Top Banner

of 22

4a Euler

Apr 07, 2018

Download

Documents

Nitin Grover
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/4/2019 4a Euler

    1/22

    Homogeneous Function

    1 2 2

    0 1 2

    Consider the function

    f(x,y) = a .......... aThe degree of each term in x and y is n.

    n n n n

    nx a x y a x y y

    Such functions are called homogenious functions of degree n.

    A function f(x,y) of two independent variables x and y

    is said to be homogenious of degree n if f(x,y) can be

    written in the form x where can be any functionny

    x

    Another def.

  • 8/4/2019 4a Euler

    2/22

    3 2 3

    Some examples of homogenious functions

    (1) : F(x,y)= sin( )

    (2) : F(x,y)= 3

    (3) : F(x,y)=

    n yxx

    x xy y

    y x

    y x

  • 8/4/2019 4a Euler

    3/22

    Eulers Theorem on Homogeneous Function

    If z = F (x,y) be a homogenious function of x,y of degree n

    then x + y = nz for all x,yz z

    x y

    Proof: We have

    z is a homogenious function of degree n.

    so that z = xny

    x

    1

    2

    1 2

    ( ) '( )

    ( ) '( )

    n n

    n n

    z y y ynx f x f

    x x x x

    y y

    nx f yx f x x

  • 8/4/2019 4a Euler

    4/22

    11, '( ) '( )

    n nz y ySimilarly x f x f

    y x x x

    1 1

    Thus ,we have

    x + y = ( ) '( ) '( )

    n n nz z y y y

    nx f yx f yx f x y x x x

    x + y = ( ) =nz

    hence the result.

    nz z ynx f

    xx y

  • 8/4/2019 4a Euler

    5/22

    2 2 22 2

    2 2

    COROLLARY I:

    If z = ( , ) is a homo. function of x and y of degree n,

    then + 2xy ( 1)

    f x y

    z z zx y n n zx x y y

    Eular's theorem,we have

    x + y = nz

    By

    z z

    x y

    2 2

    2

    Differentiating partially w.r.t.x, we get

    +x + y =nz z z z

    x x x y x

  • 8/4/2019 4a Euler

    6/22

    2 2

    2

    Again differentiating partially w.r.t.y,we get

    x + + y = n

    z z z z

    x y y y y

    2 2 2

    2 22 2

    ultiplying by x and y respectivily and add

    x

    M

    z z z z zx xy y yx x x y y y

    2

    x + y

    z z

    n n zx y

    2 2 2

    2 2 2

    2 2( 1)

    z z zx xy y n z nz n n z

    x x y y

  • 8/4/2019 4a Euler

    7/22

    Example : Verify Euler's theorem for the function

    z = logny

    xxSolution:

    z is a homogenious function of x and y of degree n.

    x + y = nzz z

    x y

    1

    2

    1 1

    , log *

    log

    n n

    n n

    z y x yNow nx x

    x x y x

    ynx x

    x

  • 8/4/2019 4a Euler

    8/22

    Multiply by x and y and add

    1 1log *

    = log

    = log

    = n z

    nn n

    n n n

    n

    z z y xx y x nx x y

    x y x yy

    n x x xx

    yn x

    x

    1* *

    nnz x xand x

    y y x y

  • 8/4/2019 4a Euler

    9/22

    2 2 2

    2 2 2

    2 2 2

    2 2 2

    1Example : If u= 0

    then show that 0

    and x y zx y z

    u u u

    x y z

    2 2 21

    Solution : We have u =x y z

    3 2

    2 2 2

    3 22 2 2

    1 22

    = -x

    u x y z xx

    x y z

  • 8/4/2019 4a Euler

    10/22

    23 2 5 2

    2 2 2 2 2 2 2

    2

    2 3 2 5 22 2 2 2 2 2 2

    2

    imilarly 3

    3

    ux y z y x y z

    y

    u x y z z x y zz

    2 2 2

    2 2 2

    on adding we get

    0u u u

    x y z

    2

    3 2 5 22 2 2 2 2 2 2

    23

    ux y z x x y z

    x

  • 8/4/2019 4a Euler

    11/22

    2 21

    Example : If u= sin ,

    then show that tan

    x y

    x y

    u ux y ux y

    2 21

    2 2

    Solution : We have u = sin

    z = then sin u = z

    x y

    x y

    x yLet

    x y

  • 8/4/2019 4a Euler

    12/22

    By Eular's theorem ,we havez z

    x y zx y

    sin cos

    sin cos

    z uBut u u

    x x x

    z uand u u

    y y y

    2

    22 2 1

    where z = homogenious

    1

    function of degree one

    y

    xx yx is a

    yx y x

  • 8/4/2019 4a Euler

    13/22

    hence cos =sinu

    or tan

    z z u ux y z u x y

    x y x y

    u ux y ux y

  • 8/4/2019 4a Euler

    14/22

    1Example : If u = cot , then show that

    1sin 24

    x y

    x y

    u ux y ux y

    1Solution : We have u= cot

    z = then cot u = z

    x y

    x y

    x yLet

    x y

    1

    2

    1

    where z = homogenious

    1

    function of degree half

    y

    x y xx is ax y y

    x

  • 8/4/2019 4a Euler

    15/22

    By Eular's theorem ,we have

    = n z =

    2

    z z zx y

    x y

    2

    2

    cos

    cos and we have

    z uec x

    x x

    z uand ec xy y

    2 2

    2

    1cos cos = cot

    2

    cot 1= sin 2

    2cos 4

    u ux ec x y ec x u

    x y

    u u ux y u

    x y ec x

  • 8/4/2019 4a Euler

    16/22

    3 31

    2 2 22 2 2

    2 2

    Example : If u= tan , x y then show that

    2 1 4sin sin 2

    x y

    x y

    u u ux xy y u ux x y y

    3 3

    1

    3 3

    3

    3 3 32

    Solution : We have u=tan

    z = then tan u = z

    1where z = homogenious

    1

    function of degree two.

    x y

    x y

    x yLet

    x y

    yx y xx is ayx y

    x

  • 8/4/2019 4a Euler

    17/22

    22 22 2

    2 2

    22 22 2

    2 2

    2 22 2

    lso sec +2 sec tan u

    sec +2 sec tan u

    sec +2 sec tan u

    z u uA u u

    x x x

    z u uu u

    y y y

    z u u uu ux y x y x y

    2 2 22 2

    2 2

    Also by corollary of Eular's theorem,

    2 2(2 1)

    z z z

    x xy y zx x y y

    By Eular's theorem ,we have

    = n z = 2 zz z

    x y

    x y

    2 2but sec and secz u z u

    u ux x y y

  • 8/4/2019 4a Euler

    18/22

    2 2 22 2 2

    2 2

    22

    2 2 2

    sec 2

    +2sec tan u 2 * 2 tan u

    u u uu x xy y

    x x y y

    u u u uu x xy y

    x x y y

    22 2 22 2

    2 2

    2 2 2

    2 2 22 2

    2 2 tan u 2sin cos u

    2 sin 2 2 tan u sin 2

    =sin 2 1 2 tan u sin 2

    u u u u ux xy y x y u

    x x y y x y

    u u ux xy y u ux x y y

    u u

    2

    =sin 2 1 4sinu u

  • 8/4/2019 4a Euler

    19/22

    Exercise

    1

    2 2

    1 1

    1 Find the first order partial derivatives of

    (a) cot (x+y)(b) sin( )

    (c)

    2 Find the second order partial derivatives of

    (a) tan tan tan

    x y

    x y

    x y

    x y

    2 2

    1

    1log tan

    eyx

    xyb

    x yc x y

    d

  • 8/4/2019 4a Euler

    20/22

    2 2

    1

    2

    3 Varify that

    where u is log (ysinx+xsiny)

    4 If z= sin , show that

    *

    5 If z = f(x+ay)+g(x-ay), show that

    u u

    x y y x

    x y

    x y

    z y z

    x x y

    zy

    2

    22 2za x

  • 8/4/2019 4a Euler

    21/22

    3

    2 2 2 2

    2 2 2

    2 2 2

    2 2

    2

    2 2

    6 If v= , show that

    0

    7 If z(x+y)= , show that

    4 1

    8 If z = log , show that

    x

    x y z

    v v vx y z

    x y

    z z z z

    x y x y

    x yx y

    z

    x

    1z

    y

    y

    3

  • 8/4/2019 4a Euler

    22/22

    33 2 2

    22 2 2

    2 2

    2

    2 2

    1

    9 If z = 3xy - y 2 , show that

    110 If u = show that

    1 2

    1 + 0

    11 If z = tan , then sh

    y x

    z z z

    x y x y

    xy y

    u zx y

    x x y y

    y

    x

    2 2

    2 2

    ow that

    0

    z z

    x