Top Banner
1 A Monolithic Low-Bandwidth Jitter-Cleaning PLL with Hitless Switching for SONET/SDH Clock Generation D. Wei, Y. Huang, B. Garlepp and J. Hein Silicon Laboratories Inc., Austin, Texas Presented in ISSCC, Feb, 2006
30

1 A Monolithic Low-Bandwidth Jitter- Cleaning PLL with Hitless Switching for SONET/SDH Clock Generation D. Wei, Y. Huang, B. Garlepp and J. Hein Silicon.

Mar 27, 2015

Download

Documents

Jordan Ross
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 1 A Monolithic Low-Bandwidth Jitter- Cleaning PLL with Hitless Switching for SONET/SDH Clock Generation D. Wei, Y. Huang, B. Garlepp and J. Hein Silicon.

1

A Monolithic Low-Bandwidth Jitter-Cleaning PLL with Hitless Switching

for SONET/SDH Clock Generation

D. Wei, Y. Huang, B. Garlepp and J. Hein

Silicon Laboratories Inc., Austin, Texas

Presented in ISSCC, Feb, 2006

Page 2: 1 A Monolithic Low-Bandwidth Jitter- Cleaning PLL with Hitless Switching for SONET/SDH Clock Generation D. Wei, Y. Huang, B. Garlepp and J. Hein Silicon.

2

New Breed of Analog Designers: digAnalog

• Requirement for analog interface is higher and higher (i.e. multimedia application), yet technology advancement shies away from the analog performance– Example: 1/f noise, gate leakage, device non-ideality

• Digital signal processing is so powerful today!– Deep sub-micron CMOS– More computation power for limited-size area

• Integration is the trend– Consumer electronics require compactness– Delicate process means higher ASP and lower revenues

Q: can we enhance the “analog” performance by the power of “digital”?

Page 3: 1 A Monolithic Low-Bandwidth Jitter- Cleaning PLL with Hitless Switching for SONET/SDH Clock Generation D. Wei, Y. Huang, B. Garlepp and J. Hein Silicon.

3

Insights of Analog-to-digital Interface

Sig (analog)

D0

D1

D2

D3

D4

D5

D6

D7

Ts 1-to-1 digital-to-analog mappingè DD is still analogè trade the speed with accuracyè Nyquest Rate ADC

Go against the technology trend

Page 4: 1 A Monolithic Low-Bandwidth Jitter- Cleaning PLL with Hitless Switching for SONET/SDH Clock Generation D. Wei, Y. Huang, B. Garlepp and J. Hein Silicon.

4

Insights of Analog-to-digital Interface (con’t)

D0

D1

D2

D3

D4

D5

D6

D7

`

Ts

Sig (analog)

Sig is the “moving average” of Doutè Each individual Dn does not matter any moreè analog errors (DD) are less emphasizedè trade accuracy with speedè Sigma-delat ADC

Demand faster technology but with less accuracy!

Page 5: 1 A Monolithic Low-Bandwidth Jitter- Cleaning PLL with Hitless Switching for SONET/SDH Clock Generation D. Wei, Y. Huang, B. Garlepp and J. Hein Silicon.

5

digAnalog Design Rules

• Good understanding of the system requirements– “To dig or not to dig, that is the question”

• Pick the right “candidate” (voltage, current, flux, phase, …) to process– What defines your “signal”?

• Faster technology available (and cheap!)– signal bandwidth vs. sampling clock

Page 6: 1 A Monolithic Low-Bandwidth Jitter- Cleaning PLL with Hitless Switching for SONET/SDH Clock Generation D. Wei, Y. Huang, B. Garlepp and J. Hein Silicon.

6

Example: Switch References in PLL

Synthesizer

A (system clk)

D1 D2 D3 D4 D5D0 high speed serial data link

B (local osc.)

Output CLK

Q: How can we switch the input reference without causing ouptut CLK phase to move?

Page 7: 1 A Monolithic Low-Bandwidth Jitter- Cleaning PLL with Hitless Switching for SONET/SDH Clock Generation D. Wei, Y. Huang, B. Garlepp and J. Hein Silicon.

7

What should I digitize?

V(t)

F(t)

F(t)

Continuous, physical element, high speed

Discrete, physical element, low speed

Continuous, abstract element, high speed (burst)

zero-crossing time stamp

Math derivative

Energy signature

Oscillator

“amplitude”

“phase”

“frequency”

è Phase detector output can realistically digitized!

Page 8: 1 A Monolithic Low-Bandwidth Jitter- Cleaning PLL with Hitless Switching for SONET/SDH Clock Generation D. Wei, Y. Huang, B. Garlepp and J. Hein Silicon.

8

SONET/SDH Clock Management

100% Redundancy is required at the line-card timing reference

Ultimate Timing Source

BITS CLOCK

Timing Card

Backplane

jitter2

jitter1

FPGA

CMU

TX

19M/155M/622M

Line Card

8KHz19.44MHz

Timing Card

Optical Link

CLK A

CLK B

Delay1

Delay2

OC48: 2.488Gb/sOC192: 9.95Gb/s

switch

Low BWPLL

data

Page 9: 1 A Monolithic Low-Bandwidth Jitter- Cleaning PLL with Hitless Switching for SONET/SDH Clock Generation D. Wei, Y. Huang, B. Garlepp and J. Hein Silicon.

9

Type-II PLL Phase Transient During Reference-switching

• Dmax : maximum phase deviation• t : maximum phase step slope

DintCLKA(t)

CLKB(t)

D(t) + noise

t

0

Din

PFDLoop Filter

VCO

/N

Divider

Sel A

Sel B

Type-II PLL

t

Dt

Dout Dmax

t

200

2

20

2)(

sssH

Page 10: 1 A Monolithic Low-Bandwidth Jitter- Cleaning PLL with Hitless Switching for SONET/SDH Clock Generation D. Wei, Y. Huang, B. Garlepp and J. Hein Silicon.

10

Maximum Time Interval Error (MTIE)

Phase Offset (25.7ns max)

Frequency Offset (9.2ppm max)

Typical LBW choice: 250Hz (clk rearrangement) ~ 1KHz( frequency translation)

slope < 81ns/1.326ms

Din

DoutPha

se

Time

max(outtt) = DIn x 2p x LBW

Dout

Pha

se

Time

maxDerror)= Mramp/(2p x LBW)

Mramp (sec/sec)

Page 11: 1 A Monolithic Low-Bandwidth Jitter- Cleaning PLL with Hitless Switching for SONET/SDH Clock Generation D. Wei, Y. Huang, B. Garlepp and J. Hein Silicon.

11

“Hitless” Phase-Switching Architecture

t=t1, selA=1 / selB=0 A- offsetA,0 = out,1, offsetB,1 = B

t=t2, selA=0 / selB=1 B- offsetB,1 = out,2, offsetA,2 = A

Dout,1,2 = (A-B)-(offsetA,0-offsetB,1) = 0 if A and B ~ constant

out

Z-1

Loop Filter

selA

selB

+

+

-

-

+

+

DSPLL (Digital)

off

setA

off

setB

A

VCO

AnalogAnalog

Z-1

Page 12: 1 A Monolithic Low-Bandwidth Jitter- Cleaning PLL with Hitless Switching for SONET/SDH Clock Generation D. Wei, Y. Huang, B. Garlepp and J. Hein Silicon.

12

Digital Implementation of Hitless Switching (1)

AZ

PFDA CP

Offset DACA 6

311MHz

1

4

FB DAC

PFDB CP

AZOffset DACB 6

311MHz

1

4

PFD ADCFB DAC

A/B

DLF4 VCO20

/M

2swalA

Swallow Control

2swalB

swallow divider

swalB 2

swallow divider

swalA 2

2.5GHz

17/16/15

17/16/15

swalB2

fdbk, A

fdbk, B

ref, A

ref, B

SWA

SWB

swalA2

Swallow Control

CLKdiv

311MHz

CLKdiv

311MHz

CLK A19.44MHz

CLK B19.44MHz

4

4

/8

PLL LBW < 12KHz PFD DADC fs = 311MHz

Page 13: 1 A Monolithic Low-Bandwidth Jitter- Cleaning PLL with Hitless Switching for SONET/SDH Clock Generation D. Wei, Y. Huang, B. Garlepp and J. Hein Silicon.

13

PFD ADC and Auto-zero Loop

Loop Bandwidth < 12KHz vs. DADC fs = 311MHz SNR > 22bits PFD full scale = 6.42ns Offset DAC LSB ~ 100ps

AutoZero (AZ)

AZ

PFD

Offset DAC 7

311MHz

1

4swal

2

Ref. Clk4

Fdbk Clk

D1bit ADC

FB DAC

Accum.117

G7

4

+D-D

72swal

“shift” the offset DAC value AZ bandwidth ~ 100KHz D avoids the DAC overflow

Page 14: 1 A Monolithic Low-Bandwidth Jitter- Cleaning PLL with Hitless Switching for SONET/SDH Clock Generation D. Wei, Y. Huang, B. Garlepp and J. Hein Silicon.

14

What if Frequency Error Is Present?

/8

/15, /16, /17

VCO

D D D D

PFDSwallowControl

RefClk

d2

d2

/15 pulse

/17 pulse

-FSPD

+FSPDTime

D

A-B

k=0 k=1 k=7

25.7ns

FSPD= 3.21ns

offsetA-offsetB

D

D

RefClk

2.488GHz 311MHz

Dout,1,2 = (A-B) - (offsetA-offsetB) – k (0.5 2FSPD)

8FSP

D

Doffset,max =FSPD modulus (k=0~7)

2FSPD: Phase Detector Full-scale (6.42ns)

Page 15: 1 A Monolithic Low-Bandwidth Jitter- Cleaning PLL with Hitless Switching for SONET/SDH Clock Generation D. Wei, Y. Huang, B. Garlepp and J. Hein Silicon.

15

Digital Implementation of Hitless Switching (2)

Each swallow: TD = 8Tvco

AZ

PFDA CP

Offset DACA 6

311MHz

1

4

FB DAC

PFDB CP

AZOffset DACB 6

311MHz

1

4

FB DAC

A/B

DLF4 VCO20

/M

2swalA

Swallow Control

2swalB

swallow divider

swalB2

swallow divider

swalA2

2.5GHz

17/16/15

17/16/15

swalB 2

fdbk, A

fdbk, B

ref, A

ref, B

SWA

SWB

swalA 2

Swallow Control

CLKdiv

311MHz

CLKdiv

311MHz

CLK A19.44MHz

CLK B19.44MHz

4

4

/8

fdbk, B

ref, B

ref, B

TD

“lag”

swalB = [10]

swalB = [01]

“lead”

Swallow Control

TD

Page 16: 1 A Monolithic Low-Bandwidth Jitter- Cleaning PLL with Hitless Switching for SONET/SDH Clock Generation D. Wei, Y. Huang, B. Garlepp and J. Hein Silicon.

16

Phase Transient Measurement Setup

Linear phase detector “demodulates” the DUT output phase LOS (loss-of-signal) on clkB triggers the oscilloscope

Agilent HP8664A

splittersplitter

Linear PD

INPB

INPA

19.44MHz

19.44MHz

trigger

out

Delayline

DUT

clkA out

LOSclkBoscilloscope

adjustable D

Page 17: 1 A Monolithic Low-Bandwidth Jitter- Cleaning PLL with Hitless Switching for SONET/SDH Clock Generation D. Wei, Y. Huang, B. Garlepp and J. Hein Silicon.

17

Measured Phase Transient During Reference-switching

Mode: Auto-switching (LOS triggers the switching)

LOSB trigger the switching

Wandering due to LOS

Loop relocks the phase

residual D = 35ps

116ps

Initial D = 180 (~25ns)

PD out

LOSB

Page 18: 1 A Monolithic Low-Bandwidth Jitter- Cleaning PLL with Hitless Switching for SONET/SDH Clock Generation D. Wei, Y. Huang, B. Garlepp and J. Hein Silicon.

18

Removing the External Loop Filter

DSP implementation replaces the bulky external loop filters (LF) Less Bill-of-Materials (BOM) Avoid excess noise-coupling at post-LF nodes

FPGA

CMU

TX

19M/155M/622M

Line CardOptical Link

OC48: 2.488Gb/sOC192: 9.95Gb/s

switchLow BW

PLL

data

clkA

clkB

Page 19: 1 A Monolithic Low-Bandwidth Jitter- Cleaning PLL with Hitless Switching for SONET/SDH Clock Generation D. Wei, Y. Huang, B. Garlepp and J. Hein Silicon.

19

Package InductorQ ~ 40

FIR Gain

Accum. D

4

46

20

20

6

20

Digital Loop Filter (DLF)

m-bit DAC Array + 2n multiplexer

(m + n = 20)

varactor array

Vg

DSP-based Loop Filter Implementation

Gain ratio controls LBW and peaking

No external loop filter components needed

Page 20: 1 A Monolithic Low-Bandwidth Jitter- Cleaning PLL with Hitless Switching for SONET/SDH Clock Generation D. Wei, Y. Huang, B. Garlepp and J. Hein Silicon.

20

PLL Bandwidth and Peaking ControlFeedforward (F)

Integration (I)

PFD ADC

feedforward bits added Input bits accumulated

varactor codes Reduced by D (rounding)

KF ~ LBW / (KPD x Kv) KI ~ (LBW)2 x (-1) / (KPD x Kv)

For Type-II PLL with low-peaking (<0.1dB),

FIR Gain

Accum. D

4

46

20

20

6

20DAC

VCO Tank2.488GHz

20 bit ?2V

Kv=75MHz/2Vè Vn = 4nV/sqrt(Hz)?

Page 21: 1 A Monolithic Low-Bandwidth Jitter- Cleaning PLL with Hitless Switching for SONET/SDH Clock Generation D. Wei, Y. Huang, B. Garlepp and J. Hein Silicon.

21

DAC Expander

DAC15

DAC15

DAC15

DAC15

DAC15

DAC15

DAC15

DAC15

128 multiplexers

Vg(0)Vg(1)Vg(2)

……

.

Vg(126)Vg(127)

128 sub-varactors

Vref, hi Vref, lo

MUX Control

20

Digital Loop Filter

Connecting the Loop Filter to Varactors

2nd-order D generates varactor cntl. voltage

DAC expander reduces the analog hardware cost by 16x

Page 22: 1 A Monolithic Low-Bandwidth Jitter- Cleaning PLL with Hitless Switching for SONET/SDH Clock Generation D. Wei, Y. Huang, B. Garlepp and J. Hein Silicon.

22

VCO Varactor Implementation

Fvco

Cvaractor32 segments

75MHz

Vg1 Vg8

4 cells overlapped

VCO Kv reducedsub-varactor C-V linearized

Kv < 1.2MHz / Volt

DAC A

DAC B

DAC C

DAC D

DAC E

DAC F

DAC G

DAC H

MUXVg

DAC E

MUX (n)

MUX(n+8)

MUX(n+5~127)=0MUX(0~n+1)=Vref

DAC Expander Output(LSB = 2-20)

“0”

Vref =2V

Var

acto

r T

unin

g V

olta

ge

low Fvcohigh Fvco

8 DACs barrel-shifted to minimize the hardwares

q Requires 128 sub-varactors / MUXs

Page 23: 1 A Monolithic Low-Bandwidth Jitter- Cleaning PLL with Hitless Switching for SONET/SDH Clock Generation D. Wei, Y. Huang, B. Garlepp and J. Hein Silicon.

23

Varactor DAC and Multiplexer

At any instant, only 8 varactors receive DAC tuning voltages

Varactor DAC (x8)

2nd order D RZ

1

Vref, hi

Vref, loclk

15

posSel

negSel

dacSel

Vref, lo

Vref, hi

Vg

posSel

negSel

dacSel

Vref, lo

Vref, hi

Vg

2nd order D RZ

1

Vref, hi

Vref, loclk

15

Varactor MUX (x128)

DAC A

DAC H

MUX(0)

MUX(127)0

816

120

A

H

dacSel[127:0]posSel[127:0]

negSel[127:0]DAC Expander

Page 24: 1 A Monolithic Low-Bandwidth Jitter- Cleaning PLL with Hitless Switching for SONET/SDH Clock Generation D. Wei, Y. Huang, B. Garlepp and J. Hein Silicon.

24

DAC Movement Across Sub-Varactor

DAC D

DAC C

DAC B

Vg

tank

Vg

tank

Vg

tank

Vg

tank

Vg

tank

Vg

tank

Vg

tank

Analog-tuning varactors (8)Railed varactors Grounded varactors

DAC F

DAC G

DAC H

DAC A

Vg,hi = Vref, hiVg,lo = Vref, lo

barrel-shifted

Vg,hi

tank

Vg,hi

tank

Vg,hi

tank

Vg,hi

tank

Vg,lo

tank

Vg,lo

tank

Vg,lo

tank

Vg,lo

tank

DAC E

Vg,hi

tank

Vg

tank

Vg,lo

tank

DAC E

high Fvco low Fvco

Accumulator bits slowly move the DAC banks Feedforward bits vary the tuning voltage Vg

Page 25: 1 A Monolithic Low-Bandwidth Jitter- Cleaning PLL with Hitless Switching for SONET/SDH Clock Generation D. Wei, Y. Huang, B. Garlepp and J. Hein Silicon.

25

Chip Micrograph

PFD/ADC B

PFD/ADC F

PFD/ADC A

output drivers

DAC expander

multiplexer

vara

cto

r

master regulator

VCO dividerd

igit

al r

ou

tes

/ re

gu

lato

rs

referencegenerator.

5.1mm

3.5m

m

Page 26: 1 A Monolithic Low-Bandwidth Jitter- Cleaning PLL with Hitless Switching for SONET/SDH Clock Generation D. Wei, Y. Huang, B. Garlepp and J. Hein Silicon.

26

Discrete Solution vs. Integrated Solution

No external loop filters are required. dramatically simplifies the line card design!

50mm50

mm

discrete solution

hybrid solution

23mm

23mm

11mm

11mm

presented solution

Page 27: 1 A Monolithic Low-Bandwidth Jitter- Cleaning PLL with Hitless Switching for SONET/SDH Clock Generation D. Wei, Y. Huang, B. Garlepp and J. Hein Silicon.

27

PLL Characteristics Measurement

Measured integrated jitter: OC48 band 0.69ps OC192 band 0.26ps

100M10 100 1K 10K 100K 1M 10M

Frequency (Hz)

L(f

) (d

Bc/

Hz)

-20

-40

-60

-80

-100

-120

-140

-160

Phase Noise @ LBW=800Hz622.08MHz Output

-97dBc/Hz@10KHz

-142dBc/Hz@1MHz

Jitter Generation

Measured peaking: < 0.1dB

Frequency (Hz)100 1K 10K

0

-2

-4

-6

-8

-10

-12

-14

-16

Lo

op

Tra

nsf

er (

dB

)

800Hz

1600Hz

3200Hz

6400Hz

Jitter Transfer2

19.44Mhz Input622.08MHz Output

Page 28: 1 A Monolithic Low-Bandwidth Jitter- Cleaning PLL with Hitless Switching for SONET/SDH Clock Generation D. Wei, Y. Huang, B. Garlepp and J. Hein Silicon.

28

Performance SummaryTechnology 0.25-CMOS

Die Size 3.5mm by 5.1mm

Package 11 X 11 CBGA

Power @ Vdd=3.3V 350mW

Supported PLL Bandwidth (LBW) 800Hz, 1600Hz, 3200Hz, 6400Hz

Loop Transfer Peaking <0.1dB

During Reference Switch @ BW=800Hz

Maximum Output Phase Step 200ps

Maximum Output Phase Slope (MTIE: <61.08 ns/ms for 3/4E) 4.5 ns/ms

Jitter Generation @ BW=800Hz

OC-48 band (12KHz ~ 20MHz) 0.8ps (WC)

OC-192 band (50KHz ~ 80MHz) 0.4ps (WC)

Page 29: 1 A Monolithic Low-Bandwidth Jitter- Cleaning PLL with Hitless Switching for SONET/SDH Clock Generation D. Wei, Y. Huang, B. Garlepp and J. Hein Silicon.

29

Conclusion

• Digital “hitless” clock-switching is demonstrated, enabling the on-chip implementation for SONET/SDH clock management.

• Loop components are digitally implemented, which minimizes the external noise coupling and also has the good control over loop characteristics.

• Concise digital implementation of digital varactors simplifies the hardware implementation, and enhances the VCO performance, enabling the “jitter-cleaning” to the PLL input clocks.

Page 30: 1 A Monolithic Low-Bandwidth Jitter- Cleaning PLL with Hitless Switching for SONET/SDH Clock Generation D. Wei, Y. Huang, B. Garlepp and J. Hein Silicon.

30