT Scaling: Gate Leakage Current

10-3

tins

= 10 nmt = 7 nm

Gate ea age Cu e t

InAs HEMTL = 30 nm

10-5

10-4

]

tins = 7 nm t

ins = 4 nm ID

Lg = 30 nmtch = 10 nm

4

10-7

10-6

D, I G

[A/

m]

IG

tins=4 nm

tins=7 nm

10-9

10-8

VDS

= 0.5 V

I D tins 7 nm

tins=10 nm

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.5010-10

DS

VGS [V]

t ↓ I ↑

15

tins ↓ IG↑ Further scaling requires high-K gate dielectric

15

Page 16: 10 nm CMOS:10 nm CMOS: The Prospects for III-Vs nm CMOS:10 nm CMOS: The Prospects for III-Vs J. A. del Alamo, Dae-Hyun Kim1, Donghyun Jin, and Taewoo Kim Microsystems Technology Laboratories,

The Challenges for III-V CMOS: III-V HEMT vs Si CMOSIII-V HEMT vs. Si CMOS

Intel’s 45 nm CMOSIII-V HEMT

• Schottky gate MOS gate Critical issues:• Footprint scaling [1000x too big!] • Need self-aligned contacts

16

• Need p-channel device• Need III-V on Si

Page 17: 10 nm CMOS:10 nm CMOS: The Prospects for III-Vs nm CMOS:10 nm CMOS: The Prospects for III-Vs J. A. del Alamo, Dae-Hyun Kim1, Donghyun Jin, and Taewoo Kim Microsystems Technology Laboratories,

The High-K/III-V System by ALD

• Ex-situ ALD produces high-quality interface on InGaAs:– Surface inversion demonstrated

11 2 1Al2O3/In0.52Ga0.47As

– Dit in mid ~1011 cm-2.eV-1 demonstrated

Al2O3/In0.52Ga0.47As

f=100 Hz-1 MHz

2 00E 011

2.40E-011 In0.65Ga0.35As MOS-CapCgb on D=75um

Al2O3/In0.65Ga0.35As

1.20E-011

1.60E-011

2.00E-011

fT~55.56KHz

Cap

acita

nce

(F)

Lin, SISC 2008

1717

Ye, 2010-6 -4 -2 0 2 4

4.00E-012

8.00E-012

Bias (V)

Page 18: 10 nm CMOS:10 nm CMOS: The Prospects for III-Vs nm CMOS:10 nm CMOS: The Prospects for III-Vs J. A. del Alamo, Dae-Hyun Kim1, Donghyun Jin, and Taewoo Kim Microsystems Technology Laboratories,

In0.7Ga0.3As Quantum-Well MOSFET

• Direct MBE on Si substrate (1.5 µm buffer thickness)• InGaAs buried-channel MOSFET (under 2 nm InP etch stop)

S O / /• 4 nm TaSiOx gate dielectric by ALD, TiN/Pt/Au gate• Lg=75 nm

18Radosavljevic, IEDM 2009

Page 19: 10 nm CMOS:10 nm CMOS: The Prospects for III-Vs nm CMOS:10 nm CMOS: The Prospects for III-Vs J. A. del Alamo, Dae-Hyun Kim1, Donghyun Jin, and Taewoo Kim Microsystems Technology Laboratories,

In0.7Ga0.3As Quantum-Well MOSFET

2009 Intel InGaAs MOSFET(scaled to

VDD=0.5 V)

19

Page 20: 10 nm CMOS:10 nm CMOS: The Prospects for III-Vs nm CMOS:10 nm CMOS: The Prospects for III-Vs J. A. del Alamo, Dae-Hyun Kim1, Donghyun Jin, and Taewoo Kim Microsystems Technology Laboratories,

What can we expect from10 nm III V NMOS at 0 5 V?~10 nm III-V NMOS at 0.5 V?

With thin InAs channel:

Assume RS as in Si (~80 Ω.µm):

K i tThree greatest worries!

S

ID=1.5 mA/µm

Key requirements:• High-K/III-V interface, thin channel do not degrade vinj

• Obtaining R =80 Ω µm at required footprint

worries!

• Obtaining Rs=80 Ω.µm at required footprint• Acceptable short-channel effects

20

Page 21: 10 nm CMOS:10 nm CMOS: The Prospects for III-Vs nm CMOS:10 nm CMOS: The Prospects for III-Vs J. A. del Alamo, Dae-Hyun Kim1, Donghyun Jin, and Taewoo Kim Microsystems Technology Laboratories,

Conclusions• III-Vs attractive for CMOS: key for low VDD operation

– Electron injection velocity in InAs > 2X that of Si at 1/2X VDD

Quantum well channel yields outstanding short channel effects– Quantum well channel yields outstanding short-channel effects– Quantum capacitance less of a limitation than previously believed

• Impressive recent progress on III-V CMOS – Ex-situ ALD and MOCVD on InGaAs yield interfaces with unpinned

Fermi level and low defect densityFermi level and low defect density– Sub-100 nm InGaAs MOSFETs with ION > than Si at 0.5 V

demonstrated

• Lots of work ahead:– Demonstrate 10 nm III-V MOSFET that is better than Si

21

– P-channel MOSFET– Manufacturability, reliability