The 14th Whitney Problems Workshop ๐’ž and Sobolev functions ...

Post on 23-Nov-2021

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

Transcript

The 14th Whitney Problems Workshop๐’ž๐‘š and Sobolev functions on subsets of โ„๐‘›

๐’ž๐‘š SOLUTIONS OF SEMIALGEBRAIC EQUATIONS

Joint work with E. BIERSTONE and P.D. MILMAN

Jean-Baptiste Campesato

August 19, 2021

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 1 / 20

Semialgebraic geometry The problems The results The proof

Semialgebraic geometry โ€“ Definitions

Definition: semialgebraic setsSemialgebraic subsets of โ„๐‘› are elements of the boolean algebra spanned by sets of the form

{๐‘ฅ โˆˆ โ„๐‘› โˆถ ๐‘“(๐‘ฅ) โ‰ฅ 0}

where ๐‘“ โˆˆ โ„[๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›].

RemarkGiven ๐‘“ โˆˆ โ„[๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›], the following sets are semialgebraic

{๐‘ฅ โˆˆ โ„๐‘› โˆถ ๐‘“(๐‘ฅ) > 0} , {๐‘ฅ โˆˆ โ„๐‘› โˆถ ๐‘“(๐‘ฅ) โ‰ค 0} , {๐‘ฅ โˆˆ โ„๐‘› โˆถ ๐‘“(๐‘ฅ) < 0} , {๐‘ฅ โˆˆ โ„๐‘› โˆถ ๐‘“(๐‘ฅ) = 0} , {๐‘ฅ โˆˆ โ„๐‘› โˆถ ๐‘“(๐‘ฅ) โ‰  0}

Definition: semialgebraic functionsLet ๐‘‹ โŠ‚ โ„๐‘›. A function ๐‘“ โˆถ ๐‘‹ โ†’ โ„๐‘ is semialgebraic if its graph ฮ“๐‘“ โŠ‚ โ„๐‘›+๐‘ is semialgebraic.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 2 / 20

Semialgebraic geometry The problems The results The proof

Semialgebraic geometry โ€“ Definitions

Definition: semialgebraic setsSemialgebraic subsets of โ„๐‘› are elements of the boolean algebra spanned by sets of the form

{๐‘ฅ โˆˆ โ„๐‘› โˆถ ๐‘“(๐‘ฅ) โ‰ฅ 0}

where ๐‘“ โˆˆ โ„[๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›].

RemarkGiven ๐‘“ โˆˆ โ„[๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›], the following sets are semialgebraic

{๐‘ฅ โˆˆ โ„๐‘› โˆถ ๐‘“(๐‘ฅ) > 0} , {๐‘ฅ โˆˆ โ„๐‘› โˆถ ๐‘“(๐‘ฅ) โ‰ค 0} , {๐‘ฅ โˆˆ โ„๐‘› โˆถ ๐‘“(๐‘ฅ) < 0} , {๐‘ฅ โˆˆ โ„๐‘› โˆถ ๐‘“(๐‘ฅ) = 0} , {๐‘ฅ โˆˆ โ„๐‘› โˆถ ๐‘“(๐‘ฅ) โ‰  0}

Definition: semialgebraic functionsLet ๐‘‹ โŠ‚ โ„๐‘›. A function ๐‘“ โˆถ ๐‘‹ โ†’ โ„๐‘ is semialgebraic if its graph ฮ“๐‘“ โŠ‚ โ„๐‘›+๐‘ is semialgebraic.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 2 / 20

Semialgebraic geometry The problems The results The proof

Semialgebraic geometry โ€“ Definitions

Definition: semialgebraic setsSemialgebraic subsets of โ„๐‘› are elements of the boolean algebra spanned by sets of the form

{๐‘ฅ โˆˆ โ„๐‘› โˆถ ๐‘“(๐‘ฅ) โ‰ฅ 0}

where ๐‘“ โˆˆ โ„[๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›].

RemarkGiven ๐‘“ โˆˆ โ„[๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›], the following sets are semialgebraic

{๐‘ฅ โˆˆ โ„๐‘› โˆถ ๐‘“(๐‘ฅ) > 0} , {๐‘ฅ โˆˆ โ„๐‘› โˆถ ๐‘“(๐‘ฅ) โ‰ค 0} , {๐‘ฅ โˆˆ โ„๐‘› โˆถ ๐‘“(๐‘ฅ) < 0} , {๐‘ฅ โˆˆ โ„๐‘› โˆถ ๐‘“(๐‘ฅ) = 0} , {๐‘ฅ โˆˆ โ„๐‘› โˆถ ๐‘“(๐‘ฅ) โ‰  0}

Definition: semialgebraic functionsLet ๐‘‹ โŠ‚ โ„๐‘›. A function ๐‘“ โˆถ ๐‘‹ โ†’ โ„๐‘ is semialgebraic if its graph ฮ“๐‘“ โŠ‚ โ„๐‘›+๐‘ is semialgebraic.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 2 / 20

Semialgebraic geometry The problems The results The proof

Semialgebraic geometry โ€“ Definitions

Definition: semialgebraic setsSemialgebraic subsets of โ„๐‘› are elements of the boolean algebra spanned by sets of the form

{๐‘ฅ โˆˆ โ„๐‘› โˆถ ๐‘“(๐‘ฅ) โ‰ฅ 0}

where ๐‘“ โˆˆ โ„[๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›].

RemarkGiven ๐‘“ โˆˆ โ„[๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›], the following sets are semialgebraic

{๐‘ฅ โˆˆ โ„๐‘› โˆถ ๐‘“(๐‘ฅ) > 0} , {๐‘ฅ โˆˆ โ„๐‘› โˆถ ๐‘“(๐‘ฅ) โ‰ค 0} , {๐‘ฅ โˆˆ โ„๐‘› โˆถ ๐‘“(๐‘ฅ) < 0} , {๐‘ฅ โˆˆ โ„๐‘› โˆถ ๐‘“(๐‘ฅ) = 0} , {๐‘ฅ โˆˆ โ„๐‘› โˆถ ๐‘“(๐‘ฅ) โ‰  0}

Definition: semialgebraic functionsLet ๐‘‹ โŠ‚ โ„๐‘›. A function ๐‘“ โˆถ ๐‘‹ โ†’ โ„๐‘ is semialgebraic if its graph ฮ“๐‘“ โŠ‚ โ„๐‘›+๐‘ is semialgebraic.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 2 / 20

Semialgebraic geometry The problems The results The proof

Semialgebraic geometry โ€“ Tarskiโ€“Seidenberg theoremTheorem (Tarskiโ€“Seidenberg): semialgebraic sets are closed under projections

If ๐‘† โŠ‚ โ„๐‘›+1 is semialgebraic then so is ๐œ‹(๐‘†), where ๐œ‹ โˆถ โ„๐‘›+1 โ†’ โ„๐‘›, ๐œ‹(๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›+1) = (๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›).

RemarkIf ๐‘“ โˆถ ๐‘‹ โ†’ โ„๐‘ is semialgebraic then so is ๐‘‹.

Corollary: elimination of quantifiers

Let ๐‘† โŠ‚ โ„๐‘›+1 be semialgebraic, then the following sets are too

{(๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›) โˆˆ โ„๐‘› โˆถ โˆƒ๐‘ฆ, (๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›, ๐‘ฆ) โˆˆ ๐‘†} = ๐œ‹(๐‘†)

{(๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›) โˆˆ โ„๐‘› โˆถ โˆ€๐‘ฆ, (๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›, ๐‘ฆ) โˆˆ ๐‘†} = โ„๐‘› โงต ๐œ‹(โ„๐‘›+1 โงต ๐‘†)

Example

If ๐ด โŠ‚ โ„๐‘› is semialgebraic, then so is ๐ด โ‰”{

๐‘ฅ โˆˆ โ„๐‘› โˆถ โˆ€๐œ€ โˆˆ (0, +โˆž), โˆƒ๐‘ฆ โˆˆ ๐ด,๐‘›

โˆ‘๐‘–=1

(๐‘ฅ๐‘– โˆ’ ๐‘ฆ๐‘–)2 < ๐œ€2}

.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 3 / 20

Semialgebraic geometry The problems The results The proof

Semialgebraic geometry โ€“ Tarskiโ€“Seidenberg theoremTheorem (Tarskiโ€“Seidenberg): semialgebraic sets are closed under projections

If ๐‘† โŠ‚ โ„๐‘›+1 is semialgebraic then so is ๐œ‹(๐‘†), where ๐œ‹ โˆถ โ„๐‘›+1 โ†’ โ„๐‘›, ๐œ‹(๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›+1) = (๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›).

RemarkIf ๐‘“ โˆถ ๐‘‹ โ†’ โ„๐‘ is semialgebraic then so is ๐‘‹.

Corollary: elimination of quantifiers

Let ๐‘† โŠ‚ โ„๐‘›+1 be semialgebraic, then the following sets are too

{(๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›) โˆˆ โ„๐‘› โˆถ โˆƒ๐‘ฆ, (๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›, ๐‘ฆ) โˆˆ ๐‘†} = ๐œ‹(๐‘†)

{(๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›) โˆˆ โ„๐‘› โˆถ โˆ€๐‘ฆ, (๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›, ๐‘ฆ) โˆˆ ๐‘†} = โ„๐‘› โงต ๐œ‹(โ„๐‘›+1 โงต ๐‘†)

Example

If ๐ด โŠ‚ โ„๐‘› is semialgebraic, then so is ๐ด โ‰”{

๐‘ฅ โˆˆ โ„๐‘› โˆถ โˆ€๐œ€ โˆˆ (0, +โˆž), โˆƒ๐‘ฆ โˆˆ ๐ด,๐‘›

โˆ‘๐‘–=1

(๐‘ฅ๐‘– โˆ’ ๐‘ฆ๐‘–)2 < ๐œ€2}

.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 3 / 20

Semialgebraic geometry The problems The results The proof

Semialgebraic geometry โ€“ Tarskiโ€“Seidenberg theoremTheorem (Tarskiโ€“Seidenberg): semialgebraic sets are closed under projections

If ๐‘† โŠ‚ โ„๐‘›+1 is semialgebraic then so is ๐œ‹(๐‘†), where ๐œ‹ โˆถ โ„๐‘›+1 โ†’ โ„๐‘›, ๐œ‹(๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›+1) = (๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›).

RemarkIf ๐‘“ โˆถ ๐‘‹ โ†’ โ„๐‘ is semialgebraic then so is ๐‘‹.

Corollary: elimination of quantifiers

Let ๐‘† โŠ‚ โ„๐‘›+1 be semialgebraic, then the following sets are too

{(๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›) โˆˆ โ„๐‘› โˆถ โˆƒ๐‘ฆ, (๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›, ๐‘ฆ) โˆˆ ๐‘†} = ๐œ‹(๐‘†)

{(๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›) โˆˆ โ„๐‘› โˆถ โˆ€๐‘ฆ, (๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›, ๐‘ฆ) โˆˆ ๐‘†} = โ„๐‘› โงต ๐œ‹(โ„๐‘›+1 โงต ๐‘†)

Example

If ๐ด โŠ‚ โ„๐‘› is semialgebraic, then so is ๐ด โ‰”{

๐‘ฅ โˆˆ โ„๐‘› โˆถ โˆ€๐œ€ โˆˆ (0, +โˆž), โˆƒ๐‘ฆ โˆˆ ๐ด,๐‘›

โˆ‘๐‘–=1

(๐‘ฅ๐‘– โˆ’ ๐‘ฆ๐‘–)2 < ๐œ€2}

.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 3 / 20

Semialgebraic geometry The problems The results The proof

Semialgebraic geometry โ€“ Tarskiโ€“Seidenberg theoremTheorem (Tarskiโ€“Seidenberg): semialgebraic sets are closed under projections

If ๐‘† โŠ‚ โ„๐‘›+1 is semialgebraic then so is ๐œ‹(๐‘†), where ๐œ‹ โˆถ โ„๐‘›+1 โ†’ โ„๐‘›, ๐œ‹(๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›+1) = (๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›).

RemarkIf ๐‘“ โˆถ ๐‘‹ โ†’ โ„๐‘ is semialgebraic then so is ๐‘‹.

Corollary: elimination of quantifiers

Let ๐‘† โŠ‚ โ„๐‘›+1 be semialgebraic, then the following sets are too

{(๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›) โˆˆ โ„๐‘› โˆถ โˆƒ๐‘ฆ, (๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›, ๐‘ฆ) โˆˆ ๐‘†} = ๐œ‹(๐‘†)

{(๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›) โˆˆ โ„๐‘› โˆถ โˆ€๐‘ฆ, (๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›, ๐‘ฆ) โˆˆ ๐‘†} = โ„๐‘› โงต ๐œ‹(โ„๐‘›+1 โงต ๐‘†)

Example

If ๐ด โŠ‚ โ„๐‘› is semialgebraic, then so is ๐ด โ‰”{

๐‘ฅ โˆˆ โ„๐‘› โˆถ โˆ€๐œ€ โˆˆ (0, +โˆž), โˆƒ๐‘ฆ โˆˆ ๐ด,๐‘›

โˆ‘๐‘–=1

(๐‘ฅ๐‘– โˆ’ ๐‘ฆ๐‘–)2 < ๐œ€2}

.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 3 / 20

Semialgebraic geometry The problems The results The proof

A semialgebraic version of Whitneyโ€™s extension theorem

Theorem โ€“ Kurdykaโ€“Pawล‚ucki, 1997, 2014Thamrongthanyalak, 2017Kocel-Cynkโ€“Pawล‚uckiโ€“Valette, 2019

Given a semialgebraic ๐’ž๐‘š Whitney field on a closed subset ๐‘‹ โŠ‚ โ„๐‘›,i.e. a family (๐‘“๐›ผ โˆถ ๐‘‹ โ†’ โ„)๐›ผโˆˆโ„•๐‘›

|๐›ผ|โ‰ค๐‘šof continuous semialgebraic functions such that

โˆ€๐‘ง โˆˆ ๐‘‹, โˆ€๐›ผ โˆˆ โ„•๐‘›, |๐›ผ| โ‰ค ๐‘š โŸน ๐‘“๐›ผ (๐‘ฅ) โˆ’ โˆ‘|๐›ฝ|โ‰ค๐‘šโˆ’|๐›ผ|

๐‘“๐›ผ+๐›ฝ (๐‘ฆ)๐›ฝ! (๐‘ฅ โˆ’ ๐‘ฆ)๐›ฝ = ๐‘œ

๐‘‹โˆ‹๐‘ฅ,๐‘ฆโ†’๐‘ง(โ€–๐‘ฅ โˆ’ ๐‘ฆโ€–๐‘šโˆ’|๐›ผ|) ,

there exists a ๐’ž๐‘š semialgebraic function ๐น โˆถ โ„๐‘› โ†’ โ„ such that ๐ท๐›ผ ๐น|๐‘‹ = ๐‘“๐›ผ and ๐น is Nash on โ„๐‘› โงต ๐‘‹.

Nash โ‰” semialgebraic and analytic.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 4 / 20

Semialgebraic geometry The problems The results The proof

Are there solutions preserving semialgebraicity?

For Whitneyโ€™s Extension Problem

Let ๐‘“ โˆถ ๐‘‹ โ†’ โ„ be a semialgebraic function where ๐‘‹ โŠ‚ โ„๐‘› is closed.If ๐‘“ admits a ๐’ž๐‘š extension ๐น โˆถ โ„๐‘› โ†’ โ„, does it admit a semialgebraic ๐’ž๐‘š extension ๐น โˆถ โ„๐‘› โ†’ โ„?

For the Brennerโ€“Feffermanโ€“Hochsterโ€“Kollรกr Problem

Let ๐‘“1, โ€ฆ , ๐‘“๐‘Ÿ, ๐œ‘ โˆถ โ„๐‘› โ†’ โ„ be semialgebraic functions.If the equation ๐œ‘ = โˆ‘ ๐œ‘๐‘–๐‘“๐‘– admit a ๐’ž๐‘š solution (๐œ‘๐‘–)๐‘–, does it admit a semialgebraic ๐’ž๐‘š solution?

โ€ข Aschenbrennerโ€“Thamrongthanyalak (2019): โˆ€๐‘›, for ๐‘š = 1 and ๐‘š = 0, respectively.โ€ข Feffermanโ€“Luli (2021): โˆ€๐‘š, for ๐‘› = 2.

โ€ข Bierstoneโ€“C.โ€“Milman (2021): โˆ€๐‘›, โˆ€๐‘š, with a loss of differentiability.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 5 / 20

Semialgebraic geometry The problems The results The proof

Are there solutions preserving semialgebraicity?

For Whitneyโ€™s Extension ProblemLet ๐‘“ โˆถ ๐‘‹ โ†’ โ„ be a semialgebraic function where ๐‘‹ โŠ‚ โ„๐‘› is closed.If ๐‘“ admits a ๐’ž๐‘š extension ๐น โˆถ โ„๐‘› โ†’ โ„, does it admit a semialgebraic ๐’ž๐‘š extension ๐น โˆถ โ„๐‘› โ†’ โ„?

For the Brennerโ€“Feffermanโ€“Hochsterโ€“Kollรกr Problem

Let ๐‘“1, โ€ฆ , ๐‘“๐‘Ÿ, ๐œ‘ โˆถ โ„๐‘› โ†’ โ„ be semialgebraic functions.If the equation ๐œ‘ = โˆ‘ ๐œ‘๐‘–๐‘“๐‘– admit a ๐’ž๐‘š solution (๐œ‘๐‘–)๐‘–, does it admit a semialgebraic ๐’ž๐‘š solution?

โ€ข Aschenbrennerโ€“Thamrongthanyalak (2019): โˆ€๐‘›, for ๐‘š = 1 and ๐‘š = 0, respectively.โ€ข Feffermanโ€“Luli (2021): โˆ€๐‘š, for ๐‘› = 2.โ€ข Bierstoneโ€“C.โ€“Milman (2021): โˆ€๐‘›, โˆ€๐‘š, with a loss of differentiability.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 5 / 20

Semialgebraic geometry The problems The results The proof

Are there solutions preserving semialgebraicity?

For Whitneyโ€™s Extension ProblemLet ๐‘“ โˆถ ๐‘‹ โ†’ โ„ be a semialgebraic function where ๐‘‹ โŠ‚ โ„๐‘› is closed.If ๐‘“ admits a ๐’ž๐‘š extension ๐น โˆถ โ„๐‘› โ†’ โ„, does it admit a semialgebraic ๐’ž๐‘š extension ๐น โˆถ โ„๐‘› โ†’ โ„?

For the Brennerโ€“Feffermanโ€“Hochsterโ€“Kollรกr ProblemLet ๐‘“1, โ€ฆ , ๐‘“๐‘Ÿ, ๐œ‘ โˆถ โ„๐‘› โ†’ โ„ be semialgebraic functions.If the equation ๐œ‘ = โˆ‘ ๐œ‘๐‘–๐‘“๐‘– admit a ๐’ž๐‘š solution (๐œ‘๐‘–)๐‘–, does it admit a semialgebraic ๐’ž๐‘š solution?

โ€ข Aschenbrennerโ€“Thamrongthanyalak (2019): โˆ€๐‘›, for ๐‘š = 1 and ๐‘š = 0, respectively.โ€ข Feffermanโ€“Luli (2021): โˆ€๐‘š, for ๐‘› = 2.โ€ข Bierstoneโ€“C.โ€“Milman (2021): โˆ€๐‘›, โˆ€๐‘š, with a loss of differentiability.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 5 / 20

Semialgebraic geometry The problems The results The proof

Are there solutions preserving semialgebraicity?

For Whitneyโ€™s Extension ProblemLet ๐‘“ โˆถ ๐‘‹ โ†’ โ„ be a semialgebraic function where ๐‘‹ โŠ‚ โ„๐‘› is closed.If ๐‘“ admits a ๐’ž๐‘š extension ๐น โˆถ โ„๐‘› โ†’ โ„, does it admit a semialgebraic ๐’ž๐‘š extension ๐น โˆถ โ„๐‘› โ†’ โ„?

For the Brennerโ€“Feffermanโ€“Hochsterโ€“Kollรกr ProblemLet ๐‘“1, โ€ฆ , ๐‘“๐‘Ÿ, ๐œ‘ โˆถ โ„๐‘› โ†’ โ„ be semialgebraic functions.If the equation ๐œ‘ = โˆ‘ ๐œ‘๐‘–๐‘“๐‘– admit a ๐’ž๐‘š solution (๐œ‘๐‘–)๐‘–, does it admit a semialgebraic ๐’ž๐‘š solution?

โ€ข Aschenbrennerโ€“Thamrongthanyalak (2019): โˆ€๐‘›, for ๐‘š = 1 and ๐‘š = 0, respectively.โ€ข Feffermanโ€“Luli (2021): โˆ€๐‘š, for ๐‘› = 2.โ€ข Bierstoneโ€“C.โ€“Milman (2021): โˆ€๐‘›, โˆ€๐‘š, with a loss of differentiability.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 5 / 20

Semialgebraic geometry The problems The results The proof

Strategy for the semialgebraic ๐’ž1 extension problem(Aschenbrennerโ€“Thamrongthanyalak, 2019)

Let ๐‘“ โˆถ ๐‘‹ โ†’ โ„ be a semialgebraic function admitting a ๐’ž1 extension ๐น โˆถ โ„๐‘› โ†’ โ„.

โ€ข Set ๐‘† โ‰” {(๐‘ฅ, ๐‘ฆ, ๐‘ฃ) โˆˆ โ„๐‘› ร— โ„ ร— โ„๐‘› โˆถ ๐‘ฅ โˆˆ ๐‘‹, ๐‘ฆ = ๐‘“(๐‘ฅ),โˆ€๐œ€ > 0, โˆ€๐›ฟ > 0, โˆ€๐‘Ž, ๐‘ โˆˆ ๐ต๐›ฟ (๐‘ฅ), |๐‘“ (๐‘) โˆ’ ๐‘“(๐‘Ž) โˆ’ ๐‘ฃ โ‹… (๐‘ โˆ’ ๐‘Ž)| โ‰ค ๐œ€โ€–๐‘ โˆ’ ๐‘Žโ€–}.

โ€ข Then ๐‘† is semialgebraic, and, โˆ€๐‘ฅ โˆˆ ๐‘‹, (๐‘ฅ, ๐น (๐‘ฅ), โˆ‡๐น (๐‘ฅ)) โˆˆ ๐‘†.โ€ข Semialgebraic Michaelโ€™s Selection Lemma:

there exists ๐œŽ โˆถ ๐‘‹ โ†’ ๐‘† semialgebraic and continuous such that ๐œ‹๐‘ฅ โˆ˜ ๐œŽ = id where ๐œ‹๐‘ฅ(๐‘ฅ, ๐‘ฆ, ๐‘ฃ) = ๐‘ฅ.โ€ข Set ๐บ โ‰” ๐œ‹๐‘ฃ โˆ˜ ๐œŽ โˆถ โ„๐‘› โ†’ โ„๐‘› where ๐œ‹๐‘ฃ(๐‘ฅ, ๐‘ฆ, ๐‘ฃ) = ๐‘ฃ, then ๐บ is semialgebraic, continuous and satisfies

โˆ€๐‘ โˆˆ ๐‘‹, ๐‘“(๐‘) = ๐‘“(๐‘Ž) + ๐บ(๐‘Ž) โ‹… (๐‘ โˆ’ ๐‘Ž) + ๐‘œ๐‘‹โˆ‹๐‘Ž,๐‘โ†’๐‘

(โ€–๐‘ โˆ’ ๐‘Žโ€–). โ– 

This strategy does not generalize to ๐‘š > 1 since the unknown (๐‘“๐›ผ )๐›ผโˆˆโ„•๐‘›โงต{0}|๐›ผ|โ‰ค๐‘š

canโ€™t be described as a section.

For instance, if ๐‘š = 2, ๐‘“e๐‘–needs to satisfy

๐‘“e๐‘– (๐‘) = ๐‘“e๐‘– (๐‘Ž) +๐‘›

โˆ‘๐‘—=1

๐‘“e๐‘–+e๐‘— (๐‘Ž)(๐‘๐‘— โˆ’ ๐‘Ž๐‘—) + ๐‘œ๐‘‹โˆ‹๐‘Ž,๐‘โ†’๐‘

(โ€–๐‘ โˆ’ ๐‘Žโ€–).

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 6 / 20

Semialgebraic geometry The problems The results The proof

Strategy for the semialgebraic ๐’ž1 extension problem(Aschenbrennerโ€“Thamrongthanyalak, 2019)

Let ๐‘“ โˆถ ๐‘‹ โ†’ โ„ be a semialgebraic function admitting a ๐’ž1 extension ๐น โˆถ โ„๐‘› โ†’ โ„.

โ€ข Set ๐‘† โ‰” {(๐‘ฅ, ๐‘ฆ, ๐‘ฃ) โˆˆ โ„๐‘› ร— โ„ ร— โ„๐‘› โˆถ ๐‘ฅ โˆˆ ๐‘‹, ๐‘ฆ = ๐‘“(๐‘ฅ),โˆ€๐œ€ > 0, โˆ€๐›ฟ > 0, โˆ€๐‘Ž, ๐‘ โˆˆ ๐ต๐›ฟ (๐‘ฅ), |๐‘“ (๐‘) โˆ’ ๐‘“(๐‘Ž) โˆ’ ๐‘ฃ โ‹… (๐‘ โˆ’ ๐‘Ž)| โ‰ค ๐œ€โ€–๐‘ โˆ’ ๐‘Žโ€–}.

โ€ข Then ๐‘† is semialgebraic, and, โˆ€๐‘ฅ โˆˆ ๐‘‹, (๐‘ฅ, ๐น (๐‘ฅ), โˆ‡๐น (๐‘ฅ)) โˆˆ ๐‘†.โ€ข Semialgebraic Michaelโ€™s Selection Lemma:

there exists ๐œŽ โˆถ ๐‘‹ โ†’ ๐‘† semialgebraic and continuous such that ๐œ‹๐‘ฅ โˆ˜ ๐œŽ = id where ๐œ‹๐‘ฅ(๐‘ฅ, ๐‘ฆ, ๐‘ฃ) = ๐‘ฅ.โ€ข Set ๐บ โ‰” ๐œ‹๐‘ฃ โˆ˜ ๐œŽ โˆถ โ„๐‘› โ†’ โ„๐‘› where ๐œ‹๐‘ฃ(๐‘ฅ, ๐‘ฆ, ๐‘ฃ) = ๐‘ฃ, then ๐บ is semialgebraic, continuous and satisfies

โˆ€๐‘ โˆˆ ๐‘‹, ๐‘“(๐‘) = ๐‘“(๐‘Ž) + ๐บ(๐‘Ž) โ‹… (๐‘ โˆ’ ๐‘Ž) + ๐‘œ๐‘‹โˆ‹๐‘Ž,๐‘โ†’๐‘

(โ€–๐‘ โˆ’ ๐‘Žโ€–). โ– 

This strategy does not generalize to ๐‘š > 1 since the unknown (๐‘“๐›ผ )๐›ผโˆˆโ„•๐‘›โงต{0}|๐›ผ|โ‰ค๐‘š

canโ€™t be described as a section.

For instance, if ๐‘š = 2, ๐‘“e๐‘–needs to satisfy

๐‘“e๐‘– (๐‘) = ๐‘“e๐‘– (๐‘Ž) +๐‘›

โˆ‘๐‘—=1

๐‘“e๐‘–+e๐‘— (๐‘Ž)(๐‘๐‘— โˆ’ ๐‘Ž๐‘—) + ๐‘œ๐‘‹โˆ‹๐‘Ž,๐‘โ†’๐‘

(โ€–๐‘ โˆ’ ๐‘Žโ€–).

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 6 / 20

Semialgebraic geometry The problems The results The proof

Strategy for the semialgebraic ๐’ž1 extension problem(Aschenbrennerโ€“Thamrongthanyalak, 2019)

Let ๐‘“ โˆถ ๐‘‹ โ†’ โ„ be a semialgebraic function admitting a ๐’ž1 extension ๐น โˆถ โ„๐‘› โ†’ โ„.

โ€ข Set ๐‘† โ‰” {(๐‘ฅ, ๐‘ฆ, ๐‘ฃ) โˆˆ โ„๐‘› ร— โ„ ร— โ„๐‘› โˆถ ๐‘ฅ โˆˆ ๐‘‹, ๐‘ฆ = ๐‘“(๐‘ฅ),โˆ€๐œ€ > 0, โˆ€๐›ฟ > 0, โˆ€๐‘Ž, ๐‘ โˆˆ ๐ต๐›ฟ (๐‘ฅ), |๐‘“ (๐‘) โˆ’ ๐‘“(๐‘Ž) โˆ’ ๐‘ฃ โ‹… (๐‘ โˆ’ ๐‘Ž)| โ‰ค ๐œ€โ€–๐‘ โˆ’ ๐‘Žโ€–}.

โ€ข Then ๐‘† is semialgebraic,

and, โˆ€๐‘ฅ โˆˆ ๐‘‹, (๐‘ฅ, ๐น (๐‘ฅ), โˆ‡๐น (๐‘ฅ)) โˆˆ ๐‘†.โ€ข Semialgebraic Michaelโ€™s Selection Lemma:

there exists ๐œŽ โˆถ ๐‘‹ โ†’ ๐‘† semialgebraic and continuous such that ๐œ‹๐‘ฅ โˆ˜ ๐œŽ = id where ๐œ‹๐‘ฅ(๐‘ฅ, ๐‘ฆ, ๐‘ฃ) = ๐‘ฅ.โ€ข Set ๐บ โ‰” ๐œ‹๐‘ฃ โˆ˜ ๐œŽ โˆถ โ„๐‘› โ†’ โ„๐‘› where ๐œ‹๐‘ฃ(๐‘ฅ, ๐‘ฆ, ๐‘ฃ) = ๐‘ฃ, then ๐บ is semialgebraic, continuous and satisfies

โˆ€๐‘ โˆˆ ๐‘‹, ๐‘“(๐‘) = ๐‘“(๐‘Ž) + ๐บ(๐‘Ž) โ‹… (๐‘ โˆ’ ๐‘Ž) + ๐‘œ๐‘‹โˆ‹๐‘Ž,๐‘โ†’๐‘

(โ€–๐‘ โˆ’ ๐‘Žโ€–). โ– 

This strategy does not generalize to ๐‘š > 1 since the unknown (๐‘“๐›ผ )๐›ผโˆˆโ„•๐‘›โงต{0}|๐›ผ|โ‰ค๐‘š

canโ€™t be described as a section.

For instance, if ๐‘š = 2, ๐‘“e๐‘–needs to satisfy

๐‘“e๐‘– (๐‘) = ๐‘“e๐‘– (๐‘Ž) +๐‘›

โˆ‘๐‘—=1

๐‘“e๐‘–+e๐‘— (๐‘Ž)(๐‘๐‘— โˆ’ ๐‘Ž๐‘—) + ๐‘œ๐‘‹โˆ‹๐‘Ž,๐‘โ†’๐‘

(โ€–๐‘ โˆ’ ๐‘Žโ€–).

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 6 / 20

Semialgebraic geometry The problems The results The proof

Strategy for the semialgebraic ๐’ž1 extension problem(Aschenbrennerโ€“Thamrongthanyalak, 2019)

Let ๐‘“ โˆถ ๐‘‹ โ†’ โ„ be a semialgebraic function admitting a ๐’ž1 extension ๐น โˆถ โ„๐‘› โ†’ โ„.

โ€ข Set ๐‘† โ‰” {(๐‘ฅ, ๐‘ฆ, ๐‘ฃ) โˆˆ โ„๐‘› ร— โ„ ร— โ„๐‘› โˆถ ๐‘ฅ โˆˆ ๐‘‹, ๐‘ฆ = ๐‘“(๐‘ฅ),โˆ€๐œ€ > 0, โˆ€๐›ฟ > 0, โˆ€๐‘Ž, ๐‘ โˆˆ ๐ต๐›ฟ (๐‘ฅ), |๐‘“ (๐‘) โˆ’ ๐‘“(๐‘Ž) โˆ’ ๐‘ฃ โ‹… (๐‘ โˆ’ ๐‘Ž)| โ‰ค ๐œ€โ€–๐‘ โˆ’ ๐‘Žโ€–}.

โ€ข Then ๐‘† is semialgebraic, and, โˆ€๐‘ฅ โˆˆ ๐‘‹, (๐‘ฅ, ๐น (๐‘ฅ), โˆ‡๐น (๐‘ฅ)) โˆˆ ๐‘†.

โ€ข Semialgebraic Michaelโ€™s Selection Lemma:there exists ๐œŽ โˆถ ๐‘‹ โ†’ ๐‘† semialgebraic and continuous such that ๐œ‹๐‘ฅ โˆ˜ ๐œŽ = id where ๐œ‹๐‘ฅ(๐‘ฅ, ๐‘ฆ, ๐‘ฃ) = ๐‘ฅ.

โ€ข Set ๐บ โ‰” ๐œ‹๐‘ฃ โˆ˜ ๐œŽ โˆถ โ„๐‘› โ†’ โ„๐‘› where ๐œ‹๐‘ฃ(๐‘ฅ, ๐‘ฆ, ๐‘ฃ) = ๐‘ฃ, then ๐บ is semialgebraic, continuous and satisfiesโˆ€๐‘ โˆˆ ๐‘‹, ๐‘“(๐‘) = ๐‘“(๐‘Ž) + ๐บ(๐‘Ž) โ‹… (๐‘ โˆ’ ๐‘Ž) + ๐‘œ

๐‘‹โˆ‹๐‘Ž,๐‘โ†’๐‘(โ€–๐‘ โˆ’ ๐‘Žโ€–). โ– 

This strategy does not generalize to ๐‘š > 1 since the unknown (๐‘“๐›ผ )๐›ผโˆˆโ„•๐‘›โงต{0}|๐›ผ|โ‰ค๐‘š

canโ€™t be described as a section.

For instance, if ๐‘š = 2, ๐‘“e๐‘–needs to satisfy

๐‘“e๐‘– (๐‘) = ๐‘“e๐‘– (๐‘Ž) +๐‘›

โˆ‘๐‘—=1

๐‘“e๐‘–+e๐‘— (๐‘Ž)(๐‘๐‘— โˆ’ ๐‘Ž๐‘—) + ๐‘œ๐‘‹โˆ‹๐‘Ž,๐‘โ†’๐‘

(โ€–๐‘ โˆ’ ๐‘Žโ€–).

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 6 / 20

Semialgebraic geometry The problems The results The proof

Strategy for the semialgebraic ๐’ž1 extension problem(Aschenbrennerโ€“Thamrongthanyalak, 2019)

Let ๐‘“ โˆถ ๐‘‹ โ†’ โ„ be a semialgebraic function admitting a ๐’ž1 extension ๐น โˆถ โ„๐‘› โ†’ โ„.

โ€ข Set ๐‘† โ‰” {(๐‘ฅ, ๐‘ฆ, ๐‘ฃ) โˆˆ โ„๐‘› ร— โ„ ร— โ„๐‘› โˆถ ๐‘ฅ โˆˆ ๐‘‹, ๐‘ฆ = ๐‘“(๐‘ฅ),โˆ€๐œ€ > 0, โˆ€๐›ฟ > 0, โˆ€๐‘Ž, ๐‘ โˆˆ ๐ต๐›ฟ (๐‘ฅ), |๐‘“ (๐‘) โˆ’ ๐‘“(๐‘Ž) โˆ’ ๐‘ฃ โ‹… (๐‘ โˆ’ ๐‘Ž)| โ‰ค ๐œ€โ€–๐‘ โˆ’ ๐‘Žโ€–}.

โ€ข Then ๐‘† is semialgebraic, and, โˆ€๐‘ฅ โˆˆ ๐‘‹, (๐‘ฅ, ๐น (๐‘ฅ), โˆ‡๐น (๐‘ฅ)) โˆˆ ๐‘†.โ€ข Semialgebraic Michaelโ€™s Selection Lemma:

there exists ๐œŽ โˆถ ๐‘‹ โ†’ ๐‘† semialgebraic and continuous such that ๐œ‹๐‘ฅ โˆ˜ ๐œŽ = id where ๐œ‹๐‘ฅ(๐‘ฅ, ๐‘ฆ, ๐‘ฃ) = ๐‘ฅ.

โ€ข Set ๐บ โ‰” ๐œ‹๐‘ฃ โˆ˜ ๐œŽ โˆถ โ„๐‘› โ†’ โ„๐‘› where ๐œ‹๐‘ฃ(๐‘ฅ, ๐‘ฆ, ๐‘ฃ) = ๐‘ฃ, then ๐บ is semialgebraic, continuous and satisfiesโˆ€๐‘ โˆˆ ๐‘‹, ๐‘“(๐‘) = ๐‘“(๐‘Ž) + ๐บ(๐‘Ž) โ‹… (๐‘ โˆ’ ๐‘Ž) + ๐‘œ

๐‘‹โˆ‹๐‘Ž,๐‘โ†’๐‘(โ€–๐‘ โˆ’ ๐‘Žโ€–). โ– 

This strategy does not generalize to ๐‘š > 1 since the unknown (๐‘“๐›ผ )๐›ผโˆˆโ„•๐‘›โงต{0}|๐›ผ|โ‰ค๐‘š

canโ€™t be described as a section.

For instance, if ๐‘š = 2, ๐‘“e๐‘–needs to satisfy

๐‘“e๐‘– (๐‘) = ๐‘“e๐‘– (๐‘Ž) +๐‘›

โˆ‘๐‘—=1

๐‘“e๐‘–+e๐‘— (๐‘Ž)(๐‘๐‘— โˆ’ ๐‘Ž๐‘—) + ๐‘œ๐‘‹โˆ‹๐‘Ž,๐‘โ†’๐‘

(โ€–๐‘ โˆ’ ๐‘Žโ€–).

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 6 / 20

Semialgebraic geometry The problems The results The proof

Strategy for the semialgebraic ๐’ž1 extension problem(Aschenbrennerโ€“Thamrongthanyalak, 2019)

Let ๐‘“ โˆถ ๐‘‹ โ†’ โ„ be a semialgebraic function admitting a ๐’ž1 extension ๐น โˆถ โ„๐‘› โ†’ โ„.

โ€ข Set ๐‘† โ‰” {(๐‘ฅ, ๐‘ฆ, ๐‘ฃ) โˆˆ โ„๐‘› ร— โ„ ร— โ„๐‘› โˆถ ๐‘ฅ โˆˆ ๐‘‹, ๐‘ฆ = ๐‘“(๐‘ฅ),โˆ€๐œ€ > 0, โˆ€๐›ฟ > 0, โˆ€๐‘Ž, ๐‘ โˆˆ ๐ต๐›ฟ (๐‘ฅ), |๐‘“ (๐‘) โˆ’ ๐‘“(๐‘Ž) โˆ’ ๐‘ฃ โ‹… (๐‘ โˆ’ ๐‘Ž)| โ‰ค ๐œ€โ€–๐‘ โˆ’ ๐‘Žโ€–}.

โ€ข Then ๐‘† is semialgebraic, and, โˆ€๐‘ฅ โˆˆ ๐‘‹, (๐‘ฅ, ๐น (๐‘ฅ), โˆ‡๐น (๐‘ฅ)) โˆˆ ๐‘†.โ€ข Semialgebraic Michaelโ€™s Selection Lemma:

there exists ๐œŽ โˆถ ๐‘‹ โ†’ ๐‘† semialgebraic and continuous such that ๐œ‹๐‘ฅ โˆ˜ ๐œŽ = id where ๐œ‹๐‘ฅ(๐‘ฅ, ๐‘ฆ, ๐‘ฃ) = ๐‘ฅ.โ€ข Set ๐บ โ‰” ๐œ‹๐‘ฃ โˆ˜ ๐œŽ โˆถ โ„๐‘› โ†’ โ„๐‘› where ๐œ‹๐‘ฃ(๐‘ฅ, ๐‘ฆ, ๐‘ฃ) = ๐‘ฃ, then ๐บ is semialgebraic, continuous and satisfies

โˆ€๐‘ โˆˆ ๐‘‹, ๐‘“(๐‘) = ๐‘“(๐‘Ž) + ๐บ(๐‘Ž) โ‹… (๐‘ โˆ’ ๐‘Ž) + ๐‘œ๐‘‹โˆ‹๐‘Ž,๐‘โ†’๐‘

(โ€–๐‘ โˆ’ ๐‘Žโ€–). โ– 

This strategy does not generalize to ๐‘š > 1 since the unknown (๐‘“๐›ผ )๐›ผโˆˆโ„•๐‘›โงต{0}|๐›ผ|โ‰ค๐‘š

canโ€™t be described as a section.

For instance, if ๐‘š = 2, ๐‘“e๐‘–needs to satisfy

๐‘“e๐‘– (๐‘) = ๐‘“e๐‘– (๐‘Ž) +๐‘›

โˆ‘๐‘—=1

๐‘“e๐‘–+e๐‘— (๐‘Ž)(๐‘๐‘— โˆ’ ๐‘Ž๐‘—) + ๐‘œ๐‘‹โˆ‹๐‘Ž,๐‘โ†’๐‘

(โ€–๐‘ โˆ’ ๐‘Žโ€–).

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 6 / 20

Semialgebraic geometry The problems The results The proof

Strategy for the semialgebraic ๐’ž1 extension problem(Aschenbrennerโ€“Thamrongthanyalak, 2019)

Let ๐‘“ โˆถ ๐‘‹ โ†’ โ„ be a semialgebraic function admitting a ๐’ž1 extension ๐น โˆถ โ„๐‘› โ†’ โ„.

โ€ข Set ๐‘† โ‰” {(๐‘ฅ, ๐‘ฆ, ๐‘ฃ) โˆˆ โ„๐‘› ร— โ„ ร— โ„๐‘› โˆถ ๐‘ฅ โˆˆ ๐‘‹, ๐‘ฆ = ๐‘“(๐‘ฅ),โˆ€๐œ€ > 0, โˆ€๐›ฟ > 0, โˆ€๐‘Ž, ๐‘ โˆˆ ๐ต๐›ฟ (๐‘ฅ), |๐‘“ (๐‘) โˆ’ ๐‘“(๐‘Ž) โˆ’ ๐‘ฃ โ‹… (๐‘ โˆ’ ๐‘Ž)| โ‰ค ๐œ€โ€–๐‘ โˆ’ ๐‘Žโ€–}.

โ€ข Then ๐‘† is semialgebraic, and, โˆ€๐‘ฅ โˆˆ ๐‘‹, (๐‘ฅ, ๐น (๐‘ฅ), โˆ‡๐น (๐‘ฅ)) โˆˆ ๐‘†.โ€ข Semialgebraic Michaelโ€™s Selection Lemma:

there exists ๐œŽ โˆถ ๐‘‹ โ†’ ๐‘† semialgebraic and continuous such that ๐œ‹๐‘ฅ โˆ˜ ๐œŽ = id where ๐œ‹๐‘ฅ(๐‘ฅ, ๐‘ฆ, ๐‘ฃ) = ๐‘ฅ.โ€ข Set ๐บ โ‰” ๐œ‹๐‘ฃ โˆ˜ ๐œŽ โˆถ โ„๐‘› โ†’ โ„๐‘› where ๐œ‹๐‘ฃ(๐‘ฅ, ๐‘ฆ, ๐‘ฃ) = ๐‘ฃ, then ๐บ is semialgebraic, continuous and satisfies

โˆ€๐‘ โˆˆ ๐‘‹, ๐‘“(๐‘) = ๐‘“(๐‘Ž) + ๐บ(๐‘Ž) โ‹… (๐‘ โˆ’ ๐‘Ž) + ๐‘œ๐‘‹โˆ‹๐‘Ž,๐‘โ†’๐‘

(โ€–๐‘ โˆ’ ๐‘Žโ€–). โ– 

This strategy does not generalize to ๐‘š > 1 since the unknown (๐‘“๐›ผ )๐›ผโˆˆโ„•๐‘›โงต{0}|๐›ผ|โ‰ค๐‘š

canโ€™t be described as a section.

For instance, if ๐‘š = 2, ๐‘“e๐‘–needs to satisfy

๐‘“e๐‘–(๐‘) = ๐‘“e๐‘–

(๐‘Ž) +๐‘›

โˆ‘๐‘—=1

๐‘“e๐‘–+e๐‘—(๐‘Ž)(๐‘๐‘— โˆ’ ๐‘Ž๐‘—) + ๐‘œ

๐‘‹โˆ‹๐‘Ž,๐‘โ†’๐‘(โ€–๐‘ โˆ’ ๐‘Žโ€–).

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 6 / 20

Semialgebraic geometry The problems The results The proof

Strategy for the planar semialgebraic extension problem (Feffermanโ€“Luli, 2021)

๐‘‹โˆ’ โˆถ ๐‘ฆ = 0

๐‘‹+ โˆถ ๐‘ฆ = ๐œ“(๐‘ฅ) โ‰ค ๐‘ฅ๐‘‹ = ๐‘‹โˆ’ โˆช ๐‘‹+

(0, 0)

Let ๐‘“ โˆถ ๐‘‹ โ†’ โ„ be semialgebraic.

1 Let ๐น โˆถ โ„2 โ†’ โ„ be a ๐’ž๐‘š function such that ๐น|๐‘‹ = ๐‘“ and ๐ฝ(0,0)๐น = 0.Set ๐‘“ โˆ’

๐‘™ (๐‘ฅ) โ‰” ๐œ•๐‘™๐‘ฆ๐น (๐‘ฅ, 0) and ๐‘“ +

๐‘™ (๐‘ฅ) โ‰” ๐œ•๐‘™๐‘ฆ๐น (๐‘ฅ, ๐œ“(๐‘ฅ)). Then

(โˆ—)

โŽงโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽฉ

(๐‘–) ๐‘“ โˆ’0 (๐‘ฅ) = ๐‘“(๐‘ฅ, 0)

(๐‘–๐‘–) ๐‘“ +0 (๐‘ฅ) = ๐‘“(๐‘ฅ, ๐œ“(๐‘ฅ))

(๐‘–๐‘–๐‘–) ๐‘“ +๐‘™ (๐‘ฅ) =

๐‘šโˆ’๐‘™

โˆ‘๐‘˜=0

๐œ“(๐‘ฅ)๐‘˜

๐‘˜! ๐‘“ โˆ’๐‘™+๐‘˜(๐‘ฅ) + ๐‘œ

๐‘ฅโ†’0+(๐œ“(๐‘ฅ)๐‘šโˆ’๐‘™)

(๐‘–๐‘ฃ) ๐‘“ โˆ’๐‘™ (๐‘ฅ) = ๐‘œ

๐‘ฅโ†’0+ (๐‘ฅ๐‘šโˆ’๐‘™)(๐‘ฃ) ๐‘“ +

๐‘™ (๐‘ฅ) = ๐‘œ๐‘ฅโ†’0+ (๐‘ฅ๐‘šโˆ’๐‘™)

2 According to the definable choice: there exist ๐‘“ ยฑ๐‘™ semialgebraic satisfying (โˆ—).

3 Then ๐น (๐‘ฅ, ๐‘ฆ) = ๐œƒโˆ’(๐‘ฅ, ๐‘ฆ)(

๐‘š

โˆ‘๐‘™=0

๐‘“ โˆ’๐‘™ (๐‘ฅ)๐‘™! ๐‘ฆ๐‘™

)+ ๐œƒ+(๐‘ฅ, ๐‘ฆ)

(

๐‘š

โˆ‘๐‘™=0

๐‘“ +๐‘™ (๐‘ฅ)๐‘™! (๐‘ฆ โˆ’ ๐œ“(๐‘ฅ))๐‘™

)is a semialgebraic ๐’ž๐‘š

extension of ๐‘“ in a neighborhood of the origin such that ๐ฝ(0,0) ๐น = 0.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 7 / 20

Semialgebraic geometry The problems The results The proof

Strategy for the planar semialgebraic extension problem (Feffermanโ€“Luli, 2021)

๐‘‹โˆ’ โˆถ ๐‘ฆ = 0

๐‘‹+ โˆถ ๐‘ฆ = ๐œ“(๐‘ฅ) โ‰ค ๐‘ฅ๐‘‹ = ๐‘‹โˆ’ โˆช ๐‘‹+

(0, 0)

Let ๐‘“ โˆถ ๐‘‹ โ†’ โ„ be semialgebraic.1 Let ๐น โˆถ โ„2 โ†’ โ„ be a ๐’ž๐‘š function such that ๐น|๐‘‹ = ๐‘“ and ๐ฝ(0,0)๐น = 0.

Set ๐‘“ โˆ’๐‘™ (๐‘ฅ) โ‰” ๐œ•๐‘™

๐‘ฆ๐น (๐‘ฅ, 0) and ๐‘“ +๐‘™ (๐‘ฅ) โ‰” ๐œ•๐‘™

๐‘ฆ๐น (๐‘ฅ, ๐œ“(๐‘ฅ)). Then

(โˆ—)

โŽงโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽฉ

(๐‘–) ๐‘“ โˆ’0 (๐‘ฅ) = ๐‘“(๐‘ฅ, 0)

(๐‘–๐‘–) ๐‘“ +0 (๐‘ฅ) = ๐‘“(๐‘ฅ, ๐œ“(๐‘ฅ))

(๐‘–๐‘–๐‘–) ๐‘“ +๐‘™ (๐‘ฅ) =

๐‘šโˆ’๐‘™

โˆ‘๐‘˜=0

๐œ“(๐‘ฅ)๐‘˜

๐‘˜! ๐‘“ โˆ’๐‘™+๐‘˜(๐‘ฅ) + ๐‘œ

๐‘ฅโ†’0+(๐œ“(๐‘ฅ)๐‘šโˆ’๐‘™)

(๐‘–๐‘ฃ) ๐‘“ โˆ’๐‘™ (๐‘ฅ) = ๐‘œ

๐‘ฅโ†’0+ (๐‘ฅ๐‘šโˆ’๐‘™)(๐‘ฃ) ๐‘“ +

๐‘™ (๐‘ฅ) = ๐‘œ๐‘ฅโ†’0+ (๐‘ฅ๐‘šโˆ’๐‘™)

2 According to the definable choice: there exist ๐‘“ ยฑ๐‘™ semialgebraic satisfying (โˆ—).

3 Then ๐น (๐‘ฅ, ๐‘ฆ) = ๐œƒโˆ’(๐‘ฅ, ๐‘ฆ)(

๐‘š

โˆ‘๐‘™=0

๐‘“ โˆ’๐‘™ (๐‘ฅ)๐‘™! ๐‘ฆ๐‘™

)+ ๐œƒ+(๐‘ฅ, ๐‘ฆ)

(

๐‘š

โˆ‘๐‘™=0

๐‘“ +๐‘™ (๐‘ฅ)๐‘™! (๐‘ฆ โˆ’ ๐œ“(๐‘ฅ))๐‘™

)is a semialgebraic ๐’ž๐‘š

extension of ๐‘“ in a neighborhood of the origin such that ๐ฝ(0,0) ๐น = 0.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 7 / 20

Semialgebraic geometry The problems The results The proof

Strategy for the planar semialgebraic extension problem (Feffermanโ€“Luli, 2021)

๐‘‹โˆ’ โˆถ ๐‘ฆ = 0

๐‘‹+ โˆถ ๐‘ฆ = ๐œ“(๐‘ฅ) โ‰ค ๐‘ฅ๐‘‹ = ๐‘‹โˆ’ โˆช ๐‘‹+

(0, 0)

Let ๐‘“ โˆถ ๐‘‹ โ†’ โ„ be semialgebraic.1 Let ๐น โˆถ โ„2 โ†’ โ„ be a ๐’ž๐‘š function such that ๐น|๐‘‹ = ๐‘“ and ๐ฝ(0,0)๐น = 0.

Set ๐‘“ โˆ’๐‘™ (๐‘ฅ) โ‰” ๐œ•๐‘™

๐‘ฆ๐น (๐‘ฅ, 0) and ๐‘“ +๐‘™ (๐‘ฅ) โ‰” ๐œ•๐‘™

๐‘ฆ๐น (๐‘ฅ, ๐œ“(๐‘ฅ)).

Then

(โˆ—)

โŽงโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽฉ

(๐‘–) ๐‘“ โˆ’0 (๐‘ฅ) = ๐‘“(๐‘ฅ, 0)

(๐‘–๐‘–) ๐‘“ +0 (๐‘ฅ) = ๐‘“(๐‘ฅ, ๐œ“(๐‘ฅ))

(๐‘–๐‘–๐‘–) ๐‘“ +๐‘™ (๐‘ฅ) =

๐‘šโˆ’๐‘™

โˆ‘๐‘˜=0

๐œ“(๐‘ฅ)๐‘˜

๐‘˜! ๐‘“ โˆ’๐‘™+๐‘˜(๐‘ฅ) + ๐‘œ

๐‘ฅโ†’0+(๐œ“(๐‘ฅ)๐‘šโˆ’๐‘™)

(๐‘–๐‘ฃ) ๐‘“ โˆ’๐‘™ (๐‘ฅ) = ๐‘œ

๐‘ฅโ†’0+ (๐‘ฅ๐‘šโˆ’๐‘™)(๐‘ฃ) ๐‘“ +

๐‘™ (๐‘ฅ) = ๐‘œ๐‘ฅโ†’0+ (๐‘ฅ๐‘šโˆ’๐‘™)

2 According to the definable choice: there exist ๐‘“ ยฑ๐‘™ semialgebraic satisfying (โˆ—).

3 Then ๐น (๐‘ฅ, ๐‘ฆ) = ๐œƒโˆ’(๐‘ฅ, ๐‘ฆ)(

๐‘š

โˆ‘๐‘™=0

๐‘“ โˆ’๐‘™ (๐‘ฅ)๐‘™! ๐‘ฆ๐‘™

)+ ๐œƒ+(๐‘ฅ, ๐‘ฆ)

(

๐‘š

โˆ‘๐‘™=0

๐‘“ +๐‘™ (๐‘ฅ)๐‘™! (๐‘ฆ โˆ’ ๐œ“(๐‘ฅ))๐‘™

)is a semialgebraic ๐’ž๐‘š

extension of ๐‘“ in a neighborhood of the origin such that ๐ฝ(0,0) ๐น = 0.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 7 / 20

Semialgebraic geometry The problems The results The proof

Strategy for the planar semialgebraic extension problem (Feffermanโ€“Luli, 2021)

๐‘‹โˆ’ โˆถ ๐‘ฆ = 0

๐‘‹+ โˆถ ๐‘ฆ = ๐œ“(๐‘ฅ) โ‰ค ๐‘ฅ๐‘‹ = ๐‘‹โˆ’ โˆช ๐‘‹+

(0, 0)

Let ๐‘“ โˆถ ๐‘‹ โ†’ โ„ be semialgebraic.1 Let ๐น โˆถ โ„2 โ†’ โ„ be a ๐’ž๐‘š function such that ๐น|๐‘‹ = ๐‘“ and ๐ฝ(0,0)๐น = 0.

Set ๐‘“ โˆ’๐‘™ (๐‘ฅ) โ‰” ๐œ•๐‘™

๐‘ฆ๐น (๐‘ฅ, 0) and ๐‘“ +๐‘™ (๐‘ฅ) โ‰” ๐œ•๐‘™

๐‘ฆ๐น (๐‘ฅ, ๐œ“(๐‘ฅ)). Then

(โˆ—)

โŽงโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽฉ

(๐‘–) ๐‘“ โˆ’0 (๐‘ฅ) = ๐‘“(๐‘ฅ, 0)

(๐‘–๐‘–) ๐‘“ +0 (๐‘ฅ) = ๐‘“(๐‘ฅ, ๐œ“(๐‘ฅ))

(๐‘–๐‘–๐‘–) ๐‘“ +๐‘™ (๐‘ฅ) =

๐‘šโˆ’๐‘™

โˆ‘๐‘˜=0

๐œ“(๐‘ฅ)๐‘˜

๐‘˜! ๐‘“ โˆ’๐‘™+๐‘˜(๐‘ฅ) + ๐‘œ

๐‘ฅโ†’0+(๐œ“(๐‘ฅ)๐‘šโˆ’๐‘™)

(๐‘–๐‘ฃ) ๐‘“ โˆ’๐‘™ (๐‘ฅ) = ๐‘œ

๐‘ฅโ†’0+ (๐‘ฅ๐‘šโˆ’๐‘™)(๐‘ฃ) ๐‘“ +

๐‘™ (๐‘ฅ) = ๐‘œ๐‘ฅโ†’0+ (๐‘ฅ๐‘šโˆ’๐‘™)

2 According to the definable choice: there exist ๐‘“ ยฑ๐‘™ semialgebraic satisfying (โˆ—).

3 Then ๐น (๐‘ฅ, ๐‘ฆ) = ๐œƒโˆ’(๐‘ฅ, ๐‘ฆ)(

๐‘š

โˆ‘๐‘™=0

๐‘“ โˆ’๐‘™ (๐‘ฅ)๐‘™! ๐‘ฆ๐‘™

)+ ๐œƒ+(๐‘ฅ, ๐‘ฆ)

(

๐‘š

โˆ‘๐‘™=0

๐‘“ +๐‘™ (๐‘ฅ)๐‘™! (๐‘ฆ โˆ’ ๐œ“(๐‘ฅ))๐‘™

)is a semialgebraic ๐’ž๐‘š

extension of ๐‘“ in a neighborhood of the origin such that ๐ฝ(0,0) ๐น = 0.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 7 / 20

Semialgebraic geometry The problems The results The proof

Strategy for the planar semialgebraic extension problem (Feffermanโ€“Luli, 2021)

๐‘‹โˆ’ โˆถ ๐‘ฆ = 0

๐‘‹+ โˆถ ๐‘ฆ = ๐œ“(๐‘ฅ) โ‰ค ๐‘ฅ๐‘‹ = ๐‘‹โˆ’ โˆช ๐‘‹+

(0, 0)

Let ๐‘“ โˆถ ๐‘‹ โ†’ โ„ be semialgebraic.1 Let ๐น โˆถ โ„2 โ†’ โ„ be a ๐’ž๐‘š function such that ๐น|๐‘‹ = ๐‘“ and ๐ฝ(0,0)๐น = 0.

Set ๐‘“ โˆ’๐‘™ (๐‘ฅ) โ‰” ๐œ•๐‘™

๐‘ฆ๐น (๐‘ฅ, 0) and ๐‘“ +๐‘™ (๐‘ฅ) โ‰” ๐œ•๐‘™

๐‘ฆ๐น (๐‘ฅ, ๐œ“(๐‘ฅ)). Then

(โˆ—)

โŽงโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽฉ

(๐‘–) ๐‘“ โˆ’0 (๐‘ฅ) = ๐‘“(๐‘ฅ, 0)

(๐‘–๐‘–) ๐‘“ +0 (๐‘ฅ) = ๐‘“(๐‘ฅ, ๐œ“(๐‘ฅ))

(๐‘–๐‘–๐‘–) ๐‘“ +๐‘™ (๐‘ฅ) =

๐‘šโˆ’๐‘™

โˆ‘๐‘˜=0

๐œ“(๐‘ฅ)๐‘˜

๐‘˜! ๐‘“ โˆ’๐‘™+๐‘˜(๐‘ฅ) + ๐‘œ

๐‘ฅโ†’0+(๐œ“(๐‘ฅ)๐‘šโˆ’๐‘™)

(๐‘–๐‘ฃ) ๐‘“ โˆ’๐‘™ (๐‘ฅ) = ๐‘œ

๐‘ฅโ†’0+ (๐‘ฅ๐‘šโˆ’๐‘™)(๐‘ฃ) ๐‘“ +

๐‘™ (๐‘ฅ) = ๐‘œ๐‘ฅโ†’0+ (๐‘ฅ๐‘šโˆ’๐‘™)

2 According to the definable choice: there exist ๐‘“ ยฑ๐‘™ semialgebraic satisfying (โˆ—).

3 Then ๐น (๐‘ฅ, ๐‘ฆ) = ๐œƒโˆ’(๐‘ฅ, ๐‘ฆ)(

๐‘š

โˆ‘๐‘™=0

๐‘“ โˆ’๐‘™ (๐‘ฅ)๐‘™! ๐‘ฆ๐‘™

)+ ๐œƒ+(๐‘ฅ, ๐‘ฆ)

(

๐‘š

โˆ‘๐‘™=0

๐‘“ +๐‘™ (๐‘ฅ)๐‘™! (๐‘ฆ โˆ’ ๐œ“(๐‘ฅ))๐‘™

)is a semialgebraic ๐’ž๐‘š

extension of ๐‘“ in a neighborhood of the origin such that ๐ฝ(0,0) ๐น = 0.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 7 / 20

Semialgebraic geometry The problems The results The proof

Strategy for the planar semialgebraic extension problem (Feffermanโ€“Luli, 2021)

๐‘‹โˆ’ โˆถ ๐‘ฆ = 0

๐‘‹+ โˆถ ๐‘ฆ = ๐œ“(๐‘ฅ) โ‰ค ๐‘ฅ๐‘‹ = ๐‘‹โˆ’ โˆช ๐‘‹+

(0, 0)

Let ๐‘“ โˆถ ๐‘‹ โ†’ โ„ be semialgebraic.1 Let ๐น โˆถ โ„2 โ†’ โ„ be a ๐’ž๐‘š function such that ๐น|๐‘‹ = ๐‘“ and ๐ฝ(0,0)๐น = 0.

Set ๐‘“ โˆ’๐‘™ (๐‘ฅ) โ‰” ๐œ•๐‘™

๐‘ฆ๐น (๐‘ฅ, 0) and ๐‘“ +๐‘™ (๐‘ฅ) โ‰” ๐œ•๐‘™

๐‘ฆ๐น (๐‘ฅ, ๐œ“(๐‘ฅ)). Then

(โˆ—)

โŽงโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽฉ

(๐‘–) ๐‘“ โˆ’0 (๐‘ฅ) = ๐‘“(๐‘ฅ, 0)

(๐‘–๐‘–) ๐‘“ +0 (๐‘ฅ) = ๐‘“(๐‘ฅ, ๐œ“(๐‘ฅ))

(๐‘–๐‘–๐‘–) ๐‘“ +๐‘™ (๐‘ฅ) =

๐‘šโˆ’๐‘™

โˆ‘๐‘˜=0

๐œ“(๐‘ฅ)๐‘˜

๐‘˜! ๐‘“ โˆ’๐‘™+๐‘˜(๐‘ฅ) + ๐‘œ

๐‘ฅโ†’0+(๐œ“(๐‘ฅ)๐‘šโˆ’๐‘™)

(๐‘–๐‘ฃ) ๐‘“ โˆ’๐‘™ (๐‘ฅ) = ๐‘œ

๐‘ฅโ†’0+ (๐‘ฅ๐‘šโˆ’๐‘™)(๐‘ฃ) ๐‘“ +

๐‘™ (๐‘ฅ) = ๐‘œ๐‘ฅโ†’0+ (๐‘ฅ๐‘šโˆ’๐‘™)

2 According to the definable choice: there exist ๐‘“ ยฑ๐‘™ semialgebraic satisfying (โˆ—).

3 Then ๐น (๐‘ฅ, ๐‘ฆ) = ๐œƒโˆ’(๐‘ฅ, ๐‘ฆ)(

๐‘š

โˆ‘๐‘™=0

๐‘“ โˆ’๐‘™ (๐‘ฅ)๐‘™! ๐‘ฆ๐‘™

)+ ๐œƒ+(๐‘ฅ, ๐‘ฆ)

(

๐‘š

โˆ‘๐‘™=0

๐‘“ +๐‘™ (๐‘ฅ)๐‘™! (๐‘ฆ โˆ’ ๐œ“(๐‘ฅ))๐‘™

)is a semialgebraic ๐’ž๐‘š

extension of ๐‘“ in a neighborhood of the origin such that ๐ฝ(0,0) ๐น = 0.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 7 / 20

Semialgebraic geometry The problems The results The proof

The main results: statements

Theorem โ€“ Bierstoneโ€“C.โ€“Milman, 2021Given ๐‘‹ โŠ‚ โ„๐‘› closed and semialgebraic, there exists ๐‘Ÿ โˆถ โ„• โ†’ โ„• satisfying the following property:if ๐‘“ โˆถ ๐‘‹ โ†’ โ„ semialgebraic admits a ๐’ž๐‘Ÿ(๐‘š) extension, then it admits a semialgebraic ๐’ž๐‘š extension.

Theorem โ€“ Bierstoneโ€“C.โ€“Milman, 2021Given ๐ด โˆถ โ„๐‘› โ†’ โ„ณ๐‘,๐‘ž(โ„) semialgebraic, there exists ๐‘Ÿ โˆถ โ„• โ†’ โ„• such that:if ๐น โˆถ โ„๐‘› โ†’ โ„๐‘ semialgebraic may be written ๐น (๐‘ฅ) = ๐ด(๐‘ฅ)๐บ(๐‘ฅ) where ๐บ is ๐’ž๐‘Ÿ(๐‘š),then ๐น (๐‘ฅ) = ๐ด(๐‘ฅ)๏ฟฝ๏ฟฝ(๐‘ฅ) where ๏ฟฝ๏ฟฝ(๐‘ฅ) is semialgebraic and ๐’ž๐‘š.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 8 / 20

Semialgebraic geometry The problems The results The proof

The main results: statements

Theorem โ€“ Bierstoneโ€“C.โ€“Milman, 2021Given ๐‘‹ โŠ‚ โ„๐‘› closed and semialgebraic, there exists ๐‘Ÿ โˆถ โ„• โ†’ โ„• satisfying the following property:if ๐‘“ โˆถ ๐‘‹ โ†’ โ„ semialgebraic admits a ๐’ž๐‘Ÿ(๐‘š) extension, then it admits a semialgebraic ๐’ž๐‘š extension.

Theorem โ€“ Bierstoneโ€“C.โ€“Milman, 2021Given ๐ด โˆถ โ„๐‘› โ†’ โ„ณ๐‘,๐‘ž(โ„) semialgebraic, there exists ๐‘Ÿ โˆถ โ„• โ†’ โ„• such that:if ๐น โˆถ โ„๐‘› โ†’ โ„๐‘ semialgebraic may be written ๐น (๐‘ฅ) = ๐ด(๐‘ฅ)๐บ(๐‘ฅ) where ๐บ is ๐’ž๐‘Ÿ(๐‘š),then ๐น (๐‘ฅ) = ๐ด(๐‘ฅ)๏ฟฝ๏ฟฝ(๐‘ฅ) where ๏ฟฝ๏ฟฝ(๐‘ฅ) is semialgebraic and ๐’ž๐‘š.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 8 / 20

Semialgebraic geometry The problems The results The proof

Main results: towards a common generalization

The extension problemLet ๐‘‹ โŠ‚ โ„๐‘› be semialgebraic and closed.

By resolution of singularities, there exists ๐œ‘ โˆถ ๐‘€ โ†’ โ„๐‘›

Nash and proper defined on a Nash manifold suchthat ๐‘‹ = ๐œ‘(๐‘€).

Given ๐‘” โˆถ โ„๐‘› โ†’ โ„ and ๐‘“ โˆถ ๐‘‹ โ†’ โ„, we have๐‘”|๐‘‹ = ๐‘“ if and only if

โˆ€๐‘ฆ โˆˆ ๐‘€, ๐‘”(๐œ‘(๐‘ฆ)) = ๐‘“ (๐‘ฆ)

where ๐‘“ โ‰” ๐‘“ โˆ˜ ๐œ‘.

The equation problemConsider an equation

๐ด(๐‘ฅ)๐บ(๐‘ฅ) = ๐น (๐‘ฅ), ๐‘ฅ โˆˆ โ„๐‘›.

By resolution of singularities, there exists๐œ‘ โˆถ ๐‘€ โ†’ โ„๐‘› Nash and proper defined on a Nashmanifold such that after composition, we get

๐ด(๐‘ฆ)๐บ(๐œ‘(๐‘ฆ)) = ๐น (๐‘ฆ), ๐‘ฆ โˆˆ ๐‘€

where ๐ด โ‰” ๐ด โˆ˜ ๐œ‘ is now Nash and ๐น โ‰” ๐น โˆ˜ ๐œ‘.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 9 / 20

Semialgebraic geometry The problems The results The proof

Main results: towards a common generalization

The extension problemLet ๐‘‹ โŠ‚ โ„๐‘› be semialgebraic and closed.

By resolution of singularities, there exists ๐œ‘ โˆถ ๐‘€ โ†’ โ„๐‘›

Nash and proper defined on a Nash manifold suchthat ๐‘‹ = ๐œ‘(๐‘€).

Given ๐‘” โˆถ โ„๐‘› โ†’ โ„ and ๐‘“ โˆถ ๐‘‹ โ†’ โ„, we have๐‘”|๐‘‹ = ๐‘“ if and only if

โˆ€๐‘ฆ โˆˆ ๐‘€, ๐‘”(๐œ‘(๐‘ฆ)) = ๐‘“ (๐‘ฆ)

where ๐‘“ โ‰” ๐‘“ โˆ˜ ๐œ‘.

The equation problemConsider an equation

๐ด(๐‘ฅ)๐บ(๐‘ฅ) = ๐น (๐‘ฅ), ๐‘ฅ โˆˆ โ„๐‘›.

By resolution of singularities, there exists๐œ‘ โˆถ ๐‘€ โ†’ โ„๐‘› Nash and proper defined on a Nashmanifold such that after composition, we get

๐ด(๐‘ฆ)๐บ(๐œ‘(๐‘ฆ)) = ๐น (๐‘ฆ), ๐‘ฆ โˆˆ ๐‘€

where ๐ด โ‰” ๐ด โˆ˜ ๐œ‘ is now Nash and ๐น โ‰” ๐น โˆ˜ ๐œ‘.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 9 / 20

Semialgebraic geometry The problems The results The proof

The main result

Theorem โ€“ Bierstoneโ€“C.โ€“Milman, 2021Let ๐ด โˆถ โ„๐‘› โ†’ โ„ณ๐‘,๐‘ž(โ„) be Nash and let ๐œ‘ โˆถ ๐‘€ โ†’ โ„๐‘› be Nash and proper defined on ๐‘€ โŠ‚ โ„๐‘ aNash submanifold.Then there exists ๐‘Ÿ โˆถ โ„• โ†’ โ„• satisfying the following property.If ๐‘“ โˆถ ๐‘€ โ†’ โ„๐‘ semialgebraic may be written

๐‘“(๐‘ฅ) = ๐ด(๐‘ฅ)๐‘”(๐œ‘(๐‘ฅ))

for a ๐’ž๐‘Ÿ(๐‘š) function ๐‘” โˆถ โ„๐‘› โ†’ โ„๐‘ž then

๐‘“(๐‘ฅ) = ๐ด(๐‘ฅ) ๐‘”(๐œ‘(๐‘ฅ))

for a semialgebraic ๐’ž๐‘š function ๐‘”.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 10 / 20

Semialgebraic geometry The problems The results The proof

Heart of the proof: induction on dimension

Proposition: the induction stepLet ๐ต โŠ‚ ๐œ‘(๐‘€) be semialgebraic and closed.There exist ๐ตโ€ฒ โŠ‚ ๐ต semialgebraic satisfying dim ๐ตโ€ฒ < dim ๐ต and ๐‘ก โˆถ โ„• โ†’ โ„• such that if

1 ๐‘“ โˆถ ๐‘€ โ†’ โ„๐‘ is ๐’ž๐‘ก(๐‘˜), semialgebraic and ๐‘ก(๐‘˜)-flat on ๐œ‘โˆ’1(๐ตโ€ฒ), and2 ๐‘“ = ๐ด โ‹… (๐‘” โˆ˜ ๐œ‘) admits a ๐’ž๐‘ก(๐‘˜) solution ๐‘”,

then there exists a semialgebraic ๐’ž๐‘˜ function ๐‘” โˆถ โ„๐‘› โ†’ โ„๐‘ž s.t. ๐‘“ โˆ’ ๐ด โ‹… ( ๐‘” โˆ˜ ๐œ‘) is ๐‘˜-flat on ๐œ‘โˆ’1(๐ต).

Then, up to subtracting by ๐ด โ‹… ( ๐‘” โˆ˜ ๐œ‘) on both side, we get an equation

๐‘“ = ๐ด โ‹… (๐‘” โˆ˜ ๐œ‘)

where ๐‘“ is now semialgebraic and ๐‘˜-flat on ๐œ‘โˆ’1(๐ต).

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 11 / 20

Semialgebraic geometry The problems The results The proof

Heart of the proof: induction on dimension

Proposition: the induction stepLet ๐ต โŠ‚ ๐œ‘(๐‘€) be semialgebraic and closed.There exist ๐ตโ€ฒ โŠ‚ ๐ต semialgebraic satisfying dim ๐ตโ€ฒ < dim ๐ต and ๐‘ก โˆถ โ„• โ†’ โ„• such that if

1 ๐‘“ โˆถ ๐‘€ โ†’ โ„๐‘ is ๐’ž๐‘ก(๐‘˜), semialgebraic and ๐‘ก(๐‘˜)-flat on ๐œ‘โˆ’1(๐ตโ€ฒ), and2 ๐‘“ = ๐ด โ‹… (๐‘” โˆ˜ ๐œ‘) admits a ๐’ž๐‘ก(๐‘˜) solution ๐‘”,

then there exists a semialgebraic ๐’ž๐‘˜ function ๐‘” โˆถ โ„๐‘› โ†’ โ„๐‘ž s.t. ๐‘“ โˆ’ ๐ด โ‹… ( ๐‘” โˆ˜ ๐œ‘) is ๐‘˜-flat on ๐œ‘โˆ’1(๐ต).

Then, up to subtracting by ๐ด โ‹… ( ๐‘” โˆ˜ ๐œ‘) on both side, we get an equation

๐‘“ = ๐ด โ‹… (๐‘” โˆ˜ ๐œ‘)

where ๐‘“ is now semialgebraic and ๐‘˜-flat on ๐œ‘โˆ’1(๐ต).

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 11 / 20

Semialgebraic geometry The problems The results The proof

Heart of the proof: induction on dimension

Strategy: construction of a semialgebraic Whitney field

๐บ(๐‘, y) = โˆ‘|๐›ผ|โ‰ค๐‘™

๐‘”๐›ผ (๐‘)๐›ผ! y๐›ผ โˆˆ ๐’ž0(๐ต)[y]

vanishing on ๐ตโ€ฒ such that

โˆ€๐‘ โˆˆ ๐ต โงต ๐ตโ€ฒ, โˆ€๐‘Ž โˆˆ ๐œ‘โˆ’1(๐‘), ๐‘‡ ๐‘™๐‘Ž๐‘“(x) โ‰ก ๐‘‡ ๐‘™

๐‘Ž๐ด(x) ๐บ(๐‘, ๐‘‡ ๐‘™๐‘Ž๐œ‘(x)) mod (x)๐‘™+1โ„JxK๐‘

A - Whitney regularityGiven ๐ต, there exists ๐œŒ โˆˆ โ„• such that if ๐บ is a Whitney field of order ๐‘™ โ‰ฅ ๐‘˜๐œŒ on ๐ต โงต ๐ตโ€ฒ then it is aWhitney field of order ๐‘˜ on ๐ต.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 12 / 20

Semialgebraic geometry The problems The results The proof

Heart of the proof: induction on dimension

Strategy: construction of a semialgebraic Whitney field

๐บ(๐‘, y) = โˆ‘|๐›ผ|โ‰ค๐‘™

๐‘”๐›ผ (๐‘)๐›ผ! y๐›ผ โˆˆ ๐’ž0(๐ต)[y]

vanishing on ๐ตโ€ฒ such that

โˆ€๐‘ โˆˆ ๐ต โงต ๐ตโ€ฒ, โˆ€๐‘Ž โˆˆ ๐œ‘โˆ’1(๐‘), ๐‘‡ ๐‘™๐‘Ž๐‘“(x) โ‰ก ๐‘‡ ๐‘™

๐‘Ž๐ด(x) ๐บ(๐‘, ๐‘‡ ๐‘™๐‘Ž๐œ‘(x)) mod (x)๐‘™+1โ„JxK๐‘

A - Whitney regularityGiven ๐ต, there exists ๐œŒ โˆˆ โ„• such that if ๐บ is a Whitney field of order ๐‘™ โ‰ฅ ๐‘˜๐œŒ on ๐ต โงต ๐ตโ€ฒ then it is aWhitney field of order ๐‘˜ on ๐ต.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 12 / 20

Semialgebraic geometry The problems The results The proof

The module of relations at ๐‘ โˆˆ ๐œ‘(๐‘€)We consider the equation at the level of Taylor polynomials:

๐‘‡ ๐‘Ÿ๐‘Ž ๐‘“(x) โ‰ก ๐‘‡ ๐‘Ÿ

๐‘Ž ๐ด(x) ๐บ(๐‘, ๐‘‡ ๐‘Ÿ๐‘Ž ๐œ‘(x)) mod (x)๐‘Ÿ+1โ„JxK๐‘ (1)

B - Chevalleyโ€™s functionGiven ๐‘™ โˆˆ โ„•, there exists ๐‘Ÿ โ‰ฅ ๐‘™ such that the derivatives of ๐‘” of order โ‰ค ๐‘™ can be expressed interms of the derivatives of ๐‘“ of order โ‰ค ๐‘Ÿ.

Formally, we stratify ๐ต = โจ†๐œmax๐œ=1 ฮ›๐œ such that for each ๐œ, there exists ๐‘Ÿ โ‰ฅ ๐‘™ satisfying

โˆ€๐‘ โˆˆ ฮ›๐œ , ๐œ‹๐‘™(โ„›๐‘Ÿ(๐‘)) = ๐œ‹๐‘™(โ„›๐‘Ÿโˆ’1(๐‘))

whereโ€ข โ„›๐‘Ÿ(๐‘) is the module of relations at ๐‘ โˆˆ ๐œ‘(๐‘€) formed by the ๐บ โˆˆ โ„JyK๐‘ž satisfying the

homogeneous equation associated to (1) for all ๐‘Ž โˆˆ ๐œ‘โˆ’1(๐‘), and,โ€ข ๐œ‹๐‘™ is the truncation up to degree ๐‘™.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 13 / 20

Semialgebraic geometry The problems The results The proof

The module of relations at ๐‘ โˆˆ ๐œ‘(๐‘€)We consider the equation at the level of Taylor polynomials:

๐‘‡ ๐‘Ÿ๐‘Ž ๐‘“(x) โ‰ก ๐‘‡ ๐‘Ÿ

๐‘Ž ๐ด(x) ๐บ(๐‘, ๐‘‡ ๐‘Ÿ๐‘Ž ๐œ‘(x)) mod (x)๐‘Ÿ+1โ„JxK๐‘ (1)

B - Chevalleyโ€™s functionGiven ๐‘™ โˆˆ โ„•, there exists ๐‘Ÿ โ‰ฅ ๐‘™ such that the derivatives of ๐‘” of order โ‰ค ๐‘™ can be expressed interms of the derivatives of ๐‘“ of order โ‰ค ๐‘Ÿ.

Formally, we stratify ๐ต = โจ†๐œmax๐œ=1 ฮ›๐œ such that for each ๐œ, there exists ๐‘Ÿ โ‰ฅ ๐‘™ satisfying

โˆ€๐‘ โˆˆ ฮ›๐œ , ๐œ‹๐‘™(โ„›๐‘Ÿ(๐‘)) = ๐œ‹๐‘™(โ„›๐‘Ÿโˆ’1(๐‘))

whereโ€ข โ„›๐‘Ÿ(๐‘) is the module of relations at ๐‘ โˆˆ ๐œ‘(๐‘€) formed by the ๐บ โˆˆ โ„JyK๐‘ž satisfying the

homogeneous equation associated to (1) for all ๐‘Ž โˆˆ ๐œ‘โˆ’1(๐‘), and,โ€ข ๐œ‹๐‘™ is the truncation up to degree ๐‘™.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 13 / 20

Semialgebraic geometry The problems The results The proof

The module of relations at ๐‘ โˆˆ ๐œ‘(๐‘€)We consider the equation at the level of Taylor polynomials:

๐‘‡ ๐‘Ÿ๐‘Ž ๐‘“(x) โ‰ก ๐‘‡ ๐‘Ÿ

๐‘Ž ๐ด(x) ๐บ(๐‘, ๐‘‡ ๐‘Ÿ๐‘Ž ๐œ‘(x)) mod (x)๐‘Ÿ+1โ„JxK๐‘ (1)

B - Chevalleyโ€™s functionGiven ๐‘™ โˆˆ โ„•, there exists ๐‘Ÿ โ‰ฅ ๐‘™ such that the derivatives of ๐‘” of order โ‰ค ๐‘™ can be expressed interms of the derivatives of ๐‘“ of order โ‰ค ๐‘Ÿ.

Formally, we stratify ๐ต = โจ†๐œmax๐œ=1 ฮ›๐œ such that for each ๐œ, there exists ๐‘Ÿ โ‰ฅ ๐‘™ satisfying

โˆ€๐‘ โˆˆ ฮ›๐œ , ๐œ‹๐‘™(โ„›๐‘Ÿ(๐‘)) = ๐œ‹๐‘™(โ„›๐‘Ÿโˆ’1(๐‘))

whereโ€ข โ„›๐‘Ÿ(๐‘) is the module of relations at ๐‘ โˆˆ ๐œ‘(๐‘€) formed by the ๐บ โˆˆ โ„JyK๐‘ž satisfying the

homogeneous equation associated to (1) for all ๐‘Ž โˆˆ ๐œ‘โˆ’1(๐‘), and,โ€ข ๐œ‹๐‘™ is the truncation up to degree ๐‘™.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 13 / 20

Semialgebraic geometry The problems The results The proof

Hironakaโ€™s formal divisionโ€ข ๐น = โˆ‘ ๐น(๐›ผ,๐‘—)y(๐›ผ,๐‘—) โˆˆ โ„J๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘›K๐‘ where y(๐›ผ,๐‘—) = (0, โ€ฆ , 0, ๐‘ฆ๐›ผ1

1 โ‹ฏ ๐‘ฆ๐›ผ๐‘›๐‘› , 0, โ€ฆ , 0).

โ€ข The set โ„•๐‘› ร— {1, โ€ฆ , ๐‘} โˆ‹ (๐›ผ, ๐‘—) is totally ordered by lex(|๐›ผ|, ๐‘—, ๐›ผ1, โ€ฆ , ๐›ผ๐‘›).โ€ข supp ๐น โ‰” {(๐›ผ, ๐‘—) โˆถ ๐น(๐›ผ,๐‘—) โ‰  0} โ€ข exp ๐น โ‰” min(supp ๐น )

Theorem โ€“ Hironaka 1964, Bierstoneโ€“Milman 1987Let ฮฆ1, โ€ฆ , ฮฆ๐‘ž โˆˆ โ„JyK๐‘.

Set ฮ”1 โ‰” exp ฮฆ1 + โ„•๐‘›, ฮ”๐‘– โ‰” (exp ฮฆ๐‘– + โ„•๐‘›) โงต๐‘–โˆ’1

โ‹ƒ๐‘˜=1

ฮ”๐‘˜, and ฮ” โ‰” (โ„•๐‘› ร— {1, โ€ฆ , ๐‘}) โงต๐‘ž

โ‹ƒ๐‘˜=1

ฮ”๐‘˜.

ฮ”

ฮ”3

ฮ”2

ฮ”1Then โˆ€๐น โˆˆ โ„JyK๐‘, โˆƒ!๐‘„๐‘– โˆˆ โ„JyK, ๐‘… โˆˆ โ„JyK๐‘ such that

โ€ข ๐น =๐‘ž

โˆ‘๐‘–=1

๐‘„๐‘–ฮฆ๐‘– + ๐‘…

โ€ข exp ฮฆ๐‘– + supp ๐‘„๐‘– โŠ‚ ฮ”๐‘–

โ€ข supp ๐‘… โŠ‚ ฮ”

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 14 / 20

Semialgebraic geometry The problems The results The proof

Hironakaโ€™s formal divisionโ€ข ๐น = โˆ‘ ๐น(๐›ผ,๐‘—)y(๐›ผ,๐‘—) โˆˆ โ„J๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘›K๐‘ where y(๐›ผ,๐‘—) = (0, โ€ฆ , 0, ๐‘ฆ๐›ผ1

1 โ‹ฏ ๐‘ฆ๐›ผ๐‘›๐‘› , 0, โ€ฆ , 0).

โ€ข The set โ„•๐‘› ร— {1, โ€ฆ , ๐‘} โˆ‹ (๐›ผ, ๐‘—) is totally ordered by lex(|๐›ผ|, ๐‘—, ๐›ผ1, โ€ฆ , ๐›ผ๐‘›).โ€ข supp ๐น โ‰” {(๐›ผ, ๐‘—) โˆถ ๐น(๐›ผ,๐‘—) โ‰  0} โ€ข exp ๐น โ‰” min(supp ๐น )

Theorem โ€“ Hironaka 1964, Bierstoneโ€“Milman 1987Let ฮฆ1, โ€ฆ , ฮฆ๐‘ž โˆˆ โ„JyK๐‘.

Set ฮ”1 โ‰” exp ฮฆ1 + โ„•๐‘›, ฮ”๐‘– โ‰” (exp ฮฆ๐‘– + โ„•๐‘›) โงต๐‘–โˆ’1

โ‹ƒ๐‘˜=1

ฮ”๐‘˜, and ฮ” โ‰” (โ„•๐‘› ร— {1, โ€ฆ , ๐‘}) โงต๐‘ž

โ‹ƒ๐‘˜=1

ฮ”๐‘˜.

ฮ”

ฮ”3

ฮ”2

ฮ”1Then โˆ€๐น โˆˆ โ„JyK๐‘, โˆƒ!๐‘„๐‘– โˆˆ โ„JyK, ๐‘… โˆˆ โ„JyK๐‘ such that

โ€ข ๐น =๐‘ž

โˆ‘๐‘–=1

๐‘„๐‘–ฮฆ๐‘– + ๐‘…

โ€ข exp ฮฆ๐‘– + supp ๐‘„๐‘– โŠ‚ ฮ”๐‘–

โ€ข supp ๐‘… โŠ‚ ฮ”

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 14 / 20

Semialgebraic geometry The problems The results The proof

Hironakaโ€™s formal divisionโ€ข ๐น = โˆ‘ ๐น(๐›ผ,๐‘—)y(๐›ผ,๐‘—) โˆˆ โ„J๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘›K๐‘ where y(๐›ผ,๐‘—) = (0, โ€ฆ , 0, ๐‘ฆ๐›ผ1

1 โ‹ฏ ๐‘ฆ๐›ผ๐‘›๐‘› , 0, โ€ฆ , 0).

โ€ข The set โ„•๐‘› ร— {1, โ€ฆ , ๐‘} โˆ‹ (๐›ผ, ๐‘—) is totally ordered by lex(|๐›ผ|, ๐‘—, ๐›ผ1, โ€ฆ , ๐›ผ๐‘›).โ€ข supp ๐น โ‰” {(๐›ผ, ๐‘—) โˆถ ๐น(๐›ผ,๐‘—) โ‰  0} โ€ข exp ๐น โ‰” min(supp ๐น )

Theorem โ€“ Hironaka 1964, Bierstoneโ€“Milman 1987Let ฮฆ1, โ€ฆ , ฮฆ๐‘ž โˆˆ โ„JyK๐‘.

Set ฮ”1 โ‰” exp ฮฆ1 + โ„•๐‘›, ฮ”๐‘– โ‰” (exp ฮฆ๐‘– + โ„•๐‘›) โงต๐‘–โˆ’1

โ‹ƒ๐‘˜=1

ฮ”๐‘˜, and ฮ” โ‰” (โ„•๐‘› ร— {1, โ€ฆ , ๐‘}) โงต๐‘ž

โ‹ƒ๐‘˜=1

ฮ”๐‘˜.

ฮ”

ฮ”3

ฮ”2

ฮ”1Then โˆ€๐น โˆˆ โ„JyK๐‘, โˆƒ!๐‘„๐‘– โˆˆ โ„JyK, ๐‘… โˆˆ โ„JyK๐‘ such that

โ€ข ๐น =๐‘ž

โˆ‘๐‘–=1

๐‘„๐‘–ฮฆ๐‘– + ๐‘…

โ€ข exp ฮฆ๐‘– + supp ๐‘„๐‘– โŠ‚ ฮ”๐‘–

โ€ข supp ๐‘… โŠ‚ ฮ”

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 14 / 20

Semialgebraic geometry The problems The results The proof

Diagram of initial exponentsLet ๐‘€ โŠ‚ โ„JyK๐‘ be a โ„JyK-submodule.The diagram of initial exponents of ๐‘€ is

๐’ฉ (๐‘€) โ‰” {exp ๐น โˆถ ๐น โˆˆ ๐‘€ โงต {0}} โŠ‚ โ„•๐‘› ร— {1, โ€ฆ , ๐‘}

Note that ๐’ฉ (๐‘€) has finitely many vertices (๐›ผ๐‘–, ๐‘—๐‘–), ๐‘– = 1, โ€ฆ , ๐‘ž.For each one, we pick a representative ฮฆ๐‘– โˆˆ ๐‘€ , i.e. exp ฮฆ๐‘– = (๐›ผ๐‘–, ๐‘—๐‘–).

CorollaryLet ๐น โˆˆ โ„JyK๐‘. Then ๐น โˆˆ ๐‘€ if and only if its remainder by the formal division w.r.t. the ฮฆ๐‘– is 0.

Particularly ฮฆ1, โ€ฆ , ฮฆ๐‘ž generate ๐‘€ .

Proof. Write ๐น =๐‘ž

โˆ‘๐‘–=1

๐‘„๐‘–ฮฆ๐‘– + ๐‘… with supp ๐‘… โŠ‚ ๐’ฉ (๐‘€)๐‘ . โ– 

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 15 / 20

Semialgebraic geometry The problems The results The proof

Diagram of initial exponentsLet ๐‘€ โŠ‚ โ„JyK๐‘ be a โ„JyK-submodule.The diagram of initial exponents of ๐‘€ is

๐’ฉ (๐‘€) โ‰” {exp ๐น โˆถ ๐น โˆˆ ๐‘€ โงต {0}} โŠ‚ โ„•๐‘› ร— {1, โ€ฆ , ๐‘}

Note that ๐’ฉ (๐‘€) has finitely many vertices (๐›ผ๐‘–, ๐‘—๐‘–), ๐‘– = 1, โ€ฆ , ๐‘ž.For each one, we pick a representative ฮฆ๐‘– โˆˆ ๐‘€ , i.e. exp ฮฆ๐‘– = (๐›ผ๐‘–, ๐‘—๐‘–).

CorollaryLet ๐น โˆˆ โ„JyK๐‘. Then ๐น โˆˆ ๐‘€ if and only if its remainder by the formal division w.r.t. the ฮฆ๐‘– is 0.

Particularly ฮฆ1, โ€ฆ , ฮฆ๐‘ž generate ๐‘€ .

Proof. Write ๐น =๐‘ž

โˆ‘๐‘–=1

๐‘„๐‘–ฮฆ๐‘– + ๐‘… with supp ๐‘… โŠ‚ ๐’ฉ (๐‘€)๐‘ . โ– 

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 15 / 20

Semialgebraic geometry The problems The results The proof

Diagram of initial exponentsLet ๐‘€ โŠ‚ โ„JyK๐‘ be a โ„JyK-submodule.The diagram of initial exponents of ๐‘€ is

๐’ฉ (๐‘€) โ‰” {exp ๐น โˆถ ๐น โˆˆ ๐‘€ โงต {0}} โŠ‚ โ„•๐‘› ร— {1, โ€ฆ , ๐‘}

Note that ๐’ฉ (๐‘€) has finitely many vertices (๐›ผ๐‘–, ๐‘—๐‘–), ๐‘– = 1, โ€ฆ , ๐‘ž.For each one, we pick a representative ฮฆ๐‘– โˆˆ ๐‘€ , i.e. exp ฮฆ๐‘– = (๐›ผ๐‘–, ๐‘—๐‘–).

CorollaryLet ๐น โˆˆ โ„JyK๐‘. Then ๐น โˆˆ ๐‘€ if and only if its remainder by the formal division w.r.t. the ฮฆ๐‘– is 0.

Particularly ฮฆ1, โ€ฆ , ฮฆ๐‘ž generate ๐‘€ .

Proof. Write ๐น =๐‘ž

โˆ‘๐‘–=1

๐‘„๐‘–ฮฆ๐‘– + ๐‘… with supp ๐‘… โŠ‚ ๐’ฉ (๐‘€)๐‘ . โ– 

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 15 / 20

Semialgebraic geometry The problems The results The proof

Diagram of initial exponentsLet ๐‘€ โŠ‚ โ„JyK๐‘ be a โ„JyK-submodule.The diagram of initial exponents of ๐‘€ is

๐’ฉ (๐‘€) โ‰” {exp ๐น โˆถ ๐น โˆˆ ๐‘€ โงต {0}} โŠ‚ โ„•๐‘› ร— {1, โ€ฆ , ๐‘}

Note that ๐’ฉ (๐‘€) has finitely many vertices (๐›ผ๐‘–, ๐‘—๐‘–), ๐‘– = 1, โ€ฆ , ๐‘ž.For each one, we pick a representative ฮฆ๐‘– โˆˆ ๐‘€ , i.e. exp ฮฆ๐‘– = (๐›ผ๐‘–, ๐‘—๐‘–).

CorollaryLet ๐น โˆˆ โ„JyK๐‘. Then ๐น โˆˆ ๐‘€ if and only if its remainder by the formal division w.r.t. the ฮฆ๐‘– is 0.

Particularly ฮฆ1, โ€ฆ , ฮฆ๐‘ž generate ๐‘€ .

Proof. Write ๐น =๐‘ž

โˆ‘๐‘–=1

๐‘„๐‘–ฮฆ๐‘– + ๐‘… with supp ๐‘… โŠ‚ ๐’ฉ (๐‘€)๐‘ . โ– 

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 15 / 20

Semialgebraic geometry The problems The results The proof

Diagram of initial exponents and module of relations

Lemma โ€“ Chevalleyโ€™s functionLet ๐‘™ โˆˆ โ„•.There exists (ฮ›๐œ)๐œ a stratification of ๐ต such that given a stratum ฮ›๐œ , there exists ๐‘Ÿ โ‰ฅ ๐‘™ satisfying

โ€ข โˆ€๐‘ โˆˆ ฮ›๐œ , ๐œ‹๐‘™(โ„›๐‘Ÿ(๐‘)) = ๐œ‹๐‘™(โ„›๐‘Ÿโˆ’1(๐‘)),โ€ข ๐’ฉ (โ„›๐‘Ÿ(๐‘)) is constant on ฮ›๐œ .

We set๐ตโ€ฒ โ‰” โ‹ƒ

dim ฮ›๐œ <dim ๐ตฮ›๐œ

so that โˆ€๐œ, ฮ›๐œ โงต ฮ›๐œ โŠ‚ ๐ตโ€ฒ.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 16 / 20

Semialgebraic geometry The problems The results The proof

Diagram of initial exponents and module of relations

Lemma โ€“ Chevalleyโ€™s functionLet ๐‘™ โˆˆ โ„•.There exists (ฮ›๐œ)๐œ a stratification of ๐ต such that given a stratum ฮ›๐œ , there exists ๐‘Ÿ โ‰ฅ ๐‘™ satisfying

โ€ข โˆ€๐‘ โˆˆ ฮ›๐œ , ๐œ‹๐‘™(โ„›๐‘Ÿ(๐‘)) = ๐œ‹๐‘™(โ„›๐‘Ÿโˆ’1(๐‘)),โ€ข ๐’ฉ (โ„›๐‘Ÿ(๐‘)) is constant on ฮ›๐œ .

We set๐ตโ€ฒ โ‰” โ‹ƒ

dim ฮ›๐œ <dim ๐ตฮ›๐œ

so that โˆ€๐œ, ฮ›๐œ โงต ฮ›๐œ โŠ‚ ๐ตโ€ฒ.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 16 / 20

Semialgebraic geometry The problems The results The proof

Construction of ๐บ on ฮ›๐œ

For ๐‘ โˆˆ ๐ต and ๐‘ก โ‰ฅ ๐‘Ÿ, by assumption there exists ๐‘Š๐‘ โˆˆ โ„[y]๐‘ž such that

๐‘‡ ๐‘ก๐‘Ž๐‘“(x) โ‰ก ๐‘‡ ๐‘ก

๐‘Ž๐ด(x) ๐‘Š๐‘(๐‘‡ ๐‘ก๐‘Ž๐œ‘(x)) mod (x)๐‘ก+1โ„JxK๐‘, โˆ€๐‘Ž โˆˆ ๐œ‘โˆ’1(๐‘).

Letโ€™s fix a stratum ฮ›๐œ and ๐‘ โˆˆ ฮ›๐œ .By formal division, we may write ๐‘Š๐‘(y) = โˆ‘ ๐‘„๐‘–(y)ฮฆ๐‘–(y) + ๐‘‰๐œ(๐‘, y) where the ฮฆ๐‘– are as above for โ„›๐‘Ÿ(๐‘).Note that the remainder ๐‘‰๐œ(๐‘, y) โˆˆ โ„[y]๐‘ž satisfies

๐‘Š๐‘(y) โˆ’ ๐‘‰๐œ(๐‘, y) โˆˆ โ„›๐‘Ÿ(๐‘) and supp ๐‘‰๐œ(๐‘, y) โŠ‚ ๐’ฉ (โ„›๐‘Ÿ(๐‘))๐‘ .

Lemma๐บ๐œ(๐‘, y) โ‰” ๐œ‹๐‘™ (๐‘‰๐œ(๐‘, y)) is a semialgebraic Whitney field of order ๐‘™ on ฮ›๐œ satisfying (1).

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 17 / 20

exp ฮฆ2

exp ฮฆ1

supp ๐‘‰๐œ

๐’ฉ (๐‘…๐‘Ÿ(๐‘))

Semialgebraic geometry The problems The results The proof

Construction of ๐บ on ฮ›๐œ

For ๐‘ โˆˆ ๐ต and ๐‘ก โ‰ฅ ๐‘Ÿ, by assumption there exists ๐‘Š๐‘ โˆˆ โ„[y]๐‘ž such that

๐‘‡ ๐‘ก๐‘Ž๐‘“(x) โ‰ก ๐‘‡ ๐‘ก

๐‘Ž๐ด(x) ๐‘Š๐‘(๐‘‡ ๐‘ก๐‘Ž๐œ‘(x)) mod (x)๐‘ก+1โ„JxK๐‘, โˆ€๐‘Ž โˆˆ ๐œ‘โˆ’1(๐‘).

Letโ€™s fix a stratum ฮ›๐œ and ๐‘ โˆˆ ฮ›๐œ .By formal division, we may write ๐‘Š๐‘(y) = โˆ‘ ๐‘„๐‘–(y)ฮฆ๐‘–(y) + ๐‘‰๐œ(๐‘, y) where the ฮฆ๐‘– are as above for โ„›๐‘Ÿ(๐‘).Note that the remainder ๐‘‰๐œ(๐‘, y) โˆˆ โ„[y]๐‘ž satisfies

๐‘Š๐‘(y) โˆ’ ๐‘‰๐œ(๐‘, y) โˆˆ โ„›๐‘Ÿ(๐‘) and supp ๐‘‰๐œ(๐‘, y) โŠ‚ ๐’ฉ (โ„›๐‘Ÿ(๐‘))๐‘ .

Lemma๐บ๐œ(๐‘, y) โ‰” ๐œ‹๐‘™ (๐‘‰๐œ(๐‘, y)) is a semialgebraic Whitney field of order ๐‘™ on ฮ›๐œ satisfying (1).

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 17 / 20

exp ฮฆ2

exp ฮฆ1

supp ๐‘‰๐œ

๐’ฉ (๐‘…๐‘Ÿ(๐‘))

Semialgebraic geometry The problems The results The proof

Construction of ๐บ on ฮ›๐œ

For ๐‘ โˆˆ ๐ต and ๐‘ก โ‰ฅ ๐‘Ÿ, by assumption there exists ๐‘Š๐‘ โˆˆ โ„[y]๐‘ž such that

๐‘‡ ๐‘ก๐‘Ž๐‘“(x) โ‰ก ๐‘‡ ๐‘ก

๐‘Ž๐ด(x) ๐‘Š๐‘(๐‘‡ ๐‘ก๐‘Ž๐œ‘(x)) mod (x)๐‘ก+1โ„JxK๐‘, โˆ€๐‘Ž โˆˆ ๐œ‘โˆ’1(๐‘).

Letโ€™s fix a stratum ฮ›๐œ and ๐‘ โˆˆ ฮ›๐œ .By formal division, we may write ๐‘Š๐‘(y) = โˆ‘ ๐‘„๐‘–(y)ฮฆ๐‘–(y) + ๐‘‰๐œ(๐‘, y) where the ฮฆ๐‘– are as above for โ„›๐‘Ÿ(๐‘).Note that the remainder ๐‘‰๐œ(๐‘, y) โˆˆ โ„[y]๐‘ž satisfies

๐‘Š๐‘(y) โˆ’ ๐‘‰๐œ(๐‘, y) โˆˆ โ„›๐‘Ÿ(๐‘) and supp ๐‘‰๐œ(๐‘, y) โŠ‚ ๐’ฉ (โ„›๐‘Ÿ(๐‘))๐‘ .

Lemma๐บ๐œ(๐‘, y) โ‰” ๐œ‹๐‘™ (๐‘‰๐œ(๐‘, y)) is a semialgebraic Whitney field of order ๐‘™ on ฮ›๐œ satisfying (1).

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 17 / 20

exp ฮฆ2

exp ฮฆ1

supp ๐‘‰๐œ

๐’ฉ (๐‘…๐‘Ÿ(๐‘))

Semialgebraic geometry The problems The results The proof

๐บ is a Whitney field of order ๐‘™ on ฮ›๐œTo simplify the situation, we omit ๐œ‘.Thanks to Borelโ€™s lemma with parameter, it is enough to check that ๐ท๐‘,๐‘ฃ๐บ๐‘™โˆ’1

๐œ (๐‘, y) = ๐ทy,๐‘ฃ๐บ๐œ(๐‘, y).

Applying ๐ท๐‘,๐‘ฃ โˆ’ ๐ทy,๐‘ฃ to๐‘‡ ๐‘Ÿ

๐‘Ž ๐‘“(y) โ‰ก ๐‘‡ ๐‘Ÿ๐‘Ž ๐ด(y) ๐‘‰๐œ (๐‘, y) mod (y)๐‘Ÿ+1โ„JyK๐‘

we get0 โ‰ก ๐‘‡ ๐‘Ÿ

๐‘Ž ๐ด(y) (๐ท๐‘,๐‘ฃ๐‘‰ ๐‘Ÿโˆ’1๐œ (๐‘, y) โˆ’ ๐ทy,๐‘ฃ๐‘‰๐œ (๐‘, y)) mod (y)๐‘Ÿ+1โ„JyK๐‘

therefore๐ท๐‘,๐‘ฃ๐‘‰ ๐‘Ÿโˆ’1

๐œ (๐‘, y) โˆ’ ๐ทy,๐‘ฃ๐‘‰๐œ (๐‘, y) โˆˆ โ„›๐‘Ÿโˆ’1(๐‘)hence, by Chevalleyโ€™s function,

๐ท๐‘,๐‘ฃ๐บ๐‘™โˆ’1๐œ (๐‘, y) โˆ’ ๐ทy,๐‘ฃ๐บ๐œ(๐‘, y) โˆˆ ๐œ‹๐‘™โˆ’1(โ„›๐‘Ÿโˆ’1(๐‘)) = ๐œ‹๐‘™โˆ’1(โ„›๐‘Ÿ(๐‘))

butsupp (๐ท๐‘,๐‘ฃ๐บ๐‘™โˆ’1

๐œ (๐‘, y) โˆ’ ๐ทy,๐‘ฃ๐บ๐œ(๐‘, y)) โŠ‚ ๐’ฉ (โ„›๐‘Ÿ(๐‘))๐‘

consequently, ๐ท๐‘,๐‘ฃ๐บ๐‘™โˆ’1๐œ (๐‘, y) โˆ’ ๐ทy,๐‘ฃ๐บ๐œ(๐‘, y) = 0. โ– 

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 18 / 20

Semialgebraic geometry The problems The results The proof

๐บ is a Whitney field of order ๐‘™ on ฮ›๐œTo simplify the situation, we omit ๐œ‘.Thanks to Borelโ€™s lemma with parameter, it is enough to check that ๐ท๐‘,๐‘ฃ๐บ๐‘™โˆ’1

๐œ (๐‘, y) = ๐ทy,๐‘ฃ๐บ๐œ(๐‘, y).

Applying ๐ท๐‘,๐‘ฃ โˆ’ ๐ทy,๐‘ฃ to๐‘‡ ๐‘Ÿ

๐‘Ž ๐‘“(y) โ‰ก ๐‘‡ ๐‘Ÿ๐‘Ž ๐ด(y) ๐‘‰๐œ (๐‘, y) mod (y)๐‘Ÿ+1โ„JyK๐‘

we get0 โ‰ก ๐‘‡ ๐‘Ÿ

๐‘Ž ๐ด(y) (๐ท๐‘,๐‘ฃ๐‘‰ ๐‘Ÿโˆ’1๐œ (๐‘, y) โˆ’ ๐ทy,๐‘ฃ๐‘‰๐œ (๐‘, y)) mod (y)๐‘Ÿ+1โ„JyK๐‘

therefore๐ท๐‘,๐‘ฃ๐‘‰ ๐‘Ÿโˆ’1

๐œ (๐‘, y) โˆ’ ๐ทy,๐‘ฃ๐‘‰๐œ (๐‘, y) โˆˆ โ„›๐‘Ÿโˆ’1(๐‘)hence, by Chevalleyโ€™s function,

๐ท๐‘,๐‘ฃ๐บ๐‘™โˆ’1๐œ (๐‘, y) โˆ’ ๐ทy,๐‘ฃ๐บ๐œ(๐‘, y) โˆˆ ๐œ‹๐‘™โˆ’1(โ„›๐‘Ÿโˆ’1(๐‘)) = ๐œ‹๐‘™โˆ’1(โ„›๐‘Ÿ(๐‘))

butsupp (๐ท๐‘,๐‘ฃ๐บ๐‘™โˆ’1

๐œ (๐‘, y) โˆ’ ๐ทy,๐‘ฃ๐บ๐œ(๐‘, y)) โŠ‚ ๐’ฉ (โ„›๐‘Ÿ(๐‘))๐‘

consequently, ๐ท๐‘,๐‘ฃ๐บ๐‘™โˆ’1๐œ (๐‘, y) โˆ’ ๐ทy,๐‘ฃ๐บ๐œ(๐‘, y) = 0. โ– 

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 18 / 20

Semialgebraic geometry The problems The results The proof

๐บ is a Whitney field of order ๐‘™ on ฮ›๐œTo simplify the situation, we omit ๐œ‘.Thanks to Borelโ€™s lemma with parameter, it is enough to check that ๐ท๐‘,๐‘ฃ๐บ๐‘™โˆ’1

๐œ (๐‘, y) = ๐ทy,๐‘ฃ๐บ๐œ(๐‘, y).

Applying ๐ท๐‘,๐‘ฃ โˆ’ ๐ทy,๐‘ฃ to๐‘‡ ๐‘Ÿ

๐‘Ž ๐‘“(y) โ‰ก ๐‘‡ ๐‘Ÿ๐‘Ž ๐ด(y) ๐‘‰๐œ (๐‘, y) mod (y)๐‘Ÿ+1โ„JyK๐‘

we get0 โ‰ก ๐‘‡ ๐‘Ÿ

๐‘Ž ๐ด(y) (๐ท๐‘,๐‘ฃ๐‘‰ ๐‘Ÿโˆ’1๐œ (๐‘, y) โˆ’ ๐ทy,๐‘ฃ๐‘‰๐œ (๐‘, y)) mod (y)๐‘Ÿ+1โ„JyK๐‘

therefore๐ท๐‘,๐‘ฃ๐‘‰ ๐‘Ÿโˆ’1

๐œ (๐‘, y) โˆ’ ๐ทy,๐‘ฃ๐‘‰๐œ (๐‘, y) โˆˆ โ„›๐‘Ÿโˆ’1(๐‘)

hence, by Chevalleyโ€™s function,๐ท๐‘,๐‘ฃ๐บ๐‘™โˆ’1

๐œ (๐‘, y) โˆ’ ๐ทy,๐‘ฃ๐บ๐œ(๐‘, y) โˆˆ ๐œ‹๐‘™โˆ’1(โ„›๐‘Ÿโˆ’1(๐‘)) = ๐œ‹๐‘™โˆ’1(โ„›๐‘Ÿ(๐‘))but

supp (๐ท๐‘,๐‘ฃ๐บ๐‘™โˆ’1๐œ (๐‘, y) โˆ’ ๐ทy,๐‘ฃ๐บ๐œ(๐‘, y)) โŠ‚ ๐’ฉ (โ„›๐‘Ÿ(๐‘))๐‘

consequently, ๐ท๐‘,๐‘ฃ๐บ๐‘™โˆ’1๐œ (๐‘, y) โˆ’ ๐ทy,๐‘ฃ๐บ๐œ(๐‘, y) = 0. โ– 

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 18 / 20

Semialgebraic geometry The problems The results The proof

๐บ is a Whitney field of order ๐‘™ on ฮ›๐œTo simplify the situation, we omit ๐œ‘.Thanks to Borelโ€™s lemma with parameter, it is enough to check that ๐ท๐‘,๐‘ฃ๐บ๐‘™โˆ’1

๐œ (๐‘, y) = ๐ทy,๐‘ฃ๐บ๐œ(๐‘, y).

Applying ๐ท๐‘,๐‘ฃ โˆ’ ๐ทy,๐‘ฃ to๐‘‡ ๐‘Ÿ

๐‘Ž ๐‘“(y) โ‰ก ๐‘‡ ๐‘Ÿ๐‘Ž ๐ด(y) ๐‘‰๐œ (๐‘, y) mod (y)๐‘Ÿ+1โ„JyK๐‘

we get0 โ‰ก ๐‘‡ ๐‘Ÿ

๐‘Ž ๐ด(y) (๐ท๐‘,๐‘ฃ๐‘‰ ๐‘Ÿโˆ’1๐œ (๐‘, y) โˆ’ ๐ทy,๐‘ฃ๐‘‰๐œ (๐‘, y)) mod (y)๐‘Ÿ+1โ„JyK๐‘

therefore๐ท๐‘,๐‘ฃ๐‘‰ ๐‘Ÿโˆ’1

๐œ (๐‘, y) โˆ’ ๐ทy,๐‘ฃ๐‘‰๐œ (๐‘, y) โˆˆ โ„›๐‘Ÿโˆ’1(๐‘)hence, by Chevalleyโ€™s function,

๐ท๐‘,๐‘ฃ๐บ๐‘™โˆ’1๐œ (๐‘, y) โˆ’ ๐ทy,๐‘ฃ๐บ๐œ(๐‘, y) โˆˆ ๐œ‹๐‘™โˆ’1(โ„›๐‘Ÿโˆ’1(๐‘)) = ๐œ‹๐‘™โˆ’1(โ„›๐‘Ÿ(๐‘))

butsupp (๐ท๐‘,๐‘ฃ๐บ๐‘™โˆ’1

๐œ (๐‘, y) โˆ’ ๐ทy,๐‘ฃ๐บ๐œ(๐‘, y)) โŠ‚ ๐’ฉ (โ„›๐‘Ÿ(๐‘))๐‘

consequently, ๐ท๐‘,๐‘ฃ๐บ๐‘™โˆ’1๐œ (๐‘, y) โˆ’ ๐ทy,๐‘ฃ๐บ๐œ(๐‘, y) = 0. โ– 

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 18 / 20

Semialgebraic geometry The problems The results The proof

๐บ is a Whitney field of order ๐‘™ on ฮ›๐œTo simplify the situation, we omit ๐œ‘.Thanks to Borelโ€™s lemma with parameter, it is enough to check that ๐ท๐‘,๐‘ฃ๐บ๐‘™โˆ’1

๐œ (๐‘, y) = ๐ทy,๐‘ฃ๐บ๐œ(๐‘, y).

Applying ๐ท๐‘,๐‘ฃ โˆ’ ๐ทy,๐‘ฃ to๐‘‡ ๐‘Ÿ

๐‘Ž ๐‘“(y) โ‰ก ๐‘‡ ๐‘Ÿ๐‘Ž ๐ด(y) ๐‘‰๐œ (๐‘, y) mod (y)๐‘Ÿ+1โ„JyK๐‘

we get0 โ‰ก ๐‘‡ ๐‘Ÿ

๐‘Ž ๐ด(y) (๐ท๐‘,๐‘ฃ๐‘‰ ๐‘Ÿโˆ’1๐œ (๐‘, y) โˆ’ ๐ทy,๐‘ฃ๐‘‰๐œ (๐‘, y)) mod (y)๐‘Ÿ+1โ„JyK๐‘

therefore๐ท๐‘,๐‘ฃ๐‘‰ ๐‘Ÿโˆ’1

๐œ (๐‘, y) โˆ’ ๐ทy,๐‘ฃ๐‘‰๐œ (๐‘, y) โˆˆ โ„›๐‘Ÿโˆ’1(๐‘)hence, by Chevalleyโ€™s function,

๐ท๐‘,๐‘ฃ๐บ๐‘™โˆ’1๐œ (๐‘, y) โˆ’ ๐ทy,๐‘ฃ๐บ๐œ(๐‘, y) โˆˆ ๐œ‹๐‘™โˆ’1(โ„›๐‘Ÿโˆ’1(๐‘)) = ๐œ‹๐‘™โˆ’1(โ„›๐‘Ÿ(๐‘))

butsupp (๐ท๐‘,๐‘ฃ๐บ๐‘™โˆ’1

๐œ (๐‘, y) โˆ’ ๐ทy,๐‘ฃ๐บ๐œ(๐‘, y)) โŠ‚ ๐’ฉ (โ„›๐‘Ÿ(๐‘))๐‘

consequently, ๐ท๐‘,๐‘ฃ๐บ๐‘™โˆ’1๐œ (๐‘, y) โˆ’ ๐ทy,๐‘ฃ๐บ๐œ(๐‘, y) = 0. โ– 

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 18 / 20

Semialgebraic geometry The problems The results The proof

Gluing between strata

C - gluing between strata: the ลojasiewicz inequalityFix a stratum ฮ›๐œ . There exists ๐œŽ โˆˆ โ„• such that if ๐‘ก โ‰ฅ ๐‘Ÿ + ๐œŽ then lim

๐‘โ†’ฮ›๐œ โงตฮ›๐œ๐บ๐œ(๐‘, y) = 0.

The constant term of the equation is flat on ๐ตโ€ฒ hence on ฮ›๐œ โงต ฮ›๐œ โŠ‚ ๐ตโ€ฒ.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 19 / 20

Semialgebraic geometry The problems The results The proof

Summary

We constructed ๐บ(๐‘, y) = โˆ‘|๐›ผ|โ‰ค๐‘˜

๐‘”๐›ผ (๐‘)๐›ผ! y๐›ผ a semialgebraic Whitney field of order ๐‘˜ on ๐ต such that

โˆ€๐‘ โˆˆ ๐ต, โˆ€๐‘Ž โˆˆ ๐œ‘โˆ’1(๐‘), ๐‘‡ ๐‘˜๐‘Ž ๐‘“(x) โ‰ก ๐‘‡ ๐‘˜

๐‘Ž ๐ด(x) ๐บ(๐‘, ๐‘‡ ๐‘˜๐‘Ž ๐œ‘(x)) mod (x)๐‘˜+1โ„JxK๐‘

Hence we obtain ๐‘” โˆถ โ„๐‘› โ†’ โ„๐‘ž semialgebraic and ๐’ž๐‘˜ such that ๐‘“ โˆ’ ๐ด โ‹… (๐‘” โˆ˜ ๐œ‘) is ๐‘˜-flat on ๐œ‘โˆ’1(๐ต).

Loss of differentiabilityFor ๐‘˜ โˆˆ โ„•, we set ๐‘™ โ‰ฅ ๐‘˜๐œŒ, then ๐‘Ÿ โ‰ฅ ๐‘Ÿ(๐‘™) and finally ๐‘ก(๐‘˜) โ‰” ๐‘ก โ‰ฅ ๐‘Ÿ + ๐œŽ whereA. ๐œŒ is an upper bound of Whitneyโ€™s loss of differentiability (induction step).B. ๐‘Ÿ โˆถ โ„• โ†’ โ„• is an upper bound of the Chevalley functions on the various strata.C. ๐œŽ is an upper bound of ลojasiewiczโ€™s loss of differentiability on each stratum.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 20 / 20

Semialgebraic geometry The problems The results The proof

Summary

We constructed ๐บ(๐‘, y) = โˆ‘|๐›ผ|โ‰ค๐‘˜

๐‘”๐›ผ (๐‘)๐›ผ! y๐›ผ a semialgebraic Whitney field of order ๐‘˜ on ๐ต such that

โˆ€๐‘ โˆˆ ๐ต, โˆ€๐‘Ž โˆˆ ๐œ‘โˆ’1(๐‘), ๐‘‡ ๐‘˜๐‘Ž ๐‘“(x) โ‰ก ๐‘‡ ๐‘˜

๐‘Ž ๐ด(x) ๐บ(๐‘, ๐‘‡ ๐‘˜๐‘Ž ๐œ‘(x)) mod (x)๐‘˜+1โ„JxK๐‘

Hence we obtain ๐‘” โˆถ โ„๐‘› โ†’ โ„๐‘ž semialgebraic and ๐’ž๐‘˜ such that ๐‘“ โˆ’ ๐ด โ‹… (๐‘” โˆ˜ ๐œ‘) is ๐‘˜-flat on ๐œ‘โˆ’1(๐ต).

Loss of differentiabilityFor ๐‘˜ โˆˆ โ„•, we set ๐‘™ โ‰ฅ ๐‘˜๐œŒ, then ๐‘Ÿ โ‰ฅ ๐‘Ÿ(๐‘™) and finally ๐‘ก(๐‘˜) โ‰” ๐‘ก โ‰ฅ ๐‘Ÿ + ๐œŽ whereA. ๐œŒ is an upper bound of Whitneyโ€™s loss of differentiability (induction step).B. ๐‘Ÿ โˆถ โ„• โ†’ โ„• is an upper bound of the Chevalley functions on the various strata.C. ๐œŽ is an upper bound of ลojasiewiczโ€™s loss of differentiability on each stratum.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) ๐’ž๐‘š solutions of semialgebraic equations 20 / 20

top related