Top Banner
1 ECON 240C Lecture 8 Lecture 8
68

1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

Dec 20, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

1

ECON 240C

Lecture 8Lecture 8

Page 2: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

2

Outline: 2nd Order AR Roots of the quadraticRoots of the quadratic Example: capumfgExample: capumfg Polar formPolar form Inverse of B(z)Inverse of B(z) Autocovariance functionAutocovariance function Yule-Walker EquationsYule-Walker Equations Partial autocorrelation functionPartial autocorrelation function

Page 3: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

3

Outline Cont. Parameter uncertaintyParameter uncertainty Moving average processesMoving average processes Significance of AutocorrelationsSignificance of Autocorrelations

Page 4: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

4

Roots of the quadratic X(t) = bX(t) = b1 1 x(t-1) + bx(t-1) + b2 2 x(t-2) + wn(t)x(t-2) + wn(t)

yy2 2 –b–b1 1 y – by – b2 2 = 0, from substituting y= 0, from substituting y2-u 2-u for for

x(t-u)x(t-u) y = [by = [b1 1 +/- (b+/- (b11

2 2 + 4b+ 4b22))1/2 1/2 ]/2]/2

Complex if (bComplex if (b112 2 + 4b+ 4b22) < 0) < 0

Page 5: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

5

b1 = 1.489, b2 = -0.575Roots: y = 1.489 +/- [(1.489)2 +4(-0.575)]1/2/2

y = 0.744 +/- (2.217 – 2.30)1/2 /2y = 0.74 +/- 0.288/2 *iy = 0.74 + 0.14 i, 0.74 – 0.14 i

Page 6: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

6

Roots in polar form y = Re + Im i = a + b iy = Re + Im i = a + b i sin sin = b/(a = b/(a2 2 + b+ b2 2 ))1/21/2

cos cos = a/(a = a/(a2 2 + b+ b2 2 ))1/21/2

y = (ay = (a2 2 + b+ b2 2 ))1/2 1/2 cos cos + i (a + i (a2 2 + b+ b2 2 ))1/2 1/2 sin sin

Re

Im

a

(a, b)

b

Page 7: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

7

Roots in Polar form Re + i Im = a + i b = (aRe + i Im = a + i b = (a2 2 + b+ b2 2 ))1/2 1/2 [cos [cos + sin + sin ]] Example: modulus, (aExample: modulus, (a2 2 + b+ b2 2 ))1/2 1/2 = [(0.74)= [(0.74)2 2

+(0.14)+(0.14)2 2 ]]1/21/2 = [0.548 + 0.0196] = [0.548 + 0.0196]1/2 1/2 = 0.753= 0.753 Tan Tan = sin = sin /cos /cos = b/a = 0.14/0.74 = 0.189 = b/a = 0.14/0.74 = 0.189 = tan= tan-1 -1 0.189 ~ 11 degrees = 0.0306 fraction 0.189 ~ 11 degrees = 0.0306 fraction

of a circle = 0.0306*2of a circle = 0.0306*2 radians = 0.192 radians radians = 0.192 radians Period = 2*Period = 2*// = 32.7 quarters, 8.2 years,the = 32.7 quarters, 8.2 years,the

time it takes to go around the circle once time it takes to go around the circle once

Page 8: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

8

1972.41977.4

Peak to peak: 5 years or 20 quarters

Page 9: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

9

Half a cycle in 21-9 = 12 quarters, so period = 24 quarters or 6 years

Page 10: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

10

Difference Equation Solutions x(t) –bx(t) –b1 x(t-1) – b2 x(t-2) = 0 Suppose b2 = 0, then b1 is the root, with x(t)

= b1 x(t-1). Suppose x(0) = 100, and b1 =1.2 then x(1) = 1.2*100, And x(2) = 1.2*x(1) = (1.2)2 *100, And the solution is x(t) = x(0)* b1

t

In general for roots r1 and r2 , the solution is x(t) = Ar1

t + Br2t where A and B are

constants

Page 11: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

11

III. Autoregressive of the Second Order

ARTWO(t) = bARTWO(t) = b1 1 *ARTWO(t-1) + b*ARTWO(t-1) + b2 2 *ARTWO(t-*ARTWO(t-

2) + WN(t)2) + WN(t) ARTWO(t) - bARTWO(t) - b1 1 *ARTWO(t-1) - b*ARTWO(t-1) - b2 2 *ARTWO(t-2) *ARTWO(t-2)

= WN(t)= WN(t) ARTWO(t) - bARTWO(t) - b1 1 *Z*ARTWO(t) - b*Z*ARTWO(t) - b2 2

*Z*ARTWO(t) = WN(t)*Z*ARTWO(t) = WN(t) [1 - b[1 - b1 1 *Z - b*Z - b2 2 *Z*Z22] ARTWO(t) = WN(t)] ARTWO(t) = WN(t)

Page 12: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

12

Inverse of [1-b1z –b2z2] ARTWO(t) = wn(t)/B(z) =wn(t)/[1-bARTWO(t) = wn(t)/B(z) =wn(t)/[1-b1z –b–b2z2]

ARTWO(t) = A(z) wn(t) = {1/[1-b[1-b1z –b–b2z2]}wn(t)

So A(z) = [1 + a1 z + a2 z2 + …] = 1/[1-b[1-b1z –b–b2z2]

[1-b[1-b1z –b–b2z2] [1 + a1 z + a2 z2 + …] = 1

1 + a1 z + a2 z2 + … -b -b1z – a– a11 b b1z2 - b2 z2… = 1

1 + (a1 – b1)z + (a2 –a1 b1 –b2 ) z2 + … = 1

So (a1 – b1) = 0, (a2 –a1 b1 –b2 ) = 0, …

Page 13: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

13

Inverse of [1-b1z –b2z2]

A(z) = [1 + a1 z + a2 z2 + …] = [1 + b1 z + (b12 +b2)

z2 + …. So ARTWO(t) = wn(t) + b1 wn(t-1) + (b1

2 +b2) wn(t-2) + ….

And ARTWO(t-1) = wn(t-1) + b1 wn(t-2) + (b12

+b2) wn(t-3) + ….

Page 14: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

14

Autocovariance Function

ARTWO(t) = bARTWO(t) = b1 1 *ARTWO(t-1) + b*ARTWO(t-1) + b2 2

*ARTWO(t-2) + WN(t)*ARTWO(t-2) + WN(t) Using x(t) for ARTWO, Using x(t) for ARTWO, x(t) = bx(t) = b1 1 *x(t-1) + b*x(t-1) + b2 2 *x(t-2) + WN(t)*x(t-2) + WN(t) By lagging and substitution, one can show By lagging and substitution, one can show

that x(t-1) depends on earlier shocks, so that x(t-1) depends on earlier shocks, so multiplying by x(t-1) and taking multiplying by x(t-1) and taking expectationsexpectations

Page 15: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

15

Autocovariance Function x(t) = bx(t) = b1 1 *x(t-1) + b*x(t-1) + b2 2 *x(t-2) + WN(t)*x(t-2) + WN(t)

x(t)*x(t-1) = bx(t)*x(t-1) = b1 1 *[x(t-1)]*[x(t-1)]22 + b + b2 2 *x(t-1)*x(t-2) + x(t-*x(t-1)*x(t-2) + x(t-

1)*WN(t)1)*WN(t) Ex(t)*x(t-1) = bEx(t)*x(t-1) = b1 1 *E[x(t-1)]*E[x(t-1)]22 + b + b2 2 *Ex(t-1)*x(t-2) *Ex(t-1)*x(t-2)

+E x(t-1)*WN(t)+E x(t-1)*WN(t) x, xx, x b b1 1 * * x, xx, xbb2 2 * * x, x,

xxwhere Ex(t)*x(t-1), where Ex(t)*x(t-1),

E[x(t-1)]E[x(t-1)]22 , and Ex(t-1)*x(t-2) follow by definition , and Ex(t-1)*x(t-2) follow by definition and E x(t-1)*WN(t) = 0 since x(t-1) depends on and E x(t-1)*WN(t) = 0 since x(t-1) depends on earlier shocks and is independent of WN(t) earlier shocks and is independent of WN(t)

Page 16: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

16

Autocovariance Function x, xx, x b b1 1 * * x, xx, xbb2 2 * * x, xx, x dividing though by dividing though by x, xx, x x, xx, x b b1 1 * * x, xx, xbb2 2 * * x, xx, xsoso

x, xx, xbb2 2 * * x, xx, x b b1 1 * * x, xx, xandand

x, xx, xbb2 2 ]] b b1 1 oror

x, xx, x b b1 1 bb2 2 ]] Note: if the parameters, bNote: if the parameters, b1 1 and b and b2 2 are known, are known,

then one can calculate the value of then one can calculate the value of x, xx, x

Page 17: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

17

Autocovariance Function x(t) = bx(t) = b1 1 *x(t-1) + b*x(t-1) + b2 2 *x(t-2) + WN(t)*x(t-2) + WN(t)

x(t)*x(t-2) = bx(t)*x(t-2) = b1 1 *[x(t-1)x(t-2)] + b*[x(t-1)x(t-2)] + b2 2 *[x(t-2)]*[x(t-2)]22 + x(t- + x(t-

2)*WN(t)2)*WN(t) Ex(t)*x(t-2) = bEx(t)*x(t-2) = b1 1 *E[x(t-1)x(t-2)] + b*E[x(t-1)x(t-2)] + b2 2 *E[x(t-2)]*E[x(t-2)]22

+E x(t-2)*WN(t)+E x(t-2)*WN(t) x, xx, x b b1 1 * * x, xx, xbb2 2 * * x, x,

xxwhere Ex(t)*x(t-2), where Ex(t)*x(t-2),

E[x(t-2)]E[x(t-2)]22 , and Ex(t-1)*x(t-2) follow by definition , and Ex(t-1)*x(t-2) follow by definition and E x(t-2)*WN(t) = 0 since x(t-2) depends on and E x(t-2)*WN(t) = 0 since x(t-2) depends on earlier shocks and is independent of WN(t) earlier shocks and is independent of WN(t)

Page 18: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

18

Autocovariance Function x, xx, x b b1 1 * * x, xx, xbb2 2 * * x, xx, x dividing though by dividing though by x, xx, x x, xx, x b b1 1 * * x, xx, xbb2 2 * * x, xx, x x, xx, x b b1 1 * * x, xx, xbb2 2 * * x, xx, x Note: if the parameters, bNote: if the parameters, b1 1 and b and b2 2 are known, are known,

then one can calculate the value of then one can calculate the value of x, xx, xas as

we did above from we did above from x, xx, x b b1 1 bb2 2 ], ],

and then calculate and then calculate x, xx, x

Page 19: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

19

Autocorrelation Function x, xx, x b b1 1 * * x, xx, xbb2 2 * * x, xx, x Note also the recursive nature of this Note also the recursive nature of this

formula, so formula, so x, xx, x b b1 1 * * x, x,

xxbb2 2 * * x, xx, xfor u>=2.for u>=2.

Thus we can map from the parameter space Thus we can map from the parameter space to the autocorrelation function.to the autocorrelation function.

How about the other way around?How about the other way around?

Page 20: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

20

Yule-Walker Equations From slide 16 above, From slide 16 above, x, xx, x b b1 1 * * x, xx, xbb2 2 * * x, xx, xand so and so

bb1 1 = = x, xx, xbb2 2 * * x, xx, x From slide 19 above, From slide 19 above, x, xx, x b b1 1 * * x, xx, xbb2 2 * * x, xx, xoror

bb2 2 ==x, xx, x b b1 1 * * x, xx, xand substituting for and substituting for

bb1 1 from line 3 abovefrom line 3 above

bb2 2 ==x, xx, x [ [x, xx, xbb2 2 * * x, xx, x] ] x, xx, x

Page 21: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

21

Yule-Walker Equations bb2 2 ==x, xx, x {[ {[x, xx, xbb2 2 * [* [x, xx, x]]22 } }

so bso b2 2 ==x, xx, x [ [x, xx, xbb2 2 * [* [x, xx, x]]22

and band b2 2 bb2 2 * [* [x, xx, x]]22 = = x, xx, x [ [x, xx, x so bso b2 2 x, xx, x]]22 = = x, xx, x [ [x, xx, x

and and bb2 2 = {= {x, xx, x [ [x, xx, x x, xx, x]]22

This is the formula for the partial autocorrelation This is the formula for the partial autocorrelation at lag two.at lag two.

Page 22: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

22

Partial Autocorrelation Function bb2 2 = {= {x, xx, x [ [x, xx, x x, xx, x]]22

Note: If the process is really autoregressive of the Note: If the process is really autoregressive of the first order, then first order, then x, xx, xbb2 2 and and x, xx, xb, b,

so the numerator is zero, i.e. the partial so the numerator is zero, i.e. the partial autocorrelation function goes to zero one lag after autocorrelation function goes to zero one lag after the order of the autoregressive process.the order of the autoregressive process.

Thus the partial autocorrelation function can be Thus the partial autocorrelation function can be used to identify the order of the autoregressive used to identify the order of the autoregressive process.process.

Page 23: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

23

Partial Autocorrelation Function If the process is first order autoregressive then the If the process is first order autoregressive then the

formula for bformula for b1 1 = b is: = b is:

bb1 1 = b =ACF(1), so this is used to calculate the = b =ACF(1), so this is used to calculate the

PACF at lag one, i.e. PACF(1) =ACF(1) = bPACF at lag one, i.e. PACF(1) =ACF(1) = b1 1 = b.= b.

For a third order autoregressive process,For a third order autoregressive process, x(t) = bx(t) = b1 1 *x(t-1) + b*x(t-1) + b2 2 *x(t-2) + b*x(t-2) + b3 3 *x(t-3) + WN(t), *x(t-3) + WN(t),

we would have to derive three Yule-Walker we would have to derive three Yule-Walker equations by first multiplying by x(t-1) and then by equations by first multiplying by x(t-1) and then by x(t-2) and lastly by x(t-3), and take expectations.x(t-2) and lastly by x(t-3), and take expectations.

Page 24: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

24

Partial Autocorrelation Function

Then these three equations could be solved Then these three equations could be solved for bfor b3 3 in terms of in terms of x, xx, xx, xx, xand and x, x,

xxto determine the expression for the to determine the expression for the

partial autocorrelation function at lag three. partial autocorrelation function at lag three. EVIEWS does this and calculates the PACF EVIEWS does this and calculates the PACF at higher lags as well.at higher lags as well.

Page 25: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

25

IV. Economic Forecast Project

Santa Barbara County SeminarSanta Barbara County Seminar April 29, 2005April 29, 2005

URL: URL: http://www.ucsb-efp.comhttp://www.ucsb-efp.com

Page 26: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

26

V. Forecasting Trends

Page 27: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

27

Lab Two: LNSP500

Page 28: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

28

Note: Autocorrelated Residual

Page 29: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

29

Autorrelation Confirmed from the Correlogram of the Residual

Page 30: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

30

Visual Representation of the Forecast

Page 31: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

31

Numerical Representation of the Forecast

Page 32: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

32

One Period Ahead Forecast Note the standard error of the regression is 0.2237Note the standard error of the regression is 0.2237 Note: the standard error of the forecast is 0.2248Note: the standard error of the forecast is 0.2248 Diebold refers to the forecast errorDiebold refers to the forecast error

without parameter uncertainty, which will just without parameter uncertainty, which will just be the standard error of the regressionbe the standard error of the regression

or with parameter uncertainty, which accounts or with parameter uncertainty, which accounts for the fact that the estimated intercept and for the fact that the estimated intercept and slope are uncertain as wellslope are uncertain as well

Page 33: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

33

Parameter Uncertainty

Trend model: y(t) = a + b*t + e(t)Trend model: y(t) = a + b*t + e(t) Fitted model: Fitted model: tbay *ˆˆˆ

tbaty *ˆˆ)(ˆ

Page 34: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

34

Parameter Uncertainty

Estimated error Estimated error )(ˆ)()(ˆ tytyte

Page 35: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

35

Forecast Formula

)1()1(*ˆˆ)1(ˆ tetbaty

Page 36: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

36

Expected Value of the Forecast

EEt t

)1(*

)1()1(*ˆˆ)1(ˆ

tba

tetbaty

Page 37: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

37

Forecast Minus its Expected Value

Forecast = a + b*(t+1) + 0Forecast = a + b*(t+1) + 0

Ety )1(ˆ )1(ˆ ty

)1()1(*)ˆ()ˆ()1(ˆ)1(ˆ tetbbaatyEty t

Page 38: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

38

Variance in the Forecast

)1(Re)1(*ˆ)1(*ˆˆ*2]ˆ[

)]1(ˆ)1(ˆ[2

tsVARtbVARtbaCOVaaVAR

tyEtyVAR t

Page 39: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

39

Page 40: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

40

Variance of the Forecast Error

)1Re()1(*ˆ)1(*ˆˆ*2]ˆ[

)1(ˆ)1(ˆ[2

tVAtbVARtbaCOVaaVAR

tyEtyVAR t

0.000501 +2*(-0.00000189)*398 + 9.52x10-9*(398)2 +(0.223686)2

0.000501 - 0.00150 + 0.001508 + 0.0500354 0.0505444SEF = (0.0505444)1/2 = 0.22482

Page 41: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

41

Numerical Representation of the Forecast

Page 42: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

42

Evolutionary Vs. Stationary

Evolutionary: Trend model for lnSp500(t)Evolutionary: Trend model for lnSp500(t) Stationary: Model for Dlnsp500(t)Stationary: Model for Dlnsp500(t)

Page 43: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

43

Pre-whitened Time Series

Page 44: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

44Note: 0 008625 is monthly growth rate; times 12=0.1035

Page 45: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

45

Is the Mean Fractional Rate of Growth Different from Zero?

Econ 240A, Ch.12.2Econ 240A, Ch.12.2

where the null hypothesis is that where the null hypothesis is that = 0. = 0. (0.008625-0)/(0.045661/397(0.008625-0)/(0.045661/3971/21/2)) 0.008625/0.002292 = 3.76 t-statistic, so 0.008625/0.002292 = 3.76 t-statistic, so

0.008625 is significantly different from 0.008625 is significantly different from zerozero

)//()( nsx

Page 46: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

46

Model for lnsp500(t)

Lnsp500(t) = a +b*t +resid(t), where Lnsp500(t) = a +b*t +resid(t), where resid(t) is close to a random walk, so the resid(t) is close to a random walk, so the model is:model is:

lnsp500(t) a +b*t + RW(t), and taking lnsp500(t) a +b*t + RW(t), and taking exponentialexponential

sp500(t) = esp500(t) = ea + b*t + RW(t) a + b*t + RW(t) = e= ea + b*t a + b*t eeRW(t)RW(t)

Page 47: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

47

Note: The Fitted Trend Line Forecasts Above the Observations

Page 48: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

48

Page 49: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

49

VI. Autoregressive Representation of a Moving Average Process

MAONE(t) = WN(t) + a*WN(t-1) MAONE(t) = WN(t) + a*WN(t-1) MAONE(t) = WN(t) +a*Z*WN(t)MAONE(t) = WN(t) +a*Z*WN(t) MAONE(t) = [1 +a*Z] WN(t)MAONE(t) = [1 +a*Z] WN(t) MAONE(t)/[1 - (-aZ)] = WN(t)MAONE(t)/[1 - (-aZ)] = WN(t) [1 + (-aZ) + (-aZ)[1 + (-aZ) + (-aZ)2 2 + …]MAONE(t) = WN(t)+ …]MAONE(t) = WN(t) MAONE(t) -a*MAONE(t-1) + aMAONE(t) -a*MAONE(t-1) + a2 2 MAONE(t-2) + .. MAONE(t-2) + ..

=WN(t)=WN(t)

Page 50: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

50

MAONE(t) = a*MAONE(t-1) - aMAONE(t) = a*MAONE(t-1) - a22*MAONE(t-2) + *MAONE(t-2) + …. +WN(t)…. +WN(t)

Page 51: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

51

Lab 4: Alternating Pattern in PACF of MATHREE

Page 52: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

52

Part IV. Significance of Autocorrelations

x, x (u) ~ N(0, 1/T) , where T is # of observations x, x (u) ~ N(0, 1/T) , where T is # of observations

Page 53: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

53

Correlogram of the Residual from the Trend Model for LNSP500(t)

Page 54: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

54

Box-Pierce Statistic

xx,)(ˆ

)/1/()0)(ˆ(

,

,

uT

Tu

xx

xx

Is normalized, 1.e. is N(0,1)

The square of N(0,1) variables is distributed Chi-square

)(ˆ ,2 uT xx

Page 55: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

55

Box-Pierce StatisticThe sum of the squares of independent N(0, 1) variables is Chi-square, and if the autocorrelations are close to zero they will be independent, so under the null hypothesis that the autocorrelations are zero, we have a Chi-square statistic:

)(ˆ1

,2 uT

K

u

xx

that has K-p-q degrees of freedom where K is the number of lags in the sum, and p+q are the number of parameters estimated.

Page 56: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

56

Application to Lab Four: the Fractional Change in the Federal Funds Rate

Dlnffr = lnffr-lnffr(-1)Dlnffr = lnffr-lnffr(-1) Does taking the logarithm and then Does taking the logarithm and then

differencing help model this rate??differencing help model this rate??

Page 57: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

57

Page 58: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

58

Page 59: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

59

Correlogram of dlnffr(t)

Page 60: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

60

How would you model dlnffr(t) ?

Notation (p,d,q) for ARIMA models where Notation (p,d,q) for ARIMA models where d stands for the number of times first d stands for the number of times first differenced, p is the order of the differenced, p is the order of the autoregressive part, and q is the order of the autoregressive part, and q is the order of the moving average part.moving average part.

Page 61: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

61

Estimated MAThree Model for dlnffr

Page 62: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

62

Correlogram of Residual from (0,0,3) Model for dlnffr

Page 63: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

63

Calculating the Box-Pierce Stat

Lag ACF ACF square SUM Sum*5841 0.013 0.000169 0.000169 0.0986962 -0.015 0.000225 0.000394 0.2300963 -0.026 0.000676 0.00107 0.624884 -0.004 0.000016 0.001086 0.6342245 -0.029 0.000841 0.001927 1.125368

Page 64: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

64

EVIEWS Uses the Ljung-Box Statistic

Page 65: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

65

Q-Stat at Lag 5

(T+2)/(T-5) * Box-Pierce = Ljung-Box(T+2)/(T-5) * Box-Pierce = Ljung-Box (586/581)*1.25368 = 1.135 compared to (586/581)*1.25368 = 1.135 compared to

1.132(EVIEWS)1.132(EVIEWS)

Page 66: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

66

GENR: chi=rchisq(3); dens=dchisq(chi, 3)

Page 67: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

67

Correlogram of Residual from (0,0,3) Model for dlnffr

Page 68: 1 ECON 240C Lecture 8. 2 Outline: 2 nd Order AR Roots of the quadratic Roots of the quadratic Example: capumfg Example: capumfg Polar form Polar form.

68