Top Banner
– 1 – Data Converters Oversampling ADC Professor Y. Chiu EECT 7327 Fall 2012 Oversampling ADC
24

– 1 – Data ConvertersOversampling ADCProfessor Y. Chiu EECT 7327Fall 2012 Oversampling ADC.

Mar 29, 2015

Download

Documents

Paula McDermott
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: – 1 – Data ConvertersOversampling ADCProfessor Y. Chiu EECT 7327Fall 2012 Oversampling ADC.

– 1 –

Data Converters Oversampling ADCProfessor Y. Chiu

EECT 7327Fall 2012

Oversampling ADC

Page 2: – 1 – Data ConvertersOversampling ADCProfessor Y. Chiu EECT 7327Fall 2012 Oversampling ADC.

Nyquist-Rate ADC

– 2 –

Data Converters Oversampling ADCProfessor Y. Chiu

EECT 7327Fall 2012

• The “black box” version of the quantization process

• Digitizes the input signal up to the Nyquist frequency (fs/2)

• Minimum sampling frequency (fs) for a given input bandwidth

• Each sample is digitized to the maximum resolution of the converter

A/Dbn

Digital outputAnalog input

b1...

Vref

fs

Page 3: – 1 – Data ConvertersOversampling ADCProfessor Y. Chiu EECT 7327Fall 2012 Oversampling ADC.

Anti-Aliasing Filter (AAF)

– 3 –

Data Converters Oversampling ADCProfessor Y. Chiu

EECT 7327Fall 2012

• Input signal must be band-limited prior to sampling

• Nyquist sampling places stringent requirement on the roll-off characteristic of AAF

• Often some oversampling is employed to relax the AAF design (better phase response too)

• Decimation filter (digital) can be linear-phase

Mfs

PSD

PSD

f

ffm

fm

PSD

ffm=fs/2

fs

AAF

AAFDF

Page 4: – 1 – Data ConvertersOversampling ADCProfessor Y. Chiu EECT 7327Fall 2012 Oversampling ADC.

Oversampling ADC

– 4 –

Data Converters Oversampling ADCProfessor Y. Chiu

EECT 7327Fall 2012

• Sample rate is well beyond the signal bandwidth

• Coarse quantization is combined with feedback to provide an accurate estimate of the input signal on an “average” sense

• Quantization error in the coarse digital output can be removed by the digital decimation filter

• The resolution/accuracy of oversampling converters is achieved in a sequence of samples (“average” sense) rather than a single sample; the usual concept of DNL and INL of Nyquist converters are not applicable

OSR

Decimation filter

bn

b1

...A/D

Digital outputAnalog input

d1

Vref

fs

Page 5: – 1 – Data ConvertersOversampling ADCProfessor Y. Chiu EECT 7327Fall 2012 Oversampling ADC.

Relaxed AAF Requirement

– 5 –

Data Converters Oversampling ADCProfessor Y. Chiu

EECT 7327Fall 2012

• Nyquist-rate converters

• Oversampling converters

|X(jf)|

f2fs 3fsfm=fs/2 fs/2

|X(jf)|

ffm

|X(jf)|

f2fs 3fs

Sub-sampling Band-pass oversampling

fs/2

|X(jf)|

f

OSR = fs/2fm

Page 6: – 1 – Data ConvertersOversampling ADCProfessor Y. Chiu EECT 7327Fall 2012 Oversampling ADC.

Oversampling ADC

– 6 –

Data Converters Oversampling ADCProfessor Y. Chiu

EECT 7327Fall 2012

• Predictive type– Delta modulation

• Noise-shaping type– Sigma-delta modulation– Multi-level (quantization) sigma-delta modulation– Multi-stage (cascaded) sigma-delta modulation (MASH)

Page 7: – 1 – Data ConvertersOversampling ADCProfessor Y. Chiu EECT 7327Fall 2012 Oversampling ADC.

Oversampling

– 7 –

Data Converters Oversampling ADCProfessor Y. Chiu

EECT 7327Fall 2012

PSD

f-fs/2

A/Dbn

b1

... M

Decimation filter

bn

b1

...

fs

A/D

Mfs

fs/2

Δ2/12PSD

f-Mfs/2 Mfs/2

Δ2/12

-fs/2 fs/2

Nyquist Oversampled

Sample rate Noise power Power

Nyquist fs Δ2/12 P

Oversampled M*fs (Δ2/12)/M M*P

OSR = M

Page 8: – 1 – Data ConvertersOversampling ADCProfessor Y. Chiu EECT 7327Fall 2012 Oversampling ADC.

Noise Shaping

– 8 –

Data Converters Oversampling ADCProfessor Y. Chiu

EECT 7327Fall 2012

PSD

f-Mfs/2 Mfs/2-fs/2 fs/2

Push noise out of signal band

Large gain @ LF, low gain @ HF→ Integrator?

A/DH(f)

Mfs

Vi

e

Vi

1 2H(f)

1 2

e e

― H(f)

fMfs/2fs/2

1― H-1(f)

Page 9: – 1 – Data ConvertersOversampling ADCProfessor Y. Chiu EECT 7327Fall 2012 Oversampling ADC.

Sigma-Delta (ΣΔ) Modulator

– 9 –

Data Converters Oversampling ADCProfessor Y. Chiu

EECT 7327Fall 2012

A/D∫Vi

D/A

Do

Δ

• Noise shaping obtained with an integrator

• Output subtracted from input to avoid integrator saturation

First-orderΣΔ modulator

z-1Σ

A/D∫Vi

D/A

Do

Δ

Page 10: – 1 – Data ConvertersOversampling ADCProfessor Y. Chiu EECT 7327Fall 2012 Oversampling ADC.

Linearized Discrete-Time Model

– 10 –

Data Converters Oversampling ADCProfessor Y. Chiu

EECT 7327Fall 2012

H(z)X(z) Y(z)

E(z)

1

1

z1

zH(z)

zEz1zXzzY

zEzH1

1zX

zH1

zHzY

zEzYzXzHzY

11

DelayzzX

zYSTF

:Function Transfer Signal

1

HPz1zE

zYNTF

:Function Transfer Noise

1

Caveat: E(z) may be correlated with X(z) – not “white”!

Page 11: – 1 – Data ConvertersOversampling ADCProfessor Y. Chiu EECT 7327Fall 2012 Oversampling ADC.

First-Order Noise Shaping

– 11 –

Data Converters Oversampling ADCProfessor Y. Chiu

EECT 7327Fall 2012

PSD

ffs/2fm

3

π

f

2f

12

Δ

dff

f2π

2f

1

12

Δ

dff

fπ2sin

2f

1

12

Δ

dfNTF2f

1

12

ΔN

23

s

m2

2f

0 ss

2

2f

0 ss

2

2f

0 s

22e

m

m

m

2 2

2e 3

In - band quantization noise :

Δ πN

12 3M

Doubling OSR (M) increases SQNR by 9 dB (1.5 bit/oct)

2

sf

fπ2sin

Page 12: – 1 – Data ConvertersOversampling ADCProfessor Y. Chiu EECT 7327Fall 2012 Oversampling ADC.

SC Implementation

– 12 –

Data Converters Oversampling ADCProfessor Y. Chiu

EECT 7327Fall 2012

• SC integrator

• 1-bit ADC → simple, ZX detector

• 1-bit feedback DAC → simple, inherently linear

CI

Ф2Ф1

Ф1Ф2

Vi

Do

+VR 1-b DAC-VR

CS

Page 13: – 1 – Data ConvertersOversampling ADCProfessor Y. Chiu EECT 7327Fall 2012 Oversampling ADC.

Second-Order ΣΔ Modulator

– 13 –

Data Converters Oversampling ADCProfessor Y. Chiu

EECT 7327Fall 2012

INT1 INT2

A/D

D/A

Doz-1Vi

2

z-1

2zSTF

:Function Transfer Signal

21z1NTF

:Function Transfer Noise

5

422e 5M

π

12

ΔN

:noise onquantizati band-In

Doubling OSR (M) increases SQNR by 15 dB (2.5 bit/oct)

Page 14: – 1 – Data ConvertersOversampling ADCProfessor Y. Chiu EECT 7327Fall 2012 Oversampling ADC.

2nd-Order ΣΔ Modulator (1-Bit Quantizer)

– 14 –

Data Converters Oversampling ADCProfessor Y. Chiu

EECT 7327Fall 2012

• Simple, stable, highly-linear

• Insensitive to component mismatch

• Less correlation b/t E(z) and X(z)

1-bitA/D

1-bitD/A

Doz-1Vi z-1 βα

2

zE1αz

1zzX

1αz

αzY

2

2

2

jy

z-plane

0 1x

(2) (2)

Page 15: – 1 – Data ConvertersOversampling ADCProfessor Y. Chiu EECT 7327Fall 2012 Oversampling ADC.

Generalization (Lth-Order Noise Shaping)

– 15 –

Data Converters Oversampling ADCProfessor Y. Chiu

EECT 7327Fall 2012

12L

2L22e M12L

π

12

ΔN

:noise onquantizati band-In

zEz1zXzzY

:function transfer ModulatorL1n

• Doubling OSR (M) increases SQNR by (6L+3) dB, or (L+0.5) bit

• Potential instability for 3rd- and higher-order single-loop ΣΔ modulators

2L 1

2L

2L 1 M

π

Page 16: – 1 – Data ConvertersOversampling ADCProfessor Y. Chiu EECT 7327Fall 2012 Oversampling ADC.

ΣΔ vs. Nyquist ADC’s

– 16 –

Data Converters Oversampling ADCProfessor Y. Chiu

EECT 7327Fall 2012

ΣΔ ADC output (1-bit) Nyquist ADC output

• ΣΔ ADC behaves quite differently from Nyquist converters

• Digital codes only display an “average” impression of the input

• INL, DNL, monotonicity, missing code, etc. do not directly apply in ΣΔ converters → use SNR, SNDR, SFDR instead

+1

-1

Page 17: – 1 – Data ConvertersOversampling ADCProfessor Y. Chiu EECT 7327Fall 2012 Oversampling ADC.

Tones

– 17 –

Data Converters Oversampling ADCProfessor Y. Chiu

EECT 7327Fall 2012

...

...

Vi = 0

Vi = 0.001

T

2000*T

• The output spectrum corresponding to Vi = 0 results in a tone at fs/2, and will get eliminated by the decimation filter

• The 2nd output not only has a tone at fs/2, but also a low-frequency tone – fs/2000 – that cannot be eliminated by the decimation filter

Page 18: – 1 – Data ConvertersOversampling ADCProfessor Y. Chiu EECT 7327Fall 2012 Oversampling ADC.

Tones

– 18 –

Data Converters Oversampling ADCProfessor Y. Chiu

EECT 7327Fall 2012

• Origin – the quantization error spectrum of the low-resolution ADC (1-bit in the previous example) in a ΣΔ modulator is NOT white, but correlated with the input signal, especially for idle (DC) inputs.

(R. Gray, “Spectral analysis of sigma-delta quantization noise”)

• Approaches to “whitening” the error spectrum– Dither – high-frequency noise added in the loop to randomize the

quantization error. Drawback is that large dither consumes the input dynamic range.

– Multi-level quantization. Needs linear multi-level DAC.– High-order single-loop ΣΔ modulator. Potentially unstable.– Cascaded (MASH) ΣΔ modulator. Sensitive to mismatch.

Page 19: – 1 – Data ConvertersOversampling ADCProfessor Y. Chiu EECT 7327Fall 2012 Oversampling ADC.

Cascaded (MASH) ΣΔ Modulator

– 19 –

Data Converters Oversampling ADCProfessor Y. Chiu

EECT 7327Fall 2012

H(z)X(z) Y(z)

E(z)

D/A

A/D DNTFE(z)

• Idea: to further quantize E(z) and later subtract out in digital domain

• The 2nd quantizer can be a ΣΔ modulator as well

Page 20: – 1 – Data ConvertersOversampling ADCProfessor Y. Chiu EECT 7327Fall 2012 Oversampling ADC.

2-1 Cascaded Modulator

– 20 –

Data Converters Oversampling ADCProfessor Y. Chiu

EECT 7327Fall 2012

INT1 INT2

z-1X(z)

2

z-1

INT3

z-1 (1-z-1)2

D/A

D/A

E1(z)

E2(z)

z-1 Y(z)

E1(z)

Y1(z)

Y2(z)

DNTF

Page 21: – 1 – Data ConvertersOversampling ADCProfessor Y. Chiu EECT 7327Fall 2012 Oversampling ADC.

2-1 Cascaded Modulator

– 21 –

Data Converters Oversampling ADCProfessor Y. Chiu

EECT 7327Fall 2012

11

2121 zzEz1zXzzY

zEz1zXz

zEz1zEz1zzEz1zzXz

zYzYzY

2

313

2

311

2111

2113

21

212

11

12 z1zEz1zEzzY

• E1(z) completely cancelled assuming perfect matching between the modulator NTF (analog domain) and the DNTF (digital domain)

• A 3rd-order noise shaping on E2(z) obtained

• No potential instability problem

Page 22: – 1 – Data ConvertersOversampling ADCProfessor Y. Chiu EECT 7327Fall 2012 Oversampling ADC.

Integrator Noise

– 22 –

Data Converters Oversampling ADCProfessor Y. Chiu

EECT 7327Fall 2012

2

311

213

212

11 Ez1Ez1δNz1Nz1NXY

INT1 INT2

H(z)X(z)

2

H(z)

INT3

H(z)

D/A

D/A

E1

E2

Y1(z)

Y2(z)

N1 N2

N3

Delay ignored

INT1 dominatesthe overall noise

Performance!

Page 23: – 1 – Data ConvertersOversampling ADCProfessor Y. Chiu EECT 7327Fall 2012 Oversampling ADC.

References

– 23 –

Data Converters Oversampling ADCProfessor Y. Chiu

EECT 7327Fall 2012

1. B. E. Boser and B. A. Wooley, JSSC, pp. 1298-1308, issue 6, 1988.

2. B. H. Leung et al., JSSC, pp. 1351-1357, issue 6, 1988.

3. T. C. Leslie and B. Singh, ISCAS, 1990, pp. 372-375.

4. B. P. Brandt and B. A. Wooley, JSSC, pp. 1746-1756, issue 12, 1991.

5. F. Chen and B. H. Leung, JSSC, pp. 453-460, issue 4, 1995.

6. R. T. Baird and T. S. Fiez, TCAS2, pp. 753-762, issue 12, 1995.

7. T. L. Brooks et al., JSSC, pp. 1896-1906, issue 12, 1997.

8. A. K. Ong and B. A. Wooley, JSSC, pp. 1920-1934, issue 12, 1997.

9. S. A. Jantzi, K. W. Martin, and A.S. Sedra, JSSC, pp. 1935-1950, issue 12, 1997.

10. A. Yasuda, H. Tanimoto, and T. Iida, JSSC, pp. 1879-1886, issue 12, 1998.

11. A. R. Feldman, B. E. Boser, and P. R. Gray, JSSC, pp. 1462-1469, issue 10, 1998.

12. H. Tao and J. M. Khoury, JSSC, pp. 1741-1752, issue 12, 1999.

13. E. J. van der Zwan et al., JSSC, pp. 1810-1819, issue 12, 2000.

14. I. Fujimori et al., JSSC, pp. 1820-1828, issue 12, 2000.

15. Y. Geerts, M.S.J. Steyaert, W. Sansen, JSSC, pp. 1829-1840, issue 12, 2000.

Page 24: – 1 – Data ConvertersOversampling ADCProfessor Y. Chiu EECT 7327Fall 2012 Oversampling ADC.

References

– 24 –

Data Converters Oversampling ADCProfessor Y. Chiu

EECT 7327Fall 2012

16. T. Burger and Q. Huang, JSSC, pp. 1868-1878, issue 12, 2001.

17. K. Vleugels, S. Rabii, and B. A. Wooley, JSSC, pp. 1887-1899, issue 12, 2001.

18. S. K. Gupta and V. Fong, JSSC, pp. 1653-1661, issue 12, 2002.

19. R. Schreier et al., JSSC, pp. 1636-1644, issue 12, 2002.

20. J. Silva et al., CICC, 2002, pp. 183-190.

21. Y.-I. Park et al., CICC, 2003, pp. 115-118.

22. L. J. Breems et al., JSSC, pp. 2152-2160, issue 12, 2004.

23. R. Jiang and T. S. Fiez, JSSC, pp. 63-74, issue 12, 2004.

24. P. Balmelli and Q. Huang, JSSC, pp. 2161-2169, issue 12, 2004.

25. K. Y. Nam et al., CICC, 2004, pp. 515-518.

26. X. Wang et al., CICC, 2004, pp. 523-526.

27. A. Bosi et al., ISSCC, 2005, pp. 174-175.

28. N. Yaghini and D. Johns, ISSCC, 2005, pp. 502-503.

29. G. Mitteregger et al., JSSC, pp. 2641-2649, issue 12, 2006.

30. R. Schreier et al., JSSC, pp. 2632-2640, issue 12, 2006.