Top Banner
Establish a DSD parameter estimation method by combining both CloudSat and TRMM/PR data with statistical method. Demonstrate a visualization method of global microphysical data Climate map of DSD parameter as well as other meteorological parameters. To see the climatological characteristics in term of cloud and precipitation interaction 10 x 10 deg. box Algorithm validation for GPM/DPR, especially for DSD estimation. Utilization of W-band radar data (CloudSat and future EarthCARE) Current target is validation of DSD estimation by TRMM/PR . Purpose of this study Introduction (Motivation of this study: goal) Major specifications of CloudSat/CPR and TRMM/PR CloudSat/CPR TRMM/PR Orbit Sun-synchronous orbit Altitude about 700 km (local time 1:30) Non sun-synchronous orbit (Inclination = 35 degrees) Altitude about 400 km Swath width (footprint size) Nadir (1.3 km) about 240 km (5 km) Vertical resolution 500 m (240 m sampling) 250 m (partially 125 m sampling) Frequency 94 GHz 13.8 GHz Minimum detectable echo -30 dBZ 17 dBZ Product used in this study 2BGROPROF 2A25 Ver. 6 Data available 2006.8-2011.1 2011.12-current 1997.12-current 36 th Conference on Radar Meteorology (16-20 September, 2013) An analysis method to estimate the climatological drop size distribution (DSD) parameter using spaceborne radars (CloudSat’s wband radar and TRMM’s Kuband radar)  is proposed in this study and a global maps of estimated  DSD parameters (e.g. median diameter, D0) are demonstrated.  The basic idea of the analysis method is to compare the histogram of radar reflectivity factor (Z) at nearsurface range bin in the overlapping Z range (weak to moderate rain echo). Because of the Mie effect, the Z value of rainfall is different between wand Kuband and it reflects the difference in the histograms of wand Kuband. A general characteristic of global maps of D0 through the year and local time is apparent landocean contrast; larger D0 appears over land and smaller D0 appears over ocean except for relatively small D0 over southeastern Asia to China.  Also, relatively larger D0 appears in tropical area and mid latitude summer.  Diurnal change of D0 can be seen by comparing the day/night time D0; D0 is larger in the night time over ocean while day time D0 is larger over land. Tropical Ocean shows smaller  seasonal change, while larger change are seen over midlatitude area. Difference in histogram of Z between CloudSat and TRMM/PR comes from the Mie scattering effect and attenuation. Mie scattering correction closely relating to the DSD (model). Attenuation correction can be done using surface echo (sigma zero) if we consider only surface rain. Reference sigma zero data are prepared using no-cloud data (1 x 1 deg.) Note: this study is targeting the weak to moderate rain where the both radar can observe with certain quality. Key idea σ0 database 10 0 10 20 10 0 10 20 sigma zero (TRMM) (dB) sigma zero (CloudSat) (dB) ANN 2007 (source: 1 x 1 deg. grid average data) Ocean Land Histogram matching Data Result (Example of estimated D0) 0 1 2 0 0.5 1 DFR (W/Ku) D0 (mm) DFR Rain, Gamma DSD ( =0) DFR =ZW/ZKu 0 0.1 10 20 30 40 0 0.1 dBZ cumulative probability DJF 20062007, ascending, lon: 110120 lat: 20N to 30N (land) lat: 20N to 30N (ocean) original histogram Mie correction with various DSD model CloudSat : convert Wband histogram to Kuband histogram  with various DSD models (Mie correction) TRMM: no change Threshold Z (Kuband equivalent) Threshold Z Probability Probability k Z k Q t D ND dD N 0 Q t D D e 3.67 /D 0 dD Z D ND dD N 0 D D e 3.67 / D 0 dD N 0 Q t D D e 3.67 /D 0 dD N 0 D D e 3.67 /D 0 dD N 0 1 D D e 3.67 /D 0 dD Q t D D e 3.67 /D0 dD kZ relationship α, β: constantQt: extinction cross section, N(D): number concentration, D: diameter sigma: backscattering cross section kZ adjustment equation in TRMM 2A25 (ε‐kZ relationship) k Z ‐‐‐ε adjusts the α in kZ relationship original histogram Comparison determine the most appropriate DSD model Threshold Z Probability DSD models DSD model defined by kZ (and εrelationship gamma DSD with various μ factors (single D0 in fixed gamma DSD model) Fitting result and coverage of DSD model, sing le D0 model is the most appropriate  simply offset the histogram of CloudSat. Compare the Zhistogram of Kuband. Equations In order to estimate the path integrated attenuation, nocloud (norain) sigma zero databases are created from CloudSat (TRMM) data. Global dataset: 3-month average, 10 x 10 degree grid (40S to 40N), Land/Ocean, daytime/nighttime December 2006 to November 2007 20 dBZ← 40 dBZ CloudSat 2B GEOPROF TRMM 2A25 Dataset Z, sigma0 Dataset Z, sigma0 histogram (various DSD models) histogram histogram matching (DSD estimation) Sigmazero Database Dataset attenuation corrected Z (the lowest clutterfree bin) (Top) Afternoon (0-3 P.M.= ascending node of CloudSat) (Bottom) Descending - Ascending cloud –free cases clear land/ocean contrast larger diurnal change (day/night contrast) over maritime continent and Amazon smaller diurnal change except for several area (e.g Indian ocean in SON) P207 ‐‐‐ Start point of DSD model ‐‐‐ Gamma DSD model is used ‐‐‐ equation to determine N0 (function of D0 or mu) Relationship among D0, R, Z and ε ) ( ) ( band Ku Z band w Z DFR
3

20130916 36 RadarConf-3 NT...Sep 16, 2013  · Establish a DSD parameter estimation method by combining both CloudSat and TRMM/PRdata with statistical method. Demonstrate a visualizationmethod

Oct 01, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 20130916 36 RadarConf-3 NT...Sep 16, 2013  · Establish a DSD parameter estimation method by combining both CloudSat and TRMM/PRdata with statistical method. Demonstrate a visualizationmethod

Establish a DSD parameter estimation method by combining both CloudSatand TRMM/PR data with statistical method.

Demonstrate a visualization method of global microphysical data Climate map of DSD parameter as well as other meteorological parameters.

To see the climatological characteristics in term of cloud and precipitation interaction 10 x 10 deg. box

Algorithm validation for GPM/DPR, especially for DSD estimation.

Utilization of W-band radar data (CloudSat and future EarthCARE)

Current target is validation of DSD estimation by TRMM/PR .

Purpose of this studyIntroduction (Motivation of this study: goal)

Major specifications of CloudSat/CPR and TRMM/PR

CloudSat/CPR TRMM/PR

Orbit Sun-synchronous orbitAltitude about 700 km(local time 1:30)

Non sun-synchronous orbit(Inclination = 35 degrees)Altitude about 400 km

Swath width(footprint size)

Nadir (1.3 km)

about 240 km(5 km)

Vertical resolution 500 m(240 m sampling)

250 m(partially 125 m sampling)

Frequency 94 GHz 13.8 GHz

Minimum detectable echo

-30 dBZ 17 dBZ

Product used in this study

2BGROPROF 2A25 Ver. 6

Data available 2006.8-2011.12011.12-current

1997.12-current

36th Conference on Radar Meteorology (16-20 September, 2013)

An analysis method to estimate the climatological drop size distribution (DSD) parameter using spaceborne radars (CloudSat’s w‐band radar and TRMM’s Ku‐band radar)  is proposed in this study and a global maps of estimated  DSD parameters (e.g. median diameter, D0) are demonstrated.  The basic idea of the analysis method is to compare the histogram of radar reflectivity factor (Z) at near‐surface range bin in the over‐lapping Z range (weak to moderate rain echo). Because of the Mie effect, the Z value of rainfall is different between w‐ and Ku‐band and it reflects the difference in the histograms of w‐ and Ku‐band.A general characteristic of global maps of D0 through the year and local time is apparent land‐ocean contrast; larger D0 appears over land and smaller D0 appears over ocean except for relatively small D0 over southeastern Asia to China.  Also, relatively larger D0 appears in tropical area and mid latitude summer.  Diurnal change of D0 can be seen by comparing the day/night time D0; D0 is larger in the night time over ocean while day time D0 is larger over land. Tropical Ocean shows smaller  seasonal change, while larger change are seen over mid‐latitude area.

Difference in histogram of Z between CloudSat and TRMM/PR comes from the Mie scattering effect and attenuation. Mie scattering correction closely relating to the DSD (model).

Attenuation correction can be done using surface echo (sigma zero) if we consider only surface rain. Reference sigma zero data are prepared using no-cloud data (1 x 1 deg.)

Note: this study is targeting the weak to moderate rain where the both radar can observe with certain quality.

Key idea

σ0 database

−10 0 10 20−10

0

10

20

sigma zero (TRMM) (dB)

sig

ma

zero

(C

lou

dS

at)

(dB

)

ANN 2007(source: 1 x 1 deg. grid average data)

Ocean

Land

Histogram matching

Data

Result (Example of estimated D0)

0 1 20

0.5

1

DFR (W/Ku)

D0 (mm)

DF

R

Rain, Gamma DSD (=0)

DFR =ZW/ZKu

0

0.1

10 20 30 400

0.1

dBZ

cum

ula

tive

pro

bab

ilit

y

DJF 2006−2007, ascending, lon: 110−120

lat: 20N to 30N (land)

lat: 20N to 30N (ocean)

original histogram

Mie correction with various DSD model

CloudSat : convert W‐band histogram to Ku‐band histogram  with various DSD models (Mie correction)

TRMM: no change

Threshold Z (Ku‐band equivalent)

Threshold Z

Probab

ility

Probab

ility

k Z

k Q tD N D dD N0 Qt D D

e 3.67 /D0 dD

Z D N D dD N0 D D e 3.67 /D0dD

N0 Qt D De 3.67 /D0 dD N0 D D e 3.67 /D0 dD

N01

D D e 3.67 /D0 dD

Qt D De 3.67 /D0 dD

k‐Z relationship (α, β: constant)

Qt: extinction cross section, N(D): number concentration, D: diametersigma: backscattering cross section 

k‐Z adjustment equation in TRMM 2A25 (ε‐k‐Z relationship) k Z ‐‐‐ε adjusts the α in k‐Z relationship

original histogram

Comparison

determine the most appropriate DSD model

Threshold Z

Probab

ility

DSD modelsDSD model defined by k‐Z (and ε) relationshipgamma DSD with various μ factors(single D0 in fixed gamma DSD model)

Fitting result and coverage of DSD model, sing le D0 model is the most appropriate  simply offset the histogram of CloudSat.

Compare the Z‐histogram of Ku‐band.

Equations

In order to estimate the path integrated attenuation, no‐cloud (no‐rain) sigma zero databases are created from CloudSat (TRMM) data. 

Global dataset:3-month average, 10 x 10 degree grid (40S to 40N), Land/Ocean, daytime/nighttime

December 2006 to November 2007

20 dBZ←  →40 dBZ

CloudSat2B GEOPROF

TRMM2A25

DatasetZ, sigma0

DatasetZ,  sigma0

histogram(various DSD models)

histogram

histogram matching(DSD estimation)

Sigma‐zeroDatabase

Datasetattenuation corrected Z(the lowest 

clutter‐free bin)

(Top) Afternoon (0-3 P.M.= ascending node of CloudSat)(Bottom) Descending - Ascending

cloud –free cases

clear land/ocean contrast 

larger diurnal change (day/night contrast) over maritime continent and Amazon

smaller diurnal change except for several area (e.g Indian ocean in SON) 

P207

‐‐‐ Start point of DSD model

‐‐‐ Gamma DSD model is used

‐‐‐ equation to determine N0(function of D0 or mu)

Relationship among D0, R, Z and ε )(

)(

bandKuZ

bandwZDFR

Page 2: 20130916 36 RadarConf-3 NT...Sep 16, 2013  · Establish a DSD parameter estimation method by combining both CloudSat and TRMM/PRdata with statistical method. Demonstrate a visualizationmethod

Evaluation (Comparison of D0 with single frequency precut = TRM/PR only)

36th Conference on Radar Meteorology (16-20 September, 2013) P207 Drop Size Distribution Model Estimation by Comparing CloudSat/CPR and TRMM/PR(N. Takahashi)

• Over land/Daytime

• Seasonal change (DJF, MAM, JJA, SON) of climatological D0 and rain rate (December 2006 to November 2007)

• Over land/Nighttime

• Over water/Nighttime

• Over water/Daytime

– D0 (CloudSat & TRMM) : black circles

– D0 (TRMM only) : colored circles

– bars: rain rate (mm/h)

Page 3: 20130916 36 RadarConf-3 NT...Sep 16, 2013  · Establish a DSD parameter estimation method by combining both CloudSat and TRMM/PRdata with statistical method. Demonstrate a visualizationmethod

• Diurnal change  – TRMM only

–Convective vs. Stratiform

–over land

–2007

SST (black solid line)Data source: NOAA

Wind speed (open bar)Data source: J‐OFURO2

R (solid bar)

Data source: TRMM/PR

ε (color solid line)Data source: TRMM/PR

January to December

each box represents the 10 x 10 deg. area

36th Conference on Radar Meteorology (16-20 September, 2013) P207 Drop Size Distribution Model Estimation by Comparing CloudSat/CPR and TRMM/PR(N. Takahashi)

• Diurnal change  – TRMM only

–Convective vs. Stratiform

–over water

–2007

• Monthly change  – TRMM only

–Convective vs. Stratiform

–over water

–2007

• Monthly change  – TRMM only

–Convective vs. Stratiform

–over land

–2007

• Monthly change  – TRMM (rain)

–NOAA (SST)

– J‐OFURO (Sea surface wind)

–over water

–2007