Top Banner
Project: 35 Ton hydraulic mooring winch 1 Duty pull F= 35 Ton @ 1st Layer Drum Pipe D= 0.762 m Ratio: D/d= 19.1 Wire Length L= 500 m Drum Length Ld= 1229.6 wire dia. d= 0.040 m Colum X= 29 Layer 0.802 L/LAYER L/TOTAL FORCE SPEED 1 0.802 73.067 73.1 75 5 2 0.871 76.642 149.7 69.0 5.4 3 0.941 85.691 235.4 64.0 5.9 4 1.010 88.830 324.2 59.6 6.3 5 1.079 98.315 422.5 55.7 6.7 6 1.148 101.019 523.6 52.4 7.2 7 1.218 110.938 634.5 49.4 7.6 8 1.287 113.207 747.7 46.7 8.0 9 1.356 123.562 871.3 44.4 8.5 10 1.426 125.396 996.7 42.2 8.9 11 1.495 136.186 1132.9 40.2 9.3 12 1.564 137.584 1270.4 38.5 9.8 13 1.633 148.810 1419.2 36.8 10.2 14 1.703 149.772 1569.0 35.3 10.6 15 1.772 161.433 1730.5 33.9 11.0 16 1.841 161.961 1892.4 32.7 11.5 17 1.910 174.057 2066.5 31.5 11.9
36
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 35 TON DD MW

Project: 35 Ton hydraulic mooring winch

1 Duty pull F= 35 Ton @ 1st Layer

Drum Pipe D= 0.762 m Ratio: D/d= 19.1

Wire Length L= 500 m Drum Length Ld= 1229.6

wire dia. d= 0.040 m

Colum X= 29

Layer 0.802 L/LAYER L/TOTAL FORCE SPEED

1 0.802 73.067 73.1 75 5 m/min

2 0.871 76.642 149.7 69.0 5.4 m/min

3 0.941 85.691 235.4 64.0 5.9 m/min

4 1.010 88.830 324.2 59.6 6.3 m/min

5 1.079 98.315 422.5 55.7 6.7 m/min

6 1.148 101.019 523.6 52.4 7.2 m/min

7 1.218 110.938 634.5 49.4 7.6 m/min

8 1.287 113.207 747.7 46.7 8.0 m/min

9 1.356 123.562 871.3 44.4 8.5 m/min

10 1.426 125.396 996.7 42.2 8.9 m/min

11 1.495 136.186 1132.9 40.2 9.3 m/min

12 1.564 137.584 1270.4 38.5 9.8 m/min

13 1.633 148.810 1419.2 36.8 10.2 m/min

14 1.703 149.772 1569.0 35.3 10.6 m/min

15 1.772 161.433 1730.5 33.9 11.0 m/min

16 1.841 161.961 1892.4 32.7 11.5 m/min

17 1.910 174.057 2066.5 31.5 11.9 m/min

Page 2: 35 TON DD MW
Page 3: 35 TON DD MW

DYNAMICS CALCULATIONS Title: HYDRAULIC AHTW C/W HYD. POWER PACK

Model No. ME75THAHTW Dwg. Number 75THAHTW-100

SHEET: 1/2 Proj. No. J070029E Rev. No. 0 Date: 20/04/07

a. Winch

Drum pull Fd = 75 Ton

Wire rope speed V = 5.0 m/min (1st Layer, LOW SPEED)

Wire rope dim. d = 0.052 m

Drum Dia. D = 0.762 m

PCD at 1st Layer 0.814 m

Gear ratio i = 29.05 (113/26*127/19)

Shaft revolution speed n = 1.96 rev/min

1. Hyd. motor output torque required

Td= Fd x 9810 x (D+d) / (2i)*(1+η)

= 13400 Nm

Mechanical loses: η= 30%

2. Hyd. motor output speed required

n xi

= 56.80 rev/min

3. Choose hyd. Motor

Type: HMC270 280

Displacement: Vm Vm= 4588 cc/rev

p= 69.4 Nm/bar

Mechanical loses: 92%

Volumetric efficiency: 97%

4. Working flow

Qm= Vm x nm/ηv

= 268.7 l/min

5. Max. load pressure (Winch pull)

209.9 bar

6. Hyd. Motor output power

Nm= 94.0 KW

D1=

nm=

ηm=

ηv=

PLt= Td/p/ηm

Page 4: 35 TON DD MW

DYNAMICS CALCULATIONS Title: HYD. TOWING WINCH C/W HYD. POWER PACK

Model No. ME75THAHTW Dwg. Number 75THAHTW-100

SHEET: 2/2 Proj. No. J070029E Rev. No. 0 Date: 20/04/07

b. Power pack

1. Hyd. Pump flow required Qm= 268.7 l/min

Displacement:

= 186.49 cc/rev

Hyd. System volum efficency 0.98

2. Choose hyd. Pump

Pump Type:

Qty. of pump n= 2

Displacement: 93.2 cc/rev

Duty output: P = 219.9 bar

Q =

= 137.1 lpm

Input power: N =

= 58.21 kw

Elec. Motor safty factor: 0.94

Hyd. pump overall efficency: 0.9

3. Choose elec. Motor: n= 2

415 v 1470 rpm

3 PH

50 Hz W= 90 kw

qp = Qm/ηv/ne

ηv =

qp =

neqpne

PQ/ηp/ηe/612

ηe =

ηp =

ne=

Page 5: 35 TON DD MW
Page 6: 35 TON DD MW

DYNAMICS CALCULATIONS Title: HYDRAULIC AHTW C/W HYD. POWER PACK

Model No. ME75THAHTW Dwg. Number 75THAHTW-100

SHEET: 1/2 Proj. No. J070029E Rev. No. 0 Date: 20/04/07

a. Winch

Drum pull Fd = 12 Ton

Wire rope speed V = 20.0 m/min (1st Layer, HIGH SPEED)

Wire rope dim. d = 0.052 m

Drum Dia. D = 0.762 m

PCD at 1st Layer 0.814 m

Gear ratio i = 29.05 (113/26*127/19)

Shaft revolution speed n = 7.82 rev/min

1. Hyd. motor output torque required

Td= Fd x 9810 x (D+d) / (2i)*(1+η)

= 2144 Nm

Mechanical loses: η= 30%

2. Hyd. motor output speed required

n xi

= 227.20 rev/min

3. Choose hyd. Motor

Type: HMC270 60

Displacement: Vm Vm= 980 cc/rev

p= 12.2 Nm/bar

Mechanical loses: 92%

Volumetric efficiency: 97%

4. Working flow

Qm= Vm x nm/ηv

= 229.5 l/min

5. Max. load pressure (Winch pull)

191.0 bar

6. Hyd. Motor output power

Nm= 73.1 KW

D1=

nm=

ηm=

ηv=

PLt= Td/p/ηm

Page 7: 35 TON DD MW

DYNAMICS CALCULATIONS Title: HYD. TOWING WINCH C/W HYD. POWER PACK

Model No. ME75THAHTW Dwg. Number 75THAHTW-100

SHEET: 2/2 Proj. No. J070029E Rev. No. 0 Date: 20/04/07

b. Power pack

1. Hyd. Pump flow required Qm= 229.5 l/min

Displacement:

= 159.34 cc/rev

Hyd. System volum efficency 0.98

2. Choose hyd. Pump

Pump Type:

Qty. of pump n= 2

Displacement: 79.7 cc/rev

Duty output: P = 201.0 bar

Q =

= 117.1 lpm

Input power: N =

= 45.47 kw

Elec. Motor safty factor: 0.94

Hyd. pump overall efficency: 0.9

3. Choose elec. Motor: n= 2

415 v 1470 rpm

3 PH

50 Hz W= 90 kw

qp = Qm/ηv/ne

ηv =

qp =

neqpne

PQ/ηp/ηe/612

ηe =

ηp =

ne=

Page 8: 35 TON DD MW
Page 9: 35 TON DD MW

MARINE EQUIPMENTS PTE LTD 9/21 WINCH STRESS

CALCULATION (For BV Approval)

75TON ANCHOR HANDLING/TOWING WINCH

The winch duty pull load is: Fd= 75000 kg x 5 m/min

Max. braking force is: 150000 kg

Wire PCD @ 1st Layer: 814.0 mm

1. SHAFT STRESS CALCULATION (neglet wire angle)

Duty pull capacity: 30525.0 kgm

The Max. bending torque applied on the shaft:

46875.0 kgm

Where a= 1250.0 mm

b= 1250.0 mm

Based on the ASME code Max. shear equation:

T=sqrt[(Kb*Mb)^2+(Kt*Mt)^2]= 76652.6 kgm

Where 1.5

1.0

Ss=16T/(πd^3)= 13.10 d= 310 mm

Shaft material ST52.3, Yielding-point> 355 N/mm2

Safty-factor= 2.71 >1.4

Winch brake holding load 150000 kg

The Max. bending torque applied on the shaft:

94500.0 kgm

Where a= 1260.0 mm

b= 1260.0 mm

Max. tensile stress on shaft=32Mb/(πd^3) 323.3 d= 310 mm

Safty-factor over yield strength= 1.10 >1.4

The shaft mainly under shear force, The min. shaft diameter is: 260.0 mm

27.7

Fb=

D1=

TD=FdxD1/2=

Mb=Fd*ab/l=

Kb=

Kt=

kg/mm2

Fb=

Mb=Fd*ab/l=

N/mm2

Sshear=Fb/A=4Fb/(3.14d2)= N/mm2

Page 10: 35 TON DD MW

MARINE EQUIPMENTS PTE LTD 10/21 WINCH STRESS

Safty-factor over yield strength= 12.80 >2

2. PIN STRESS CALCULATION

There are 12 pin in the gear: dia= 30 mm

PCD= 1730 MM

Force on pin Fp= 346185260 N

The shear stress acting on the pin:

S=Fp/n/A= 61250.05 N/mm^2

Safty-factor over yield strength> 4.0

3. KEY STRESS CALCULATION (2nd STAGE)

There are two keyway in the gear: n= 2

The key section dimension: bxH 45 (mm) x 25 (mm)

The max torque is caused by winch:Td= 7627.5 kgm

The squeeze stress acting on the key:

24.91

Where h= 12.5 mm

L= 140 mm

d= 175 mm

The shear stress acting on the key:

6.92

The Gear material is ASTM A148 grade80/40,

Safty-factor over yield strength= 1.35 >1.3

4. BEARING & BEARING HOUSING

1). BEARING CAPACITY: spherical roller bearing

The bearing selected is: 23052MB

Basic dynamic load rating: 1500 KN

Pin material is AISI1045, Tensile stress>600 Mpa, yielding-point >350 Mpa,

S1=2TD/hLdn= kg/mm2

S2=2TD/bLdn= kg/mm2

Key & shaft material is AISI1045, Yielding-point >355 Mpa,

Tensile stress >620 Mpa, Yielding-point>335 Mpa

Page 11: 35 TON DD MW

MARINE EQUIPMENTS PTE LTD 11/21 WINCH STRESS

Basic static load rating: 2800 KN

See attached FAG bearing catalogue.

2). Bearinghousing material for winch is mild steel: ASTM-A36

5. FOUNTATION BOLTS

1). REVERSAL MOMENT: 238500000 kg.mm

Where: 150000 kg (Winch brake holding)

distance between wire and foundation: H= 1590 mm

2). MAXIMUM TENSION FORCE OF BOLT:

13140.5 kg

MAXIMUN SHEAR FORCE OF BOLT:

2542.4 kg

Last row number of bolts: 15

Totally Number of bolts: 59

1210 mm

3). MAXIMUM TENSION & SHEARING STRESS OF BOLT:

We use M30 ISO G 8.8 bolts, Tensile stress= 80.0

Yielding point = 64.0

The bolt stress area is: A= 561

23.4

4.5

Safty-factor over yield strength= 2.73 >4

6. DRUM BRAKE SYSTEM CALCULATION (TWO STAGE)

Max. static brake holding: 150000 kg

Brake Race Dia.: D= 1834 mm

wire P.C.D. 814.0 mm

Brake Lap: α= 275 deg.

Coefficient of friction: μ= 0.35

Dictance: A= 782 mm

B= 450 mm 600 mm

M=Fb*H=

proof load: Fb=

Fr=M/(R2*z1)=

Fs=Fb/z2=

z1=

z2=

R2=

kg/mm2

kg/mm2

mm2

Stension=Fr/A= kg/mm2

Sshear=Fs/A= kg/mm2

Fb=

D1=

L1=

Page 12: 35 TON DD MW

MARINE EQUIPMENTS PTE LTD 12/21 WINCH STRESS

C= 782 mm 150 mm

b= 65 mm

s= 8 mm

2). Force analysis & Calculation

Max. torque @ brake holding: M= 598900500 N/mm

Brake force on brake drum: P= 653109 N

Moving pin load(loose side):

149589 N

Tau side force: 802697 N

Spindle load: 37397 N

Anchor pin load: 802697 N

3). Brake band:

Material is ASTM-A36

250.0

Permissible design stress(Tensile) = 162.5

Brake band size: w= 300 mm t= 25.0 mm

Max. tensile stress: 107

4). Pin selection:

Material is AISI1045, 110.0 mm

350

Permissible design stress(Shear) = 122.5

a.Tau side pin:

84.5

50.0

Shear stress: 76.2

5). Anchor plate, bar & brake lug:

L2=

T2=P/(e^(μα)-1)=

T1=T2*e^(μα)=

T=T2/L2*L1=

R=T1=

Yield stress = N/mm2,

N/mm2,

σ=T1/(wt)= (N/mm2) < 162.5 N/mm2,

d1=

Yield stress = N/mm2,

N/mm2,

Max. Shear stress: t=R/(1/4*3.14*d12)= N/mm2, < 122.5 N/mm2

b. Moving pin (loose side)@T2

d2=

t=T2/(1/4*3.14*d22)= N/mm2, < 122.5 N/mm2

Page 13: 35 TON DD MW

MARINE EQUIPMENTS PTE LTD 13/21 WINCH STRESS

Material is ASTM-A36

250.0

Permissible design stress(Tensile) = 162.5

Anchor plate thickness: 38 mm

Number of anchor plate lug: 2

Outer radius: 110 mm

Max. tension stress=T1/[nxtx(2r-d1)]= 96

Link plate @ R

Bar thickness: 38 mm

Number of anchor bar: 2

Outer radius: 110 mm

96

Link plate lug @ T2

Moving pin (loose side)@T2 30 mm

Number of anchor bar: 2

Outer radius: 50.0 mm

50

6). Brake Cylinder & hand wheel:

Required Brake force: T= 37397 N = 3808 KG

Disc spring: AM2008210 ID82XOD200X9.5THKX15.5

Stroke: 180 mm

PRE-PRESS: 1.38mm FORCE= 5304 KG > 3808 KG

Number of spring: 70

Yield stress = N/mm2,

N/mm2,

Anchor plate @ T1

N/mm2, <162.5 N/mm2

Max. tension stress=R/[nxtx(2r1-d1)]= N/mm2, <162.5 N/mm2

Max. tension stress=T2/[nxtx(2r2-d2)]= N/mm2, <162.5 N/mm2

Page 14: 35 TON DD MW

MARINE EQUIPMENTS PTE LTD 14/21 1st STAGE GEAR

SPUR GEAR CONTACT STRESS CALCULATION (BS436)

FOR 75 TON ANCHOR HANDLING/TOWING WINCH (WIRE Φ52mm )

(first stage)

PINION SPUR GEAR (UNIT)

center distance: a= 1251 1251 mm

mormal module: 18 18 mm

pressure angle 20 20 deg

tooth number: 26 113

face width: b= 270 250 mm

reference diameter: 468 2034 mm

tip diameter: 504 2070 mm

tooth depth: 40.5 40.5 mm

number of revolution 8.50 1.96 rev/min

construction: solid solid

mean roughness: 3.2 3.2 μm

meterial type: AISI 4140 ASTM A148 grade80/40

tensile stress: 900 620

yielding point: 700 335

300 Cst

application factor: 1.0

required life time: 10000 hours

1.0

The winch overload : F= 75000 kg (BS MA 35 : 1975)

Norminal tangential force for the contact stress:

Wire PCD. 814 mm

30015 kg

mn=

αn=

z1 & z2

d1, d2

da1, da2

Rα(root)

σb=

σs=

lubricant viscosity at 40˚C:

minimun demanded safety factor for contact stress: SHMin=

Dwpcd=

FHT=F*Dwpcd/d2=

Page 15: 35 TON DD MW

MARINE EQUIPMENTS PTE LTD 15/21 1st STAGE GEAR

Calculation for the contact stress:

(equation 2)

4.35

439.8 mm

1911.3 mm

65 (B.11)

2.49 (Equation 10)

53.1 mm (B.3)

92.6 (B.2)

1.74 (B.8)

0.867 (Equation 11)

180.1 (Equation 14)

Poisson's ratio 0.3

Steel: 21000 kg/mm^2

Cast steel: 20600 kg/mm^2

1.0

1.1 (from 16.3)

v= 12.49 m/min= 0.21 m/sec

5.96

1.0 (spur gear from fig. 11)

X= 0.8687 (grade 9 see table 7)

0.35 (Equation 22)

1.0 (Equation 20)

250 (Equation 35)

7164.4 kg (Equation 37)

σH=ZH*ZE*Zε*SQRT(FHT*(u+1)*KA*KV*KHα*KHβ/u/b/d1)

u=Z2/Z1=

db1=d1*cosαn=

db2=d2*cosαn=

Prel=(d1/2)*(u/(u+1))*(cosαt*tanαtw/cosβt)=

ZH=2*SQRT(cosβt/sin(2*αt))=

Pbt=mn*π*cosαt/cosβ=

ga=0.5*(SQRT(da1^2-db1^2)+SQRT(da2^2-db2^2))-a*sinαtw=

εa=ga/Pbt=

Zε=SQRT((4-εa)/3)=

ZE=SQRT{1/[π*((1-v1^2)/E1+(1-v2^2)/E2)]}=

v1=v2=

E1=

E2=

KA=

QV=

Qv v z1=

Kv350=

B=(350/(FtKA/b))^X=

Kv=1+(Kv350-1)/B=

beff=b-lc/2= mm lc=0

Fmest=bd1u/(u+1)*[σHP/(ZH*ZE*Zε)]^2=

Page 16: 35 TON DD MW

MARINE EQUIPMENTS PTE LTD 16/21 1st STAGE GEAR

281.1 N/mm (Equation 38)

K= 0.48 (Fig. 12)

A= 0.023 μm (Table 8)

120.06 kg/mm= 1178 N/mm

210 mm

l= 770 mm

231 mm

9.13 μm (Equation 40)

12.9 μm (Equation 42)

25.04 μm (Equation 45)

0.45 (from fig 13. 700MPa)

11.27 μm (Equation 47)

20 N /mm.μm (from 17.2.5 steel to steel)

1.1 (Equation 49)

1.74

12.2 μm (BS436 part 2. Table 3)

0.915 μm (Equation 54)

0.85 (Equation 50)

1.0

The contact stress:

718 MPa

900 MPa (Fig. 2)

750 MPa (Fig. 2)

Zc= 1.0

0.85 (Equation 16)

0.94

Wmest=Fmest/beff=

Wm=FtKAKv/beff=

dsh=

ls=0.3l=

fsh=WmA[(1+K*(ls/d1^2)*(d1/dsh)^4-0.3)+0.3]*(b/d1)^2=

fma=fHβ=

Fβx=/1.33fsh+fma/=

qy=

Fβy=qyFβx=

cγ=

KHβ=1+cγ*Fβy/(2Wm)=

εγ=εβ+εα=εα=

fpe=

γα=0.075fpe=

KHα=εγ*[0.9+0.4*cγ*(fpe-γα)/(Wm*KHβ)]/2=

take KHα=

σH=ZH*ZE*Zε*SQRT(FHT*(u+1)*KA*KV*KHα*KHβ/u/b/d1)=

σHD1=

σHD2=

ZG1=0.9*ZG2=

ZG2= (Fig 3, Prel/mn=3.4 σB=800MPa)

Page 17: 35 TON DD MW

MARINE EQUIPMENTS PTE LTD 17/21 1st STAGE GEAR

761 MPa (Equation 15)

705 MPa (Equation 15)

1.02 (Fig. 5)

0.9 (Fig. 6)

1.06 (Fig. 7)

1.0

1173130

1.2 (BS436 Fig. 8 curve 1)

5098601

1.1 (BS436 Fig. 8 curve 3)

815 MPa (Equation 1)

823 MPa (Equation 1)

1.14 >1

1.15 >1

σHlim1=σHD1*Zc*ZG1=

σHlim2=σHD2*Zc*ZG2=

ZLZv=

ZR=

ZW=

Zx=

N2=

ZN2=

N1=

ZN1=

σHP1=σlim1*ZL*Zv*ZR*Zw*Zx*ZN1=

σHP2=σlim2*ZL*Zv*ZR*Zw*Zx*ZN2=

Spur gear safety factor for contact stress SHmin:

SHlim1=σHP1/σH=

SHlim2=σHP2/σH=

Page 18: 35 TON DD MW

MARINE EQUIPMENTS PTE LTD 18/21 2nd STAGE GEAR

SPUR GEAR CONTACT STRESS CALCULATION (BS436)

FOR 75TON ANCHOR HANDING/TOWING WINCH (WIRE Φ52mm )

(second stage)

PINION SPUR GEAR (UNIT)

center distance: a= 876 876 mm

mormal module: 12 12 mm

pressure angle 20 20 deg

tooth number: 19 127

face width: b= 145 125 mm

reference diameter: 228 1524 mm

tip diameter: 252 1548 mm

tooth depth: 27 27 mm

number of revolution 56.66 8.48 rev/min

construction: solid solid

mean roughness: 3.2 3.2 μm

meterial type: AISI 4140 ASTM A148 grade80/40

tensile stress: 900 620

yielding point: 700 335

300 Cst

application factor: 1.0

required life time: 10000 hours

1.0

The overload : F= 30015 kg (BS MA 35 : 1975)

Norminal tangential force for the contact stress:

Load PCD. 468 mm

9217 kg

mn=

αn=

z1 & z2

d1, d2

da1, da2

Rα(root)

σb=

σs=

lubricant viscosity at 40˚C:

minimun demanded safety factor for contact stress: SHMin=

Dwpcd=

FHT=F*Dwpcd/d2=

Page 19: 35 TON DD MW

MARINE EQUIPMENTS PTE LTD 19/21 2nd STAGE GEAR

Calculation for the contact stress:

(equation 2)

6.68

214.3 mm

1432.1 mm

34 (B.11)

2.49 (Equation 10)

35.4 mm (B.3)

60.6 (B.2)

1.71 (B.8)

0.874 (Equation 11)

180.1 (Equation 14)

Poisson's ratio 0.3

Steel: 21000 kg/mm^2

Cast steel: 20600 kg/mm^2

1.0

1.1 (from 16.3)

v= 40.59 m/min= 0.68 m/sec

14.14

1.0 (spur gear from fig. 11)

X= 0.8687 (grade 9 see table 7)

0.53 (Equation 22)

1.0 (Equation 20)

125 (Equation 35)

1840.5 kg (Equation 37)

144.4 N/mm (Equation 38)

K= 0.48 (Fig. 12)

σH=ZH*ZE*Zε*SQRT(FHT*(u+1)*KA*KV*KHα*KHβ/u/b/d1)

u=Z2/Z1=

db1=d1*cosαn=

db2=d2*cosαn=

Prel=(d1/2)*(u/(u+1))*(cosαt*tanαtw/cosβt)=

ZH=2*SQRT(cosβt/sin(2*αt))=

Pbt=mn*π*cosαt/cosβ=

ga=0.5*(SQRT(da1^2-db1^2)+SQRT(da2^2-db2^2))-a*sinαtw=

εa=ga/Pbt=

Zε=SQRT((4-εa)/3)=

ZE=SQRT{1/[π*((1-v1^2)/E1+(1-v2^2)/E2)]}=

v1=v2=

E1=

E2=

KA=

QV=

Qv v z1=

Kv350=

B=(350/(FtKA/b))^X=

Kv=1+(Kv350-1)/B=

beff=b-lc/2= mm lc=0

Fmest=bd1u/(u+1)*[σHP/(ZH*ZE*Zε)]^2=

Wmest=Fmest/beff=

Page 20: 35 TON DD MW

MARINE EQUIPMENTS PTE LTD 20/21 2nd STAGE GEAR

A= 0.023 μm (Table 8)

73.74 kg/mm= 723 N/mm

150 mm

l= 500 mm

150 mm

6.78 μm (Equation 40)

12.9 μm (Equation 42)

21.92 μm (Equation 45)

0.45 (from fig 13. 700MPa)

9.86 μm (Equation 47)

20 N /mm.μm (from 17.2.5 steel to steel)

1.1 (Equation 49)

1.71

12.2 μm (BS436 part 2. Table 3)

0.915 μm (Equation 54)

0.86 (Equation 50)

1.0

The contact stress:

799 MPa

900 MPa (Fig. 2)

750 MPa (Fig. 2)

Zc= 1.0

0.85 (Equation 16)

0.94

761 MPa (Equation 15)

705 MPa (Equation 15)

1.02 (Fig. 5)

Wm=FtKAKv/beff=

dsh=

ls=0.3l=

fsh=WmA[(1+K*(ls/d1^2)*(d1/dsh)^4-0.3)+0.3]*(b/d1)^2=

fma=fHβ=

Fβx=/1.33fsh+fma/=

qy=

Fβy=qyFβx=

cγ=

KHβ=1+cγ*Fβy/(2Wm)=

εγ=εβ+εα=εα=

fpe=

γα=0.075fpe=

KHα=εγ*[0.9+0.4*cγ*(fpe-γα)/(Wm*KHβ)]/2=

take KHα=

σH=ZH*ZE*Zε*SQRT(FHT*(u+1)*KA*KV*KHα*KHβ/u/b/d1)=

σHD1=

σHD2=

ZG1=0.9*ZG2=

ZG2= (Fig 3, Prel/mn=3.4 σB=800MPa)

σHlim1=σHD1*Zc*ZG1=

σHlim2=σHD2*Zc*ZG2=

ZLZv=

Page 21: 35 TON DD MW

MARINE EQUIPMENTS PTE LTD 21/21 2nd STAGE GEAR

1.05 (Fig. 6)

1.06 (Fig. 7)

1.0

5086105

1.2 (BS436 Fig. 8 curve 1)

33996595

1.1 (BS436 Fig. 8 curve 3)

951 MPa (Equation 1)

960 MPa (Equation 1)

1.19 >1

1.20 >1

ZR=

ZW=

Zx=

N2=

ZN2=

N1=

ZN1=

σHP1=σlim1*ZL*Zv*ZR*Zw*Zx*ZN1=

σHP2=σlim2*ZL*Zv*ZR*Zw*Zx*ZN2=

Spur gear safety factor for contact stress SHmin:

SHlim1=σHP1/σH=

SHlim2=σHP2/σH=