Top Banner
J560_30_T-002 TANK DESIGN CALCULATIONS SUMMARY OF DESIGN DATA and REMARKS Job : J560_30_T-002 Date of Calcs. : 12/28/2010 , 04:03 PM Mfg. or Insp. Date : 1/25/2011 Designer : SA Duazo Project : Saudi Technology Base Lube OIl Plant Tag Number : 30-T-002 CONCENTRATE STORAGE TANK Plant : Saudi Technology Base Lube Oil Plant Plant Location : Al-Kharj Saudi Arabia Site : Al-Kharj Saudi Arabia Design Basis : API-650 11th Edition, Addendum 2, Nov 2009 ---------------------------------------------------------------------- - TANK NAMEPLATE INFORMATION ---------------------------------------------------------------------- - Operating Ratio: 0.4 - Design Standard: - API-650 11th Edition, Addendum 2, Nov 2009 - - (None) - - Roof : A-36: 0.1969in. - - Shell (3): A-36: 0.236in. - - Shell (2): A-36: 0.236in. - - Shell (1): A-36: 0.236in. - - Bottom : A-36: 0.3125in. - ---------------------------------------------------------------------- Design Internal Pressure = 0 PSI or 0 IN. H2O Design External Pressure = 0 PSI or 0 IN. H2O MAWP = 2.5000 PSI or 69.28 IN. H2O MAWV = -0.9239 PSI or -25.60 IN. H2O OD of Tank = 11.5223 ft Shell Height = 19.685 ft S.G. of Contents = 1.1 Max. Liq. Level = 19.685 ft Design Temperature = 185 °F Tank Joint Efficiency = 1 Ground Snow Load = 0 lbf/ft^2 Roof Live Load = 20 lbf/ft^2 Design Roof Dead Load = 9.65 lbf/ft^2 Basic Wind Velocity = 75 mph Wind Importance Factor = 1 Using Seismic Method: NONE DESIGN NOTES NOTE 1 : Tank is not subject to API-650 Appendix F.7
32
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 30-T-002 Concentrate Storage Tanks Design Calculations

J560_30_T-002 TANK DESIGN CALCULATIONS

SUMMARY OF DESIGN DATA and REMARKS Job : J560_30_T-002 Date of Calcs. : 12/28/2010 , 04:03 PM Mfg. or Insp. Date : 1/25/2011 Designer : SA Duazo Project : Saudi Technology Base Lube OIl Plant Tag Number : 30-T-002 CONCENTRATE STORAGE TANK Plant : Saudi Technology Base Lube Oil Plant Plant Location : Al-Kharj Saudi Arabia Site : Al-Kharj Saudi Arabia Design Basis : API-650 11th Edition, Addendum 2, Nov 2009 ---------------------------------------------------------------------- - TANK NAMEPLATE INFORMATION ---------------------------------------------------------------------- - Operating Ratio: 0.4 - Design Standard: - API-650 11th Edition, Addendum 2, Nov 2009 - - (None) - - Roof : A-36: 0.1969in. - - Shell (3): A-36: 0.236in. - - Shell (2): A-36: 0.236in. - - Shell (1): A-36: 0.236in. - - Bottom : A-36: 0.3125in. - ---------------------------------------------------------------------- Design Internal Pressure = 0 PSI or 0 IN. H2O Design External Pressure = 0 PSI or 0 IN. H2O MAWP = 2.5000 PSI or 69.28 IN. H2O MAWV = -0.9239 PSI or -25.60 IN. H2O OD of Tank = 11.5223 ft Shell Height = 19.685 ft S.G. of Contents = 1.1 Max. Liq. Level = 19.685 ft Design Temperature = 185 °F Tank Joint Efficiency = 1 Ground Snow Load = 0 lbf/ft^2 Roof Live Load = 20 lbf/ft^2 Design Roof Dead Load = 9.65 lbf/ft^2 Basic Wind Velocity = 75 mph Wind Importance Factor = 1 Using Seismic Method: NONE DESIGN NOTES NOTE 1 : Tank is not subject to API-650 Appendix F.7

Page 2: 30-T-002 Concentrate Storage Tanks Design Calculations

** NOTE ** A Minimum Liquid Level of 3.28 ft. has been used for this model as entered on the Shell Design Screen. SUMMARY OF RESULTS Shell Material Summary (Bottom is 1) Shell Width Material Sd St Weight « CA # (ft) (psi) (psi) (lbf) « (in) 3 6.561 A-36 23,200 24,900 2,283 « 0.118 2 6.561 A-36 23,200 24,900 2,283 « 0.118 1 6.561 A-36 23,200 24,900 2,283 « 0.118 Total Weight 6,849 Shell API 650 Summary (Bottom is 1) ---------------------------------------------------------------------- Shell t.design t.test t.external t.seismic t.required t.actual # (in.) (in.) (in.) (in.) (in.) (in.) ---------------------------------------------------------------------- 3 0.1259 0.0067 N.A. N.A. 0.1875 0.236 2 0.1352 0.0146 N.A. N.A. 0.1875 0.236 1 0.1445 0.0225 N.A. N.A. 0.236 0.236 ---------------------------------------------------------------------- Self Supported Conical Roof; Material = A-36 t.required = 0.0959 in. t.actual = 0.1969 in. Roof Joint Efficiency = 1 Weight = 871 lbf Bottom Type: Flat Bottom: Non-Annular Bottom Floor Material = A-36 t.required = 0.296 in. t.actual = 0.3125 in. Bottom Joint Efficiency = 1 Total Weight of Bottom = 1,407 lbf ANCHOR BOLTS: (6) 1in. UNC Bolts, A-325 TOP END STIFFENER: L60x60x6, A-36, 134. lbf <Roof Design Per API 650> CONICAL ROOF: A-36 JEr = Roof Joint Efficiency = 1 Lr = Entered Roof Live Load = 20 lbf/ft^2 Lr_1 = Computed Roof Live Load, including External Pressure S = Ground Snow Load = 0 lbf/ft^2 Sb = Balanced Design Snow Load = 0 lbf/ft^2 Su = Unbalanced Design Snow Load = 0 lbf/ft^2

Page 3: 30-T-002 Concentrate Storage Tanks Design Calculations

Dead_Load = Insulation + Plate_Weight + Added_Dead_Load = (0)(0/12) + 8.0305 + 9.65 = 17.68 lbf/ft^2 Roof Loads (per API-650 Appendix R) Pe = PV*144 = 0*144 = 0 lbf/ft^2 e.1b = DL + MAX(Sb,Lr) + 0.4*Pe = 17.68 + 20 + 0.4*0 = 37.68 lbf/ft^2 e.2b = DL + Pe + 0.4*MAX(Sb,Lr) = 17.68 + 0 + 0.4*20 = 25.68 lbf/ft^2 T = Balanced Roof Design Load (per API-650 Appendix R) = MAX(e.1b,e.2b) = 37.68 lbf/ft^2 e.1u = DL + MAX(Su,Lr) + 0.4*Pe = 17.68 + 20 + 0.4*0 = 37.68 lbf/ft^2 e.2u = DL + Pe + 0.4*MAX(Su,Lr) = 17.68 + 0 + 0.4*20 = 25.68 lbf/ft^2 U = Unbalanced Roof Design Load (per API-650 Appendix R) = MAX(e.1u,e.2u) = 37.68 lbf/ft^2 Lr_1 = MAX(T,U) = 37.68 lbf/ft^2 pt = Roof Cone Pitch = 3.43 in/ft Theta = Angle of Cone to the Horizontal = ATAN(pt/12) = ATAN(0.2858) = 15.9517 degrees Alpha = 1/2 the Included Apex Angle of Cone = 74.0483 degrees R2 = 6*OD/SIN(Theta) = 251.55 in. Rc = ID/2 = 68.8979 in. <Weight, Surface Area, and Projected Areas of Roof> Ap_Vert = Vertical Projected Area of Roof = pt*OD^2/48 = 3.43*11.5223^2/48 = 9.487 ft^2 Horizontal Projected Area of Roof (Per API-650 5.2.1.f) Xw = Moment Arm of UPLIFT wind force on roof = 0.5*OD = 0.5*11.5223 = 5.7612 ft Ap = Projected Area of roof for wind moment = PI*R^2 = PI*5.7612^2 = 104.272 ft^2

Page 4: 30-T-002 Concentrate Storage Tanks Design Calculations

Roof_Area = 36*PI*OD^2/COS(Theta) = 36*PI*(11.5223)^2/COS(15.9517) = 15,617 in^2 Weight = (Density)(t)(Roof_Area) = (0.2833)(0.1969)(15,617) = 871 lbf (New) = 871 lbf (Corroded) < Uplift on Tank > (per API-650 F.1.2) NOTE: This flat bottom tank is assumed supported by the bottom plate. If tank not supported by a flat bottom, then uplift calculations will be N.A., and for reference only. For flat bottom tank with self supported roof, Net_Uplift = Uplift due to design pressure less Corroded weight of shell and roof plates. = P * PI / 4 * D ^ 2 * 144 « - Corr. shell - Corr. roof weight = 0 * 3.1416 / 4 * 132.7636 * 144 « - 3,426 - 871 = -4,297 lbf < Uplift Case per API-650 1.1.1 > P_Uplift = 0 lbf W_Roof_Plates (corroded) = 871 lbf W_Shell (corroded) = 3,426 lbf Since P_Uplift <= W_Roof, Tank Roof does not need to meet App. F requirements. <Minimum Thickness of Roof Plate> ME = 28,799,999/28,799,999 = 1 (per API-650 App. M.5.1) <Section 5.10.5.1> t-Calc1 = ME * SQRT[T/45]*OD/(400*SIN(Theta)) + CA = 1 * SQRT[37.68/45]*11.5223/(400*SIN(15.9517)) + 0 = 0.0959 in. t-Calc2 = ME * SQRT[U/45]*OD/(460*SIN(Theta)) + CA = 1 * SQRT[37.68/45]*11.5223/(460*SIN(15.9517)) + 0 = 0.0834 in. t-Calc = MAX(t-Calc1,t-Calc2) = 0.0959 in. Max_f (due to roof thickness) = 400*SIN(Theta)*(t-CA)/ME/OD = 400*SIN(15.9517)*(0.1969 - 0)/1/11.5223 = 1.8781 Max_T1 (due to roof thickness) = Max_f^2 * 45 = 1.8781^2 * 45 = 158.7267lbf/ft^2 P_ext_1 (due to roof thickness) = -[Max_T1 - DL - 0.4 * Max(Snow_Load,Lr)]/144 = -[158.7267 - 17.68 - 0.4 * Max(0,20)]/144 = -0.9239 PSI or -25.61 IN. H2O P_max_ext = -0.9239 PSI or -25.6 IN. H2O

Page 5: 30-T-002 Concentrate Storage Tanks Design Calculations

<Actual Participating Area of Roof-to-Shell Juncture> (From API-650 Figure F-2) Wc = 0.6 * SQRT[Rc * (t-CA)] (Top Shell Course) = 0.6 * SQRT[68.8979 * (0.236 - 0.118)] = 1.7108 in. (From API-650 Figure F-2) Wh = 0.3 * SQRT[R2 * (t-CA)] (or 12", whichever is less) = 0.3 * SQRT[251.55 * (0.1969 - 0)] = MIN(2.1111, 12) = 2.1111 in. Top End Stiffener: L60x60x6 Aa = (Cross-sectional Area of Top End Stiffener) = 1.071 in^2 Using API-650 Fig. F-2, Detail b End Stiffener Detail Ashell = Contributing Area due to shell plates = Wc*(t_shell - CA) = 1.7108 * (0.236 - 0.118) = 0.202 in^2 Aroof = Contributing Area due to roof plates = Wh*(t_roof - CA) = 2.1111 * (0.1969 - 0) = 0.416 in^2 A = Actual Part. Area of Roof-to-Shell Juncture (per API-650) = Aa + Aroof + Ashell = 1.071 + 0.416 + 0.202 = 1.689 in^2 MINIMUM PARTICIPATING AREA Cone Roof ( Per API-650 Section 5.10.5.2 ) p = MAX(U,T) Fa = Min(Fy_roof,Fy_shell,Fy_stiff) = Min(36,000,36,000,36,000) = 36,000 psi A_min = Minimum Participating Area = p*D^2/(8*Fa*TAN(Theta)) = 37.68*11.5223^2/(8*36,000*TAN(15.9517)) = 0.061 in^2 MaxT_A = Max Roof Load due to Participating Area ( reversing API-650 Section 5.10.5.2 ) = 45*A*3000*SIN(Theta)/OD^2 = 45*1.689*3000*SIN(15.9517)/11.5223^2) = 472.002 lbf/ft^2 P_ext_2 (Due to MaxT_A) = -[Max_T1 - DL - 0.4 * Max(Snow_Load,Lr)]/144 = -[472.002 - 17.68 - 0.4 * Max(0,20)]/144 = -1 PSI (Due to Participating Area) P_max_ext = MAX(-0.9239,-1) = -0.9239 PSI or -25.6 IN. H2O t.required = 0.0959 in. < ROOF DESIGN SUMMARY >

Page 6: 30-T-002 Concentrate Storage Tanks Design Calculations

t.required = 0.0959 in. t.actual = 0.1969 in. P_max_internal = 2.5 PSI or 69.28 IN. H2O P_max_external = -0.9239 PSI or -25.60 IN. H2O SHELL COURSE DESIGN (Bottom Course is #1) VDP Criteria (per API-650 5.6.4.1) L = (6*D*(t-ca))^0.5 = (6*11.5223*(0.236-0.118))^0.5 = 2.8562 H = Max Liquid Level =19.685 ft L / H <= 2 Course # 1 Material: A-36; Width = 6.5617 ft. Corrosion Allow. = 0.118 in. Joint Efficiency = 1 API-650 ONE FOOT METHOD Sd = 23,200 PSI (allowable design stress per API-650 Table 5-2b) St = 24,900 PSI (allowable test stress) DESIGN CONDITION G = 1.1 (per API-650) < Design Condition G = 1.1 > H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 19.685 + 2.31*0/1.1 = 19.68ft t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2) = 2.6*11.5223*(19.68 - 1)*1.1/(23,200*1) + 0.118 = 0.1445 in. hMax_1 = E*Sd*(t_1 - CA_1)/(2.6*OD*G) + 1 = 1*23,200*(0.236 - 0.118) / (2.6 * 11.5223 * 1.1) + 1 = 84.0739 ft. Pmax_1 = (hMax_1 - H) * 0.433 * G = (84.0739 - 19.685) * 0.433 * 1.1 = 30.6684 PSI Pmax_int_shell = Pmax_1 Pmax_int_shell = 30.6684 PSI HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 19.685 + 2.31*0/1 = 19.68ft t.test = 2.6*11.5223*(19.68 - 1)/(24,900*1) = 0.0225 in. Course # 2 Material: A-36; Width = 6.5617 ft. Corrosion Allow. = 0.118 in.

Page 7: 30-T-002 Concentrate Storage Tanks Design Calculations

Joint Efficiency = 1 API-650 ONE FOOT METHOD Sd = 23,200 PSI (allowable design stress per API-650 Table 5-2b) St = 24,900 PSI (allowable test stress) DESIGN CONDITION G = 1.1 (per API-650) < Design Condition G = 1.1 > H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 13.1233 + 2.31*0/1.1 = 13.12ft t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2) = 2.6*11.5223*(13.12 - 1)*1.1/(23,200*1) + 0.118 = 0.1352 in. hMax_2 = E*Sd*(t_2 - CA_2)/(2.6*OD*G) + 1 = 1*23,200*(0.236 - 0.118) / (2.6 * 11.5223 * 1.1) + 1 = 84.0739 ft. Pmax_2 = (hMax_2 - H) * 0.433 * G = (84.0739 - 13.1233) * 0.433 * 1.1 = 33.7938 PSI Pmax_int_shell = Min(Pmax_int_shell, Pmax_2) = Min(30.6684, 33.7938) Pmax_int_shell = 30.6684 PSI HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 13.1233 + 2.31*0/1 = 13.12ft t.test = 2.6*11.5223*(13.12 - 1)/(24,900*1) = 0.0146 in. Course # 3 Material: A-36; Width = 6.5616 ft. Corrosion Allow. = 0.118 in. Joint Efficiency = 1 API-650 ONE FOOT METHOD Sd = 23,200 PSI (allowable design stress per API-650 Table 5-2b) St = 24,900 PSI (allowable test stress) DESIGN CONDITION G = 1.1 (per API-650) < Design Condition G = 1.1 > H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 6.5616 + 2.31*0/1.1 = 6.56ft t-Calc = 2.6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2) = 2.6*11.5223*(6.56 - 1)*1.1/(23,200*1) + 0.118 = 0.1259 in.

Page 8: 30-T-002 Concentrate Storage Tanks Design Calculations

hMax_3 = E*Sd*(t_3 - CA_3)/(2.6*OD*G) + 1 = 1*23,200*(0.236 - 0.118) / (2.6 * 11.5223 * 1.1) + 1 = 84.0739 ft. Pmax_3 = (hMax_3 - H) * 0.433 * G = (84.0739 - 6.5616) * 0.433 * 1.1 = 36.9191 PSI Pmax_int_shell = Min(Pmax_int_shell, Pmax_3) = Min(30.6684, 36.9191) Pmax_int_shell = 30.6684 PSI HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2.31*P(psi)/G = 6.5616 + 2.31*0/1 = 6.56ft t.test = 2.6*11.5223*(6.56 - 1)/(24,900*1) = 0.0067 in. Wtr = Transposed Width of each Shell Course = Width*[ t_top / t_course ]^2.5 Transforming Courses (1) to (3) Wtr(1) = 6.5617*[ 0.236/0.236 ]^2.5 = 6.5617 ft Wtr(2) = 6.5617*[ 0.236/0.236 ]^2.5 = 6.5617 ft Wtr(3) = 6.5449*[ 0.236/0.236 ]^2.5 = 6.5449 ft Hts (Height of the Transformed Shell) = SUM{Wtr} = 19.6683 ft INTERMEDIATE WIND GIRDERS (API 650 Section 5.9.7) V (Wind Speed) = 75 mph Ve = vf = Velocity Factor = (vs/120)^2 = (75/120)^2 = 0.3906 Design PV = 0 PSI, OR 0 In. H2O <TOP END STIFFENER CALCULATIONS> Z = Required Top Comp Ring Section Modulus (per API-650 5.1.5.9.e) = 0 in^3 Top Comp. Ring is not required for Self-Supported Roofs if the requirements of either Section 5.10.5 or 5.10.6 are met. Actual Z = 0.391 in^3 Using L60x60x6, Wc = 2.4241 <INTERMEDIATE STIFFENER CALCULATIONS> (PER API-650 Section 5.9.7)

Page 9: 30-T-002 Concentrate Storage Tanks Design Calculations

NOTE: Using the thinnest shell course, t_thinnest, instead of top shell course. ME = 28,799,999/28,799,999 = 1 Hu = Maximum Height of Unstiffened Shell = {ME*600,000*t_thinnest*SQRT[t_thinnest/OD]^3} / Ve) = {1*600,000*0.236*SQRT[0.236/11.5223]^3} / 0.3906 = 1,063 ft Wtr = Transposed Width of each Shell Course = Width*[ t_top / t_course ]^2.5 Transforming Courses (1) to (3) Wtr(1) = 6.5617*[ 0.236/0.236 ]^2.5 = 6.5617 ft Wtr(2) = 6.5617*[ 0.236/0.236 ]^2.5 = 6.5617 ft Wtr(3) = 6.5449*[ 0.236/0.236 ]^2.5 = 6.5449 ft Hts (Height of the Transformed Shell) = SUM{Wtr} = 19.6683 ft L_0 = Hts/# of Stiffeners + 1 = 19.6683/1 = 19.67 ft. No Intermediate Wind Girders Needed Since Hu >= L_0 SHELL COURSE #1 SUMMARY ------------------------------------------- t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0.1445, 0, 0) = 0.1445 in. t-650min = 0.236 in. (per API-650 Section 5.6.1.1, NOTE 4) t.required = MAX(t.design, t.test, t.min650) = 0.236 in. t.actual = 0.236 in. Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0.2833*PI*[(12*11.5223)-0.236]*12*6.5617*0.236 = 2,283 lbf (New) = 1,142 lbf (Corroded) SHELL COURSE #2 SUMMARY ------------------------------------------- t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0.1352, 0, 0) = 0.1352 in. t-650min = 0.1875 in. (per API-650 Section 5.6.1.1, NOTE 4)

Page 10: 30-T-002 Concentrate Storage Tanks Design Calculations

t.required = MAX(t.design, t.test, t.min650) = 0.1875 in. t.actual = 0.236 in. Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0.2833*PI*[(12*11.5223)-0.236]*12*6.5617*0.236 = 2,283 lbf (New) = 1,142 lbf (Corroded) SHELL COURSE #3 SUMMARY ------------------------------------------- t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0.1259, 0, 0) = 0.1259 in. t-650min = 0.1875 in. (per API-650 Section 5.6.1.1, NOTE 4) t.required = MAX(t.design, t.test, t.min650) = 0.1875 in. t.actual = 0.236 in. Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0.2833*PI*[(12*11.5223)-0.236]*12*6.5616*0.236 = 2,283 lbf (New) = 1,142 lbf (Corroded) FLAT BOTTOM: NON-ANNULAR PLATE DESIGN Bottom Plate Material : A-36 Annular Bottom Plate Material : A-36 <Weight of Bottom Plate> Bottom_Area = PI/4*(Bottom_OD)^2 = PI/4*(142.2677)^2 = 15,897 in^2 Weight = Density * t.actual * Bottom_Area = 0.2833 * 0.3125 * 15,897 = 1,407 lbf (New) = 1,137 lbf (Corroded) < API-650 > Calculation of Hydrostatic Test Stress & Product Design Stress (per API-650 Section 5.5.1) t_1 : Bottom (1st) Shell Course thickness. H'= Max. Liq. Level + P(psi)/(0.433) = 19.685 + (0)/(0.433) = 19.685 ft St = Hydrostatic Test Stress in Bottom (1st) Shell Course = (2.6)(OD)(H' - 1)/t_1 = (2.6)(11.5223)(19.685 - 1)/(0.236) = 2,372 PSI. (Within 24900 PSI limit for Non-Annular Bottom) Sd = Product Design Stress in Bottom (1st) Shell Course = (2.6)(OD)(H' - 1)(G)/(t_1 - ca_1) = (2.6)(11.5223)(19.685 - 1)(1.1)/(0.118) = 5,218 PSI. (Within 23200 PSI limit for Non-Annular Bottom) --------------------------

Page 11: 30-T-002 Concentrate Storage Tanks Design Calculations

<Non-Annular Bottom Plates> t_min = 0.236 + CA = 0.236 + 0.06 = 0.296 in. (per Section 5.4.1) t-Calc = t_min = 0.296 in. t-Actual = 0.3125 in. < Vacuum Calculations > (per ASME Section VIII Div. 1) Weight Resisting External Vacuum (Corr. Btm. Plate + Min. Liq. « Level) P_btm = 0.2833 * 0.2525 + 1.5623 = 1.6338 PSI or 45.28 IN. H2O P_ext = PV + P_btm = 0 + 1.6338 = 1.6338 PSI or 45.28 IN. H2O Since P_ext > 0, P_ext = 0 td_ext = (t-Calc - CA) (1st course) = (0.1445 - 0.118) = 0.0265 in. ts = (t.actual - CA) (1st course) = (0.236 - 0.118) = 0.118 in. C = 0.33 * td_ext / ts = 0.33 * 0.0265 / 0.118 = 0.0741 since C < 0.2, set C = 0.2 t-Vac = OD*SQRT(C*P_ext/SE) + CA = (138.27)*SQRT[(0.2)(0)/(23,200)(1)] + 0.06 = 0.06 in. t-Calc = MAX(t-Calc, t-Vac) = MAX(0.296,0.06) = 0.296 in. P_max_external= -1 PSI (due to bottom plate thickness) ------------------- < FLAT BOTTOM: NON-ANNULAR SUMMARY > Bottom Plate Material : A-36 t.required = 0.296 in. t.actual = 0.3125 in. NET UPLIFT DUE TO INTERNAL PRESSURE (See roof report for calculations) Net_Uplift = -4,297 lbf Anchorage NOT required for internal pressure. WIND MOMENT (Per API-650 SECTION 5.11) vs = Wind Velocity = 75 mph vf = Velocity Factor = (vs/120)^2 = (75/120)^2 = 0.3906

Page 12: 30-T-002 Concentrate Storage Tanks Design Calculations

Wind_Uplift = Iw * 30 * vf = 1 * 30 * 0.3906 = 11.7188 lbf/ft^2 API-650 5.2.1.k Uplift Check P_F41 = WCtoPSI(0.962*Fy*A*TAN(Theta)/D^2 + 8*t_h) P_F41 = WCtoPSI(0.962*36,000*1.689*0.2858/11.5223^2 + 8*0.1969) = 4.601 PSI Limit Wind_Uplift/144+P to 1.6*P_F41 Wind_Uplift/144 + P = 0.0814 PSI 1.6*P_F41 = 7.3616 PSI Wind_Uplift/144 + P = MIN(Wind_Uplift/144 + P, 1.6*P_F41) Wind_Uplift/144 = MIN(Wind_Uplift/144, 1.6*P_F41 - P) Wind_Uplift = MIN(Wind_Uplift, (1.6*P_F41 - P) * 144) = MIN(11.7188,1,060) = 11.7188 lbf/ft^2 Ap_Vert = Vertical Projected Area of Roof = pt*OD^2/48 = 3.43*11.5223^2/48 = 9.487 ft^2 Horizontal Projected Area of Roof (Per API-650 5.2.1.f) Xw = Moment Arm of UPLIFT wind force on roof = 0.5*OD = 0.5*11.5223 = 5.7612 ft Ap = Projected Area of roof for wind moment = PI*R^2 = PI*5.7612^2 = 104.272 ft^2 M_roof (Moment Due to Wind Force on Roof) = (Wind_Uplift)(Ap)(Xw) = (11.7188)(104.272)(5.7612) = 7,040 ft-lbf Xs (Moment Arm of Wind Force on Shell) = H/2 = (19.685)/2 = 9.8425 ft As (Projected Area of Shell) = H*(OD + t_ins / 6) = (19.685)(11.5223 + 0/6) = 226.8167 ft^2 M_shell (Moment Due to Wind Force on Shell) = (Iw)(vf)(18)(As)(Xs) = (1)(0.3906)(18)(226.8167)(9.8425) = 15,697 ft-lbf

Page 13: 30-T-002 Concentrate Storage Tanks Design Calculations

Mw (Wind moment) = M_roof + M_shell = 7,040 + 15,697 = 22,737 ft-lbf W = Net weight (PER API-650 5.11.3) (Force due to corroded weight of shell and shell-supported roof plates less 40% of F.1.2 Uplift force.) = W_shell + W_roof - 0.4*P*(PI/4)(144)(OD^2) = 3,426 + 871 - 0*(PI/4)(144)(11.5223^2) = 4,297 lbf RESISTANCE TO OVERTURNING (per API-650 5.11.2) An unanchored Tank must meet these two criteria: 1) 0.6*Mw + MPi < MDL/1.5 2) Mw + 0.4MPi < (MDL + MF)/2 Mw = Destabilizing Wind Moment = 22,737 ft-lbf MPi = Destabilizing Moment about the Shell-to-Bottom Joint from « Design Pressure. = P*(PI*OD^2/4)*(144)*(OD/2) = 0*(3.1416*11.5223^2/4)*(144)*(5.7612) = 0 ft-lbf MDL = Stabilizing Moment about the Shell-to-Bottom Joint from the « Shell and Roof weight supported by the Shell. = (W_shell + W_roof)*OD/2 = (3,426 + 871)*5.7612 = 24,756 ft-lbf tb = Bottom Plate thickness less C.A. = 0.2525 in. wl = Circumferential loading of contents along Shell-To-Bottom « Joint. = 4.67*tb*SQRT(Sy_btm*H_liq) = 4.67*0.2525*SQRT(36,000*19.685) = 992.65 lbf/ft wl = 0.9 * H_liq * OD (lesser value than above) = 0.9*19.685*11.5223 = 204.14 lbf/ft MF = Stabilizing Moment due to Bottom Plate and Liquid Weight. = (OD/2)*wl*PI*OD = (5.7612)(204.14)(3.1416)(11.5223) = 42,572 ft-lbf Criteria 1 0.6*(22,737) + 0 < 24,756/1.5 Since 13,642 < 16,504, Tank is stable. Criteria 2 22,737 + 0.4 * 0 < (24,756 + 42,572)/2 Since 22,737 < 33,664, Tank is stable. RESISTANCE TO SLIDING (per API-650 5.11.4)

Page 14: 30-T-002 Concentrate Storage Tanks Design Calculations

F_wind = vF * 18 * As = 0.3906 * 18 * 226.8167 = 1,595 lbf F_friction = Maximum of 40% of Weight of Tank = 0.4 * (W_Roof_Corroded + W_Shell_Corroded + W_Btm_Corroded + W_min_Liquid) = 0.4 * (871 + 3,426 + 1,137 + 23,305) = 11,496 lbf No anchorage needed to resist sliding since F_friction > F_wind <Anchorage Requirement> Anchorage NOT required since Criteria 1, Criteria 2, and Sliding ARE acceptable. TABLE 1A: NOZZLES & MANWAYS ---------------------------------------------------------------------- NAME TYPE SIZE FLANGE SCH. ELEV. ORIEN REPAD REPAD REPAD REPAD FACING ON t Do W CA SHELL or L (in) (ft) (Deg. (in) (in) (in) (in) ---------------------------------------------------------------------- Nozzle A (Inlet Nozzle) SHNZ 2 RFSO STD 17.72 45 - - - - Nozzle B (outlet Nozzle) SHNZ 3 RFSO STD 1.64 0 0.236 10.5 10.43 0.06 Nozzle C (Overflow pipe) SHNZ 2 RFSO XS 18.04 90 - - - - Nozzle D (Draw sump) SHNZ 2 RFSO XS 1.722 120 - - - - Nozzle E1(Spare nozzle) RFNZ 4 RFSO XS N.A. 343 0.236 10.83 10.83 0.06 Nozzle E2 (Spare nozzle) SHNZ 4 RFSO XS 3.281 120 0.236 10.83 10.83 0.06 Nozzle F (Temp Tranmitter) SHNZ 1.5 RFSO XS 3.28 135 - - - - Nozzle I (Shell Manway) SHMW 24 RFSO 0.312 3.28 180 0.236 46.18 46.18 0.06 Nozzle L (level Transmitter) RFNZ 4 RFSO XS N.A. 0 0.236 10.83 10.83 0.06 Nozzle M (VENT) OTHR 4 RFSO XS 0 180 0.236 10.83 10.83 0.06 Nozzle Q (Roof Manway) RFMW 24 RFSO 0.312 N.A. 0 0.236 50.12 50.12 0.06 ---------------------------------------------------------------------- TABLE 1B: NOZZLES & MANWAYS ---------------------------------------------------------------------- NAME MATERIAL Wgt E1 Ex t_n ca_n L_ip L_ep tw1 tw2 (in) (in) (in) (in) (in) (in) ---------------------------------------------------------------------- Nozzle A (Inlet Nozzle) A-106 Gr B 9 1 1 0.154 0.06 0 6 0.236 0 Nozzle B (outlet Nozzle) A-106 Gr B 22.0 1 1 0.216 0 0 6 0.236 0.125 Nozzle C (Overflow pipe) A-106 Gr B 37.5 1 1 0.218 0 8.66 6 0.236 0

Page 15: 30-T-002 Concentrate Storage Tanks Design Calculations

Nozzle D (Draw sump) A-106 Gr B 79.5 1 1 0.218 0 69 6 0.236 0 Nozzle E1(Spare nozzle) A-106 Gr B 48.5 1 1 0.337 0 1.38 7 0.236 0.236 Nozzle E2 (Spare nozzle) A-106 Gr B 48.5 1 1 0.337 0 0 6.7 0.236 0.125 Nozzle F (Temp Tranmitter) A-106 Gr B 5.5 1 1 0.2 0 0 6 0.236 0 Nozzle I (Shell Manway) A-106 Gr B 450 1 1 0.312 0 0 8.66 0.236 0.236 Nozzle L (level Transmitter) A-106 Gr B 242. 1 1 0.337 0 161.7 6.9 0.236 0.236 Nozzle M (VENT) A-106 Gr B 70.5 1 1 0.337 0 0 7 0.236 0.236 Nozzle Q (Roof Manway) A-36 N.A. 0.85 1 0.312 0.06 0.6 29 0.236 0.236 ---------------------------------------------------------------------- < Nozzle Nozzle B (outlet Nozzle) Reinforcement Requirements > (per API-650 Section 5.7.1.8 and API-620 Section 5.16) < INTERNAL PRESSURE (Design Mode) = 0 PSI > Material : A-106 Gr B SMLS PIPE ID_n (Nozzle ID) : 3.068 in. ca_n (Corrosion Allowance for Nozzle Neck) : 0 in. ID2_n (Corroded Nozzle ID) = ID_n + 2 * ca_n : 3.068 in. t_n (Nominal Nozzle Neck thickness) : 0.216 in. E (Tank Joint Efficiency) : 1 E1 (Nozzle Neck Joint Efficiency) : 1 Ex (Area Joint Efficiency on which Nozzle is Mounted) : 1 tw1 (Fillet Weld at Nozzle Neck OD) : 0.236 in. t_rp (Nozzle Repad Nominal Thickness) : 0.236 in. ca_rp (Nozzle Repad Corrosion Allow.) : 0.06 in. D_rp (Nozzle Repad Do or L) : 10.5 in. tw2 (Fillet Weld at the Repad OD) : 0.125 in. tw2c (Fillet Weld Contributing) : 0 in. Since D_rp > 2 * ID2_n L_ip (Internal Projected Length of Nozzle Neck) : 0 in. L_ep (External Projected Length of Nozzle Neck) : 6 in. H_n (Nominal Nozzle Elevation on Shell) : 1.64 ft. P_n (Max. Internal Pressure on Nozzle, Including Static Liquid « Head), = P + G * 0.433 * (Liq. Level - H_n + 0.5 * ID_n + CA_n) = 0 + 1.1 * 0.433 * (19.685 - 1.64 + 0.5 * 0.2557 + 0) = 8.6557 PSI FOR COMPONENT ON WHICH NOZZLE IS MOUNTED: t_c (Actual Thickness) : 0.236 in. t_cr (Required Thickness, Inclusive of Corrosion) : 0.1445 in. ca_c (Corrosion Allowance) : 0.118 in. S_cd (Allowable Design Stress) : 23,200 PSI f_n (Nozzle Stress Reduction Factor), = MIN[(S_n/S_cd), 1] = MIN[(21,568 / 23,200), 1] = 0.9297 L_ip2 = MIN[L_ip, 2.5*(t_c - ca_c), 2.5*(t_n - ca_n - ca_c)] = MIN[0, 2.5*(0.236 - 0.118), 2.5*(0.216 - 0 - 0.118)] = 0 in. t_nr (Required Nozzle Thickness) = [P_n * (0.5 * ID_n + CA_n)]/(Sa * E1) + CA_n = [8.6557 * (0.5 * 3.068 + 0)]/(21,568 * 1) + 0

Page 16: 30-T-002 Concentrate Storage Tanks Design Calculations

---> = 0.0006 in. Nozzle Areas Providing Reinforcement: A1_c (Available Component wall on which Nozzle is mounted), = ID_n * (t_c - t_cr) - 2*t_n*(t_c - t_cr)*(1-f_n) = 3.068 * (0.236 - 0.1445) - 2 * 0.216 * (0.236 - « 0.1445)*(1-0.9297) = 0.2779 in^2. A2_n (Available Nozzle neck thickness), = 5 * MAX[(t_n - t_nr),0] * MIN[(t_n - ca_n),(t_c - ca_c)] * « f_n = 5 * MAX[(0.216-0.0006),0]*MIN[(0.216-0),(0.236-0.118)] * « 0.9297 = 0.1181 in^2. A3_n (Available Internal Projection of Nozzle neck), = 2 * (t_n - ca_n - ca_c) * L_ip2 * f_n = 2 * (0.216 - 0 - 0.118) * 0 * 0.9297 = 0 in^2. A4_n (Available Inner and Outer fillet welds), = tw1 ^2 + tw2c ^2 = (0.236)^2 + (0) ^2 = 0.0557 in^2. A5_n (Available Nozzle repad) = [ MIN(D_rp, 2 * ID2_n) - ID_n - (2 * t_n)] * (t_rp - ca_rp) = [ MIN(10.5, 2 * 3.068) - 3.068 - (2 * 0.216)] * (0.236 - « 0.06) = 0.4639 in^2. A_a (Actual Reinforcement Area) = A_1c + A2_n + A3_n + A4_n + A5_n = 0.2779 + 0.1181 + 0 + 0.0557 + 0.4639 = 0.916 in^2. Actual Reinforcement Area for Nozzle Nozzle B (outlet Nozzle) : A_a « = 0.916 in^2. A_r (Required Reinforcement Area) = (t_cr - ca_c) / Ex * [(ID_n + 2 * ca_n) + 2*(t_n - ca_n)*(1 « - f_n)] = (0.1445-0.118) / 1 * [(3.068 + 2*0) + 2*(0.216 - 0) * (1 - 0.9297)] = 0.082 in^2. Under Internal Pressure: Required Reinforcement Area for Nozzle Nozzle B (outlet Nozzle) : « A_r = 0.082 in^2. Since A1_c + A2_n + A3_n + A4_n >= A_r, A5_n_Calc = 0 in^2 (Repad Reinforcement Area Not Required) L_nn (Length of Nozzle Neck Contributing to Reinforcement: « REFERENCE ONLY), = 2.5 * MIN[(t_n - ca_n),(t_c - ca_c)] + (t_rp - ca_rp) = 2.5 * MIN[(0.216 - 0),(0.236 - 0.118)] + (0.176) = 0.471 in. < Nozzle Nozzle E1(Spare nozzle) Reinforcement Requirements > (per API-650 Section 5.7.1.8 and API-620 Section 5.16) < EXTERNAL PRESSURE (Design Mode) = 0 PSI > Material : A-106 Gr B SMLS PIPE ID_n (Nozzle ID) : 3.826 in. ca_n (Corrosion Allowance for Nozzle Neck) : 0 in. ID2_n (Corroded Nozzle ID) = ID_n + 2 * ca_n : 3.826 in.

Page 17: 30-T-002 Concentrate Storage Tanks Design Calculations

t_n (Nominal Nozzle Neck thickness) : 0.337 in. E (Tank Joint Efficiency) : 1 E1 (Nozzle Neck Joint Efficiency) : 1 Ex (Area Joint Efficiency on which Nozzle is Mounted) : 1 tw1 (Fillet Weld at Nozzle Neck OD) : 0.236 in. t_rp (Nozzle Repad Nominal Thickness) : 0.236 in. ca_rp (Nozzle Repad Corrosion Allow.) : 0.06 in. D_rp (Nozzle Repad Do or L) : 10.83 in. tw2 (Fillet Weld at the Repad OD) : 0.236 in. tw2c (Fillet Weld Contributing) : 0 in. Since D_rp > 2 * ID2_n L_ip (Internal Projected Length of Nozzle Neck) : 1.38 in. L_ep (External Projected Length of Nozzle Neck) : 7 in. H_n (Nominal Nozzle Elevation on Shell) : 0 ft. P_n (Max. Internal Pressure on Nozzle, Including Static Liquid « Head), = P = 0 PSI FOR COMPONENT ON WHICH NOZZLE IS MOUNTED: t_c (Actual Thickness) : 0.1969 in. t_cr (Required Thickness, Inclusive of Corrosion) : 0.0959 in. ca_c (Corrosion Allowance) : 0 in. S_cd (Allowable Design Stress) : 23,200 PSI f_n (Nozzle Stress Reduction Factor), = MIN[(S_n/S_cd), 1] = MIN[(21,568 / 23,200), 1] = 0.9297 L_ip2 = MIN[L_ip, 2.5*(t_c - ca_c), 2.5*(t_n - ca_n - ca_c)] = MIN[1.38, 2.5*(0.1969 - 0), 2.5*(0.337 - 0 - 0)] = 0.4921 in. t_nr (Required Nozzle Thickness, per ASME Section VIII, UG-28) L0/D0 = L_ep/(ID_n + 2*t_n) = 1.5556 D0/(t_n - ca_n) = 13.35 B = 17,622 <from FIG CS-2 > A = 0.0187 <from FIG UGO-28.0> (ref. only) t_nr = 3PD/(4B) + CA = (3*0*4.50)/(4*17,622) + 0 ---> = 0 in. Nozzle Areas Providing Reinforcement: A1_c (Available Component wall on which Nozzle is mounted), = ID_n * (t_c - t_cr) - 2*t_n*(t_c - t_cr)*(1-f_n) = 3.826 * (0.1969 - 0.0959) - 2 * 0.337 * (0.1969 - « 0.0959)*(1-0.9297) = 0.3814 in^2. A2_n (Available Nozzle neck thickness), = 5 * MAX[(t_n - t_nr),0] * MIN[(t_n - ca_n),(t_c - ca_c)] * « f_n = 5 * MAX[(0.337-0),0]*MIN[(0.337-0),(0.1969-0)] * 0.9297 = 0.3084 in^2. A3_n (Available Internal Projection of Nozzle neck), = 2 * (t_n - ca_n - ca_c) * L_ip2 * f_n = 2 * (0.337 - 0 - 0) * 0.4921 * 0.9297 = 0.3084 in^2. A4_n (Available Inner and Outer fillet welds), = tw1 ^2 + tw2c ^2 = (0.236)^2 + (0) ^2 = 0.0557 in^2. A5_n (Available Nozzle repad) = [ MIN(D_rp, 2 * ID2_n) - ID_n - (2 * t_n)] * (t_rp - ca_rp)

Page 18: 30-T-002 Concentrate Storage Tanks Design Calculations

= [ MIN(10.83, 2 * 3.826) - 3.826 - (2 * 0.337)] * (0.236 - « 0.06) = 0.5548 in^2. A_a (Actual Reinforcement Area) = A_1c + A2_n + A3_n + A4_n + A5_n = 0.3814 + 0.3084 + 0.3084 + 0.0557 + 0.5548 = 1.609 in^2. Actual Reinforcement Area for Nozzle Nozzle E1(Spare nozzle) : A_a = « 1.609 in^2. A_r (Required Reinforcement Area) = 0.5 * (t_cr - ca_c) * [(ID_n + 2 * ca_n) + 2 * (t_n - « ca_n)*(1-f_n)] = 0.5*(0.0959-0)*[(3.826 + 2*0) + 2*(0.337-0)*(1-0.9297)] = 0.186 in^2. Under External Pressure: Required Reinforcement Area for Nozzle Nozzle E1(Spare nozzle) : « A_r = 0.186 in^2. Since A1_c + A2_n + A3_n + A4_n >= A_r, A5_n_Calc = 0 in^2 (Repad Reinforcement Area Not Required) L_nn (Length of Nozzle Neck Contributing to Reinforcement: « REFERENCE ONLY), = 2.5 * MIN[(t_n - ca_n),(t_c - ca_c)] + (t_rp - ca_rp) = 2.5 * MIN[(0.337 - 0),(0.1969 - 0)] + (0.176) = 0.6681 in. < ATMOSPHERIC PRESSURE (Design Mode) > Material : A-106 Gr B SMLS PIPE ID_n (Nozzle ID) : 3.826 in. ca_n (Corrosion Allowance for Nozzle Neck) : 0 in. ID2_n (Corroded Nozzle ID) = ID_n + 2 * ca_n : 3.826 in. t_n (Nominal Nozzle Neck thickness) : 0.337 in. E (Tank Joint Efficiency) : 1 E1 (Nozzle Neck Joint Efficiency) : 1 Ex (Area Joint Efficiency on which Nozzle is Mounted) : 1 tw1 (Fillet Weld at Nozzle Neck OD) : 0.236 in. t_rp (Nozzle Repad Nominal Thickness) : 0.236 in. ca_rp (Nozzle Repad Corrosion Allow.) : 0.06 in. D_rp (Nozzle Repad Do or L) : 10.83 in. tw2 (Fillet Weld at the Repad OD) : 0.236 in. tw2c (Fillet Weld Contributing) : 0 in. Since D_rp > 2 * ID2_n L_ip (Internal Projected Length of Nozzle Neck) : 1.38 in. L_ep (External Projected Length of Nozzle Neck) : 7 in. H_n (Nominal Nozzle Elevation on Shell) : 0 ft. P_n (Max. Internal Pressure on Nozzle, Including Static Liquid « Head), = P = 0 PSI FOR COMPONENT ON WHICH NOZZLE IS MOUNTED: t_c (Actual Thickness) : 0.1969 in. t_cr (Required Thickness, Inclusive of Corrosion) : 0.0959 in. ca_c (Corrosion Allowance) : 0 in. S_cd (Allowable Design Stress) : 23,200 PSI f_n (Nozzle Stress Reduction Factor), = MIN[(S_n/S_cd), 1] = MIN[(21,568 / 23,200), 1]

Page 19: 30-T-002 Concentrate Storage Tanks Design Calculations

= 0.9297 L_ip2 = MIN[L_ip, 2.5*(t_c - ca_c), 2.5*(t_n - ca_n - ca_c)] = MIN[1.38, 2.5*(0.1969 - 0), 2.5*(0.337 - 0 - 0)] = 0.4921 in. t_nr (Required Nozzle Thickness) = [P_n * (0.5 * ID_n + CA_n)]/(Sa * E1) + CA_n = [0 * (0.5 * 3.826 + 0)]/(21,568 * 1) + 0 ---> = 0 in. Nozzle Areas Providing Reinforcement: A1_c (Available Component wall on which Nozzle is mounted), = ID_n * (t_c - t_cr) - 2*t_n*(t_c - t_cr)*(1-f_n) = 3.826 * (0.1969 - 0.0959) - 2 * 0.337 * (0.1969 - « 0.0959)*(1-0.9297) = 0.3814 in^2. A2_n (Available Nozzle neck thickness), = 5 * MAX[(t_n - t_nr),0] * MIN[(t_n - ca_n),(t_c - ca_c)] * « f_n = 5 * MAX[(0.337-0),0]*MIN[(0.337-0),(0.1969-0)] * 0.9297 = 0.3084 in^2. A3_n (Available Internal Projection of Nozzle neck), = 2 * (t_n - ca_n - ca_c) * L_ip2 * f_n = 2 * (0.337 - 0 - 0) * 0.4921 * 0.9297 = 0.3084 in^2. A4_n (Available Inner and Outer fillet welds), = tw1 ^2 + tw2c ^2 = (0.236)^2 + (0) ^2 = 0.0557 in^2. A5_n (Available Nozzle repad) = [ MIN(D_rp, 2 * ID2_n) - ID_n - (2 * t_n)] * (t_rp - ca_rp) = [ MIN(10.83, 2 * 3.826) - 3.826 - (2 * 0.337)] * (0.236 - « 0.06) = 0.5548 in^2. A_a (Actual Reinforcement Area) = A_1c + A2_n + A3_n + A4_n + A5_n = 0.3814 + 0.3084 + 0.3084 + 0.0557 + 0.5548 = 1.609 in^2. Actual Reinforcement Area for Nozzle Nozzle E1(Spare nozzle) : A_a = « 1.609 in^2. A_r (Required Reinforcement Area) = (t_cr - ca_c) / Ex * [(ID_n + 2 * ca_n) + 2*(t_n - ca_n)*(1 « - f_n)] = (0.0959-0) / 1 * [(3.826 + 2*0) + 2*(0.337 - 0) * (1 - 0.9297)] = 0.371 in^2. Required Reinforcement Area for Nozzle Nozzle E1(Spare nozzle) : « A_r = 0.371 in^2. Since A1_c + A2_n + A3_n + A4_n >= A_r, A5_n_Calc = 0 in^2 (Repad Reinforcement Area Not Required) L_nn (Length of Nozzle Neck Contributing to Reinforcement: « REFERENCE ONLY), = 2.5 * MIN[(t_n - ca_n),(t_c - ca_c)] + (t_rp - ca_rp) = 2.5 * MIN[(0.337 - 0),(0.1969 - 0)] + (0.176) = 0.6681 in. < Nozzle Nozzle E2 (Spare nozzle) Reinforcement Requirements > (per API-650 Section 5.7.1.8 and API-620 Section 5.16)

Page 20: 30-T-002 Concentrate Storage Tanks Design Calculations

< INTERNAL PRESSURE (Design Mode) = 0 PSI > Material : A-106 Gr B SMLS PIPE ID_n (Nozzle ID) : 3.826 in. ca_n (Corrosion Allowance for Nozzle Neck) : 0 in. ID2_n (Corroded Nozzle ID) = ID_n + 2 * ca_n : 3.826 in. t_n (Nominal Nozzle Neck thickness) : 0.337 in. E (Tank Joint Efficiency) : 1 E1 (Nozzle Neck Joint Efficiency) : 1 Ex (Area Joint Efficiency on which Nozzle is Mounted) : 1 tw1 (Fillet Weld at Nozzle Neck OD) : 0.236 in. t_rp (Nozzle Repad Nominal Thickness) : 0.236 in. ca_rp (Nozzle Repad Corrosion Allow.) : 0.06 in. D_rp (Nozzle Repad Do or L) : 10.83 in. tw2 (Fillet Weld at the Repad OD) : 0.125 in. tw2c (Fillet Weld Contributing) : 0 in. Since D_rp > 2 * ID2_n L_ip (Internal Projected Length of Nozzle Neck) : 0 in. L_ep (External Projected Length of Nozzle Neck) : 6.7 in. H_n (Nominal Nozzle Elevation on Shell) : 3.281 ft. P_n (Max. Internal Pressure on Nozzle, Including Static Liquid « Head), = P + G * 0.433 * (Liq. Level - H_n + 0.5 * ID_n + CA_n) = 0 + 1.1 * 0.433 * (19.685 - 3.281 + 0.5 * 0.3188 + 0) = 7.8892 PSI FOR COMPONENT ON WHICH NOZZLE IS MOUNTED: t_c (Actual Thickness) : 0.236 in. t_cr (Required Thickness, Inclusive of Corrosion) : 0.1445 in. ca_c (Corrosion Allowance) : 0.118 in. S_cd (Allowable Design Stress) : 23,200 PSI f_n (Nozzle Stress Reduction Factor), = MIN[(S_n/S_cd), 1] = MIN[(21,568 / 23,200), 1] = 0.9297 L_ip2 = MIN[L_ip, 2.5*(t_c - ca_c), 2.5*(t_n - ca_n - ca_c)] = MIN[0, 2.5*(0.236 - 0.118), 2.5*(0.337 - 0 - 0.118)] = 0 in. t_nr (Required Nozzle Thickness) = [P_n * (0.5 * ID_n + CA_n)]/(Sa * E1) + CA_n = [7.8892 * (0.5 * 3.826 + 0)]/(21,568 * 1) + 0 ---> = 0.0007 in. Nozzle Areas Providing Reinforcement: A1_c (Available Component wall on which Nozzle is mounted), = ID_n * (t_c - t_cr) - 2*t_n*(t_c - t_cr)*(1-f_n) = 3.826 * (0.236 - 0.1445) - 2 * 0.337 * (0.236 - « 0.1445)*(1-0.9297) = 0.3457 in^2. A2_n (Available Nozzle neck thickness), = 5 * MAX[(t_n - t_nr),0] * MIN[(t_n - ca_n),(t_c - ca_c)] * « f_n = 5 * MAX[(0.337-0.0007),0]*MIN[(0.337-0),(0.236-0.118)] * « 0.9297 = 0.1845 in^2. A3_n (Available Internal Projection of Nozzle neck), = 2 * (t_n - ca_n - ca_c) * L_ip2 * f_n = 2 * (0.337 - 0 - 0.118) * 0 * 0.9297 = 0 in^2. A4_n (Available Inner and Outer fillet welds), = tw1 ^2 + tw2c ^2 = (0.236)^2 + (0) ^2

Page 21: 30-T-002 Concentrate Storage Tanks Design Calculations

= 0.0557 in^2. A5_n (Available Nozzle repad) = [ MIN(D_rp, 2 * ID2_n) - ID_n - (2 * t_n)] * (t_rp - ca_rp) = [ MIN(10.83, 2 * 3.826) - 3.826 - (2 * 0.337)] * (0.236 - « 0.06) = 0.5548 in^2. A_a (Actual Reinforcement Area) = A_1c + A2_n + A3_n + A4_n + A5_n = 0.3457 + 0.1845 + 0 + 0.0557 + 0.5548 = 1.141 in^2. Actual Reinforcement Area for Nozzle Nozzle E2 (Spare nozzle) : A_a « = 1.141 in^2. A_r (Required Reinforcement Area) = (t_cr - ca_c) / Ex * [(ID_n + 2 * ca_n) + 2*(t_n - ca_n)*(1 « - f_n)] = (0.1445-0.118) / 1 * [(3.826 + 2*0) + 2*(0.337 - 0) * (1 - 0.9297)] = 0.103 in^2. Under Internal Pressure: Required Reinforcement Area for Nozzle Nozzle E2 (Spare nozzle) : « A_r = 0.103 in^2. Since A1_c + A2_n + A3_n + A4_n >= A_r, A5_n_Calc = 0 in^2 (Repad Reinforcement Area Not Required) L_nn (Length of Nozzle Neck Contributing to Reinforcement: « REFERENCE ONLY), = 2.5 * MIN[(t_n - ca_n),(t_c - ca_c)] + (t_rp - ca_rp) = 2.5 * MIN[(0.337 - 0),(0.236 - 0.118)] + (0.176) = 0.471 in. < Manway Nozzle I (Shell Manway) Reinforcement Requirements > (per API-650 Section 5.7.1.8 and API-620 Section 5.16) < Nozzle Nozzle L (level Transmitter) Reinforcement Requirements > (per API-650 Section 5.7.1.8 and API-620 Section 5.16) < EXTERNAL PRESSURE (Design Mode) = 0 PSI > Material : A-106 Gr B SMLS PIPE ID_n (Nozzle ID) : 3.826 in. ca_n (Corrosion Allowance for Nozzle Neck) : 0 in. ID2_n (Corroded Nozzle ID) = ID_n + 2 * ca_n : 3.826 in. t_n (Nominal Nozzle Neck thickness) : 0.337 in. E (Tank Joint Efficiency) : 1 E1 (Nozzle Neck Joint Efficiency) : 1 Ex (Area Joint Efficiency on which Nozzle is Mounted) : 1 tw1 (Fillet Weld at Nozzle Neck OD) : 0.236 in. t_rp (Nozzle Repad Nominal Thickness) : 0.236 in. ca_rp (Nozzle Repad Corrosion Allow.) : 0.06 in. D_rp (Nozzle Repad Do or L) : 10.83 in. tw2 (Fillet Weld at the Repad OD) : 0.236 in. tw2c (Fillet Weld Contributing) : 0 in. Since D_rp > 2 * ID2_n L_ip (Internal Projected Length of Nozzle Neck) : 161.7 in. L_ep (External Projected Length of Nozzle Neck) : 6.9 in. H_n (Nominal Nozzle Elevation on Shell) : 20.6 ft. P_n (Max. Internal Pressure on Nozzle, Including Static Liquid « Head), = P = 0 PSI

Page 22: 30-T-002 Concentrate Storage Tanks Design Calculations

FOR COMPONENT ON WHICH NOZZLE IS MOUNTED: t_c (Actual Thickness) : 0.1969 in. t_cr (Required Thickness, Inclusive of Corrosion) : 0.0959 in. ca_c (Corrosion Allowance) : 0 in. S_cd (Allowable Design Stress) : 23,200 PSI f_n (Nozzle Stress Reduction Factor), = MIN[(S_n/S_cd), 1] = MIN[(21,568 / 23,200), 1] = 0.9297 L_ip2 = MIN[L_ip, 2.5*(t_c - ca_c), 2.5*(t_n - ca_n - ca_c)] = MIN[161.7, 2.5*(0.1969 - 0), 2.5*(0.337 - 0 - 0)] = 0.4921 in. t_nr (Required Nozzle Thickness, per ASME Section VIII, UG-28) L0/D0 = L_ep/(ID_n + 2*t_n) = 1.5333 D0/(t_n - ca_n) = 13.35 B = 17,622 <from FIG CS-2 > A = 0.019 <from FIG UGO-28.0> (ref. only) t_nr = 3PD/(4B) + CA = (3*0*4.50)/(4*17,622) + 0 ---> = 0 in. Nozzle Areas Providing Reinforcement: A1_c (Available Component wall on which Nozzle is mounted), = ID_n * (t_c - t_cr) - 2*t_n*(t_c - t_cr)*(1-f_n) = 3.826 * (0.1969 - 0.0959) - 2 * 0.337 * (0.1969 - « 0.0959)*(1-0.9297) = 0.3814 in^2. A2_n (Available Nozzle neck thickness), = 5 * MAX[(t_n - t_nr),0] * MIN[(t_n - ca_n),(t_c - ca_c)] * « f_n = 5 * MAX[(0.337-0),0]*MIN[(0.337-0),(0.1969-0)] * 0.9297 = 0.3084 in^2. A3_n (Available Internal Projection of Nozzle neck), = 2 * (t_n - ca_n - ca_c) * L_ip2 * f_n = 2 * (0.337 - 0 - 0) * 0.4921 * 0.9297 = 0.3084 in^2. A4_n (Available Inner and Outer fillet welds), = tw1 ^2 + tw2c ^2 = (0.236)^2 + (0) ^2 = 0.0557 in^2. A5_n (Available Nozzle repad) = [ MIN(D_rp, 2 * ID2_n) - ID_n - (2 * t_n)] * (t_rp - ca_rp) = [ MIN(10.83, 2 * 3.826) - 3.826 - (2 * 0.337)] * (0.236 - « 0.06) = 0.5548 in^2. A_a (Actual Reinforcement Area) = A_1c + A2_n + A3_n + A4_n + A5_n = 0.3814 + 0.3084 + 0.3084 + 0.0557 + 0.5548 = 1.609 in^2. Actual Reinforcement Area for Nozzle Nozzle L (level Transmitter) : « A_a = 1.609 in^2. A_r (Required Reinforcement Area) = 0.5 * (t_cr - ca_c) * [(ID_n + 2 * ca_n) + 2 * (t_n - « ca_n)*(1-f_n)] = 0.5*(0.0959-0)*[(3.826 + 2*0) + 2*(0.337-0)*(1-0.9297)] = 0.186 in^2. Under External Pressure:

Page 23: 30-T-002 Concentrate Storage Tanks Design Calculations

Required Reinforcement Area for Nozzle Nozzle L (level Transmitter) « : A_r = 0.186 in^2. Since A1_c + A2_n + A3_n + A4_n >= A_r, A5_n_Calc = 0 in^2 (Repad Reinforcement Area Not Required) L_nn (Length of Nozzle Neck Contributing to Reinforcement: « REFERENCE ONLY), = 2.5 * MIN[(t_n - ca_n),(t_c - ca_c)] + (t_rp - ca_rp) = 2.5 * MIN[(0.337 - 0),(0.1969 - 0)] + (0.176) = 0.6681 in. < ATMOSPHERIC PRESSURE (Design Mode) > Material : A-106 Gr B SMLS PIPE ID_n (Nozzle ID) : 3.826 in. ca_n (Corrosion Allowance for Nozzle Neck) : 0 in. ID2_n (Corroded Nozzle ID) = ID_n + 2 * ca_n : 3.826 in. t_n (Nominal Nozzle Neck thickness) : 0.337 in. E (Tank Joint Efficiency) : 1 E1 (Nozzle Neck Joint Efficiency) : 1 Ex (Area Joint Efficiency on which Nozzle is Mounted) : 1 tw1 (Fillet Weld at Nozzle Neck OD) : 0.236 in. t_rp (Nozzle Repad Nominal Thickness) : 0.236 in. ca_rp (Nozzle Repad Corrosion Allow.) : 0.06 in. D_rp (Nozzle Repad Do or L) : 10.83 in. tw2 (Fillet Weld at the Repad OD) : 0.236 in. tw2c (Fillet Weld Contributing) : 0 in. Since D_rp > 2 * ID2_n L_ip (Internal Projected Length of Nozzle Neck) : 161.7 in. L_ep (External Projected Length of Nozzle Neck) : 6.9 in. H_n (Nominal Nozzle Elevation on Shell) : 20.6 ft. P_n (Max. Internal Pressure on Nozzle, Including Static Liquid « Head), = P = 0 PSI FOR COMPONENT ON WHICH NOZZLE IS MOUNTED: t_c (Actual Thickness) : 0.1969 in. t_cr (Required Thickness, Inclusive of Corrosion) : 0.0959 in. ca_c (Corrosion Allowance) : 0 in. S_cd (Allowable Design Stress) : 23,200 PSI f_n (Nozzle Stress Reduction Factor), = MIN[(S_n/S_cd), 1] = MIN[(21,568 / 23,200), 1] = 0.9297 L_ip2 = MIN[L_ip, 2.5*(t_c - ca_c), 2.5*(t_n - ca_n - ca_c)] = MIN[161.7, 2.5*(0.1969 - 0), 2.5*(0.337 - 0 - 0)] = 0.4921 in. t_nr (Required Nozzle Thickness) = [P_n * (0.5 * ID_n + CA_n)]/(Sa * E1) + CA_n = [0 * (0.5 * 3.826 + 0)]/(21,568 * 1) + 0 ---> = 0 in. Nozzle Areas Providing Reinforcement: A1_c (Available Component wall on which Nozzle is mounted), = ID_n * (t_c - t_cr) - 2*t_n*(t_c - t_cr)*(1-f_n) = 3.826 * (0.1969 - 0.0959) - 2 * 0.337 * (0.1969 - « 0.0959)*(1-0.9297) = 0.3814 in^2. A2_n (Available Nozzle neck thickness), = 5 * MAX[(t_n - t_nr),0] * MIN[(t_n - ca_n),(t_c - ca_c)] * « f_n = 5 * MAX[(0.337-0),0]*MIN[(0.337-0),(0.1969-0)] * 0.9297

Page 24: 30-T-002 Concentrate Storage Tanks Design Calculations

= 0.3084 in^2. A3_n (Available Internal Projection of Nozzle neck), = 2 * (t_n - ca_n - ca_c) * L_ip2 * f_n = 2 * (0.337 - 0 - 0) * 0.4921 * 0.9297 = 0.3084 in^2. A4_n (Available Inner and Outer fillet welds), = tw1 ^2 + tw2c ^2 = (0.236)^2 + (0) ^2 = 0.0557 in^2. A5_n (Available Nozzle repad) = [ MIN(D_rp, 2 * ID2_n) - ID_n - (2 * t_n)] * (t_rp - ca_rp) = [ MIN(10.83, 2 * 3.826) - 3.826 - (2 * 0.337)] * (0.236 - « 0.06) = 0.5548 in^2. A_a (Actual Reinforcement Area) = A_1c + A2_n + A3_n + A4_n + A5_n = 0.3814 + 0.3084 + 0.3084 + 0.0557 + 0.5548 = 1.609 in^2. Actual Reinforcement Area for Nozzle Nozzle L (level Transmitter) : « A_a = 1.609 in^2. A_r (Required Reinforcement Area) = (t_cr - ca_c) / Ex * [(ID_n + 2 * ca_n) + 2*(t_n - ca_n)*(1 « - f_n)] = (0.0959-0) / 1 * [(3.826 + 2*0) + 2*(0.337 - 0) * (1 - 0.9297)] = 0.371 in^2. Required Reinforcement Area for Nozzle Nozzle L (level Transmitter) « : A_r = 0.371 in^2. Since A1_c + A2_n + A3_n + A4_n >= A_r, A5_n_Calc = 0 in^2 (Repad Reinforcement Area Not Required) L_nn (Length of Nozzle Neck Contributing to Reinforcement: « REFERENCE ONLY), = 2.5 * MIN[(t_n - ca_n),(t_c - ca_c)] + (t_rp - ca_rp) = 2.5 * MIN[(0.337 - 0),(0.1969 - 0)] + (0.176) = 0.6681 in. < Nozzle Nozzle M (VENT) Reinforcement Requirements > (per API-650 Section 5.7.1.8 and API-620 Section 5.16) < EXTERNAL PRESSURE (Design Mode) = 0 PSI > Material : A-106 Gr B SMLS PIPE ID_n (Nozzle ID) : 3.826 in. ca_n (Corrosion Allowance for Nozzle Neck) : 0 in. ID2_n (Corroded Nozzle ID) = ID_n + 2 * ca_n : 3.826 in. t_n (Nominal Nozzle Neck thickness) : 0.337 in. E (Tank Joint Efficiency) : 1 E1 (Nozzle Neck Joint Efficiency) : 1 Ex (Area Joint Efficiency on which Nozzle is Mounted) : 1 tw1 (Fillet Weld at Nozzle Neck OD) : 0.236 in. t_rp (Nozzle Repad Nominal Thickness) : 0.236 in. ca_rp (Nozzle Repad Corrosion Allow.) : 0.06 in. D_rp (Nozzle Repad Do or L) : 10.83 in. tw2 (Fillet Weld at the Repad OD) : 0.236 in. tw2c (Fillet Weld Contributing) : 0 in. Since D_rp > 2 * ID2_n L_ip (Internal Projected Length of Nozzle Neck) : 0 in. L_ep (External Projected Length of Nozzle Neck) : 7 in. H_n (Nominal Nozzle Elevation on Shell) : 0 ft.

Page 25: 30-T-002 Concentrate Storage Tanks Design Calculations

P_n (Max. Internal Pressure on Nozzle, Including Static Liquid « Head), = P + G * 0.433 * (Liq. Level - H_n + 0.5 * ID_n + CA_n) = 0 + 1.1 * 0.433 * (19.685 - 0 + 0.5 * 0.3188 + 0) = 9.4519 PSI FOR COMPONENT ON WHICH NOZZLE IS MOUNTED: t_c (Actual Thickness) : 0.3125 in. t_cr (Required Thickness, Inclusive of Corrosion) : 0.06 in. ca_c (Corrosion Allowance) : 0.06 in. S_cd (Allowable Design Stress) : 23,200 PSI f_n (Nozzle Stress Reduction Factor), = MIN[(S_n/S_cd), 1] = MIN[(21,568 / 23,200), 1] = 0.9297 L_ip2 = MIN[L_ip, 2.5*(t_c - ca_c), 2.5*(t_n - ca_n - ca_c)] = MIN[0, 2.5*(0.3125 - 0.06), 2.5*(0.337 - 0 - 0.06)] = 0 in. t_nr (Required Nozzle Thickness, per ASME Section VIII, UG-28) L0/D0 = L_ep/(ID_n + 2*t_n) = 1.5556 D0/(t_n - ca_n) = 13.35 B = 17,622 <from FIG CS-2 > A = 0.0187 <from FIG UGO-28.0> (ref. only) t_nr = 3PD/(4B) + CA = (3*0*4.50)/(4*17,622) + 0 ---> = 0 in. Nozzle Areas Providing Reinforcement: A1_c (Available Component wall on which Nozzle is mounted), = ID_n * (t_c - t_cr) - 2*t_n*(t_c - t_cr)*(1-f_n) = 3.826 * (0.3125 - 0.06) - 2 * 0.337 * (0.3125 - « 0.06)*(1-0.9297) = 0.9541 in^2. A2_n (Available Nozzle neck thickness), = 5 * MAX[(t_n - t_nr),0] * MIN[(t_n - ca_n),(t_c - ca_c)] * « f_n = 5 * MAX[(0.337-0),0]*MIN[(0.337-0),(0.3125-0.06)] * 0.9297 = 0.3955 in^2. A3_n (Available Internal Projection of Nozzle neck), = 2 * (t_n - ca_n - ca_c) * L_ip2 * f_n = 2 * (0.337 - 0 - 0.06) * 0 * 0.9297 = 0 in^2. A4_n (Available Inner and Outer fillet welds), = tw1 ^2 + tw2c ^2 = (0.236)^2 + (0) ^2 = 0.0557 in^2. A5_n (Available Nozzle repad) = [ MIN(D_rp, 2 * ID2_n) - ID_n - (2 * t_n)] * (t_rp - ca_rp) = [ MIN(10.83, 2 * 3.826) - 3.826 - (2 * 0.337)] * (0.236 - « 0.06) = 0.5548 in^2. A_a (Actual Reinforcement Area) = A_1c + A2_n + A3_n + A4_n + A5_n = 0.9541 + 0.3955 + 0 + 0.0557 + 0.5548 = 1.96 in^2. Actual Reinforcement Area for Nozzle Nozzle M (VENT) : A_a = 1.96 « in^2. A_r (Required Reinforcement Area)

Page 26: 30-T-002 Concentrate Storage Tanks Design Calculations

= 0.5 * (t_cr - ca_c) * [(ID_n + 2 * ca_n) + 2 * (t_n - « ca_n)*(1-f_n)] = 0.5*(0.06-0.06)*[(3.826 + 2*0) + 2*(0.337-0)*(1-0.9297)] = 0 in^2. Under External Pressure: Required Reinforcement Area for Nozzle Nozzle M (VENT) : A_r = 0 « in^2. Since A1_c + A2_n + A3_n + A4_n >= A_r, A5_n_Calc = 0 in^2 (Repad Reinforcement Area Not Required) L_nn (Length of Nozzle Neck Contributing to Reinforcement: « REFERENCE ONLY), = 2.5 * MIN[(t_n - ca_n),(t_c - ca_c)] + (t_rp - ca_rp) = 2.5 * MIN[(0.337 - 0),(0.3125 - 0.06)] + (0.176) = 0.8073 in. < ATMOSPHERIC PRESSURE (Design Mode) > Material : A-106 Gr B SMLS PIPE ID_n (Nozzle ID) : 3.826 in. ca_n (Corrosion Allowance for Nozzle Neck) : 0 in. ID2_n (Corroded Nozzle ID) = ID_n + 2 * ca_n : 3.826 in. t_n (Nominal Nozzle Neck thickness) : 0.337 in. E (Tank Joint Efficiency) : 1 E1 (Nozzle Neck Joint Efficiency) : 1 Ex (Area Joint Efficiency on which Nozzle is Mounted) : 1 tw1 (Fillet Weld at Nozzle Neck OD) : 0.236 in. t_rp (Nozzle Repad Nominal Thickness) : 0.236 in. ca_rp (Nozzle Repad Corrosion Allow.) : 0.06 in. D_rp (Nozzle Repad Do or L) : 10.83 in. tw2 (Fillet Weld at the Repad OD) : 0.236 in. tw2c (Fillet Weld Contributing) : 0 in. Since D_rp > 2 * ID2_n L_ip (Internal Projected Length of Nozzle Neck) : 0 in. L_ep (External Projected Length of Nozzle Neck) : 7 in. H_n (Nominal Nozzle Elevation on Shell) : 0 ft. P_n (Max. Internal Pressure on Nozzle, Including Static Liquid « Head), = P + G * 0.433 * (Liq. Level - H_n + 0.5 * ID_n + CA_n) = 0 + 1.1 * 0.433 * (19.685 - 0 + 0.5 * 0.3188 + 0) = 9.4519 PSI FOR COMPONENT ON WHICH NOZZLE IS MOUNTED: t_c (Actual Thickness) : 0.3125 in. t_cr (Required Thickness, Inclusive of Corrosion) : 0.296 in. ca_c (Corrosion Allowance) : 0.06 in. S_cd (Allowable Design Stress) : 23,200 PSI f_n (Nozzle Stress Reduction Factor), = MIN[(S_n/S_cd), 1] = MIN[(21,568 / 23,200), 1] = 0.9297 L_ip2 = MIN[L_ip, 2.5*(t_c - ca_c), 2.5*(t_n - ca_n - ca_c)] = MIN[0, 2.5*(0.3125 - 0.06), 2.5*(0.337 - 0 - 0.06)] = 0 in. t_nr (Required Nozzle Thickness) = [P_n * (0.5 * ID_n + CA_n)]/(Sa * E1) + CA_n = [9.4519 * (0.5 * 3.826 + 0)]/(21,568 * 1) + 0 ---> = 0.0008 in.

Page 27: 30-T-002 Concentrate Storage Tanks Design Calculations

Nozzle Areas Providing Reinforcement: A1_c (Available Component wall on which Nozzle is mounted), = ID_n * (t_c - t_cr) - 2*t_n*(t_c - t_cr)*(1-f_n) = 3.826 * (0.3125 - 0.296) - 2 * 0.337 * (0.3125 - « 0.296)*(1-0.9297) = 0.0623 in^2. A2_n (Available Nozzle neck thickness), = 5 * MAX[(t_n - t_nr),0] * MIN[(t_n - ca_n),(t_c - ca_c)] * « f_n = 5 * MAX[(0.337-0.0008),0]*MIN[(0.337-0),(0.3125-0.06)] * « 0.9297 = 0.3945 in^2. A3_n (Available Internal Projection of Nozzle neck), = 2 * (t_n - ca_n - ca_c) * L_ip2 * f_n = 2 * (0.337 - 0 - 0.06) * 0 * 0.9297 = 0 in^2. A4_n (Available Inner and Outer fillet welds), = tw1 ^2 + tw2c ^2 = (0.236)^2 + (0) ^2 = 0.0557 in^2. A5_n (Available Nozzle repad) = [ MIN(D_rp, 2 * ID2_n) - ID_n - (2 * t_n)] * (t_rp - ca_rp) = [ MIN(10.83, 2 * 3.826) - 3.826 - (2 * 0.337)] * (0.236 - « 0.06) = 0.5548 in^2. A_a (Actual Reinforcement Area) = A_1c + A2_n + A3_n + A4_n + A5_n = 0.0623 + 0.3945 + 0 + 0.0557 + 0.5548 = 1.067 in^2. Actual Reinforcement Area for Nozzle Nozzle M (VENT) : A_a = 1.067 « in^2. A_r (Required Reinforcement Area) = (t_cr - ca_c) / Ex * [(ID_n + 2 * ca_n) + 2*(t_n - ca_n)*(1 « - f_n)] = (0.296-0.06) / 1 * [(3.826 + 2*0) + 2*(0.337 - 0) * (1 - 0.9297)] = 0.914 in^2. Required Reinforcement Area for Nozzle Nozzle M (VENT) : A_r = « 0.914 in^2. L_nn (Length of Nozzle Neck Contributing to Reinforcement: « REFERENCE ONLY), = 2.5 * MIN[(t_n - ca_n),(t_c - ca_c)] + (t_rp - ca_rp) = 2.5 * MIN[(0.337 - 0),(0.3125 - 0.06)] + (0.176) = 0.8073 in.

Page 28: 30-T-002 Concentrate Storage Tanks Design Calculations

< Manway Nozzle Q (Roof Manway) Reinforcement Requirements > (per API-650 Section 5.7.1.8 and API-620 Section 5.16) < EXTERNAL PRESSURE (Design Mode) = 0 PSI > Material : A-36 ID_n (Manway ID) : 23.62 in. ca_n (Corrosion Allowance for Manway Neck) : 0.06 in. ID2_n (Corroded Manway ID) = ID_n + 2 * ca_n : 23.74 in. t_n (Nominal Manway Neck thickness) : 0.3125 in. E (Tank Joint Efficiency) : 1 E1 (Manway Neck Joint Efficiency) : 0.85 Ex (Area Joint Efficiency on which Manway is Mounted) : 1 tw1 (Fillet Weld at Manway Neck OD) : 0.236 in. t_rp (Manway Repad Nominal Thickness) : 0.236 in. ca_rp (Manway Repad Corrosion Allow.) : 0.06 in. D_rp (Manway Repad Do or L) : 50.12 in. tw2 (Fillet Weld at the Repad OD) : 0.236 in. tw2c (Fillet Weld Contributing) : 0 in. Since D_rp > 2 * ID2_n L_ip (Internal Projected Length of Manway Neck) : 0.6 in. L_ep (External Projected Length of Manway Neck) : 29 in. H_n (Nominal Manway Elevation on Shell) : 22.22 ft. P_n (Max. Internal Pressure on Manway, Including Static Liquid « Head), = P = 0 PSI FOR COMPONENT ON WHICH MANWAY IS MOUNTED: t_c (Actual Thickness) : 0.1969 in. t_cr (Required Thickness, Inclusive of Corrosion) : 0.0959 in. ca_c (Corrosion Allowance) : 0 in. S_cd (Allowable Design Stress) : 23,200 PSI f_n (Manway Stress Reduction Factor), = MIN[(S_n/S_cd), 1] = MIN[(23,200 / 23,200), 1] = 1 L_ip2 = MIN[L_ip, 2.5*(t_c - ca_c), 2.5*(t_n - ca_n - ca_c)] = MIN[0.6, 2.5*(0.1969 - 0), 2.5*(0.3125 - 0.06 - 0)] = 0.4921 in. t_nr (Required Manway Thickness, per ASME Section VIII, UG-28) L0/D0 = L_ep/(ID_n + 2*t_n) = 1.1961 D0/(t_n - ca_n) = 96.02 B = 12,825 <from FIG CS-2 > A = 0.0011 <from FIG UGO-28.0> (ref. only) t_nr = 3PD/(4B) + CA = (3*0*24.25)/(4*12,825) + 0.06 ---> = 0.06 in. Manway Areas Providing Reinforcement: A1_c (Available Component wall on which Manway is mounted), = ID_n * (t_c - t_cr) - 2*t_n*(t_c - t_cr)*(1-f_n) = 23.62 * (0.1969 - 0.0959) - 2 * 0.3125 * (0.1969 - « 0.0959)*(1-1) = 2.3844 in^2. A2_n (Available Manway neck thickness), = 5 * MAX[(t_n - t_nr),0] * MIN[(t_n - ca_n),(t_c - ca_c)] * « f_n = 5 * MAX[(0.3125-0.06),0]*MIN[(0.3125-0.06),(0.1969-0)] * 1 = 0.2485 in^2. A3_n (Available Internal Projection of Manway neck), = 2 * (t_n - ca_n - ca_c) * L_ip2 * f_n

Page 29: 30-T-002 Concentrate Storage Tanks Design Calculations

= 2 * (0.3125 - 0.06 - 0) * 0.4921 * 1 = 0.2485 in^2. A4_n (Available Inner and Outer fillet welds), = tw1 ^2 + tw2c ^2 = (0.236)^2 + (0) ^2 = 0.0557 in^2. A5_n (Available Manway repad) = [ MIN(D_rp, 2 * ID2_n) - ID_n - (2 * t_n)] * (t_rp - ca_rp) = [ MIN(50.12, 2 * 23.74) - 23.62 - (2 * 0.3125)] * (0.236 - « 0.06) = 4.0894 in^2. A_a (Actual Reinforcement Area) = A_1c + A2_n + A3_n + A4_n + A5_n = 2.3844 + 0.2485 + 0.2485 + 0.0557 + 4.0894 = 7.027 in^2. Actual Reinforcement Area for Manway Nozzle Q (Roof Manway) : A_a = « 7.027 in^2. A_r (Required Reinforcement Area) = 0.5 * (t_cr - ca_c) * [(ID_n + 2 * ca_n) + 2 * (t_n - « ca_n)*(1-f_n)] = 0.5*(0.0959-0)*[(23.62 + 2*0.06) + 2*(0.3125-0.06)*(1-1)] = 1.138 in^2. Under External Pressure: Required Reinforcement Area for Manway Nozzle Q (Roof Manway) : A_r « = 1.138 in^2. Since A1_c + A2_n + A3_n + A4_n >= A_r, A5_n_Calc = 0 in^2 (Repad Reinforcement Area Not Required) L_nn (Length of Manway Neck Contributing to Reinforcement: « REFERENCE ONLY), = 2.5 * MIN[(t_n - ca_n),(t_c - ca_c)] + (t_rp - ca_rp) = 2.5 * MIN[(0.3125 - 0.06),(0.1969 - 0)] + (0.176) = 0.6681 in. < ATMOSPHERIC PRESSURE (Design Mode) > Material : A-36 ID_n (Manway ID) : 23.62 in. ca_n (Corrosion Allowance for Manway Neck) : 0.06 in. ID2_n (Corroded Manway ID) = ID_n + 2 * ca_n : 23.74 in. t_n (Nominal Manway Neck thickness) : 0.3125 in. E (Tank Joint Efficiency) : 1 E1 (Manway Neck Joint Efficiency) : 0.85 Ex (Area Joint Efficiency on which Manway is Mounted) : 1 tw1 (Fillet Weld at Manway Neck OD) : 0.236 in. t_rp (Manway Repad Nominal Thickness) : 0.236 in. ca_rp (Manway Repad Corrosion Allow.) : 0.06 in. D_rp (Manway Repad Do or L) : 50.12 in. tw2 (Fillet Weld at the Repad OD) : 0.236 in. tw2c (Fillet Weld Contributing) : 0 in. Since D_rp > 2 * ID2_n L_ip (Internal Projected Length of Manway Neck) : 0.6 in. L_ep (External Projected Length of Manway Neck) : 29 in. H_n (Nominal Manway Elevation on Shell) : 22.22 ft. P_n (Max. Internal Pressure on Manway, Including Static Liquid « Head), = P = 0 PSI FOR COMPONENT ON WHICH MANWAY IS MOUNTED:

Page 30: 30-T-002 Concentrate Storage Tanks Design Calculations

t_c (Actual Thickness) : 0.1969 in. t_cr (Required Thickness, Inclusive of Corrosion) : 0.0959 in. ca_c (Corrosion Allowance) : 0 in. S_cd (Allowable Design Stress) : 23,200 PSI f_n (Manway Stress Reduction Factor), = MIN[(S_n/S_cd), 1] = MIN[(23,200 / 23,200), 1] = 1 L_ip2 = MIN[L_ip, 2.5*(t_c - ca_c), 2.5*(t_n - ca_n - ca_c)] = MIN[0.6, 2.5*(0.1969 - 0), 2.5*(0.3125 - 0.06 - 0)] = 0.4921 in. t_nr (Required Manway Thickness) = [P_n * (0.5 * ID_n + CA_n)]/(Sa * E1) + CA_n = [0 * (0.5 * 23.62 + 0.06)]/(23,200 * 0.85) + 0.06 ---> = 0.06 in. Manway Areas Providing Reinforcement: A1_c (Available Component wall on which Manway is mounted), = ID_n * (t_c - t_cr) - 2*t_n*(t_c - t_cr)*(1-f_n) = 23.62 * (0.1969 - 0.0959) - 2 * 0.3125 * (0.1969 - « 0.0959)*(1-1) = 2.3844 in^2. A2_n (Available Manway neck thickness), = 5 * MAX[(t_n - t_nr),0] * MIN[(t_n - ca_n),(t_c - ca_c)] * « f_n = 5 * MAX[(0.3125-0.06),0]*MIN[(0.3125-0.06),(0.1969-0)] * 1 = 0.2485 in^2. A3_n (Available Internal Projection of Manway neck), = 2 * (t_n - ca_n - ca_c) * L_ip2 * f_n = 2 * (0.3125 - 0.06 - 0) * 0.4921 * 1 = 0.2485 in^2. A4_n (Available Inner and Outer fillet welds), = tw1 ^2 + tw2c ^2 = (0.236)^2 + (0) ^2 = 0.0557 in^2. A5_n (Available Manway repad) = [ MIN(D_rp, 2 * ID2_n) - ID_n - (2 * t_n)] * (t_rp - ca_rp) = [ MIN(50.12, 2 * 23.74) - 23.62 - (2 * 0.3125)] * (0.236 - « 0.06) = 4.0894 in^2. A_a (Actual Reinforcement Area) = A_1c + A2_n + A3_n + A4_n + A5_n = 2.3844 + 0.2485 + 0.2485 + 0.0557 + 4.0894 = 7.027 in^2. Actual Reinforcement Area for Manway Nozzle Q (Roof Manway) : A_a = « 7.027 in^2. A_r (Required Reinforcement Area) = (t_cr - ca_c) / Ex * [(ID_n + 2 * ca_n) + 2*(t_n - ca_n)*(1 « - f_n)] = (0.0959-0) / 1 * [(23.62 + 2*0.06) + 2*(0.3125 - 0.06) * (1 - 1)] = 2.277 in^2. Required Reinforcement Area for Manway Nozzle Q (Roof Manway) : A_r « = 2.277 in^2. Since A1_c + A2_n + A3_n + A4_n >= A_r, A5_n_Calc = 0 in^2 (Repad Reinforcement Area Not Required)

Page 31: 30-T-002 Concentrate Storage Tanks Design Calculations

L_nn (Length of Manway Neck Contributing to Reinforcement: « REFERENCE ONLY), = 2.5 * MIN[(t_n - ca_n),(t_c - ca_c)] + (t_rp - ca_rp) = 2.5 * MIN[(0.3125 - 0.06),(0.1969 - 0)] + (0.176) = 0.6681 in. CAPACITIES and WEIGHTS Maximum Capacity (to upper TL) : 15,249 gal Design Capacity (to Max Liquid Level) : 15,250 gal Minimum Capacity (to Min Liquid Level) : 2,541 gal NetWorking Capacity (Design - Min.) : 12,709 gal New Condition Corroded ----------------------------------------------------------- Shell 6,849 lbf 3,426 lbf Roof Plates 871 lbf 871 lbf Bottom 1,407 lbf 1,137 lbf Stiffeners 134 lbf 134 lbf Nozzle Wgt 943 lbf 943 lbf Misc Roof Wgt 0 lbf 0 lbf Misc Shell Wgt 0 lbf 0 lbf Insulation 0 lbf 0 lbf ----------------------------------------------------------- Total 10,204 lbf 6,511 lbf Weight of Tank, Empty : 10,204 lbf Weight of Tank, Full of Product (SG=1.1): 150,189 lbf Weight of Tank, Full of Water : 137,463 lbf Net Working Weight, Full of Product : 126,872 lbf Net Working Weight, Full of Water : 116,266 lbf Foundation Area Req'd : 104 ft^2 Foundation Loading, Empty : 98.12 lbf/ft^2 Foundation Loading, Full of Product (SG=1.1) : 1,444 lbf/ft^2 Foundation Loading, Full of Water : 1,322 lbf/ft^2 SURFACE AREAS Roof 108 ft^2 Shell 713 ft^2 Bottom 104 ft^2 Wind Moment 22,737 ft-lbf Seismic Moment 0 ft-lbf MISCELLANEOUS ATTACHED ROOF ITEMS MISCELLANEOUS ATTACHED SHELL ITEMS MAWP & MAWV SUMMARY FOR J560_30_T-002 MAXIMUM CALCULATED INTERNAL PRESSURE MAWP = 2.5 PSI or 69.28 IN. H2O (per API-650 App. F.1.3 & F.7) MAWP = Maximum Calculated Internal Pressure (due to shell) = 2.5 PSI or 69.28 IN. H2O MAWP = Maximum Calculated Internal Pressure (due to roof) = 2.5 PSI or 69.28 IN. H2O TANK MAWP** = 2.5 PSI or 69.28 IN. H2O

Page 32: 30-T-002 Concentrate Storage Tanks Design Calculations

* This MAWP calculation assumes a minimum liquid level of 3.28 FT. « in the tank. MAXIMUM CALCULATED EXTERNAL PRESSURE MAWV = -1 PSI or -27.71 IN. H2O (per API-650 V.1) MAWV = Maximum Calculated External Pressure (due to shell) = -1.4069 PSI or -38.99 IN. H2O MAWV = Maximum Calculated External Pressure (due to roof) = -0.9239 PSI or -25.6 IN. H2O MAWV = Maximum Calculated External Pressure (due to bottom plate) = -1 PSI or -27.71 IN. H2O TANK MAWV = -0.9239 PSI or -25.6 IN. H2O