Top Banner

of 14

132kV SAG Calculation

Jun 02, 2018

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/10/2019 132kV SAG Calculation

    1/14

    DOC NO : HZL-BTN-ELE-DS-SY-028

    DESIGN INPUT

    System Parameters

    Bay Location 132kV TRANSFORMER FEEDER

    Conductor type & strands SINGLE BEAR ACSR

    Initial Tension (Max.) kg (1T per phase)

    c/c distance of tower (Maximum Span) mm

    Girder Width mm

    Tower height mm

    Height of the equipment below the conductor mm

    Number of Conductors Nos.

    Number of Insulator Strings Nos.

    Basic Wind Speed m/s (As per IS: 875 -1987,

    Part : 3)

    Span (c/c tower - lg) mm

    Maximum Temperature C (As per Clause 10.2,

    IS-802,pageno.9)

    Minimum Temperature C

    ACSR Conductor

    Conductor unit weight kg/mm

    Conductor Area mm2

    Conductor overall diameter mm

    Expansion coefficient of conductor /C

    Elasticity modulus kg/mm2

    Tension Insulator

    Number of discs per string

    Weight of each disc kg (As per Vendor drawing)

    Weight of hardware kg

    Mean Diameter of Insulator mm

    Length of each disc mm

    Length of hardware mm

    Width of the hardware mm

    1.1.1 =

    SAG TENSION CALCULATION FOR 26.68 m SPAN SINGLE BEAR ACSR - 132kV TRANSFORMER FEEDER

    1.0.0

    1.1.0

    1.1.2

    1.1.3

    1.1.4

    1.1.5

    1.1.6

    1.1.7

    1.1.8

    1.1.11

    1.1.9

    1.1.10

    1.2.1

    1.2.2

    1.1.12

    1.1.13

    1.2.0

    1.2.3

    1.2.4

    1.2.5

    1.3.0

    1.3.4

    1.3.1

    1.3.2

    1.3.3

    1.3.7

    1.3.5

    1.3.6

    T1

    L

    Lg

    H1

    H2

    nc

    ns

    Vb

    Ls

    To

    Tmin

    m's

    Ac

    dc

    E

    Wd

    Wh

    nd

    750

    8000

    =

    Ld

    Lh

    di

    =

    =

    =

    = 1000

    26680=

    5955

    = 1

    = 1

    = 47

    = 25930

    = 85

    = 0

    = 0.001213

    = 325.6

    = 23.45

    = 1.78E-05

    = 8.2E+03

    = 12

    = 7.5

    = 17.02

    = 255

    = 145

    = 750

    = 250dh

    1 of 14

  • 8/10/2019 132kV SAG Calculation

    2/14

    DOC NO : HZL-BTN-ELE-DS-SY-028

    CALCULATION OF BASIC DESIGN PARAMETERS

    Weight of Disc insulator string (Wwi)

    Length of the Disc insulator string (L str)

    Conductor Chord length (Lc)

    DESIGN CALCULTION

    Design wind speed (Vd)

    Wind zone

    Basic wind speed m/s

    Reliability level of structure

    factor (As per IS 802, Clause 8.2, Pg no:3)

    Meteorological wind speed m/s

    Risk co efficient

    Terrain roughness co efficient

    Design wind speed Vrx k1 x k2 34.19 x 1 x 1 m/s

    Design Wind pressure (Pd)

    Wind pressure on conductor (Pc)

    Drag Co efficient for conductor = (As per IS 802, Clause 9.2, Pg no:7)

    Gust response factor for 8000mm level = (As per IS 802, Table 7, Pg no:9)

    (For reliability level 1, Terrain category 2)

    Full wind pressure on conductor,

    Wind pressure on Insulator (Pi)

    Drag Co efficient for insulator = (As per IS 802, Clause 9.3, Pg no:9)

    Gust response factor for level = (As per IS 802, Table 6, Pg no:9)

    (For reliability level 1, Terrain category 2)

    Full wind pressure on insulator,

    34.19

    0.0000715 x 1 x 1.66

    0.0000715 x 1.2 x 1.864 kg/mm2

    kg/mm2

    kg/mm20.0000715

    0.0001187

    1.66

    4

    47

    1

    1.375

    Vb / k0

    1

    1

    = 34.19

    701.38 N/m2 =

    =

    kg

    ndx Ld 12 x 145

    Wd x ndx ns = 7.5 x 12 x 1 =

    1740

    2.0.1

    2.0.3

    2.0.4

    3.0.0

    3.1.0

    Pdx Cdx Gc =

    1

    Gc

    Cd

    =

    Cdi 1.2

    3.4.0

    Vd = =

    0.6 x (34.19^2) =

    =

    k0 =

    =k1

    Vr

    Gci 1.864

    2.0.0

    Pc =

    3.2.0

    3.3.0

    Wwi = 90

    mmLstr = = =

    Lc

    =

    Vb

    =

    =

    (L - Lg) - 2 x (Lstr+ Lh) mm= = = 20950(26680 - 750) - 2 x (1740 + 750)

    0.00016=Pi = Pdx Cdix Gci =

    Pd = 0.6 x Vd2 =

    =

    k2

    2 of 14

  • 8/10/2019 132kV SAG Calculation

    3/14

    DOC NO : HZL-BTN-ELE-DS-SY-028

    Equivalent weight of Conductor in loaded condition

    Full wind load on conductor (Wc)

    Equivalent weight of conductor at full wind (W 2)

    Equivalent weight of insulator in loaded condition

    Full wind load on insu lator (Ws)

    (As per IS 802, Clause 9.3, Pg no:9)

    Equivalent weight of insulator at full wind (W i2)

    Resultant insulator load on each sub conductor (Wi)

    Equivalent load of insulator hardware in loaded condition

    Full wind load on insulator hardware

    Equivalent weight of hardware at full wind (W hT)

    Resultant Hardware load on each sub conductor (Whr)

    3.5.0

    =Wc

    3.5.1

    3.5.2

    0.00279= kg/mm

    kg

    = 30

    =

    Pcx dc = 0.0001187 x 23.45

    3.6.0

    3.6.1

    W2 = =

    3.7.1

    3.6.2

    3.6.3

    =

    / nc

    =

    0.00305

    0.5 x Pix dix Lstr x ns

    m'sc2

    + Wc2 =

    W i

    kg/mm

    =

    35.5

    Wwi2

    + Ws2

    0.5 x 0.00016 x 255 x 1740 x 1

    (0.001213^2) + (0.00279^2)

    kg(90^2) + (35.5^2) 96.75=

    kg

    Ws

    =

    W i2 =

    = 96.75 / 1

    3.7.0

    = 96.75= W i2

    3.7.2

    Wwh

    WhT = Wwh2

    + W2

    T

    kg

    WT = 17.02 x 1 = kg17.02

    = Pix dhx Lh =

    34.492 kg= (30^2) + (17.02^2)

    3.7.3

    =Whr = WhT / nc = 34.492 / 1

    0.00016 x 250 x 750

    34.492 kg

    3 of 14

  • 8/10/2019 132kV SAG Calculation

    4/14

    DOC NO : HZL-BTN-ELE-DS-SY-028

    FULL WIND CONDITION

    Load distribution

    Reaction at each end

    Shear f orce diagram

    +163.1908 kg

    +66.4408 kg

    +31.9488 kg

    -31.9488 kg

    -66.4408 kg

    NOTE: LENGTH IN "mm"

    -163.1908 kg

    Maximum Sag occurs at the centre of the span

    Cross force area (Upto maximum sag)

    Cross Force moments

    kg2mmTS = (S1+ S2+ S3+ S4) x 2 = 32611885.8588

    191386.0915 kg2mm

    1782017.1633 kg2mm

    11584588.1840 kg2mm

    2747951.4906 kg2mm

    =

    =

    =

    =

    141975.996 x 163.1908 x 0.5

    82718.796 x 66.4408 x 0.5

    11980.8 x 31.9488 x 0.5

    167331.84 x 31.9488 / 3

    S3 =

    S4 =

    S1 =

    S2 =

    4.1.4

    kg.mm

    kg.mm

    kg.mm

    kg.mm

    141975.996

    82718.796

    11980.8

    167331.840.5 x 31.9488 x 10475

    =

    =

    =

    =

    4.1.3

    =

    I4 =

    =

    I2 =

    I1

    kg.mmSI1 = 404007.432

    163.1908 x 870

    66.4408 x 1245

    31.9488 x 375I3

    4.1.2

    870 1245 375 10475

    10475

    4.0.0

    4.1.1

    4.1.0

    =

    1740.0 mm

    96.750 kg 96.750 kg34.492 kg 0.003050 kg/mm 34.492 kg

    A

    = 96.75 + 34.492 + ((0.00305 x 20950)/2) kg

    1740.0 mm 750 mm 20950.000 mm

    =RA RB

    870

    163.1908 kg

    750 mm

    1245375

    B

    4 of 14

  • 8/10/2019 132kV SAG Calculation

    5/14

    DOC NO : HZL-BTN-ELE-DS-SY-028

    STILL WIND CONDITION

    Load distribution

    Reaction at each end

    Shear f orce diagram

    +119.7262 kg

    +29.7262 kg

    +12.7062 kg

    -12.7062 kg

    -29.7262 kg

    NOTE: LENGTH IN "mm"

    -119.7262 kg

    Maximum Sag occurs at the centre of the span

    Cross force area (Upto maximum sag)

    Cross Force moments

    14195299.9920 kg2mmTSS = (S1+ S2+ S3+ S4) x 2 =

    = 281860.4593 kg2mmS4 = 66548.7225 x 12.7062 / 3

    = 30271.4097 kg2mmS3 = 4764.825 x 12.7062 x 0.5

    = 550070.2366 kg2mmS2 = 37009.119 x 29.7262 x 0.5

    104161.794 x 119.7262 x 0.5 = 6235447.8904 kg2mmS1 =

    kg.mm

    5.1.4

    SI2 = 212484.4605

    = 66548.7225 kg.mmI4 = 0.5 x 12.7062 x 10475

    12.7062 x 375 = 4764.825 kg.mmI3 =

    104161.794 kg.mm

    I2 = 29.7262 x 1245 = 37009.119 kg.mm

    I1 = 119.7262 x 870 =

    5.1.3

    870 1245 375 10475

    1245 87010475 375

    5.1.2

    119.7262 kg= 90 + 17.02 + ((0.001213 x 20950)/2) kg == RB

    5.0.0

    5.1.0

    17.020 kg 90.000 kg90.000 kg 17.020 kg 0.001213 kg/mm

    A B

    1740.0 mm 750 mm 20950.000 mm 750 mm 1740.0 mm

    5.1.1

    RA

    5 of 14

  • 8/10/2019 132kV SAG Calculation

    6/14

  • 8/10/2019 132kV SAG Calculation

    7/14

    DOC NO : HZL-BTN-ELE-DS-SY-028

    Sag, Tension, Deflectionand Swing for Various Temperatures

    Maximum Working Tension

    Maximum sag of Lower most conductor

    Height of tower

    Height of Equipment

    Vertical Clearance between lower most

    Conductor and equipment

    Clearance between phase to phase

    for 132kV as per CBIP manual

    mm

    mm

    kg

    459.4

    6.4.3 H

    6.4.7 Since the calculated vertical clearance between Equipment and Lower most conductor is

    greater than the minimum clearance between phase to phase, The selected height of tower

    8000mm is adequate.

    mm

    mm

    mm

    6.4.6= 1300

    5955

    6.4.5Vclr = 1585.6

    6.4.4 h =

    = 8000

    6.4.2 S =

    6.4.1 T = 1000

    462.5 459.4 587 365.485 2.1135 1.4204 688.2

    470.4 451.7 577.6 36080 2.1482 1.4448 699.5

    478.8 443.8 568 354.575 2.1846 1.4705 711.3

    487.6 435.8 558.3 34970 2.2226 1.4976 723.7

    496.9 427.6 548.4 343.465 2.2627 1.5261 736.7

    506.7 419.3 538.3 337.660 2.3049 1.5563 750.5

    326

    2.3494 1.5882 765 517.1 410.9 528.1 331.7

    393.6 507.2 319.9

    50 2.3963 1.6221 780.2 528.2 402.3 517.8

    2.4461 1.6581 796.5 539.9

    308.1

    2.4987 1.6966 813.6 552.4 384.7 496.6 314

    366.3 474.6 301.8

    35 2.5548 1.7376 831.8 565.8 375.5 485.7

    2.6143 1.7816 851.2 580.1

    289.4

    2.6779 1.8289 871.9 595.5 356.8 463.4 295.7

    337.3 440.2 282.9

    20 2.7459 1.8799 894.1 612.1 347.1 451.9

    2.8187 1.935 917.8 630

    269.9

    2.897 1.995 943.3 649.6 327.1 428.3 276.5

    306.1 404 263.7

    5 2.9813 2.0601 970.7 670.8 316.8 416.2

    3.0713 2.1319 1000 694.1

    Tfull(kg) Sag (mm)Deflection

    (mm)

    Swing

    (mm)

    Temp

    c

    (Full wind)

    kg/mm2

    (Still wind)

    kg/mm2 Tstill(kg)

    10

    25

    40

    0

    55

    6.4.0

    45

    15

    30

    7 of 14

  • 8/10/2019 132kV SAG Calculation

    8/14

    DOC NO : HZL-BTN-ELE-DS-SY-028

    DESIGN INPUT

    System Parameters

    Bay Location 132kV BUS

    Conductor type & strands SINGLE BEAR ACSR

    Initial Tension (Max.) kg (1T per phase)

    c/c distance of tower (Maximum Span) mm

    Girder Width mm

    Tower height mm

    Height of the equipment below the conductor mm

    Number of Conductors Nos.

    Number of Insulator Strings Nos.

    Basic Wind Speed m/s (As per IS: 875 -1987,

    Part : 3)

    Span (c/c tower - lg) mm

    Maximum Temperature C (As per Clause 10.2,

    IS-802,pageno.9)

    Minimum Temperature C

    ACSR Conductor

    Conductor unit weight kg/mm

    Conductor Area mm2

    Conductor overall diameter mm

    Expansion coefficient of conductor /C

    Elasticity modulus kg/mm2

    Tension Insulator

    Number of discs per string

    Weight of each disc kg (As per Vendor drawing)

    Weight of hardware kg

    Mean Diameter of Insulator mm

    Length of each disc mm

    Length of hardware mm

    Width of the hardware mm250dh =

    = 750

    = 145

    = 255

    = 17.02

    = 7.5

    = 12

    = 8.2E+03

    = 1.78E-05

    = 23.45

    = 325.6

    = 0.001213

    = 0

    = 85

    = 11250

    = 47

    = 1

    5050

    = 1

    = 1000

    12000=

    Lh

    di

    =

    =

    =

    750

    8000

    =

    Ld

    Wd

    Wh

    nd

    E

    Ac

    dc

    m's

    To

    Tmin

    Vb

    Ls

    nc

    ns

    H1

    H2

    T1

    L

    Lg

    1.3.3

    1.3.7

    1.3.5

    1.3.6

    1.3.4

    1.3.1

    1.3.2

    1.2.5

    1.3.0

    1.2.3

    1.2.4

    1.2.1

    1.2.2

    1.1.12

    1.1.13

    1.2.0

    1.1.11

    1.1.9

    1.1.10

    1.1.7

    1.1.8

    1.1.5

    1.1.6

    1.1.3

    1.1.4

    1.1.0

    1.1.2

    SAG TENSION CALCULATION FOR 12 m SPAN SINGLE BEAR ACSR - 132kV BUS

    1.0.0

    1.1.1 =

    8 of 14

  • 8/10/2019 132kV SAG Calculation

    9/14

  • 8/10/2019 132kV SAG Calculation

    10/14

  • 8/10/2019 132kV SAG Calculation

    11/14

    DOC NO : HZL-BTN-ELE-DS-SY-028

    FULL WIND CONDITION

    Load distribution

    Reaction at each end

    Shear f orce diagram

    +140.8038 kg

    +44.0538 kg

    +9.5618 kg

    -9.5618 kg

    -44.0538 kg

    NOTE: LENGTH IN "mm"

    -140.8038 kg

    Maximum Sag occurs at the centre of the span

    Cross force area (Upto maximum sag)

    Cross Force moments

    870

    140.8038 kg

    750 mm

    1245375

    BA

    = 96.75 + 34.492 + ((0.00305 x 6270)/2) kg

    1740.0 mm 750 mm 6270.000 mm

    =RA RB

    96.750 kg 96.750 kg34.492 kg 0.003050 kg/mm 34.492 kg

    =

    1740.0 mm

    4.1.0

    4.1.1

    4.0.0

    3135

    3135870 1245 375

    4.1.2

    I3

    I1

    kg.mmSI1 = 195920.0835

    140.8038 x 870

    44.0538 x 1245

    9.5618 x 375

    4.1.3

    =

    I4 =

    =

    I2 =

    0.5 x 9.5618 x 3135

    =

    =

    =

    =

    122499.306

    54846.981

    3585.675

    14988.1215

    kg.mm

    kg.mm

    kg.mm

    kg.mm

    4.1.4

    S1 =

    S2 =

    S3 =

    S4 =

    122499.306 x 140.8038 x 0.5

    54846.981 x 44.0538 x 0.5

    3585.675 x 9.5618 x 0.5

    14988.1215 x 9.5618 / 3

    =

    =

    =

    =

    8624183.8911 kg2mm

    1208108.9658 kg2mm

    17142.7536 kg2mm

    47771.1401 kg2mm

    kg2mmTS = (S1+ S2+ S3+ S4) x 2 = 19794413.5012

    11 of 14

  • 8/10/2019 132kV SAG Calculation

    12/14

    DOC NO : HZL-BTN-ELE-DS-SY-028

    STILL WIND CONDITION

    Load distribution

    Reaction at each end

    Shear f orce diagram

    +110.8228 kg

    +20.8228 kg

    +3.8028 kg

    -3.8028 kg

    -20.8228 kg

    NOTE: LENGTH IN "mm"

    -110.8228 kg

    Maximum Sag occurs at the centre of the span

    Cross force area (Upto maximum sag)

    Cross Force moments

    5.1.1

    RA

    6270.000 mm 750 mm 1740.0 mm1740.0 mm 750 mm

    A B

    17.020 kg 90.000 kg90.000 kg 17.020 kg 0.001213 kg/mm

    5.0.0

    5.1.0

    110.8228 kg= 90 + 17.02 + ((0.001213 x 6270)/2) kg == RB

    5.1.2

    3135 375 1245 870

    870 1245 375 3135

    5.1.3

    I1 = 110.8228 x 870 = 96415.836 kg.mm

    I2 = 20.8228 x 1245 = 25924.386 kg.mm

    I3 = 3.8028 x 375 = 1426.05 kg.mm

    = 5960.889 kg.mmI4 = 0.5 x 3.8028 x 3135

    kg.mm

    5.1.4

    SI2 = 129727.161

    S1 = 96415.836 x 110.8228 x 0.5 = 5342536.4549 kg2mm

    = 269909.1524 kg2mmS2 = 25924.386 x 20.8228 x 0.5

    = 2711.4915 kg2mmS3 = 1426.05 x 3.8028 x 0.5

    = 7556.0229 kg2mmS4 = 5960.889 x 3.8028 / 3

    11245426.2434 kg2mmTSS = (S1+ S2+ S3+ S4) x 2 =

    12 of 14

  • 8/10/2019 132kV SAG Calculation

    13/14

    DOC NO : HZL-BTN-ELE-DS-SY-028

    EVALUATION OF SAG AND DEFLECTION AT ANY TEMPERATURE

    Sag at any temperature

    Final Stress at any temperature

    Where

    k /mm2

    kg2mm

    kg2mm

    Sag at any Temperature (S)

    where, is the final stress at still wind condition for a given temperature

    Deflection at any temperature

    Final Stress at any temperature

    Where

    kg/mm2

    k2mm

    Deflection at any Temperature (D)

    where, is the final stress at full wind condition for a given temperature

    Conductor Swing at any temperature (Swg)

    6.0.0

    6.1.0

    6.1.1

    6.1.2

    = kg/mm2

    Ac2x Lsx 1

    2Ac

    2x Ls

    1 = 3.07125

    E x SM1 E x SM2

    2

    x (-1) + + E x (T1-To)

    TS = 19794413.5012SM1 =

    SM2 = TSS =

    S = SI2/ Tstill mm

    Tstill = x A kg

    6.2.0

    6.2.1

    E x SM1 E x SM1

    2x (-1) + + E x (T1-To) =

    Ac2x Lsx 1

    2Ac

    2x Ls

    1

    SM1 = 19794413.5012

    kg/mm2

    11245426.2434

    = 3.07125

    TS =

    SI2/ Tfull

    6.2.2

    6.3.0

    = mmD2- S

    2Swg

    mm

    = x A kgTfull

    D =

    13 of 14

  • 8/10/2019 132kV SAG Calculation

    14/14

    DOC NO : HZL-BTN-ELE-DS-SY-028

    Sag, Tension, Deflectionand Swing for Various Temperatures

    Maximum Working Tension

    Maximum sag of Lower most conductor

    Height of tower

    Height of Equipment

    Vertical Clearance between lower most

    Conductor and equipment

    Clearance between phase to phase

    for 132kV as per CBIP manual

    30

    55

    6.4.0

    45

    15

    Tstill(kg)

    10

    25

    40

    0

    Temp

    c

    (Full wind)

    kg/mm2

    (Still wind)

    kg/mm2 Tfull(kg) Sag (mm)

    Deflection

    (mm)

    Swing

    (mm)

    3.0713 2.3757 1000 773.5 167.7 195.9 101.3

    5 3.004 2.3191 978.1 755.1 171.8 200.3 103

    2.9399 2.2665 957.2 738 175.8 204.7 104.9

    2.8794 2.2169 937.5 721.8 179.7 209 106.7

    20 2.8221 2.1704 918.9 706.7 183.6 213.2 108.4

    2.7679 2.1264 901.2 692.4 187.4 217.4 110.2

    2.7165 2.085 884.5 678.9 191.1 221.5 112

    35 2.6677 2.0457 868.6 666.1 194.8 225.6 113.8

    2.6212 2.0084 853.5 653.9 198.4 229.5 115.4

    2.577 1.973 839.1 642.4 201.9 233.5 117.3

    50 2.5348 1.9393 825.3 631.4 205.5 237.4

    2.4945 1.9073 812.2 621

    60 2.456 1.8767 799.7 611.1 212.3 245 122.3

    65 2.4191 1.8475 787.7 601.5 215.7 248.7 123.8

    70 2.3838 1.8196 776.2 592.5 218.9 252.4 125.7

    75 2.3499 1.7928 765.1 583.7 222.2 256.1 127.3

    225.5 259.7 128.880 2.3173 1.7672 754.5

    85 2.2861 1.7426 744.4

    = 8000

    6.4.2 S =

    6.4.3 H

    6.4.4 h =

    = 1300

    5050

    6.4.5Vclr = 2721.4

    6.4.6

    6.4.7 Since the calculated vertical clearance between Equipment and Lower most conductor is

    greater than the minimum clearance between phase to phase, The selected height of tower

    8000mm is adequate.

    mm

    mm

    mm

    228.6

    6.4.1 T = 1000

    567.4 228.6 130.4

    118.9

    208.9 241.2 120.6

    575.4

    mm

    mm

    kg

    263.2