Top Banner

of 23

02 Yu Xiao Practical Power Modeling of Data Transmission 01

Jun 02, 2018

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/10/2019 02 Yu Xiao Practical Power Modeling of Data Transmission 01

    1/23

    Practical Power Modeling of Data

    Transmission over 802.11g for WirelessApplications

    Yu Xiao Petri Savolainen Arto Karppanen Matti SiekkinenAntti Yl-Jski

    E-Energy 2010

  • 8/10/2019 02 Yu Xiao Practical Power Modeling of Data Transmission 01

    2/23

    Outline

    Introduction

    Related Work

    Power Model

    Model Validation

    Discussion Conclusion

  • 8/10/2019 02 Yu Xiao Practical Power Modeling of Data Transmission 01

    3/23

    Introduction

    Power consumption of data transmission in WLAN

    802.11 Wireless network interface (WNI)

    Different power consumption in different operating modes

    Energy = Power(operating mode)* Duration(operating mode)

    The duration information is not easily accessible

    Estimate the operating modes & durations

    802.11 power saving mode (PSM) Traffic burstiness

  • 8/10/2019 02 Yu Xiao Practical Power Modeling of Data Transmission 01

    4/23

    Related Work

    Power analysis of network protocols

    Power analysis of different TCP versions such as Reno,

    Newreno and SACK[9]

    Impact on power consumption from different TCP

    header options such as window scale option[10]

    Power consumption of MAC/PHY layer overhead[14]

    Power models that use low-level information Power model based on WNI operating modes [3]

  • 8/10/2019 02 Yu Xiao Practical Power Modeling of Data Transmission 01

    5/23

    Power Model

    Traffic Burstiness

    Burst size SBBin rate r

    r = SB/T = SB/(TB+TI)

    In a Burst: {Packet interval < Threshold}

    Burst

    Duration TB

    Burst

    Interval TI

    Packet

    IntervalBin Duration T= TB+TI

  • 8/10/2019 02 Yu Xiao Practical Power Modeling of Data Transmission 01

    6/23

    WNI Operating Modes: CAM vs. PSM

    Continuously Active Mode

    (CAM)

    Power Saving Mode(PSM)

    IDLE

    TRANSMITRECEIVE

    SLEEP

    PS

    TRANSMIT

    PT

    IDLE PI

    RECEIVEPR

    PSMTimeout

    Tsleep = TI - Ttimeout

  • 8/10/2019 02 Yu Xiao Practical Power Modeling of Data Transmission 01

    7/23

    Two Scenarios

    Threshold of bin rate rc

    When Tsleep

    = 0,

    rc = SB/ (TB+ Ttimeout).

    Scenario 1: {{r>= rc } and {PSM is enabled}} or{CAM is enabled} .

    Scenario 2: { r< rc } and {PSM is enabled}.

  • 8/10/2019 02 Yu Xiao Practical Power Modeling of Data Transmission 01

    8/23

    Downlink Power Consumption

    TB

    TI

    Power(W)

    Ps

    PI

    PR

    PT

    SLEEP IDLE RECEIVE TRANSMIT

    Energy(J): E = PRTB+ PITI

    Power(W): Pd(r) = E/T

    Energy Utility (b/J): E0(r) = r/Pd(r)

  • 8/10/2019 02 Yu Xiao Practical Power Modeling of Data Transmission 01

    9/23

    Downlink Power Consumption

    Scenario 1

    E = PRTB+ PITI

    Pd(r) = E/T = PI + r(PR PI) TB/SB

    Scenario 2

    E = PRTB+ PITtimeout + PSTsleep

    Pd(r) = E/T =PS + r[(PR PS) TB/SB+ (PI PS) Ttimeout/SB]

    Time

    PR

    PI

    TB TB+ TI

    Power

    Time

    PR

    PI

    TB TB+ TI

    Power

    TB+ TI+ Tsleep

  • 8/10/2019 02 Yu Xiao Practical Power Modeling of Data Transmission 01

    10/23

    TCP Power Consumption

    Downlink data rate rdDownlink burst size SB

    Uplink data rate ru = nSACKrd/SB

    Data rate threshold rc = SB/(Td+Tu+Ttimeout)

    Scenario 1:P(rd)=Pd(rd)+Pu(ru)-PI= PI+[Td(PR-PI)+Tu(PT-PI)]rd/SB

    Secenario 2:P(rd)=Pd(rd)+Pu(ru)-PS

    =PS+[Td(PR-PS)+Tu(PT-PS)+Ttimeout(PI-PS)]rd/SB

    n ACKs

    n packets

    Td Tu

  • 8/10/2019 02 Yu Xiao Practical Power Modeling of Data Transmission 01

    11/23

    Simplified TCP Power Model

    Drop the power consumption caused by ACKs

    Scenario 1:

    P(rd) = PI + (PR-PI)rd/rmax

    Total energy consumption of receiving m bins:

    Scenario 2:

    P(rd) = PI + (PR-PS)rd/rmax+ (PI-PS)rdTtimeout/SB

  • 8/10/2019 02 Yu Xiao Practical Power Modeling of Data Transmission 01

    12/23

    Multiple TCP Flows

    The number of TCP flows: n

    The aggregate TCP throughput :

    The throughput of the ith flow: ri

    TCP download Power consumption: Replace the rd with

  • 8/10/2019 02 Yu Xiao Practical Power Modeling of Data Transmission 01

    13/23

    Validation

    Experimental Setup

  • 8/10/2019 02 Yu Xiao Practical Power Modeling of Data Transmission 01

    14/23

    Internet flow characteristics

    Nokia

    N810

    HTC G1 Nokia N95

    Downlink burst size (KB) 4 4 4

    Downlink burst duration (ms) 8 10 10

    Uplink burst duration (ms) 0.5 0.5 0.35

    NokiaN810

    HTC G1 NokiaN95

    Uplink burst size (KB) 4 4 4

    Uplink burst duration (ms) 6 8 12

    Downlink burst duration (ms) 0.1 0.1 0.2

    0.00.10.20.30.4

    0.50.60.70.80.91.0

    0 30 60 90 120 150 180 210 240 270 300

    Pro

    bability

    Packet Interval (ms)

  • 8/10/2019 02 Yu Xiao Practical Power Modeling of Data Transmission 01

    15/23

    WNI operating mode

    Power consumption in different operating mode

    WNI operating mode Average Power (W)

    Nokia N810 HTC G1 Nokia N95

    IDLE 0.884 0.650 1.038

    SLEEP 0.042 0.068 0.088

    TRANSMIT 1.258 1.097 1.687

    RECEIVE 1.181 0.900 1.585

  • 8/10/2019 02 Yu Xiao Practical Power Modeling of Data Transmission 01

    16/23

    Nokia N810

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    0 32 64 96 128 160 192 224 256

    AvgP

    ower(W)

    Data rate limit (KB/s)

    Download, CAM

    Measured

    Estimated0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    0 32 64 96 128 160 192 224 256

    AvgP

    ower(W)

    Data rate limit(KB/s)

    Download, PSM

    Measured

    Estimated

    0.0

    0.20.4

    0.6

    0.8

    1.0

    1.2

    0 32 64 96 128 160 192 224 256

    AvgPower(W)

    Data rate limit (KB/s)

    Upload, CAM

    Measured

    Estimated 0.0

    0.20.4

    0.6

    0.8

    1.0

    1.2

    0 32 64 96 128 160 192 224 256

    Avg

    Power(W)

    Data rate limit(KB/s)

    Upload, PSM

    Measured

    Estimated

  • 8/10/2019 02 Yu Xiao Practical Power Modeling of Data Transmission 01

    17/23

    HTC G1

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 32 64 96 128 160 192 224 256

    AvgP

    ower(W)

    Data rate limit(KB/s)

    TCP Download

    Measured Estimated

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 32 64 96 128 160 192 224 256

    AvgP

    ower(W)

    Data rate limit(KB/s)

    TCP Upload

    Measured

    Estimated

  • 8/10/2019 02 Yu Xiao Practical Power Modeling of Data Transmission 01

    18/23

    Nokia N95

    0.00.20.40.60.8

    1.01.21.41.6

    0 32 64 96 128 160 192 224 256

    AvgPo

    wer(W)

    Data rate limit(KB/s)

    Download, CAM

    Measured

    Estimated0.00.20.40.6

    0.81.01.21.41.6

    0 32 64 96 128 160 192 224 256

    AvgP

    ower(W)

    Data rate limit(KB/s)

    Download, PSM

    MeasuredEstimatedRefined

    0.00.20.4

    0.60.81.01.21.41.61.8

    0 32 64 96 128 160 192 224 256

    AvgPower(W)

    Data rate limit (KB/s)

    Upload, CAM

    MeasuredEstimated

    0.00.20.40.6

    0.81.01.21.41.61.8

    0 32 64 96 128 160 192 224 256

    Avg

    Power(W)

    Data Rate Limit(KB/s)

    Upload, PSM

    Measured

    Estimated

    Refined

  • 8/10/2019 02 Yu Xiao Practical Power Modeling of Data Transmission 01

    19/23

    Accuracy

    Download cases

    MAE: less than 0.068394W

    MAPE: less than 6.7724%.

    Upload cases

    MAE: less than 0.055923W

    MAPE: less than 5.7599%

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

    F(MAPE)

    MAPE

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 0.1 0.2 0.3 0.4 0.5

    F(MAPE)

    MAPE

  • 8/10/2019 02 Yu Xiao Practical Power Modeling of Data Transmission 01

    20/23

  • 8/10/2019 02 Yu Xiao Practical Power Modeling of Data Transmission 01

    21/23

    Discussion and Future Work

    Runtime Power Estimation

    Network simulation

    Energy-efficient network transmission

  • 8/10/2019 02 Yu Xiao Practical Power Modeling of Data Transmission 01

    22/23

    Conclusion

    Usage of WNI Internet flow characteristics

    (e.g. network throughput)

    Traffic pattern

    (e.g. Burstiness)

    WNI operating mode 802.11 Power Saving Mode

  • 8/10/2019 02 Yu Xiao Practical Power Modeling of Data Transmission 01

    23/23

    Thank you! Questions?

    Contact:Yu Xiao

    [email protected]

    POBox 15400, Aalto UniversityKonemiehentie 2, Espoo, Finland

    mailto:[email protected]:[email protected]