Top Banner
2002/02/05 PSYC202-005, Term 2, Co pyright Jason Harrison, 1 Psychophysics of colour perception Neurophysiology, psychophysics, and magic (or you only though you knew what colour was…)
36

2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002

Jan 13, 2015

Download

Technology

dominic54

 
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002

2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002

1

Psychophysics of colour perception

Neurophysiology, psychophysics, and magic

(or you only though you knew what colour was…)

Page 2: 2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002

2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002 2

Why have colour vision?

• Why don’t other mammals have colour vision?

• Why do bees have colour vision?• Is hue or luminance more useful?• Is hue or luminance more accurate?

Page 3: 2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002

2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002 3

The neurophysiology of colour vision• Rods and cones

– Rods are inhibited during day light– Cones are “blind” during night light

• Three different types of cones, each optimally responsive to a different wavelength1. L-Cone: long wavelength, red2. M-Cone: medium wavelength, green3. S-Cone: short wavelength, blue

• Each type responds to a range of wavelengths

Page 4: 2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002

2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002 4

Cone wavelength ranges

S M L

Wavelength (nm)

Rela

tive a

bso

rpti

on

400 500 600 700

Page 5: 2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002

2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002 5

Cone Distributions

• Where is thefovea?

• Why is blue a“bad” colour?

Page 6: 2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002

2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002 6

Young-Helmholtz theory of colour• 3 primaries needed to produce any

spectral colour• 3 cones found in the retina• simplest colour vision theory:

– cones transduce light and send signals directly to brain

Page 7: 2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002

2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002 7

Weaknesses of the YH colour theory• red-green are mutually exclusive

(opponency):– a red light can have a blue or yellow tint but

not a green tint– a green light can have a blue or yellow tint but

not a red tintpurple orange brown

cyan yellow-green brown

Page 8: 2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002

2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002 8

Weaknesses of the YH colour theory• blue-yellow are mutually exclusive

(opponency):– a blue light can have a red or green tint but

not a yellow tint– a yellow light can have a red or green tint but

not a blue tint

purple

orangegrey

cyan

yellow-green

grey

Page 9: 2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002

2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002 9

Patching up the YH colour theory• Hering theorized opponent channels

– one type of colour receptor– three colour channels:

• Red/Green, Yellow/Blue, White/Black

– also explains coloured afterimages– does not explain colour matching

• (requires 3 types of colour receptor)

• Modern opponent process theory:– combine Young-Helmholtz and Hering

Page 10: 2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002

2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002 10

Modern opponent process theory• different combinations of three cone

types are fed into the channels:– achromatic: M+L cone responses– blue-yellow: M+L versus S cone responses– red-green: L+S versus M cone responses

• chromatic channels are weighted so that they give a zero response to white

Page 11: 2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002

2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002 11

Colour opponent channels

• achromatic: – M+L cone

• blue-yellow: – M+L versus S cone

• red-green:– L+S versus M cone

S M L

400 500 600 700

Rela

tive e

ffici

en

cy

Page 12: 2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002

2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002 12

What is colour?

• Property of objects?• Property of light?• Property of our brain?

Page 13: 2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002

2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002 13

Physical dimensione.g. wavelengthP

sych

olo

gic

al d

imen

sio

ne.g

. colo

ur

?

Psychophysics of colour

Page 14: 2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002

2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002 14

Colour experiments

• determine number of distinguishable colours– JNDs

• determine number of “necessary colours”• organize the colours according to similarity

Page 15: 2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002

2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002 15

Colour similarity

• resulting ordering seems to be cyclic• where should white and black go?• where is purple?

Page 16: 2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002

2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002 16

Colour similarity

• white and black correspond to saturation and brightness

Page 17: 2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002

2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002 17

HSV: Hue, Saturation and Value

• Hue: spectral hues + mixed colours like purple• Saturation: purity of colour• Value: brightness or intensity

purple!

Page 18: 2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002

2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002 18

high

low

high

low

HSV: Hue, Saturation and Value

Hue Saturation Value

Page 19: 2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002

2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002 19

hue

HSV: a psychological colour space

Page 20: 2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002

2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002 20

saturation

HSV: a psychological colour space

Page 21: 2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002

2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002 21

low

high

brightness

medium

HSV: a psychological colour space

Page 22: 2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002

2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002 22

white

black

HSV: a psychological colour space

Page 23: 2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002

2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002 28

Colour constancy

• Discounting the spectral distribution of the light source– Incandescent lights are reddish– Sun is yellowish– Sun setting is orange

• Similar to lightness constancy

Page 24: 2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002

2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002 29

Colour constancy demo

Page 25: 2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002

2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002 30

Colour constancy demo

Page 26: 2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002

2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002 31

Colour constancy demo

Page 27: 2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002

2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002 32

Congenital colour deficiency• Approximately 8% of the population (1 in 12)• Sex linked genes on X-chromosome

– mostly men (women possibly tetrachromats)

• Three types: missing or abnormal1.protanopia/protoanomaly: L-cones2.deuteranopia/deuteranomaly: M-cones3. tritanopia: missing S-cones

S M L

Page 28: 2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002

2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002 33

Colour vision tests

Page 29: 2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002

2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002 34

Colour vision tests

Page 30: 2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002

2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002 35

Normal colour vision

Page 31: 2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002

2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002 36

ProtanopiaL-cone, red/green deficient

Page 32: 2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002

2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002 37

DeuteranopiaM-cone, red/green deficient

Page 33: 2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002

2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002 38

Tritanopia:S-cone, blue/yellow deficient

Page 34: 2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002

2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002 39

Normal Tritanopia

DeuteranopiaProtanopia

Comparison

Page 35: 2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002

2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002 40

• Bilateral damage to V4 results in achromatopsia

• “she looked like a rat”, Rama p. 73• Neurons in V4 respond to colours

(not wavelengths)

Cerebral Achromatopsia

Page 36: 2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002

2002/02/05 PSYC202-005, Term 2, Copyright Jason Harrison, 2002 41

Benham, Fechner disks• Black and white patterns that produce colours

– flickering monochromatic light below 40Hz

• Colour is sensation NOT just physics• Does colour exist “out there”? Or “up here”?