Top Banner
Jeffrey Hedenquist Consultor Ottawa, Canada Sociedad Geológica de Chile: July 2011 after R. Goldfarb, from Groves et al. (2005) Upper crustal sub- volcanic magma chamber formed at basement- supracrustal contact due to buoyancy ± rheology contrasts No vertical exaggeration © Richards (2007), from Richards (2005) Porphyry systems Sillitoe, 2010 Economic Geology
16
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 1 Active Volcanic Santiago

Jeffrey HedenquistConsultorOttawa, Canada

Sociedad Geológica de Chile: July 2011

after R. Goldfarb, from Groves et al. (2005)

Cu-Au

Upper crustal sub-volcanic magma

chamber formed at basement-

supracrustal contact due to buoyancy ± rheology contrasts�No vertical

exaggeration�© Richards (2007), from Richards (2005)�

Porphyry systems

Sillitoe, 2010 Economic Geology

Page 2: 1 Active Volcanic Santiago

Singer et al., 2008; pers. obs.

epithermal Au, Ag (Pb, Zn, Cu)

Porphyry Cu-Au systems: * Intrusion centered, may have surficial expression

Page 3: 1 Active Volcanic Santiago

Mt. Sakurajima, Kyushu: Eruption of ash + vapor

High-temperature hypogene vapors, !850 oC with HCl, SO2

Page 4: 1 Active Volcanic Santiago

acidic stream, pH ~0.6

pH 0.2

White Island, New Zealand: drowned fumaroles, 2007

Satsuma Iwojima, Japan

H2O, HCl, SO2

Sampling of 770 C vapor with acidic gases

dissolved rock

Hedenquist et al., 1994

Satsuma Iwojima, Japan

pH 1.7 -- 1.1

Page 5: 1 Active Volcanic Santiago

Magmatic fluid: coupled vapor and brine from deep fluid Cataclysmic

eruption (bulk metals)

White Island (high metals)

Satsuma Iwojima (low metals)

Page 6: 1 Active Volcanic Santiago

H2O, NaCl, SO2, HCl, CO2, H2S, ...

H2SO4, HCl

Lithocap formed by hypogene condensate, pH~1

Formation of advanced argillic alteration

HCl, SO2, CO2, H2S: hypogene alteration

4 SO2 + 4 H2O => 3 H2SO4 + H2S

80% 20%

High-temperature hypogene vapors, !850 oC with HCl, SO2

Page 7: 1 Active Volcanic Santiago

H2S + 2 O2 = H2SO4

H2O, NaCl, SO2, HCl, CO2, H2S, ...

H2SO4, HCl

CO2, H2S

4 SO2 + 4 H2O => 3 H2SO4 + H2S

pH >2

pH <1

Steam-heated blanket

Lithocap formed by hypogene condensate

Formation of advanced argillic alteration

HCl, SO2, CO2, H2S hypogene alteration

CO2, H2S steam-heated

alteration

Page 8: 1 Active Volcanic Santiago

Volcan Poás, Costa Rica

Volcan Poás, Costa Rica Volcan Poás, Costa Rica

Page 9: 1 Active Volcanic Santiago

Akaiwa high-sulfidation epithermal prospect, Japan

Akaiwa high-sulfidation epithermal prospect, Japan

A. Arribas, unpub.

Page 10: 1 Active Volcanic Santiago

Showa Shinzan, Hokkaido: dacite dome, 1944-1945 100 m

pyroclastic flows generated by dome collapse

Unzen lava dome in Japan, surrounded by pyroclastic deposits The lava dome at Colima,

Mexico

Page 11: 1 Active Volcanic Santiago

Block and ash fall, overlain by pyroclastic flow

  Montserrat 1997* Mt St Helens 2004 dome inflates from within isolated spines emplaced

along shear zones

Page 12: 1 Active Volcanic Santiago

collapse scar

shear lobe Crater rim

Shear lobe extrusion, determines location/direction and timing of collapses

The character of the internal contacts are not clear and probably does not resemble this !

BUT : what must be the case, is that large domes are at least in part constructed over an unconsolidated base.

Lithocap

!  Horizontal to sub-horizontal body

!  Residual silicic core (± ore), halo of advance argillic (AA) alteration

"  Structure-controlled feeder zone

"  Lithology-controlled lithocap horizon

Mineralization

Structure- controlled

Lithocap

Summitville, Colorado

Steven and Ratté, 1960

Steven & Ratté, 1960

pH ~ >6 4 - 6 2 - 4 <2

10 - 100s m

Page 13: 1 Active Volcanic Santiago

Summitville, Colorado

Mohong Hill quartz-alunite

lithocap

quartz

Lithology-controlled lithocap alteration

Gonzalez, 1956, 1959; Garcia, 1991

in residual qtz host

Quartz-alunite ± Al-silicate halo

fluid:rock = 10:1

Page 14: 1 Active Volcanic Santiago

fluid:rock = 10:1

Alteration mineral stability

shallow qtz-alun

zone

deep alumino- silicate zone

diaspore pyrite gypsum alunite andalusite kaolinite pyrophyllite pyrrhotite hematite muscovite dickite

residual qtz core w/ py, S

qtz-alun halo

deep alumino- silicate zone

Alteration mineral stability and zoning

fluid:rock = 100:1

py

diaspore pyrite gypsum alunite andalusite kaolinite pyrophyllite pyrrhotite

Magmatic condensates more reactive at lower temperature, hence abundance of shallow, advanced argillic alter’tn

150 C 200 C 250 C pH~1.5 ~0.7 ~1

300 C pH~2

W:R <10 W:R >10

H2O, NaCl

SO2, HCl, CO2, H2S...

Page 15: 1 Active Volcanic Santiago

Einaudi, Hedenquist and Inan, 2003

Einaudi, Hedenquist and Inan, 2003

py + bn

cp

cvdg

Sulfur condensation

po

lo+po

poiro

n

tn

hm + py

mt

mt+qz+po

fayalite

T ( C)o100 300 500 800

1000/T (K)3.0 2.0 1.0

-2

-6

-10

-14

-18

2 arc magmas

py + bn

cp

cvdg

Sulfur condensation

po

lo+po

poiro

n

tn

hm + py

mt

mt+qz+po

fayalite

T ( C)o100 300 500 800

1000/T (K)3.0 2.0 1.0

-2

-6

-10

-14

-18

2 arc magmas

py + bn

cp

cvdg

Sulfur condensation

po

lo+po

poiro

n

tn

hm + py

mt

mt+qz+po

fayalite

T ( C)o100 300 500 800

1000/T (K)3.0 2.0 1.0

-2

-6

-10

-14

-18

2 arc magmas

FUMAROLES

MAGMATIC HYDROTHERMAL

py + bn

cp

cvdg

Sulfur condensation

po

lo+po

poiro

n

tn

hm + py

mt

mt+qz+po

fayalite

T ( C)o100 300 500 800

1000/T (K)3.0 2.0 1.0

-2

-6

-10

-14

-18

2 arc magmas

FUMAROLES

py + bn

cp

cvdg

Sulfur condensation

po

lo+po

poiro

n

tn

hm + py

mt

mt+qz+po

fayalite

T ( C)o100 300 500 800

1000/T (K)3.0 2.0 1.0

-2

-6

-10

-14

-18

2 arc magmas

FUMAROLES

HS

epith

erm

al b

ase-

met

al v

eins

Porphyry-Cu

Page 16: 1 Active Volcanic Santiago

Sillitoe and Hedenquist, 2003