Top Banner
How to cite: Fernandez-Turiel J. L., Perez-Torrado F. J., Rodriguez-Gonzalez A., Ratto N., Rejas M., Lobo A., 2020. The 4.2 ka cal BP major eruption of Cerro Blanco, Central Andes. EGU General Assembly 2020, 4-8 May, Vienna, Austria. EGU2020-5038. https://doi.org/10.5194/egusphere-egu2020-5038. ICTJA EGU2020-5038 QUECA ¹ Institute of Earth Sciences Jaume Almera, ICTJA, CSIC, Barcelona, Spain ([email protected], [email protected], [email protected]) 2 Instituto de Estudios Ambientales y Recursos Naturales (i–UNAT), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain ([email protected], [email protected]) 3 Universidad de Buenos Aires, Instituto de las Culturas (UBA-CONICET), Facultad de Filosofía y Letras, Buenos Aires, Argentina ([email protected]) J.L. Fernandez-Turiel 1 , F.J. Perez-Torrado 2 , A. Rodriguez-Gonzalez 2 , N. Ratto 3 , M. Rejas 1 , A. Lobo 1 The 4.2 ka cal BP major eruption of Cerro Blanco, Central Andes Introduction BdF CB CdP ca. 7820 AP ca. 4200 a cal AP ca. 1700 a cal BP (?) The major eruption of the Cerro Blanco Volca- nic Complex (CBVC), in the Central Volcanic Zone of the Andes, NW Argentina, dated at 4410–4150 a cal BP, is the most important of the three major Holoce- ne felsic eruptive events identified in the sou- thern Puna (Fernan- dez-Turiel et al., 2019). 500 0 km 30º 20º S 70º 60º W Sources: Esri, USGS, NOAA Cueros de Purulla Nevado de Tres Cruces Cerro Blanco Volcanic Complex La Paz Altiplano-Puna plateau Santiago Buenos Aires Central Volcanic Zone CVZ NVZ SVZ AVZ ARGENTINA a b a 0 50 km 27º 26º S 68º 67º 66º 65º 64º W Catamarca Tucumán Santiago del Estero Salta CdP CBVC NTC La Rioja Tafí del Valle Cafayate Tolombón Santa María Calchaquí Valleys Bolsón de Fiambalá El Peñón Aguilares Termas de Río Hondo Antofagasta de la Sierra Las Papas Fiambalá San Miguel de Tucumán Santiago del Estero CHILE Southern Puna ARGENTINA Bolsón de Fiambalá sequence Eruptive center Cerro Blanco sequence Cueros de Purulla sequence b CB 3 4 CB 1 CB 3 3 CB 3 1 CB 3 2 b Source: Esri, DeLorme, USGS, NPS; Source: Esri, DigitalGlobe, GeoEye, Earthstar, Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community 0 5 km N ENC RC CBC PSBC CB 3 2 CB 1 CB 3 1 CB 3 3 CB 3 4 CB 2 3 CB 2 2 26°50' 26°45' S 67°50' 67°45' 67°40' W a (a) Holocene volcanic centres in the Andean Central Volcanic Zone (data from Global Volcanism Program); NVZ, Northern Volcanic Zone; CVZ, Central Volcanic Zone; SVZ, Southern Vol- canic Zone; and AVZ, Austral Volcanic Zone. (b) Studied sec- tions and eruptive centres (CdP, Cueros de Purulla; CBVC, Cerro Blanco Volcanic Complex; NTC, Nevado Tres Cruces). (a) Cerro Blanco Volcanic Complex showing El Niño Caldera (ENC), Pie de San Buenaventura Caldera (PSBC), Robledo Caldera (RC), and Cerro Blanco Cal- dera (CBC); (b) stratigraphic units in the Cerro Blanco Volcanic Complex. Cerro Blanco Caldera - 5 km diameter CdP CB BdF Results Stratigraphic summary Sequence Unit Sub- unit Lithofacies and interpretation Mineralogy Bolsón de Fiambalá BdF1 Alternating layers of moderate-poorly sorted, dacitic pumice lapilli and ash. Plinian fall deposit. glass >> plagioclase, biotite, amphiboles, quartz >> magnetite, ilmenite, apatite, titanite Cerro Blanco CB3 (postcaldera) 4 Alternating layers, 3-30 cm thick, of siliceous sinter. Deposits of hot springs. amorphous silica 3 Poorly defined decimetric-scale stratified deposits, poorly to very poorly sorted, with decimetric angular rhyolitic blocks in rhyolitic lapilli and coarse ash matrix deposits. Block-and-ash deposits. glass >> feldspars, quartz, biotite, magnetite, ilmemite >> apatite, allanite- epidote, zircon 2 Poorly to well–defined layers, 3-30 cm thick, white, rhyolitic lapilli and ash deposits. Fallout and phreatomagmatic deposits. 1 Crystal poor, very vesicular, rhyolite lava domes. CB2 (syncaldera) 3 Unstratified, matrix-supported, moderate to poorly sorted rhyolitic ignimbrite with clasts dominated by coarse pumice lapilli. Pyroclastic density current (PDC) deposits. glass >> feldspars, quartz, biotite, magnetite, ilmenite > clinopyroxene, orthopyroxene, amphiboles > allanite- epidote, muscovite, titanite, zircon 2 Unstratified rhyolitic ash. Plinian fall deposit. 1 Alternating layers, 1-3 cm thick, some of lapilli and some of ash. Rhyolitic Plinian fall deposit. CB1 (precaldera) Poorly stratified lithic-rich breccia. Block-and-ash deposit. glass >> feldspars, quartz, biotite, magnetite, ilmenite Cueros de Purulla CdP2 1,2 Unstratified, matrix-supported, moderate to poorly sorted ignimbrite with clasts dominated by coarse pumice lapilli in CdP21 and lithic-rich CdP22. Pyroclastic density current (PDC) deposits. glass >> feldspars, quartz, biotite, magnetite, ilmenite > apatite, allanite- epidote, muscovite, titanite, zircon CdP1 Alternating layers, 1-10 cm thick, some of lapilli and some of ash. Rhyolitic Plinian fall deposit. glass >> feldspars, quartz, biotite, magnetite, ilmenite > amphiboles, clinopyroxene > apatite, allanite-epidote, muscovite, titanite, zircon CB 2 3 CB 2 3 CB 2 3 CB 2 3 b 4410-4150 a cal BP 4440-4240 a cal BP Ignimbrites of Cerro Blanco CB 2 3 (≈15 km 3 ) CB 2 2 0 1 2 m CB 2 2 reworked CB 2 1 CB 2 2 CB 2 1 CB 2 2 CB 2 1 CB 2 2 CB 2 1 CB 2 2 CB 2 1 CB 2 2 CB 2 1 4880-4780 a cal BP CB 2 2 reworked 0 5 10 cm 0 0.5 1.0 m 0 25 50 cm 155 km 169 km 204 km 204 km 208 km 208 km 200 km 200 km 370 km Fig. 12d 11.4 m - CB114 34 km 23.6 m - CB116 27 km - 12.5 m CB118 22 km CB01 11 km CB37 155 km CB38 155 km CB39 164 km CB40 169 km CB41 172 km CB47 196 km CB46 200 km CB50 200 km CB44 204 km CB45 208 km CB53 338 km CB54 370 km 0.0 0.5 1.0 1.5 2.0 m Not to scale fall deposits east of Cerro Blanco PDC deposits south of Cerro Blanco vent CB54 370 km topsoil - light brown silt to sand, or stony CB 2 2 unstratified ash CB 2 1 alternating layers of lapilli and ash alluvial deposits colluvial deposits dating sample section number and distance to vent peat and silt lacustrine deposits loess deposits palaeosol CB 2 3 ignimbrite Plinean fall deposits CB 1-2 3 (≈170 km 3 ) Bimodal particle size parculate cored cluster core parcle shell parcle 20 μm Particle size bimodality is interpreted as evidence of particle aggre- gation in the eruptive plume, forming cored ash clusters that typica- lly break on impact with the ground. The resulting fallout deposit is made up of core particles of hundreds of microns in size and shell particles of tens of microns in diameter that covered the former. SEM image of distal thin-bedded ash (CB 2 1 sub-unit) Geochemistry Two different composi- tions of plagioclases, bio- tite, and Fe–Ti oxides ob- served in the CB 2 syn–cal- dera sub–units indicate mixing of two magma batches during the erup- tion. Isopach maps 50 100 0 km 0.10 0.10 0.20 0.20 0.30 0.40 0.50 0.60 0.80 0.80 1 1 Antofagasta de la Sierra Cafayate Tafí del Valle Fiambalá Santiago del Estero 0.50 0.30 0.30 100 0.34 0.20 0.40 0.57 0.32 0.35 1 1 0.60 0.60 1.50 2.38 0.50 0.15 0.40 0.08 1.82 0.60 0.20 0.68 Formosa Salta Jujuy Chaco Misiones Corrientes Entre Ríos Santa Fe Córdoba San Luis Mendoza San Juan La Rioja Santiago del Estero Catamarca Tucumán Paraguay Paraguay Brazil Chile Uruguay Bolivia Laguna Mar Chiquita 0.10 0.20 0.30 0.40 0.50 0.60 0.80 1 0.80 1 0 100 200 km Sources: Esri, USGS, NOAA 30º S 25º 65º 60º W 55º W b Argentina Atlantic Ocean Brazil Chile Paraguay Uruguay Bolivia Pacific Ocean a b sqrt (area) (km) thickness (m) a b c Isopach maps (m) for the CB 1-2 fall deposits of CBVC: (a) showing up to the inferred area of 0.10 m isopach, and (b) in the sampled area indicating the measured thickness. (c) Semi–log plot of thic- kness vs. (area) 1/2 shows the best fit model (Wei- bull) for isopach adjust- ment. Eruption modelling p (deposition > 1 kg/m 2 11,000 daily eruptive events (~30 years of wind data) Modelled with Tephra2 Plume height 27,000 m Secondary thickening We hypothesized that secondary thickening is related to the effect of the topographically induced turbu- lences in the disaggregation, e.g., the breaking of lee waves, genera- ted by winds passing over elevated topography beneath the eruption plume, and to a minor effect of ups- lope moisture transport by easterly atmospheric flow. CBVC, Cerro Blanco Volcanic Complex, CdP, Cueros de Purulla, NTC, Nevado Tres Cruces. Conclusions ● These results change the paradigm of Holo- cene volcanism of southern Puna in the Cen- tral Volcanic Zone of the Andes (CVZ). ● CBVC generated the largest documented eruption during the past five millennia in the CVZ and around the world. ● The 4.2 cal ka Cerro Blanco eruption of mag- nitude 7.0 erupted ~170 km 3 tephra over ~500,000 km 2 , and ~15 km 3 ignimbrites. ● The ash deposits of this eruption are exten- sive regional chronostratigraphic markers in South America, and the cryptotephra for the South Hemisphere. ● Further interdisciplinary research should be performed to analyse impacts in local environ- ments and local communities. DRE volume from VOGRIPA-LAMEVE, except for Toba (Costa et al., 2014) and Cerro Blanco References Fernandez–Turiel, J.L., Perez–Torrado F.J., Rodriguez–Gonzalez A., Saavedra J., Carracedo J.C., Rejas M., Lobo A., Osterrieth M., Carrizo J.I., Esteban G., Gallardo J., Ratto N., 2019. The large eruption 4.2 ka cal BP in Cerro Blanco, Central Vol- canic Zone, Andes: Insights to the Holocene eruptive deposits in the southern Puna and adjacent regions. Estudios Geologicos, 75, e088. http://estudios- geol.revistas.csic.es/index.php/estudiosgeol/article/view/982/1200 Costa A., Smith V.C., Macedonio G., Matthews N.E., 2014. The magnitude and impact of the Youngest Toba Tuff super-eruption. Frontiers in Earth Science, 2. Acknowledgements Financial support was provided by the ASH and QUECA Projects (MINECO, CGL2008–00099 and CGL2011–23307). We acknowledge the assistance in the analytical work of labGEOTOP Geochemistry Laboratory (infrastructure co–funded by ERDF–EU Ref. CSIC08–4E–001) and DRX Laboratory (infrastructure co–funded by ERDF–EU Ref. CSIC10–4E–141) (J. Ibañez, J. Elvira and S. Alvarez) of ICTJA-CSIC, and EPMA and SEM Laboratories of CCiTUB (X. Llovet and J. Garcia Veigas), and J. Cortés in communication.
1

ICTJA - Copernicus.orgSources: Esri, USGS, NOAA Cueros de Purulla Nevado de Tres Cruces Cerro Blanco Volcanic Complex La Paz Altiplano-Puna plateau Santiago Buenos Aires Central Volcanic

Aug 03, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: ICTJA - Copernicus.orgSources: Esri, USGS, NOAA Cueros de Purulla Nevado de Tres Cruces Cerro Blanco Volcanic Complex La Paz Altiplano-Puna plateau Santiago Buenos Aires Central Volcanic

How to cite: Fernandez-Turiel J. L., Perez-Torrado F. J., Rodriguez-Gonzalez A., Ratto N., Rejas M., Lobo A., 2020. The 4.2 ka cal BP major eruption of Cerro Blanco, Central Andes. EGU General Assembly 2020, 4-8 May, Vienna, Austria. EGU2020-5038. https://doi.org/10.5194/egusphere-egu2020-5038.

ICTJA

EGU2020-5038

QUECA¹Institute of Earth Sciences Jaume Almera, ICTJA, CSIC, Barcelona, Spain ([email protected], [email protected], [email protected])2Instituto de Estudios Ambientales y Recursos Naturales (i–UNAT), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain ([email protected], [email protected])3Universidad de Buenos Aires, Instituto de las Culturas (UBA-CONICET), Facultad de Filosofía y Letras, Buenos Aires, Argentina ([email protected])

J.L. Fernandez-Turiel1, F.J. Perez-Torrado2, A. Rodriguez-Gonzalez2, N. Ratto3, M. Rejas1, A. Lobo1

The 4.2 ka cal BP major eruption of Cerro Blanco, Central Andes

Introduction

BdF

CB

CdP

ca. 7820 AP

ca. 4200 a cal AP

ca. 1700 a cal BP(?)

The major eruption of the Cerro Blanco Volca-nic Complex (CBVC), in the Central Volcanic Zone of the Andes, NW Argentina, dated at 4410–4150 a cal BP, is the most important of the three major Holoce-ne felsic eruptive events identified in the sou-thern Puna (Fernan-dez-Turiel et al., 2019).

5000km

30º

20º S

70º 60º W

Sources: Esri, USGS, NOAA

Cueros de Purulla

Nevado de Tres CrucesCerro Blanco

Volcanic Complex

La Paz

Altiplano-Punaplateau

Santiago Buenos Aires

CentralVolcanicZone

CVZ

NVZ

SVZ

AVZ

ARGE

NTIN

A

a

b

a

0 50km

27º

26º S

68º 67º 66º 65º 64º W

Catamarca

Tucumán

Santiagodel Estero

Salta

CdP

CBVC

NTC

La Rioja

Tafí del Valle

Cafayate

Tolombón

Santa María

Calch

aquí

Vall

eys

Bolsón de Fiambalá

El Peñón

AguilaresTermas deRío Hondo

Antofagastade la Sierra

Las Papas

Fiambalá

San Miguel de Tucumán

Santiago del Estero

CHILE

Southern Puna

ARGENTINA

Bolsón de Fiambalá sequence

Eruptive center

Cerro Blanco sequenceCueros de Purulla sequence

b

CB34

CB1

CB33

CB31

CB32

b

Source: Esri, DeLorme, USGS, NPS; Source: Esri, DigitalGlobe,GeoEye, Earthstar, Geographics, CNES/Airbus DS, USDA, USGS,AeroGRID, IGN, and the GIS User Community

0 5 km

N

ENC

RC

CBC

PSBC

CB32

CB1

CB31

CB33CB34

CB23 CB22

26°50'

26°45' S

67°50' 67°45' 67°40' W

a

(a) Holocene volcanic centres in the Andean Central Volcanic Zone (data from Global Volcanism Program); NVZ, Northern Volcanic Zone; CVZ, Central Volcanic Zone; SVZ, Southern Vol-canic Zone; and AVZ, Austral Volcanic Zone. (b) Studied sec-tions and eruptive centres (CdP, Cueros de Purulla; CBVC, Cerro Blanco Volcanic Complex; NTC, Nevado Tres Cruces).

(a) Cerro Blanco Volcanic Complex showing El Niño Caldera (ENC), Pie de San Buenaventura Caldera (PSBC), Robledo Caldera (RC), and Cerro Blanco Cal-dera (CBC); (b) stratigraphic units in the Cerro Blanco Volcanic Complex.

Cerro Blanco Caldera - 5 km diameter

CdP CB BdF

ResultsStratigraphic summary

Sequence Unit Sub-unit Lithofacies and interpretation Mineralogy

Bolsón de Fiambalá

BdF1 Alternating layers of moderate-poorly sorted, dacitic pumice lapilli and ash. Plinian fall deposit.

glass >> plagioclase, biotite, amphiboles, quartz >> magnetite, ilmenite, apatite, titanite

Cerro Blanco CB3 (postcaldera)

4 Alternating layers, 3-30 cm thick, of siliceous sinter. Deposits of hot springs.

amorphous silica

3 Poorly defined decimetric-scale stratified deposits, poorly to very poorly sorted, with decimetric angular rhyolitic blocks in rhyolitic lapilli and coarse ash matrix deposits. Block-and-ash deposits.

glass >> feldspars, quartz, biotite, magnetite, ilmemite >> apatite, allanite-epidote, zircon

2 Poorly to well–defined layers, 3-30 cm thick, white, rhyolitic lapilli and ash deposits. Fallout and phreatomagmatic deposits.

1 Crystal poor, very vesicular, rhyolite lava domes.

CB2 (syncaldera)

3 Unstratified, matrix-supported, moderate to poorly sorted rhyolitic ignimbrite with clasts dominated by coarse pumice lapilli. Pyroclastic density current (PDC) deposits.

glass >> feldspars, quartz, biotite, magnetite, ilmenite > clinopyroxene, orthopyroxene, amphiboles > allanite-epidote, muscovite, titanite, zircon

2 Unstratified rhyolitic ash. Plinian fall deposit.

1 Alternating layers, 1-3 cm thick, some of lapilli and some of ash. Rhyolitic Plinian fall deposit.

CB1 (precaldera)

Poorly stratified lithic-rich breccia. Block-and-ash deposit. glass >> feldspars, quartz, biotite, magnetite, ilmenite

Cueros de Purulla

CdP2 1,2 Unstratified, matrix-supported, moderate to poorly sorted ignimbrite with clasts dominated by coarse pumice lapilli in CdP21 and lithic-rich CdP22. Pyroclastic density current (PDC) deposits.

glass >> feldspars, quartz, biotite, magnetite, ilmenite > apatite, allanite-epidote, muscovite, titanite, zircon

CdP1 Alternating layers, 1-10 cm thick, some of lapilli and some of ash. Rhyolitic Plinian fall deposit.

glass >> feldspars, quartz, biotite, magnetite, ilmenite > amphiboles, clinopyroxene > apatite, allanite-epidote, muscovite, titanite, zircon

1

CB23

CB23

CB23

CB23

b

4410-4150 a cal BP

4440-4240 a cal BP

Ignimbrites of Cerro BlancoCB23 (≈15 km3)

CB2201

2 m

CB22

reworked

CB21

CB22

CB21

CB22

CB21

CB22

CB21

CB22

CB21

CB22CB21

4880-4780 a cal BP

CB22

reworked

0

5

10 cm

0

0.5

1.0 m0

25

50 cm

155 km 169 km 204 km 204 km

208 km

208 km 200 km 200 km 370 km

Fig. 12d

11.4 m -

CB11434 km

23.6 m -

CB11627 km

- 12.5 m

CB11822 km

CB0111 km

CB37155 km CB38

155 km

CB39164 km

CB40169 km

CB41172 km

CB47196 km

CB46200 km

CB50200 km

CB44204 km

CB45208 km

CB53338 km

CB54370 km

0.0

0.5

1.0

1.5

2.0 m

Not t

o sc

ale

fall depositseast of Cerro Blanco

PDC depositssouth of Cerro Blanco

vent

CB54370 km

topsoil - light brown silt to sand, or stony

CB22 unstratified ash

CB21 alternating layers of lapilli and ash

alluvial deposits

colluvial deposits

dating sample

section number and distance to vent

peat and silt lacustrine deposits

loess deposits

palaeosol

CB23 ignimbrite

Plinean fall depositsCB1-23 (≈170 km3)

Bimodal particle size

par�culate cored cluster

corepar�cle

shell par�cle

20 µm

Particle size bimodality is interpreted as evidence of particle aggre-gation in the eruptive plume, forming cored ash clusters that typica-lly break on impact with the ground. The resulting fallout deposit is made up of core particles of hundreds of microns in size and shell particles of tens of microns in diameter that covered the former.

SEM image of distal thin-bedded ash (CB21 sub-unit)

Geochemistry

Two different composi-tions of plagioclases, bio-tite, and Fe–Ti oxides ob-served in the CB2 syn–cal-dera sub–units indicate mixing of two magma batches during the erup-tion.

Isopach maps

50 1000km

0.10

0.10

0.20

0.20

0.30

0.40

0.50

0.600.80

0.80

1

1

Antofagastade la Sierra

Cafayate

Tafí del Valle

Fiambalá

Santiagodel Estero

0.50

0.30

0.30

100

0.34

0.200.40

0.57

0.32 0.351

10.600.60

1.50

2.38

0.50

0.15

0.40

0.08

1.820.600.20

0.68

Formosa

Salta

Jujuy

Chaco

Misiones

Corrientes

Entre Ríos

Santa Fe

Córdoba

San LuisMendoza

San Juan

La Rioja

Santiago del Estero

Catamarca

Tucumán

Paraguay

Paraguay

Brazil

Chile

Uruguay

Bolivia

Laguna MarChiquita

0.100.20

0.300.40

0.500.600.80

10.801

0 100 200km

Sources: Esri, USGS, NOAA

30º S

25º

65º 60º W 55º W

b

Argentina

Atlant

ic Oce

an

Brazil

Chile

Paraguay

Uruguay

Bolivia

Paci

fic O

cean

a

b

sqrt (area) (km)

thic

knes

s (m

)

a

b c

Isopach maps (m) for the CB1-2 fall deposits of CBVC: (a) showing up to the inferred area of 0.10 m isopach, and (b) in the sampled area indicating the measured thickness. (c) Semi–log plot of thic-kness vs. (area)1/2 shows the best fit model (Wei-bull) for isopach adjust-ment.

Eruption modelling

p (deposition > 1 kg/m2

11,000 daily eruptive events(~30 years of wind data)

Modelled with Tephra2Plume height 27,000 m

Secondary thickening We hypothesized that secondary thickening is related to the effect of the topographically induced turbu-lences in the disaggregation, e.g., the breaking of lee waves, genera-ted by winds passing over elevated topography beneath the eruption plume, and to a minor effect of ups-lope moisture transport by easterly atmospheric flow. CBVC, Cerro Blanco Volcanic Complex, CdP, Cueros de Purulla, NTC, Nevado Tres Cruces.

Conclusions● These results change the paradigm of Holo-cene volcanism of southern Puna in the Cen-tral Volcanic Zone of the Andes (CVZ).

● CBVC generated the largest documented eruption during the past five millennia in the CVZ and around the world.

● The 4.2 cal ka Cerro Blanco eruption of mag-nitude 7.0 erupted ~170 km3 tephra over ~500,000 km2, and ~15 km3 ignimbrites.

● The ash deposits of this eruption are exten-sive regional chronostratigraphic markers in South America, and the cryptotephra for the South Hemisphere.

● Further interdisciplinary research should be performed to analyse impacts in local environ-ments and local communities.

DRE volume from VOGRIPA-LAMEVE, except for Toba (Costa et al., 2014) and Cerro Blanco

ReferencesFernandez–Turiel, J.L., Perez–Torrado F.J., Rodriguez–Gonzalez A., Saavedra J., Carracedo J.C., Rejas M., Lobo A., Osterrieth M., Carrizo J.I., Esteban G., Gallardo J., Ratto N., 2019. The large eruption 4.2 ka cal BP in Cerro Blanco, Central Vol-canic Zone, Andes: Insights to the Holocene eruptive deposits in the southern Puna and adjacent regions. Estudios Geologicos, 75, e088. http://estudios-geol.revistas.csic.es/index.php/estudiosgeol/article/view/982/1200

Costa A., Smith V.C., Macedonio G., Matthews N.E., 2014. The magnitude and impact of the Youngest Toba Tuff super-eruption. Frontiers in Earth Science, 2.

AcknowledgementsFinancial support was provided by the ASH and QUECA Projects (MINECO, CGL2008–00099 andCGL2011–23307). We acknowledge the assistance in the analytical work of labGEOTOPGeochemistry Laboratory (infrastructure co–funded by ERDF–EU Ref. CSIC08–4E–001) and DRXLaboratory (infrastructure co–funded by ERDF–EU Ref. CSIC10–4E–141) (J. Ibañez, J. Elvira and S. Alvarez) of ICTJA-CSIC, and EPMA and SEM Laboratories of CCiTUB (X. Llovet and J. Garcia Veigas), and J. Cortés in communication.