Top Banner
Photonics is the science of generating, controlling, and detecting photons , particularly in the visible and near infra-red spectrum , but also extending to the ultraviolet (0.2 - 0.35 µm wavelength), long-wave infrared (8 - 12 µm wavelength), and far-infrared/THz portion of the spectrum (e.g., 2-4 THz corresponding to 75-150 µm wavelength) where today quantum cascade lasers are being actively developed. Photonics is an outgrowth of the first practical semiconductor light emitters invented in the early 1960s at General Electric , MIT Lincoln Laboratory , IBM , and RCA and made practical by Zhores Alferov and Dmitri Z. Garbuzov and collaborators working at the Ioffe Physico-Technical Institute and almost simultaneously by Izuo Hayashi and Mort Panish working at Bell Telephone Laboratories . Just as applications of electronics have expanded dramatically since the first transistor was invented in 1948, the unique applications of photonics continue to emerge. Those which are established as economically important applications for semiconductor photonic devices include optical data recording, fiber optic telecommunications, laser printing (based on xerography), displays, and optical pumping of high-power lasers. The potential applications of photonics are virtually unlimited and include chemical synthesis, medical diagnostics, on-chip data communication, laser defense, and fusion energy to name several interesting additional examples. [edit ] Relationship to other fields [edit ] Classical optics Photonics is closely related to optics . However optics preceded the discovery that light is quantized (when the photoelectric effect was explained by Albert Einstein in 1905). The tools of optics are the refracting lens, the reflecting mirror, and various optical components which were known prior to 1900. The key tenets of classical optics , such as Huygens Principle , the Maxwell Equations , and wave equations, do not depend on quantum properties of light. [edit ] Modern optics
42

 · Web viewPhotonics is approximately synonymous with quantum optics, quantum electronics, electro-optics, and optoelectronics. However each is used with slightly different connotations

Jul 07, 2018

Download

Documents

vantu
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1:  · Web viewPhotonics is approximately synonymous with quantum optics, quantum electronics, electro-optics, and optoelectronics. However each is used with slightly different connotations

Photonics is the science of generating, controlling, and detecting photons, particularly in the visible and near infra-red spectrum, but also extending to the ultraviolet (0.2 - 0.35 µm wavelength), long-wave infrared (8 - 12 µm wavelength), and far-infrared/THz portion of the spectrum (e.g., 2-4 THz corresponding to 75-150 µm wavelength) where today quantum cascade lasers are being actively developed. Photonics is an outgrowth of the first practical semiconductor light emitters invented in the early 1960s at General Electric, MIT Lincoln Laboratory, IBM, and RCA and made practical by Zhores Alferov and Dmitri Z. Garbuzov and collaborators working at the Ioffe Physico-Technical Institute and almost simultaneously by Izuo Hayashi and Mort Panish working at Bell Telephone Laboratories.

Just as applications of electronics have expanded dramatically since the first transistor was invented in 1948, the unique applications of photonics continue to emerge. Those which are established as economically important applications for semiconductor photonic devices include optical data recording, fiber optic telecommunications, laser printing (based on xerography), displays, and optical pumping of high-power lasers. The potential applications of photonics are virtually unlimited and include chemical synthesis, medical diagnostics, on-chip data communication, laser defense, and fusion energy to name several interesting additional examples.

[edit] Relationship to other fields

[edit] Classical optics

Photonics is closely related to optics. However optics preceded the discovery that light is quantized (when the photoelectric effect was explained by Albert Einstein in 1905). The tools of optics are the refracting lens, the reflecting mirror, and various optical components which were known prior to 1900. The key tenets of classical optics, such as Huygens Principle, the Maxwell Equations, and wave equations, do not depend on quantum properties of light.

[edit] Modern optics

Photonics is approximately synonymous with quantum optics, quantum electronics, electro-optics, and optoelectronics. However each is used with slightly different connotations by scientific and government communities and in the marketplace. Quantum optics often connotes fundamental research, whereas photonics is used to connote applied research and development.

The term photonics more specifically connotes:

1. the particle properties of light,2. the potential of creating signal processing device technologies using photons,

3. those quantum optical technologies which are manufacturable and can be low-cost, and

4. an analogy to electronics.

Page 2:  · Web viewPhotonics is approximately synonymous with quantum optics, quantum electronics, electro-optics, and optoelectronics. However each is used with slightly different connotations

The term optoelectronics eponymously connotes devices or circuits comprising both electrical and optical functions, i.e., a thin-film semiconductor device. The term electro-optics came into earlier use and specifically encompasses nonlinear electrical-optical interactions applied, e.g, as bulk crystal modulators such as the Pockels cell, but also includes advanced imaging sensors typically used for surveillance by civilian or government organizations.

[edit] Emerging fields

Photonics also relates to the emerging science of quantum information in those cases where it employs photonic methods. Other emerging fields include opto-atomics in which devices integrate both photonic and atomic devices for applications such as precision timekeeping, navigation, and metrology. Another emerging field is polaritonics which differs with photonics in that the fundamental information carrier is a phonon-polariton, which is a mixture of photons and phonons, and operates in the range of frequencies from 300 gigahertz to approximately 10 terahertz.

[edit] Overview of photonics research

Refraction of waves of photons (light) by a prism

The science of photonics includes the emission, transmission, amplification, detection, modulation, and switching of light.

Photonic devices include optoelectronic devices such as lasers and photodetectors, as well as optical fiber, photonic crystals, planar waveguides, and other passive optical elements.

Applications of photonics include light detection, telecommunications, information processing, illumination, metrology, spectroscopy, holography, medicine (surgery, vision correction, endoscopy, health monitoring), military technology, laser material processing, visual art, biophotonics, agriculture and robotics.

[edit] History of photonicsPhotonics as a field really began in 1960, with the invention of the laser, and the laser diode followed in the 1970s by the development of optical fibers as a medium for transmitting information using light beams, and the Erbium-doped fiber amplifier. These inventions formed the basis for the telecommunications revolution of the late 20th century, and provided the infrastructure for the internet.

Page 3:  · Web viewPhotonics is approximately synonymous with quantum optics, quantum electronics, electro-optics, and optoelectronics. However each is used with slightly different connotations

Historically, the term photonics only came into common use among the scientific community in the 1980s as fiber optic transmission of electronic data was adopted widely by telecommunications network operators (although it had earlier been coined). At that time, the term was adopted widely within Bell Laboratories. Its use was confirmed when the IEEE Lasers and Electro-Optics Society established an archival journal named Photonics Technology Letters at the end of the 1980s.

During the period leading up to the dot-com crash circa 2001, photonics as a field was largely focused on telecommunications. However, photonics covers a huge range of science and technology applications, including:

laser manufacturing, biological and chemical sensing,

medical diagnostics and therapy,

display technology,

optical computing.

Various non-telecom photonics applications exhibit a strong growth particularly since the dot-com crash, partly because many companies have been looking for new application areas quite successfully. A huge further growth of photonics can be expected for the case that the current development of silicon photonics will be successful.

[edit] Applications of Photonics

Aphrodita aculeata (Sea mouse), showing colourful spines, a remarkable example of photonic engineering by a living organism.

Consumer Equipment: Barcode scanner, printer, CD/DVD/Blu-ray devices, remote control devices

Telecommunications : Optical fiber communications , Optical Down converter to Microwave

Medicine : correction of poor eyesight, laser surgery, surgical endoscopy, tattoo removal

Industrial manufacturing: the use of lasers for welding, drilling, cutting, and various kinds of surface modification

Construction : laser levelling, laser rangefinding, smart structures

Aviation : photonic gyroscopes lacking any moving parts

Page 4:  · Web viewPhotonics is approximately synonymous with quantum optics, quantum electronics, electro-optics, and optoelectronics. However each is used with slightly different connotations

Military : IR sensors, command and control, navigation, search and rescue, mine laying and detection

Entertainment : laser shows, beam effects, holographic art

Information processing

Metrology : time and frequency measurements, rangefinding

Photonic computing : clock distribution and communication between computers, circuit boards, or within optoelectronic integrated circuits; in the future: quantum computing

[edit] Periodicals Photonics Spectra Laser Focus World

Optics & Photonics Focus

Nature Photonics

Photonics news

Industrial Laser Solutions

[edit] SourcesWhat is Photonics?archived copyBBC News: Sea mouse promises bright future edit

Physics portal

BiophotonicsHolographyMicrophotonicsNano-opticsOpticsPhotonic crystalPhotonic crystal fiber

Quantum optics

Photonic crystals are periodic optical (nano)structures that are designed to affect the motion of photons in a similar way that periodicity of a semiconductor crystal affects the motion of electrons. Photonic crystals occur in nature and in various forms have been studied by science for the last 100 years.

Contents[hide]

1 Introduction 2 Naturally occurring photonic crystals

3 History of photonic crystals

Page 5:  · Web viewPhotonics is approximately synonymous with quantum optics, quantum electronics, electro-optics, and optoelectronics. However each is used with slightly different connotations

4 Fabrication challenges

5 Computing photonic band structure

6 Applications

7 See also

8 References

9 External links

[edit] IntroductionPhotonic crystals are composed of periodic dielectric or metallo-dielectric (nano)structures that affect the propagation of electromagnetic waves (EM) in the same way as the periodic potential in a semiconductor crystal affects the electron motion by defining allowed and forbidden electronic energy bands. Essentially, photonic crystals contain regularly repeating internal regions of high and low dielectric constant. Photons (behaving as waves) propagate through this structure - or not - depending on their wavelength. Wavelengths of light (stream of photons) that are allowed to travel are known as modes. Disallowed bands of wavelengths are called photonic band gaps. This gives rise to distinct optical phenomena such as inhibition of spontaneous emission, high-reflecting omni-directional mirrors and low-loss-waveguiding, amongst others.

Since the basic physical phenomenon is based on diffraction, the periodicity of the photonic crystal structure has to be of the same length-scale as half the wavelength of the EM waves i.e. ~200 nm (blue) to 350 nm (red) for photonic crystals operating in the visible part of the spectrum - the repeating regions of high and low dielectric constants have to be of this dimension. This makes the fabrication of optical photonic crystals cumbersome and complex.

[edit] Naturally occurring photonic crystalsA prominent example of a photonic crystal is the naturally occurring gemstone opal. Its play of colours is essentially a photonic crystal phenomenon based on Bragg diffraction of light on the crystal's lattice planes. Another well-known photonic crystal is found on the wings of some butterflies such as those of genus Morpho.[1][2]

[edit] History of photonic crystalsAlthough photonic crystals have been studied in one form or another since 1887, the term “photonic crystal” was first used over 100 years later, after Eli Yablonovitch and Sajeev John published two milestone papers on photonic crystals in 1987.[3][4]

Before 1987, one-dimensional photonic crystals in the form of periodic multi-layers dielectric stacks (such as the Bragg mirror) were studied extensively. Lord Rayleigh started their study in 1887[5], by showing that such systems have a one-dimensional photonic band-gap, a spectral range of large reflectivity, known as a stop-band. Today, such structures are used in a diverse range of applications; from reflective coatings to

Page 6:  · Web viewPhotonics is approximately synonymous with quantum optics, quantum electronics, electro-optics, and optoelectronics. However each is used with slightly different connotations

enhancing the efficiency of LEDs to highly reflective mirrors in certain laser cavities (see, for example, VCSEL). A detailed theoretical study of one-dimensional optical structures was performed by Bykov [6] , who was the first to investigate the effect of a photonic band-gap on the spontaneous emission from atoms and molecules embedded within the photonic structure. Bykov also speculated as to what could happen if two- or three-dimensional periodic optical structures were used.[7] However, these ideas did not take off until after the publication of two milestone papers in 1987 by Yablonovitch and John. Both these papers concerned high dimensional periodic optical structures – photonic crystals. Yablonovitch’s main motivation was to engineer the photonic density of states, in order to control the spontaneous emission of materials embedded within the photonic crystal; John’s idea was to use photonic crystals to affect the localisation and control of light.

After 1987, the number of research papers concerning photonic crystal began to grow exponentially. However, due to the difficulty of actually fabricating these structures at optical scales (see Fabrication Challenges), early studies were either theoretical or in the microwave regime, where photonic crystals can be built on the far more readily accessible centimetre scale. (This fact is due to a property of the electromagnetic fields known as scale invariance – in essence, the electromagnetic fields, as the solutions to Maxwell's equations, has no natural length scale, and so solutions for centimetre scale structure at microwave frequencies are the same as for nanometre scale structures at optical frequencies.) By 1991, Yablonovitch had demonstrated the first three-dimensional photonic band-gap in the microwave regime.[8]

In 1996, Thomas Krauss made the first demonstration of a two-dimensional photonic crystal at optical wavelengths.[9] This opened up the way for photonic crystals to be fabricated in semiconductor materials by borrowing the methods used in the semiconductor industry. Today, such techniques use photonic crystal slabs, which are two dimensional photonic crystals “etched” into slabs of semiconductor; total internal reflection confines light to the slab, and allows photonic crystal effects, such as engineering the photonic dispersion to be used in the slab. Research is underway around the world to use photonic crystal slabs in integrated computer chips, in order to improve the optical processing of communications both on-chip and between chips.

Although such techniques are still to mature into commercial applications, two-dimensional photonic crystals have found commercial use in the form of photonic crystal fibres (otherwise known as holey fibres, because of the air holes that run through them). Photonic crystal fibres where first developed by Philip Russell in 1998, and can be designed to possess enhanced properties over (normal) optical fibres.

The study of three-dimensional photonic crystals has proceeded more slowly then their two-dimensional counterparts. This is because of the increased difficulty in fabrication; there was no inheritance of readily applicable techniques from the semiconductor industry for fabricators of three-dimensional photonic crystals to draw on. Attempts have been made, however, to adapt some of the same techniques, and quite advanced examples have been demonstrated[10], for example in the construction of "woodpile" structures constructed on a planar layer-by-layer basis. Another strand of research has been to try and construct three-dimensional photonic structures from self-assembly – essentially allowing a mixture of dielectric nano-spheres to settle from solution into three-dimensionally periodic structures possessing photonic band-gaps.

Page 7:  · Web viewPhotonics is approximately synonymous with quantum optics, quantum electronics, electro-optics, and optoelectronics. However each is used with slightly different connotations

[edit] Fabrication challengesThe major challenge for higher dimensional photonic crystals is in fabrication of these structures, with sufficient precision to prevent scattering losses blurring the crystal properties and with processes that can be robustly mass produced. One promising method of fabrication for two-dimensionally periodic photonic crystals is a photonic-crystal fiber, such as a "holey fiber". Using fiber draw techniques developed for communications fiber it meets these two requirements, and photonic crystal fibres are commercially available. Another promising method for developing two-dimensional photonic crystals is the so-called photonic crystal slab. These structures consist of a slab of material (such as silicon) which can be patterned using techniques borrowed from the semiconductor industry. Such chips offer the potential to combine photonic processing with electronic processing on a single chip.

For three dimensional photonic crystals various techniques[11] have been used including photolithography and etching techniques similar to those used for integrated circuits. Some of these techniques are already commercially available like Nanoscribe's Direct Laser Writing system.[12] To circumvent nanotechnological methods with their complex machinery, alternate approaches have been followed to grow photonic crystals as self-assembled structures from colloidal crystals.

[edit] Computing photonic band structureThe photonic band gap (PBG) is essentially the gap between the air-line and the dielectric-line in the ω − k relation of the PBG system. To design photonic crystal systems, it is essential to engineer the location and size of the bandgap; this is done by computational modeling using any of the following methods.

1. Plane wave expansion method .2. Finite Difference Time Domain method

3. Order-N spectral method

4. KKR method

Essentially these methods solve for the frequencies (normal models) of the photonic crystal for each value of the propagation direction given by the wave vector, or vice-versa. The various lines in the band structure, correspond to the different cases of n, the band index. For an introduction to photonic band structure, see Joannopoulos.[13]

Page 8:  · Web viewPhotonics is approximately synonymous with quantum optics, quantum electronics, electro-optics, and optoelectronics. However each is used with slightly different connotations

Band structure of a 1D Photonic Crystal, DBR air-core calculated using plane wave expansion technique with 101 planewaves, for d/a=0.8, and dielectric contrast of 12.250.

The plane wave expansion method, can be used to calculate the band structure using an eigen formulation of the Maxwell's equations, and thus solving for the eigen frequencies for each of the propagation directions, of the wave vectors. It directly solves for the dispersion diagram. Electric field strength values can also be calculated over the spatial domain of the problem using the eigen vectors of the same problem. For the picture shown to the right, corresponds to the band-structure of a 1D DBR with air-core interleaved with a dielectric material of relative permittivity 12.25, and a lattice period to air-core thickenss ratio (d/a) of 0.8, is solved using 101 planewaves over the first irreducible Brillouin zone.

[edit] ApplicationsPhotonic crystals are attractive optical materials for controlling and manipulating the flow of light. One dimensional photonic crystals are already in widespread use in the form of thin-film optics with applications ranging from low and high reflection coatings on lenses and mirrors to colour changing paints and inks. Higher dimensional photonic crystals are of great interest for both fundamental and applied research, and the two dimensional ones are beginning to find commercial applications. The first commercial products involving two-dimensionally periodic photonic crystals are already available in the form of photonic-crystal fibers, which use a microscale structure to confine light with radically different characteristics compared to conventional optical fiber for applications in nonlinear devices and guiding exotic wavelengths. The three-dimensional counterparts are still far from commercialization but offer additional features possibly leading to new device concepts (e.g. optical computers), when some technological aspects such as manufacturability and principal difficulties such as disorder are under control.

[edit] See also Photonic-crystal fiber Thin-film optics

Superprism

Optical medium

Čerenkov radiation

[edit] References1. ̂ P. Vukusic and J. R. Sambles “Photonic structures in biology ” Nature 424: 852-855

(2003) http://newton.ex.ac.uk/research/emag/people/pubs/pdf/nature01941.pdf2. ̂ S. Kinoshita, S. Yoshioka and K. Kawagoe “Mechanisms of structural colour in the

Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale” Proc. R. Soc. Lond. B 269, 1417-1421 (2002) http://lib.store.yahoo.net/lib/buginabox/kinoshita.pdf

Page 9:  · Web viewPhotonics is approximately synonymous with quantum optics, quantum electronics, electro-optics, and optoelectronics. However each is used with slightly different connotations

3. ̂ E. Yablonovitch "Inhibited Spontaneous Emission in Solid-State Physics and Electronics", Phys. Rev. Lett., Vol. 58, 2059 (1987) http://www.ee.ucla.edu/faculty/papers/eliy1987PhysRevLett.pdf

4. ̂ S. John, "Strong Localization of Photons in Certain Disordered Dielectric Superlattices", Phys. Rev. Lett. 58, 2486 (1987) http://www.physics.utoronto.ca/~john/john/p2486_1.pdf

5. ̂ J. W. S. Rayleigh, "On the remarkable phenomenon of crystalline reflexion described by Prof. Stokes." Phil. Mag. 26, 256-265. (1888)

6. ̂ V. P. Bykov, "Spontaneous emission in a periodic structure." Sov. Phys. JETP 35, 269-273 (1972)

7. ̂ V. P. Bykov, "Spontaneous emission from a medium with a band spectrum." Sov. J. Quant. Electron. 4, 861-871 (1975)

8. ̂ Yablonovitch, Gritter, Leung, Phys Rev Lett 67 (17) 2295-2298 (1991)

9. ̂ Krauss TF, DeLaRue RM, Brand S "Two-dimensional photonic-bandgap structures operating at near infrared wavelengths" NATURE vol. 383 pp. 699-702 (1996)

10. ̂ Review: S.Johnson (MIT) Lecture 3: Fabrication technologies for 3d photonic crystals, a survey http://ab-initio.mit.edu/photons/tutorial/L3-fab.pdf

11. ̂ Review: S.Johnson (MIT) Lecture 3: Fabrication technologies for 3d photonic crystals, a survey http://ab-initio.mit.edu/photons/tutorial/L3-fab.pdf

12. ̂ Homepage of Nanoscribe - a spin-off enterprise of the Karlsruhe Institute of Technology http://www.nanoscribe.de

13. ̂ John D Joannopoulos, Johnson SG, Winn JN & Meade RD (2008). Photonic Crystals: Molding the Flow of Light, 2nd Edition, Princeton NJ: Princeton University Press. ISBN 978-0-691-12456-8.

[edit] External links Photonic Crystal as a class of Metamaterial Photonic Crystal Article in Scientific American by Eli Yablonovitch

Prof Yablonovitch's Optoelectronics Group at UCLA School of Engineering and Applied Sciences

Prof John's page at University of Toronto

Prof Vos's group at University of Twente

Prof Wegener's group at Universität Karlsruhe (TH)

Yuri A. Vlasov's Collection of Photonic Band Gap Research Links

Photonic crystals tutorials by Prof S. Johnson at MIT

Photonic crystals tutorials by Prof Cefe Lopez at ICMM

Page 10:  · Web viewPhotonics is approximately synonymous with quantum optics, quantum electronics, electro-optics, and optoelectronics. However each is used with slightly different connotations

Autocloning at Photonic Lattice, Inc

ePIXnet Nanostructuring Platform for Photonic Integration

PhOREMOST: Nanophotonics to realise molecular scale tecnology

Photonic crystals an introduction

Retrieved from "http://en.wikipedia.org/wiki/Photonic_crystal"Categories: Condensed matter physics | Photonics | Optics

Views Arearch

1. PHOTON

From Wikipedia, the free encyclopedia

Jump to: navigation, search

For other uses, see Photon (disambiguation).

Photon

Photons emitted in a coherent beam from a laser

Composition Elementary particle

Family Boson

Group Gauge boson

Interaction Electromagnetic

Page 11:  · Web viewPhotonics is approximately synonymous with quantum optics, quantum electronics, electro-optics, and optoelectronics. However each is used with slightly different connotations

Theorized Albert Einstein (1905–17)

Symbol γ or hν

MassUnknown/Uncertain[1], commonly assumed

to be: 0[2]

Mean lifetime Stable[3]

Electric charge 0

Spin 1[2]

This box: view • talk • edit

In physics, the photon is the elementary particle responsible for electromagnetic phenomena. It is the carrier of electromagnetic radiation of all wavelengths, including gamma rays, X-rays, ultraviolet light, visible light, infrared light, microwaves, and radio waves. The photon differs from many other elementary particles, such as the electron and the quark, in that it has zero rest mass;[4] therefore, it travels (in a vacuum) at the speed of light, c. Like all quanta, the photon has both wave and particle properties (“wave–particle duality”). Photons show wave-like phenomena, such as refraction by a lens and destructive interference when reflected waves cancel each other out; however, as a particle, it can only interact with matter by transferring the amount of energy

where h is Planck's constant, c is the speed of light, and λ is its wavelength. This is different from a classical wave, which may gain or lose arbitrary amounts of energy. For visible light the energy carried by a single photon is around 4×10–19 joules; this energy is just sufficient to excite a single molecule in a photoreceptor cell of an eye, thus contributing to vision.[5]

Apart from having energy, a photon also carries momentum and has a polarization. It follows the laws of quantum mechanics, which means that often these properties do not have a well-defined value for a given photon. Rather, they are defined as a probability to measure a certain polarization, position, or momentum. For example, although a photon can excite a single molecule, it is often impossible to predict beforehand which molecule will be excited.

The above description of a photon as a carrier of electromagnetic radiation is commonly used by physicists. However, in theoretical physics, a photon can be considered as a mediator for any type of electromagnetic interactions, including magnetic fields and electrostatic repulsion between like charges.

Page 12:  · Web viewPhotonics is approximately synonymous with quantum optics, quantum electronics, electro-optics, and optoelectronics. However each is used with slightly different connotations

The modern concept of the photon was developed gradually (1905–17) by Albert Einstein [6] [7] [8] [9] to explain experimental observations that did not fit the classical wave model of light. In particular, the photon model accounted for the frequency dependence of light's energy, and explained the ability of matter and radiation to be in thermal equilibrium. Other physicists sought to explain these anomalous observations by semiclassical models, in which light is still described by Maxwell's equations, but the material objects that emit and absorb light are quantized. Although these semiclassical models contributed to the development of quantum mechanics, further experiments proved Einstein's hypothesis that light itself is quantized; the quanta of light are photons.

The photon concept has led to momentous advances in experimental and theoretical physics, such as lasers, Bose–Einstein condensation, quantum field theory, and the probabilistic interpretation of quantum mechanics. According to the Standard Model of particle physics, photons are responsible for producing all electric and magnetic fields, and are themselves the product of requiring that physical laws have a certain symmetry at every point in spacetime. The intrinsic properties of photons—such as charge, mass and spin—are determined by the properties of this gauge symmetry.

The concept of photons is applied to many areas such as photochemistry, high-resolution microscopy, and measurements of molecular distances. Recently, photons have been studied as elements of quantum computers and for sophisticated applications in optical communication such as quantum cryptography.

Contents[hide]

1 Nomenclature 2 Physical properties

3 Historical development

4 Early objections

5 Wave–particle duality and uncertainty principles

6 Bose–Einstein model of a photon gas

7 Stimulated and spontaneous emission

8 Second quantization

9 The photon as a gauge boson

10 Photon structure

11 Contributions to the mass of a system

12 Photons in matter

13 Technological applications

Page 13:  · Web viewPhotonics is approximately synonymous with quantum optics, quantum electronics, electro-optics, and optoelectronics. However each is used with slightly different connotations

14 Recent research

15 See also

16 References and footnotes

17 Additional references

[edit] NomenclatureThe photon was originally called a “light quantum” (das Lichtquant) by Albert Einstein.[6] The modern name “photon” derives from the Greek word for light, φῶς, (transliterated phôs), and was coined in 1926 by the physical chemist Gilbert N. Lewis, who published a speculative theory[10] in which photons were “uncreatable and indestructible”. Although Lewis' theory was never accepted—being contradicted by many experiments—his new name, photon, was adopted immediately by most physicists. Isaac Asimov credits Arthur Compton with defining quanta of light as photons in 1927.[11][12]

In physics, a photon is usually denoted by the symbol γ, the Greek letter gamma. This symbol for the photon probably derives from gamma rays, which were discovered and named in 1900 by Villard [13] [14] and shown to be a form of electromagnetic radiation in 1914 by Rutherford and Andrade.[15] In chemistry and optical engineering, photons are usually symbolized by hν, the energy of a photon, where h is Planck's constant and the Greek letter ν (nu) is the photon's frequency. Much less commonly, the photon can be symbolized by hf, where its frequency is denoted by f.

[edit] Physical properties

A Feynman diagram of the exchange of a virtual photon (symbolized by a wavy-line and a gamma, γ) between a positron and an electron.

See also: Special relativity

The photon is massless,[4] has no electric charge [16] and does not decay spontaneously in empty space. A photon has two possible polarization states and is described by exactly

Page 14:  · Web viewPhotonics is approximately synonymous with quantum optics, quantum electronics, electro-optics, and optoelectronics. However each is used with slightly different connotations

three continuous parameters: the components of its wave vector, which determine its wavelength λ and its direction of propagation. The photon is the gauge boson for electromagnetism, and therefore all other quantum numbers—such as lepton number, baryon number, and strangeness—are exactly zero.

Photons are emitted in many natural processes, e.g., when a charge is accelerated, during a molecular, atomic or nuclear transition to a lower energy level, or when a particle and its antiparticle are annihilated (see Electron-positron annihilation). Photons are absorbed in the time-reversed processes which correspond to those mentioned above: for example, in the production of particle–antiparticle pairs or in molecular, atomic or nuclear transitions to a higher energy level.

In empty space, the photon moves at c (the speed of light) and its energy E and momentum are related by E = cp, where p is the magnitude of the momentum vector. For comparison, the corresponding equation for particles with a mass m is E2 = c2p2 + m2c4, as shown in special relativity.

The energy and momentum of a photon depend only on its frequency ν or, equivalently, its wavelength λ:

and consequently the magnitude of the momentum is

where (known as Dirac's constant or Planck's reduced constant); is the wave vector (with the wave number k = 2π / λ as its magnitude) and ω = 2πν is the angular frequency. Notice that points in the direction of the photon's propagation. The photon also carries spin angular momentum that does not depend on its frequency.[17] The magnitude of its spin is and the component measured along its direction of motion, its helicity, must be . These two possible helicities correspond to the two possible circular polarization states of the photon (right-handed and left-handed).

To illustrate the significance of these formulae, the annihilation of a particle with its antiparticle must result in the creation of at least two photons for the following reason. In the center of mass frame, the colliding antiparticles have no net momentum, whereas a single photon always has momentum (since it is determined, as we have seen, only by the photon's frequency or wavelength - which cannot be zero). Hence, conservation of momentum requires that at least two photons are created, with zero net momentum. The energy of the two photons—or, equivalently, their frequency—may be determined from conservation of four-momentum. Seen another way, the photon can be considered as its own antiparticle. The reverse process, pair production, is the dominant mechanism by which high-energy photons such as gamma rays lose energy while passing through matter.

Page 15:  · Web viewPhotonics is approximately synonymous with quantum optics, quantum electronics, electro-optics, and optoelectronics. However each is used with slightly different connotations

The classical formulae for the energy and momentum of electromagnetic radiation can be re-expressed in terms of photon events. For example, the pressure of electromagnetic radiation on an object derives from the transfer of photon momentum per unit time and unit area to that object, since pressure is force per unit area and force is the change in momentum per unit time.

[edit] Historical developmentMain article: Light

Thomas Young's double-slit experiment in 1805 showed that light can act as a wave, helping to defeat early particle theories of light.

In most theories up to the eighteenth century, light was pictured as being made up of particles. One of the earliest particle theories was described in the Book of Optics (1021) by Alhazen, who held light rays to be streams of minute particles that "lack all sensible qualities except energy."[18] Since particle models cannot easily account for the refraction, diffraction and birefringence of light, wave theories of light were proposed by René Descartes (1637),[19] Robert Hooke (1665),[20] and Christian Huygens (1678);[21] however, particle models remained dominant, chiefly due to the influence of Isaac Newton.[22] In the early nineteenth century, Thomas Young and August Fresnel clearly demonstrated the interference and diffraction of light and by 1850 wave models were generally accepted.[23]

In 1865, James Clerk Maxwell's prediction [24] that light was an electromagnetic wave—which was confirmed experimentally in 1888 by Heinrich Hertz's detection of radio waves [25] —seemed to be the final blow to particle models of light.

In 1900, Maxwell's theoretical model of light as oscillating electric and magnetic fields seemed complete. However, several observations could not be explained by any wave model of electromagnetic radiation, leading to the idea that light-energy was packaged into quanta

Page 16:  · Web viewPhotonics is approximately synonymous with quantum optics, quantum electronics, electro-optics, and optoelectronics. However each is used with slightly different connotations

described by E=hν. Later experiments showed that these light-quanta also carry momentum and, thus, can be considered particles: the photon concept was born, leading to a deeper understanding of the electric and magnetic fields themselves.

The Maxwell wave theory, however, does not account for all properties of light. The Maxwell theory predicts that the energy of a light wave depends only on its intensity, not on its frequency; nevertheless, several independent types of experiments show that the energy imparted by light to atoms depends only on the light's frequency, not on its intensity. For example, some chemical reactions are provoked only by light of frequency higher than a certain threshold; light of frequency lower than the threshold, no matter how intense, does not initiate the reaction. Similarly, electrons can be ejected from a metal plate by shining light of sufficiently high frequency on it (the photoelectric effect); the energy of the ejected electron is related only to the light's frequency, not to its intensity.

At the same time, investigations of blackbody radiation carried out over four decades (1860–1900) by various researchers[26] culminated in Max Planck's hypothesis [27] [28] that the energy of any system that absorbs or emits electromagnetic radiation of frequency ν is an integer multiple of an energy quantum E = hν. As shown by Albert Einstein,[6][7] some form of energy quantization must be assumed to account for the thermal equilibrium observed between matter and electromagnetic radiation; for this explanation of the photoelectric effect, Einstein received the 1921 Nobel Prize in physics.

Since the Maxwell theory of light allows for all possible energies of electromagnetic radiation, most physicists assumed initially that the energy quantization resulted from some unknown constraint on the matter that absorbs or emits the radiation. In 1905, Einstein was the first to propose that energy quantization was a property of electromagnetic radiation itself.[6] Although he accepted the validity of Maxwell's theory, Einstein pointed out that many anomalous experiments could be explained if the energy of a Maxwellian light wave were localized into point-like quanta that move independently of one another, even if the wave itself is spread continuously over space.[6] In 1909[7] and 1916,[9] Einstein showed that, if Planck's law of black-body radiation is accepted, the energy quanta must also carry momentum p = h / λ, making them full-fledged particles. This photon momentum was observed experimentally[29] by Arthur Compton, for which he received the Nobel Prize in 1927. The pivotal question was then: how to unify Maxwell's wave theory of light with its experimentally observed particle nature? The answer to this question occupied Albert Einstein for the rest of his life,[30] and was solved in quantum electrodynamics and its successor, the Standard Model.

[edit] Early objections

Page 17:  · Web viewPhotonics is approximately synonymous with quantum optics, quantum electronics, electro-optics, and optoelectronics. However each is used with slightly different connotations

Up to 1923, most physicists were reluctant to accept that light itself was quantized. Instead, they tried to explain photon behavior by quantizing only matter, as in the Bohr model of the hydrogen atom (shown here). Even though these semiclassical models were only a first approximation, they were accurate for simple systems and they led to quantum mechanics.

Einstein's 1905 predictions were verified experimentally in several ways in the first two decades of the 20th century, as recounted in Robert Millikan's Nobel lecture.[31] However, before Compton's experiment [29] showing that photons carried momentum proportional to their frequency (1922), most physicists were reluctant to believe that electromagnetic radiation itself might be particulate. (See, for example, the Nobel lectures of Wien,[26] Planck [28] and Millikan.[31]).

Many physicists assumed instead that energy quantization resulted from some unknown constraint on the matter that absorbs or emits radiation. This was Niels Bohr's point of view, when he developed his atomic model with discrete energy levels that could account qualitatively for the sharp spectral lines and energy quantization observed in the emission and absorption of light by atoms. It was only the Compton scattering of a photon by a free electron, that convinced most physicists that light itself was quantized. A free electron has no energy levels since it has no internal structure.

Even after Compton's experiment, Bohr, Hendrik Kramers and John Slater made one last attempt to preserve the Maxwellian continuous electromagnetic field model of light, the so-called BKS model.[32] To account for the then-available data, two drastic hypotheses had to be made:

1. Energy and momentum are conserved only on the average in interactions between matter and radiation, not in elementary processes such as absorption and emission. This allows one to reconcile the discontinuously changing energy of the atom (jump between energy states) with the continuous release of energy into radiation.

2. Causality is abandoned. For example, spontaneous emissions are merely emissions induced by a "virtual" electromagnetic field.

However, refined Compton experiments showed that energy-momentum is conserved extraordinarily well in elementary processes; and also that the jolting of the electron and the generation of a new photon in Compton scattering obey causality to within 10 ps.

Page 18:  · Web viewPhotonics is approximately synonymous with quantum optics, quantum electronics, electro-optics, and optoelectronics. However each is used with slightly different connotations

Accordingly, Bohr and his co-workers gave their model “as honorable a funeral as possible“.[30] Nevertheless, the failures of the BKS model inspired Werner Heisenberg in his development[33] of matrix mechanics.

A few physicists persisted[34] in developing semiclassical models in which electromagnetic radiation is not quantized, but matter obeys the laws of quantum mechanics. Although the evidence for photons from chemical and physical experiments was overwhelming by the 1970s, this evidence could not be considered as absolutely definitive; since it relied on the interaction of light with matter, a sufficiently complicated theory of matter could in principle account for the evidence. Nevertheless, all semiclassical theories were refuted definitively in the 1970s and 1980s by elegant photon-correlation experiments.[35] Hence, Einstein's hypothesis that quantization is a property of light itself is considered to be proven.

[edit] Wave–particle duality and uncertainty principlesSee also: Wave–particle duality, Squeezed coherent state, and Uncertainty principle

Photons, like all quantum objects, exhibit both wave-like and particle-like properties. Their dual wave–particle nature can be difficult to visualize. The photon displays clearly wave-like phenomena such as diffraction and interference on the length scale of its wavelength. For example, a single photon passing through a double-slit experiment lands on the screen with a probability distribution given by its interference pattern determined by Maxwell's equations.[36] However, experiments confirm that the photon is not a short pulse of electromagnetic radiation; it does not spread out as it propagates, nor does it divide when it encounters a beam splitter. Rather, the photon seems like a point-like particle, since it is absorbed or emitted as a whole by arbitrarily small systems, systems much smaller than its wavelength, such as an atomic nucleus (≈10–15 m across) or even the point-like electron. Nevertheless, the photon is not a point-like particle whose trajectory is shaped probabilistically by the electromagnetic field, as conceived by Einstein and others; that hypothesis was also refuted by the photon-correlation experiments cited above.[35] According to our present understanding, the electromagnetic field itself is produced by photons, which in turn result from a local gauge symmetry and the laws of quantum field theory (see the Second quantization and Gauge boson sections below).

Page 19:  · Web viewPhotonics is approximately synonymous with quantum optics, quantum electronics, electro-optics, and optoelectronics. However each is used with slightly different connotations

Heisenberg's thought experiment for locating an electron (shown in blue) with a high-resolution gamma-ray microscope. The incoming gamma ray (shown in green) is scattered by the electron up into the microscope's aperture angle θ. The scattered gamma ray is shown in red. Classical optics shows that the electron position can be resolved only up to an uncertainty Δx that depends on θ and the wavelength λ of the incoming light.

A key element of quantum mechanics is Heisenberg's uncertainty principle, which forbids the simultaneous measurement of the position and momentum of a particle along the same direction. Remarkably, the uncertainty principle for charged, material particles requires the quantization of light into photons, and even the frequency dependence of the photon's energy and momentum. An elegant illustration is Heisenberg's thought experiment for locating an electron with an ideal microscope.[37] The position of the electron can be determined to within the resolving power of the microscope, which is given by a formula from classical optics

where θ is the aperture angle of the microscope. Thus, the position uncertainty Δx can be made arbitrarily small by reducing the wavelength λ. The momentum of the electron is uncertain, since it received a “kick” Δp from the light scattering from it into the microscope. If light were not quantized into photons, the uncertainty Δp could be made arbitrarily small by reducing the light's intensity. In that case, since the wavelength and intensity of light can be varied independently, one could simultaneously determine the position and momentum to arbitrarily high accuracy, violating the uncertainty principle. By contrast, Einstein's formula for photon momentum preserves the uncertainty principle; since the photon is scattered anywhere within the aperture, the uncertainty of momentum transferred equals

giving the product , which is Heisenberg's uncertainty principle. Thus, the entire world is quantized; both matter and fields must obey a consistent set of quantum laws, if either one is to be quantized.

The analogous uncertainty principle for photons forbids the simultaneous measurement of the number n of photons (see Fock state and the Second quantization section below) in an electromagnetic wave and the phase φ of that wave

ΔnΔφ > 1

See coherent state and squeezed coherent state for more details.

Both photons and material particles such as electrons create analogous interference patterns when passing through a double-slit experiment. For photons, this corresponds to

Page 20:  · Web viewPhotonics is approximately synonymous with quantum optics, quantum electronics, electro-optics, and optoelectronics. However each is used with slightly different connotations

the interference of a Maxwell light wave whereas, for material particles, this corresponds to the interference of the Schrödinger wave equation. Although this similarity might suggest that Maxwell's equations are simply Schrödinger's equation for photons, most physicists do not agree.[38][39] For one thing, they are mathematically different; most obviously, Schrödinger's one equation solves for a complex field, whereas Maxwell's four equations solve for real fields. More generally, the normal concept of a Schrödinger probability wave function cannot be applied to photons.[40] Being massless, they cannot be localized without being destroyed; technically, photons cannot have a position eigenstate

, and, thus, the normal Heisenberg uncertainty principle ΔxΔp > h / 2 does not pertain to photons. A few substitute wave functions have been suggested for the photon,[41][42][43][44]

but they have not come into general use. Instead, physicists generally accept the second-quantized theory of photons described below, quantum electrodynamics, in which photons are quantized excitations of electromagnetic modes.

[edit] Bose–Einstein model of a photon gasMain articles: Bose gas, Bose–Einstein statistics, and Spin-statistics theorem

In 1924, Satyendra Nath Bose derived Planck's law of black-body radiation without using any electromagnetism, but rather a modification of coarse-grained counting of phase space.[45] Einstein showed that this modification is equivalent to assuming that photons are rigorously identical and that it implied a “mysterious non-local interaction”,[46][47] now understood as the requirement for a symmetric quantum mechanical state. This work led to the concept of coherent states and the development of the laser. In the same papers, Einstein extended Bose's formalism to material particles (bosons) and predicted that they would condense into their lowest quantum state at low enough temperatures; this Bose–Einstein condensation was observed experimentally in 1995.[48]

Photons must obey Bose–Einstein statistics if they are to allow the superposition principle of electromagnetic fields, the condition that Maxwell's equations are linear. All particles are divided into bosons and fermions, depending on whether they have integer or half-integer spin, respectively. The spin-statistics theorem shows that all bosons obey Bose–Einstein statistics, whereas all fermions obey Fermi-Dirac statistics or, equivalently, the Pauli exclusion principle, which states that at most one particle can occupy any given state. Thus, if the photon were a fermion, only one photon could move in a particular direction at a time. This is inconsistent with the experimental observation that lasers can produce coherent light of arbitrary intensity, that is, with many photons moving in the same direction. Hence, the photon must be a boson and obey Bose–Einstein statistics.

[edit] Stimulated and spontaneous emissionMain articles: Stimulated emission and Laser

Page 21:  · Web viewPhotonics is approximately synonymous with quantum optics, quantum electronics, electro-optics, and optoelectronics. However each is used with slightly different connotations

Stimulated emission (in which photons “clone” themselves) was predicted by Einstein in his kinetic analysis, and led to the development of the laser. Einstein's derivation inspired further developments in the quantum treatment of light, which led to the statistical interpretation of quantum mechanics.

In 1916, Einstein showed that Planck's radiation law implied a relation between the rates at which atoms emit and absorb photons. The condition follows from the assumption that light is emitted and absorbed by atoms independently, and that the thermal equilibrium is preserved by interaction with atoms.[8] Consider a cavity in thermal equilibrium and filled with electromagnetic radiation and atoms that can emit and absorb that radiation. Thermal equilibrium requires that the number density ρ(ν) of photons with frequency ν is constant in time; hence, the rate of emitting photons of that frequency must equal the rate of absorbing them.

Einstein hypothesized that the rate Rji for a system to absorb a photon of frequency ν and transition from a lower energy Ej to a higher energy Ei was proportional to the number Nj of molecules with energy Ej and to the number density ρ(ν) of ambient photons with that frequency

where Bji is the rate constant for absorption.

More daringly, Einstein hypothesized that the reverse rate Rij for a system to emit a photon of frequency ν and transition from a higher energy Ei to a lower energy Ej was composed of two terms:

where Aij is the rate constant for emitting a photon spontaneously, and Bij is the rate constant for emitting it in response to ambient photons (induced or stimulated emission).

This simple kinetic model was a powerful stimulus for research, since it was the first statistical interpretation of single-particle quantum mechanical events. Einstein was able to show that Bij = Bji (i.e., the rate constants for induced emission and absorption are equal) and, perhaps more remarkably,

Page 22:  · Web viewPhotonics is approximately synonymous with quantum optics, quantum electronics, electro-optics, and optoelectronics. However each is used with slightly different connotations

Einstein could not fully justify his rate equations, because Aij and Bij could only be derivable from what he called a “mechanics and electrodynamics modified to accommodate the quantum hypothesis”. In quantum mechanics, Einstein's rate constant relations are a consequence of the simple form of the matrix elements for the position and momentum of a harmonic oscillator, since the electromagnetic field is a collection of harmonic oscillators.

Paul Dirac derived the Bij rate constants in 1926 using a semiclassical approach,[49] and, in 1927, succeeded in deriving all the rate constants from first principles.[50][51] Dirac's work was the foundation of quantum electrodynamics, i.e., the quantization of the electromagnetic field itself. Dirac's approach is also called second quantization or quantum field theory;[52][53][54], earlier quantum mechanical treatments only treat material particles as quantum mechanical, not the electromagnetic field.

Einstein was troubled by the fact that his theory seemed incomplete, since it did not determine the direction of a spontaneously emitted photon. A probabilistic nature of light-particle motion was first considered by Newton in his treatment of birefringence and, more generally, of the splitting of light beams at interfaces into a transmitted beam and a reflected beam. Newton hypothesized that hidden variables in the light particle determined which path it would follow.[22] Similarly, Einstein hoped for a more complete theory that would leave nothing to chance, beginning his separation[30] from quantum mechanics. Ironically, Max Born's probabilistic interpretation of the wave function [55] [56] was inspired by Einstein's later work searching for a more complete theory.[57]

[edit] Second quantizationMain article: Quantum field theory

Different electromagnetic modes (such as those depicted here) can be treated as independent simple harmonic oscillators. A photon corresponds to a unit of energy E=hν in its electromagnetic mode.

Page 23:  · Web viewPhotonics is approximately synonymous with quantum optics, quantum electronics, electro-optics, and optoelectronics. However each is used with slightly different connotations

In 1910, Peter Debye derived Planck's law of black-body radiation from a relatively simple assumption.[58] He correctly decomposed the electromagnetic field in a cavity into its Fourier modes, and assumed that the energy in any mode was an integer multiple of hν, where ν is the frequency of the electromagnetic mode. Planck's law of black-body radiation follows immediately as a geometric sum. However, Debye's approach failed to give the correct formula for the energy fluctuations of blackbody radiation, which were derived by Einstein in 1909.[7]

In 1925, Born, Heisenberg and Jordan reinterpreted Debye's concept in a key way.[59] As may be shown classically, the Fourier modes of the electromagnetic field—a complete set of electromagnetic plane waves indexed by their wave vector k and polarization state—are equivalent to a set of uncoupled simple harmonic oscillators. Treated quantum mechanically, the energy levels of such oscillators are known to be E = nhν, where ν is the oscillator frequency. The key new step was to identify an electromagnetic mode with energy E = nhν as a state with n photons, each of energy hν. This approach gives the correct energy fluctuation formula.

In quantum field theory, the probability of an event is computed by summing the probability amplitude (a complex number) for all possible ways in which the event can occur, as in the Feynman diagram shown here; the probability equals the square of the modulus of the total amplitude.

Dirac took this one step further.[50][51] He treated the interaction between a charge and an electromagnetic field as a small perturbation that induces transitions in the photon states, changing the numbers of photons in the modes, while conserving energy and momentum overall. Dirac was able to derive Einstein's Aij and Bij coefficients from first principles, and showed that the Bose–Einstein statistics of photons is a natural consequence of quantizing the electromagnetic field correctly (Bose's reasoning went in the opposite direction; he derived Planck's law of black body radiation by assuming BE statistics). In Dirac's time, it was not yet known that all bosons, including photons, must obey BE statistics.

Dirac's second-order perturbation theory can involve virtual photons, transient intermediate states of the electromagnetic field; the static electric and magnetic interactions are mediated by such virtual photons. In such quantum field theories, the probability amplitude of observable events is calculated by summing over all possible

Page 24:  · Web viewPhotonics is approximately synonymous with quantum optics, quantum electronics, electro-optics, and optoelectronics. However each is used with slightly different connotations

intermediate steps, even ones that are unphysical; hence, virtual photons are not constrained to satisfy E = pc, and may have extra polarization states; depending on the gauge used, virtual photons may have three or four polarization states, instead of the two states of real photons. Although these transient virtual photons can never be observed, they contribute measurably to the probabilities of observable events. Indeed, such second-order and higher-order perturbation calculations can give apparently infinite contributions to the sum. Such unphysical results are corrected for using the technique of renormalization. Other virtual particles may contribute to the summation as well; for example, two photons may interact indirectly through virtual electron-positron pairs.

In modern physics notation, the quantum state of the electromagnetic field is written as a Fock state, a tensor product of the states for each electromagnetic mode

where represents the state in which photons are in the mode ki. In this notation, the creation of a new photon in mode ki (e.g., emitted from an atomic transition) is written as . This notation merely expresses the concept of Born, Heisenberg and Jordan described above, and does not add any physics.

[edit] The photon as a gauge bosonMain article: Gauge theory

The electromagnetic field can be understood as a gauge theory, i.e., as a field that results from requiring that symmetry hold independently at every position in spacetime.[60] For the electromagnetic field, this gauge symmetry is the Abelian U(1) symmetry of a complex number, which reflects the ability to vary the phase of a complex number without affecting real numbers made from it, such as the energy or the Lagrangian.

The quanta of an Abelian gauge field must be massless, uncharged bosons, as long as the symmetry is not broken; hence, the photon is predicted to be massless, and to have zero electric charge and integer spin. The particular form of the electromagnetic interaction specifies that the photon must have spin ±1; thus, its helicity must be . These two spin components correspond to the classical concepts of right-handed and left-handed circularly polarized light. However, the transient virtual photons of quantum electrodynamics may also adopt unphysical polarization states.[60]

In the prevailing Standard Model of physics, the photon is one of four gauge bosons in the electroweak interaction; the other three are denoted W+, W− and Z0 and are responsible for the weak interaction. Unlike the photon, these gauge bosons have invariant mass, owing to a mechanism that breaks their SU(2) gauge symmetry. The unification of the photon with W and Z gauge bosons in the electroweak interaction was accomplished by Sheldon Glashow, Abdus Salam and Steven Weinberg, for which they were awarded the 1979 Nobel Prize in physics.[61][62][63] Physicists continue to hypothesize grand unified theories that connect these four gauge bosons with the eight gluon gauge bosons of quantum chromodynamics; however, key predictions of these theories, such as proton decay, have not been observed experimentally.

Page 25:  · Web viewPhotonics is approximately synonymous with quantum optics, quantum electronics, electro-optics, and optoelectronics. However each is used with slightly different connotations

[edit] Photon structureMain article: Quantum Chromodynamics

According to Quantum Chromodynamics, a real photon can interact both as a point-like particle, or as a collection of quarks and gluons, i.e., like a hadron. The structure of the photon is determined not by the traditional valence quark distributions as in a proton, but by fluctuations of the point-like photon into a collection of partons.[64]

[edit] Contributions to the mass of a systemSee also: Mass in special relativity and Gravitation

The energy of a system that emits a photon is decreased by the energy E of the photon as measured in the rest frame of the emitting system, which may result in a reduction in mass in the amount E / c2. Similarly, the mass of a system that absorbs a photon is increased by a corresponding amount.

This concept is applied in a key prediction of QED, the theory of quantum electrodynamics begun by Dirac (described above). QED is able to predict the magnetic dipole moment of leptons to extremely high accuracy; experimental measurements of these magnetic dipole moments have agreed with these predictions perfectly. The predictions, however, require counting the contributions of virtual photons to the mass of the lepton. Another example of such contributions verified experimentally is the QED prediction of the Lamb shift observed in the hyperfine structure of bound lepton pairs, such as muonium and positronium.

Since photons contribute to the stress-energy tensor, they exert a gravitational attraction on other objects, according to the theory of general relativity. Conversely, photons are themselves affected by gravity; their normally straight trajectories may be bent by warped spacetime, as in gravitational lensing, and their frequencies may be lowered by moving to a higher gravitational potential, as in the Pound-Rebka experiment. However, these effects are not specific to photons; exactly the same effects would be predicted for classical electromagnetic waves.

[edit] Photons in matterSee also: Group velocity and Photochemistry

Light that travels through transparent matter does so at a lower speed than c, the speed of light in a vacuum. For example, photons suffer so many collisions on the way from the core of the sun that radiant energy can take about a million years to reach the surface;[65] however, once in open space, a photon takes only 8.3 minutes to reach Earth. The factor by which the speed is decreased is called the refractive index of the material. In a classical wave picture, the slowing can be explained by the light inducing electric polarization in the matter, the polarized matter radiating new light, and the new light interfering with the original light wave to form a delayed wave. In a particle picture, the slowing can instead be described as a blending of the photon with quantum excitations of

Page 26:  · Web viewPhotonics is approximately synonymous with quantum optics, quantum electronics, electro-optics, and optoelectronics. However each is used with slightly different connotations

the matter (quasi-particles such as phonons and excitons) to form a polariton; this polariton has a nonzero effective mass, which means that it cannot travel at c. Light of different frequencies may travel through matter at different speeds; this is called dispersion. The polariton propagation speed v equals its group velocity, which is the derivative of the energy with respect to momentum.

Retinal straightens after absorbing a photon γ of the correct wavelength.

where, as above, E and p are the polariton's energy and momentum magnitude, and ω and k are its angular frequency and wave number, respectively. In some cases, the dispersion can result in extremely slow speeds of light in matter. The effects of photon interactions with other quasi-particles may be observed directly in Raman scattering and Brillouin scattering.

Photons can also be absorbed by nuclei, atoms or molecules, provoking transitions between their energy levels. A classic example is the molecular transition of retinal (C20H28O, Figure at right), which is responsible for vision, as discovered in 1958 by Nobel laureate biochemist George Wald and co-workers. As shown here, the absorption provokes a cis-trans isomerization that, in combination with other such transitions, is transduced into nerve impulses. The absorption of photons can even break chemical bonds, as in the photodissociation of chlorine; this is the subject of photochemistry.

[edit] Technological applicationsPhotons have many applications in technology. These examples are chosen to illustrate applications of photons per se, rather than general optical devices such as lenses, etc. that could operate under a classical theory of light. The laser is an extremely important application and is discussed above under stimulated emission.

Individual photons can be detected by several methods. The classic photomultiplier tube exploits the photoelectric effect: a photon landing on a metal plate ejects an electron, initiating an ever-amplifying avalanche of electrons. Charge-coupled device chips use a similar effect in semiconductors: an incident photon generates a charge on a microscopic capacitor that can be detected. Other detectors such as Geiger counters use the ability of photons to ionize gas molecules, causing a detectable change in conductivity.

Page 27:  · Web viewPhotonics is approximately synonymous with quantum optics, quantum electronics, electro-optics, and optoelectronics. However each is used with slightly different connotations

Planck's energy formula E = hν is often used by engineers and chemists in design, both to compute the change in energy resulting from a photon absorption and to predict the frequency of the light emitted for a given energy transition. For example, the emission spectrum of a fluorescent light bulb can be designed using gas molecules with different electronic energy levels and adjusting the typical energy with which an electron hits the gas molecules within the bulb.

Under some conditions, an energy transition can be excited by two photons that individually would be insufficient. This allows for higher resolution microscopy, because the sample absorbs energy only in the region where two beams of different colors overlap significantly, which can be made much smaller than the excitation volume of a single beam (see two-photon excitation microscopy). Moreover, these photons cause less damage to the sample, since they are of lower energy.

In some cases, two energy transitions can be coupled so that, as one system absorbs a photon, another nearby system "steals" its energy and re-emits a photon of a different frequency. This is the basis of fluorescence resonance energy transfer, which is used to measure molecular distances.

[edit] Recent researchSee also: Quantum optics

The fundamental nature of the photon is believed to be understood theoretically; the prevailing Standard Model predicts that the photon is a gauge boson of spin 1, without mass and without charge, that results from a local U(1) gauge symmetry and mediates the electromagnetic interaction. However, physicists continue to check for discrepancies between experiment and the Standard Model predictions, in the hope of finding clues to physics beyond the Standard Model. In particular, experimental physicists continue to set ever better upper limits on the charge and mass of the photon; a non-zero value for either parameter would be a serious violation of the Standard Model. However, all experimental data hitherto are consistent with the photon having zero charge[16] and mass.[66] The best universally accepted upper limits on the photon charge and mass are 5×10−52 C (or 3×10−33

times the elementary charge) and 1.1×10−52 kg (6x10-17 eV, or 1x10-22 the mass of the electron), respectively .[67]

Much research has been devoted to applications of photons in the field of quantum optics. Photons seem well-suited to be elements of an ultra-fast quantum computer, and the quantum entanglement of photons is a focus of research. Nonlinear optical processes are another active research area, with topics such as two-photon absorption, self-phase modulation and optical parametric oscillators. However, such processes generally do not require the assumption of photons per se; they may often be modeled by treating atoms as nonlinear oscillators. The nonlinear process of spontaneous parametric down conversion is often used to produce single-photon states. Finally, photons are essential in some aspects of optical communication, especially for quantum cryptography.

In 2007 Polish physicists Wojciech Wasilewski, Piotr Kolenderski and Robert Frankowski from the Nicolaus Copernicus University of Torun, Poland, empirically

Page 28:  · Web viewPhotonics is approximately synonymous with quantum optics, quantum electronics, electro-optics, and optoelectronics. However each is used with slightly different connotations

measured the shape of individual ultraviolet photons traveling in a single-mode optical fiber.[

1. PHOTONIC-CRYSTAL FIBER

From Wikipedia, the free encyclopedia

(Redirected from Photonic crystal fiber)

Jump to: navigation, search

Photonic-crystal fiber (PCF) is a new class of optical fiber based on the properties of photonic crystals. Because of its ability to confine light in hollow cores or with confinement characteristics not possible in conventional optical fiber, PCF is now finding applications in fiber-optic communications, fiber lasers, nonlinear devices, high-power transmission, highly sensitive gas sensors, and other areas. The term "photonic-crystal fiber" was coined by Philip Russell in 1995-1997 (he states (2003) that the idea dates to unpublished work in 1991), although other terms such as microstructured fiber are also used and the nomenclature in the field is not entirely consistent. More specific categories of PCF include photonic-bandgap fiber (PCFs that confine light by band gap effects), holey fiber (PCFs using air holes in their cross-sections), hole-assisted fiber (PCFs guiding light by a conventional higher-index core modified by the presence of air holes), and Bragg fiber (photonic-bandgap fiber formed by concentric rings of multilayer film).

SEM micrographs of a photonic-crystal fiber produced at US Naval Research Laboratory. (left) The diameter of the solid core at the center of the fiber is 5 µm, while (right) the diameter of the holes is 4 µm

In general, such fibers have a cross-section (normally uniform along the fiber length) microstructured from two or more materials, most commonly arranged periodically over much of the cross-section, usually as a "cladding" surrounding a core (or several cores) where light is confined. For example, the fibers first demonstrated by Russell consisted of a hexagonal lattice of air holes in a silica fiber, with a solid (1996) or hollow (1998) core at the center where light is guided. Other arrangements include concentric rings of two or

Page 29:  · Web viewPhotonics is approximately synonymous with quantum optics, quantum electronics, electro-optics, and optoelectronics. However each is used with slightly different connotations

more materials, first proposed as "Bragg fibers" by Yeh and Yariv (1978), a variant of which was recently fabricated by Temelkuran et al. (2002).

(Note: PCFs and, in particular, Bragg fibers, should not be confused with fiber Bragg gratings, which consist of a periodic refractive index or structural variation along the fiber axis, as opposed to variations in the transverse directions as in PCF. Both PCFs and fiber Bragg gratings employ Bragg diffraction phenomena, albeit in different directions.)

Generally, such fibers are constructed by the same methods as other optical fibers: first, one constructs a "preform" on the scale of centimeters in size, and then heats the preform and draws it down to a much smaller diameter (often nearly as small as a human hair), shrinking the preform cross section but (usually) maintaining the same features. In this way, kilometers of fiber can be produced from a single preform. Most photonic crystal fiber has been fabricated in silica glass, but other glasses have also been used to obtain particular optical properties (such has high optical non-linearity). There is also a growing interest in making them from polymer, where a wide variety of structures have been explored, including graded index structures, ring structured fibres and hollow core fibers. These polymer fibers have been termed "MPOF", short for microstructured polymer optical fibers (van Eijkelenborg, 2001). A combination of a polymer and a chalcogenide glass was used by Temelkuran et al. (2002) for 10.6 µm wavelengths (where silica is not transparent).

Photonic crystal fibers can be divided into two modes of operation, according to their mechanism for confinement. Those with a solid core, or a core with a higher average index than the microstructured cladding, can operate on the same index-guiding principle as conventional optical fiber — however, they can have a much higher effective-index contrast between core and cladding, and therefore can have much stronger confinement for applications in nonlinear optical devices, polarization-maintaining fibers, (or they can also be made with much lower effective index contrast). Alternatively, one can create a "photonic bandgap" fiber, in which the light is confined by a photonic bandgap created by the microstructured cladding — such a bandgap, properly designed, can confine light in a lower-index core and even a hollow (air) core. Bandgap fibers with hollow cores can potentially circumvent limits imposed by available materials, for example to create fibers that guide light in wavelengths for which transparent materials are not available (because the light is primarily in the air, not in the solid materials). Another potential advantage of a hollow core is that one can dynamically introduce materials into the core, such as a gas that is to be analyzed for the presence of some substance.

Photonic Bandgap Fibers previous  |  next  |  feedback

Definition: a special type of photonic crystal fibers, relying on photonic bandgaps

Photonic bandgap fibers constitute a special type of photonic crystal fibers. In contrast to the situation in an ordinary optical fiber, the guiding mechanism in a photonic bandgap fiber is not based on an increased refractive index of the fiber core, but on a photonic bandgap. Essentially, the guidance is provided by a kind of two-dimensional Bragg mirror structure around the core, which does not allow light to escape in the radial direction – at least in one or a few a limited wavelength ranges.

Page 30:  · Web viewPhotonics is approximately synonymous with quantum optics, quantum electronics, electro-optics, and optoelectronics. However each is used with slightly different connotations

The refractive index of the core itself can be lower than that of the cladding structure; it can even be hollow, so that its refractive index is that of air (close to 1). As most of the light is then propagating in air rather than in glass (air-guiding fibers), such kinds of hollow-core photonic bandgap fibers have a very weak nonlinearity, which makes them promising e.g. for the dispersive compression of ultrashort pulses with high peak power, or for the delivery of high-power laser beams. However, photonic bandgap fibers are generally more difficult to produce due to their tight fabrication tolerances, have a limited bandwidth for low-loss transmission, and often exhibit relatively high propagation losses.