TU Darmstadt Inertial Confinement Fusion Dieter H.H. Hoffmann TU / GSI Darmstadt 300. WE-Heraeus Seminar ENERGIEFORSCHUNG 26-28 Mai 2003.

Post on 26-Mar-2015

218 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

Transcript

TU Darmstadt

Inertial Confinement Fusion

Dieter H.H. Hoffmann TU / GSI Darmstadt300. WE-Heraeus SeminarENERGIEFORSCHUNG

26-28 Mai 2003

2TU Darmstadt

3 confinement concepts

3TU Darmstadt

Fusion of Hydrogen Isotopes

Deuterium und Tritium

4TU Darmstadt

Microballoon

Fusion-target

5TU Darmstadt

Principle of inertial fusion

6TU Darmstadt

7TU Darmstadt

n: Particle number density [cm-3]r: density [g/cm3]: Confinement time [s]T: Temperature [keV]R: compressed fuel radius

Lawson Criterion

n 1014 s/cm3 R>1g/cm2

Figure of merit: nT

8TU Darmstadt

9TU Darmstadt

Heavy Ion Target, schematically

10TU Darmstadt

Heavy ion target

11TU Darmstadt

Indirect drive heavy ion target

J. Meyer-ter-Vehn

12TU Darmstadt

Indirect drive heavy ion target

J. Meyer-ter-Vehn

13TU Darmstadt

Symmetry by radiation shields

J. Maruhn, Frankfurt

14TU Darmstadt

National Ignition Facility, LLNL

15TU Darmstadt

16TU Darmstadt

Why heavy ions: Comparison of concepts

17TU Darmstadt

Schematic Fusion Power Plantbased on Heavy Ion Beams

18TU Darmstadt

Anforderungen an einen Beschleuniger für die Trägheitsfusion

Energie pro Puls: E 5 – 10 MJPulslänge: t 5-10 nsPulsleistung: P 1015 W

Teilchenzahl pro Puls bei E0 = 10 GeVUnd Au, Pb, Bi Projektilen:

N 1015

19TU Darmstadt

HIDIF study: Heavy Ion Driverfor Inertial Fusion

20TU Darmstadt

HIDIF

21TU Darmstadt

GSI - Darmstadt

22TU Darmstadt

Present and Future Facilities at GSI

23TU Darmstadt

Energy loss on free and bound electrons

24TU Darmstadt

Conversion of von Laserlightinto soft X-rays forInteraction experiments with heavy ions

Conversion of von Laserlightinto soft X-rays forInteraction experiments with heavy ions

High homogeneity dense plasmas

M. Roth et al.

25TU Darmstadt

Heavy ion beam & targetHeavy ion beam & target

beam

target

volume heatinggasdynamic motion

26TU Darmstadt

Final Focus

TU Darmstadt

Plasma Linse (U. Neuner et al)

focal beam spots

linea

r B-fi

eld

nonlinear B-field

28TU Darmstadt

Nd:Glas Laser Double-pass and Booster Geometry, 31.5cm Beamdiameter: 4-6 kJ Puls Energy @ 10 ns500 J Puls Energy @ 0.5 ps

Petawatt High Energy Laser for Heavy Ion Experiments    

Introduction

29TU Darmstadt

Intense Laser Beam Matter Interaction

LaserBeam

High Energy Ions in Laser Plasma

30TU Darmstadt

31TU Darmstadt

32TU Darmstadt

Target Chamber

11.5 MJ stored energy19 MA peak load current40 TW electrical power to load100-250 TW x-ray power 1-1.8 MJ x-ray energy

Pulsed-power accelerators with z-pinch loads provide efficient time compression and power amplification

Z

33TU Darmstadt

Two complementary approaches to z-pinch-driven capsule implosions are being studied

• Two 60 MA pinches• 380 MJ yield

• 54 MA pinch • 530 MJ yield

• hohlraum energetics• radiation symmetry• pulseshaping• preheat• capsule implosions

Key issues

Both concepts use hohlraum coupling, symmetry, and capsule scaling physics developed in the

indirect-drive laser and ion beam programs

Double-ended hohlraum

Dynamic hohlraum

Recent Progress in ICF Capsule Experiments at Sandia National Laboratories

International Workshop on Physics of High Energy Density in Matter 2003Hirschegg, Austria

Tom Mehlhorn, ManagerTarget & Z-pinch Theory DeptSandia National Laboratories

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL84000.

top related