Top Banner
The 14th Whitney Problems Workshop and Sobolev functions on subsets of ℝ SOLUTIONS OF SEMIALGEBRAIC EQUATIONS Joint work with E. BIERSTONE and P.D. MILMAN Jean-Baptiste Campesato August 19, 2021 J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) solutions of semialgebraic equations 1 / 20
59

The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Nov 23, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

The 14th Whitney Problems Workshopπ’žπ‘š and Sobolev functions on subsets of ℝ𝑛

π’žπ‘š SOLUTIONS OF SEMIALGEBRAIC EQUATIONS

Joint work with E. BIERSTONE and P.D. MILMAN

Jean-Baptiste Campesato

August 19, 2021

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 1 / 20

Page 2: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Semialgebraic geometry – Definitions

Definition: semialgebraic setsSemialgebraic subsets of ℝ𝑛 are elements of the boolean algebra spanned by sets of the form

{π‘₯ ∈ ℝ𝑛 ∢ 𝑓(π‘₯) β‰₯ 0}

where 𝑓 ∈ ℝ[π‘₯1, … , π‘₯𝑛].

RemarkGiven 𝑓 ∈ ℝ[π‘₯1, … , π‘₯𝑛], the following sets are semialgebraic

{π‘₯ ∈ ℝ𝑛 ∢ 𝑓(π‘₯) > 0} , {π‘₯ ∈ ℝ𝑛 ∢ 𝑓(π‘₯) ≀ 0} , {π‘₯ ∈ ℝ𝑛 ∢ 𝑓(π‘₯) < 0} , {π‘₯ ∈ ℝ𝑛 ∢ 𝑓(π‘₯) = 0} , {π‘₯ ∈ ℝ𝑛 ∢ 𝑓(π‘₯) β‰  0}

Definition: semialgebraic functionsLet 𝑋 βŠ‚ ℝ𝑛. A function 𝑓 ∢ 𝑋 β†’ ℝ𝑝 is semialgebraic if its graph Γ𝑓 βŠ‚ ℝ𝑛+𝑝 is semialgebraic.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 2 / 20

Page 3: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Semialgebraic geometry – Definitions

Definition: semialgebraic setsSemialgebraic subsets of ℝ𝑛 are elements of the boolean algebra spanned by sets of the form

{π‘₯ ∈ ℝ𝑛 ∢ 𝑓(π‘₯) β‰₯ 0}

where 𝑓 ∈ ℝ[π‘₯1, … , π‘₯𝑛].

RemarkGiven 𝑓 ∈ ℝ[π‘₯1, … , π‘₯𝑛], the following sets are semialgebraic

{π‘₯ ∈ ℝ𝑛 ∢ 𝑓(π‘₯) > 0} , {π‘₯ ∈ ℝ𝑛 ∢ 𝑓(π‘₯) ≀ 0} , {π‘₯ ∈ ℝ𝑛 ∢ 𝑓(π‘₯) < 0} , {π‘₯ ∈ ℝ𝑛 ∢ 𝑓(π‘₯) = 0} , {π‘₯ ∈ ℝ𝑛 ∢ 𝑓(π‘₯) β‰  0}

Definition: semialgebraic functionsLet 𝑋 βŠ‚ ℝ𝑛. A function 𝑓 ∢ 𝑋 β†’ ℝ𝑝 is semialgebraic if its graph Γ𝑓 βŠ‚ ℝ𝑛+𝑝 is semialgebraic.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 2 / 20

Page 4: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Semialgebraic geometry – Definitions

Definition: semialgebraic setsSemialgebraic subsets of ℝ𝑛 are elements of the boolean algebra spanned by sets of the form

{π‘₯ ∈ ℝ𝑛 ∢ 𝑓(π‘₯) β‰₯ 0}

where 𝑓 ∈ ℝ[π‘₯1, … , π‘₯𝑛].

RemarkGiven 𝑓 ∈ ℝ[π‘₯1, … , π‘₯𝑛], the following sets are semialgebraic

{π‘₯ ∈ ℝ𝑛 ∢ 𝑓(π‘₯) > 0} , {π‘₯ ∈ ℝ𝑛 ∢ 𝑓(π‘₯) ≀ 0} , {π‘₯ ∈ ℝ𝑛 ∢ 𝑓(π‘₯) < 0} , {π‘₯ ∈ ℝ𝑛 ∢ 𝑓(π‘₯) = 0} , {π‘₯ ∈ ℝ𝑛 ∢ 𝑓(π‘₯) β‰  0}

Definition: semialgebraic functionsLet 𝑋 βŠ‚ ℝ𝑛. A function 𝑓 ∢ 𝑋 β†’ ℝ𝑝 is semialgebraic if its graph Γ𝑓 βŠ‚ ℝ𝑛+𝑝 is semialgebraic.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 2 / 20

Page 5: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Semialgebraic geometry – Definitions

Definition: semialgebraic setsSemialgebraic subsets of ℝ𝑛 are elements of the boolean algebra spanned by sets of the form

{π‘₯ ∈ ℝ𝑛 ∢ 𝑓(π‘₯) β‰₯ 0}

where 𝑓 ∈ ℝ[π‘₯1, … , π‘₯𝑛].

RemarkGiven 𝑓 ∈ ℝ[π‘₯1, … , π‘₯𝑛], the following sets are semialgebraic

{π‘₯ ∈ ℝ𝑛 ∢ 𝑓(π‘₯) > 0} , {π‘₯ ∈ ℝ𝑛 ∢ 𝑓(π‘₯) ≀ 0} , {π‘₯ ∈ ℝ𝑛 ∢ 𝑓(π‘₯) < 0} , {π‘₯ ∈ ℝ𝑛 ∢ 𝑓(π‘₯) = 0} , {π‘₯ ∈ ℝ𝑛 ∢ 𝑓(π‘₯) β‰  0}

Definition: semialgebraic functionsLet 𝑋 βŠ‚ ℝ𝑛. A function 𝑓 ∢ 𝑋 β†’ ℝ𝑝 is semialgebraic if its graph Γ𝑓 βŠ‚ ℝ𝑛+𝑝 is semialgebraic.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 2 / 20

Page 6: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Semialgebraic geometry – Tarski–Seidenberg theoremTheorem (Tarski–Seidenberg): semialgebraic sets are closed under projections

If 𝑆 βŠ‚ ℝ𝑛+1 is semialgebraic then so is πœ‹(𝑆), where πœ‹ ∢ ℝ𝑛+1 β†’ ℝ𝑛, πœ‹(π‘₯1, … , π‘₯𝑛+1) = (π‘₯1, … , π‘₯𝑛).

RemarkIf 𝑓 ∢ 𝑋 β†’ ℝ𝑝 is semialgebraic then so is 𝑋.

Corollary: elimination of quantifiers

Let 𝑆 βŠ‚ ℝ𝑛+1 be semialgebraic, then the following sets are too

{(π‘₯1, … , π‘₯𝑛) ∈ ℝ𝑛 ∢ βˆƒπ‘¦, (π‘₯1, … , π‘₯𝑛, 𝑦) ∈ 𝑆} = πœ‹(𝑆)

{(π‘₯1, … , π‘₯𝑛) ∈ ℝ𝑛 ∢ βˆ€π‘¦, (π‘₯1, … , π‘₯𝑛, 𝑦) ∈ 𝑆} = ℝ𝑛 ⧡ πœ‹(ℝ𝑛+1 ⧡ 𝑆)

Example

If 𝐴 βŠ‚ ℝ𝑛 is semialgebraic, then so is 𝐴 ≔{

π‘₯ ∈ ℝ𝑛 ∢ βˆ€πœ€ ∈ (0, +∞), βˆƒπ‘¦ ∈ 𝐴,𝑛

βˆ‘π‘–=1

(π‘₯𝑖 βˆ’ 𝑦𝑖)2 < πœ€2}

.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 3 / 20

Page 7: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Semialgebraic geometry – Tarski–Seidenberg theoremTheorem (Tarski–Seidenberg): semialgebraic sets are closed under projections

If 𝑆 βŠ‚ ℝ𝑛+1 is semialgebraic then so is πœ‹(𝑆), where πœ‹ ∢ ℝ𝑛+1 β†’ ℝ𝑛, πœ‹(π‘₯1, … , π‘₯𝑛+1) = (π‘₯1, … , π‘₯𝑛).

RemarkIf 𝑓 ∢ 𝑋 β†’ ℝ𝑝 is semialgebraic then so is 𝑋.

Corollary: elimination of quantifiers

Let 𝑆 βŠ‚ ℝ𝑛+1 be semialgebraic, then the following sets are too

{(π‘₯1, … , π‘₯𝑛) ∈ ℝ𝑛 ∢ βˆƒπ‘¦, (π‘₯1, … , π‘₯𝑛, 𝑦) ∈ 𝑆} = πœ‹(𝑆)

{(π‘₯1, … , π‘₯𝑛) ∈ ℝ𝑛 ∢ βˆ€π‘¦, (π‘₯1, … , π‘₯𝑛, 𝑦) ∈ 𝑆} = ℝ𝑛 ⧡ πœ‹(ℝ𝑛+1 ⧡ 𝑆)

Example

If 𝐴 βŠ‚ ℝ𝑛 is semialgebraic, then so is 𝐴 ≔{

π‘₯ ∈ ℝ𝑛 ∢ βˆ€πœ€ ∈ (0, +∞), βˆƒπ‘¦ ∈ 𝐴,𝑛

βˆ‘π‘–=1

(π‘₯𝑖 βˆ’ 𝑦𝑖)2 < πœ€2}

.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 3 / 20

Page 8: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Semialgebraic geometry – Tarski–Seidenberg theoremTheorem (Tarski–Seidenberg): semialgebraic sets are closed under projections

If 𝑆 βŠ‚ ℝ𝑛+1 is semialgebraic then so is πœ‹(𝑆), where πœ‹ ∢ ℝ𝑛+1 β†’ ℝ𝑛, πœ‹(π‘₯1, … , π‘₯𝑛+1) = (π‘₯1, … , π‘₯𝑛).

RemarkIf 𝑓 ∢ 𝑋 β†’ ℝ𝑝 is semialgebraic then so is 𝑋.

Corollary: elimination of quantifiers

Let 𝑆 βŠ‚ ℝ𝑛+1 be semialgebraic, then the following sets are too

{(π‘₯1, … , π‘₯𝑛) ∈ ℝ𝑛 ∢ βˆƒπ‘¦, (π‘₯1, … , π‘₯𝑛, 𝑦) ∈ 𝑆} = πœ‹(𝑆)

{(π‘₯1, … , π‘₯𝑛) ∈ ℝ𝑛 ∢ βˆ€π‘¦, (π‘₯1, … , π‘₯𝑛, 𝑦) ∈ 𝑆} = ℝ𝑛 ⧡ πœ‹(ℝ𝑛+1 ⧡ 𝑆)

Example

If 𝐴 βŠ‚ ℝ𝑛 is semialgebraic, then so is 𝐴 ≔{

π‘₯ ∈ ℝ𝑛 ∢ βˆ€πœ€ ∈ (0, +∞), βˆƒπ‘¦ ∈ 𝐴,𝑛

βˆ‘π‘–=1

(π‘₯𝑖 βˆ’ 𝑦𝑖)2 < πœ€2}

.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 3 / 20

Page 9: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Semialgebraic geometry – Tarski–Seidenberg theoremTheorem (Tarski–Seidenberg): semialgebraic sets are closed under projections

If 𝑆 βŠ‚ ℝ𝑛+1 is semialgebraic then so is πœ‹(𝑆), where πœ‹ ∢ ℝ𝑛+1 β†’ ℝ𝑛, πœ‹(π‘₯1, … , π‘₯𝑛+1) = (π‘₯1, … , π‘₯𝑛).

RemarkIf 𝑓 ∢ 𝑋 β†’ ℝ𝑝 is semialgebraic then so is 𝑋.

Corollary: elimination of quantifiers

Let 𝑆 βŠ‚ ℝ𝑛+1 be semialgebraic, then the following sets are too

{(π‘₯1, … , π‘₯𝑛) ∈ ℝ𝑛 ∢ βˆƒπ‘¦, (π‘₯1, … , π‘₯𝑛, 𝑦) ∈ 𝑆} = πœ‹(𝑆)

{(π‘₯1, … , π‘₯𝑛) ∈ ℝ𝑛 ∢ βˆ€π‘¦, (π‘₯1, … , π‘₯𝑛, 𝑦) ∈ 𝑆} = ℝ𝑛 ⧡ πœ‹(ℝ𝑛+1 ⧡ 𝑆)

Example

If 𝐴 βŠ‚ ℝ𝑛 is semialgebraic, then so is 𝐴 ≔{

π‘₯ ∈ ℝ𝑛 ∢ βˆ€πœ€ ∈ (0, +∞), βˆƒπ‘¦ ∈ 𝐴,𝑛

βˆ‘π‘–=1

(π‘₯𝑖 βˆ’ 𝑦𝑖)2 < πœ€2}

.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 3 / 20

Page 10: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

A semialgebraic version of Whitney’s extension theorem

Theorem – Kurdyka–PawΕ‚ucki, 1997, 2014Thamrongthanyalak, 2017Kocel-Cynk–PawΕ‚ucki–Valette, 2019

Given a semialgebraic π’žπ‘š Whitney field on a closed subset 𝑋 βŠ‚ ℝ𝑛,i.e. a family (𝑓𝛼 ∢ 𝑋 β†’ ℝ)π›Όβˆˆβ„•π‘›

|𝛼|β‰€π‘šof continuous semialgebraic functions such that

βˆ€π‘§ ∈ 𝑋, βˆ€π›Ό ∈ ℕ𝑛, |𝛼| ≀ π‘š ⟹ 𝑓𝛼 (π‘₯) βˆ’ βˆ‘|𝛽|β‰€π‘šβˆ’|𝛼|

𝑓𝛼+𝛽 (𝑦)𝛽! (π‘₯ βˆ’ 𝑦)𝛽 = π‘œ

π‘‹βˆ‹π‘₯,𝑦→𝑧(β€–π‘₯ βˆ’ π‘¦β€–π‘šβˆ’|𝛼|) ,

there exists a π’žπ‘š semialgebraic function 𝐹 ∢ ℝ𝑛 β†’ ℝ such that 𝐷𝛼 𝐹|𝑋 = 𝑓𝛼 and 𝐹 is Nash on ℝ𝑛 ⧡ 𝑋.

Nash ≔ semialgebraic and analytic.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 4 / 20

Page 11: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Are there solutions preserving semialgebraicity?

For Whitney’s Extension Problem

Let 𝑓 ∢ 𝑋 β†’ ℝ be a semialgebraic function where 𝑋 βŠ‚ ℝ𝑛 is closed.If 𝑓 admits a π’žπ‘š extension 𝐹 ∢ ℝ𝑛 β†’ ℝ, does it admit a semialgebraic π’žπ‘š extension 𝐹 ∢ ℝ𝑛 β†’ ℝ?

For the Brenner–Fefferman–Hochster–KollΓ‘r Problem

Let 𝑓1, … , π‘“π‘Ÿ, πœ‘ ∢ ℝ𝑛 β†’ ℝ be semialgebraic functions.If the equation πœ‘ = βˆ‘ πœ‘π‘–π‘“π‘– admit a π’žπ‘š solution (πœ‘π‘–)𝑖, does it admit a semialgebraic π’žπ‘š solution?

β€’ Aschenbrenner–Thamrongthanyalak (2019): βˆ€π‘›, for π‘š = 1 and π‘š = 0, respectively.β€’ Fefferman–Luli (2021): βˆ€π‘š, for 𝑛 = 2.

β€’ Bierstone–C.–Milman (2021): βˆ€π‘›, βˆ€π‘š, with a loss of differentiability.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 5 / 20

Page 12: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Are there solutions preserving semialgebraicity?

For Whitney’s Extension ProblemLet 𝑓 ∢ 𝑋 β†’ ℝ be a semialgebraic function where 𝑋 βŠ‚ ℝ𝑛 is closed.If 𝑓 admits a π’žπ‘š extension 𝐹 ∢ ℝ𝑛 β†’ ℝ, does it admit a semialgebraic π’žπ‘š extension 𝐹 ∢ ℝ𝑛 β†’ ℝ?

For the Brenner–Fefferman–Hochster–KollΓ‘r Problem

Let 𝑓1, … , π‘“π‘Ÿ, πœ‘ ∢ ℝ𝑛 β†’ ℝ be semialgebraic functions.If the equation πœ‘ = βˆ‘ πœ‘π‘–π‘“π‘– admit a π’žπ‘š solution (πœ‘π‘–)𝑖, does it admit a semialgebraic π’žπ‘š solution?

β€’ Aschenbrenner–Thamrongthanyalak (2019): βˆ€π‘›, for π‘š = 1 and π‘š = 0, respectively.β€’ Fefferman–Luli (2021): βˆ€π‘š, for 𝑛 = 2.β€’ Bierstone–C.–Milman (2021): βˆ€π‘›, βˆ€π‘š, with a loss of differentiability.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 5 / 20

Page 13: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Are there solutions preserving semialgebraicity?

For Whitney’s Extension ProblemLet 𝑓 ∢ 𝑋 β†’ ℝ be a semialgebraic function where 𝑋 βŠ‚ ℝ𝑛 is closed.If 𝑓 admits a π’žπ‘š extension 𝐹 ∢ ℝ𝑛 β†’ ℝ, does it admit a semialgebraic π’žπ‘š extension 𝐹 ∢ ℝ𝑛 β†’ ℝ?

For the Brenner–Fefferman–Hochster–KollΓ‘r ProblemLet 𝑓1, … , π‘“π‘Ÿ, πœ‘ ∢ ℝ𝑛 β†’ ℝ be semialgebraic functions.If the equation πœ‘ = βˆ‘ πœ‘π‘–π‘“π‘– admit a π’žπ‘š solution (πœ‘π‘–)𝑖, does it admit a semialgebraic π’žπ‘š solution?

β€’ Aschenbrenner–Thamrongthanyalak (2019): βˆ€π‘›, for π‘š = 1 and π‘š = 0, respectively.β€’ Fefferman–Luli (2021): βˆ€π‘š, for 𝑛 = 2.β€’ Bierstone–C.–Milman (2021): βˆ€π‘›, βˆ€π‘š, with a loss of differentiability.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 5 / 20

Page 14: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Are there solutions preserving semialgebraicity?

For Whitney’s Extension ProblemLet 𝑓 ∢ 𝑋 β†’ ℝ be a semialgebraic function where 𝑋 βŠ‚ ℝ𝑛 is closed.If 𝑓 admits a π’žπ‘š extension 𝐹 ∢ ℝ𝑛 β†’ ℝ, does it admit a semialgebraic π’žπ‘š extension 𝐹 ∢ ℝ𝑛 β†’ ℝ?

For the Brenner–Fefferman–Hochster–KollΓ‘r ProblemLet 𝑓1, … , π‘“π‘Ÿ, πœ‘ ∢ ℝ𝑛 β†’ ℝ be semialgebraic functions.If the equation πœ‘ = βˆ‘ πœ‘π‘–π‘“π‘– admit a π’žπ‘š solution (πœ‘π‘–)𝑖, does it admit a semialgebraic π’žπ‘š solution?

β€’ Aschenbrenner–Thamrongthanyalak (2019): βˆ€π‘›, for π‘š = 1 and π‘š = 0, respectively.β€’ Fefferman–Luli (2021): βˆ€π‘š, for 𝑛 = 2.β€’ Bierstone–C.–Milman (2021): βˆ€π‘›, βˆ€π‘š, with a loss of differentiability.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 5 / 20

Page 15: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Strategy for the semialgebraic π’ž1 extension problem(Aschenbrenner–Thamrongthanyalak, 2019)

Let 𝑓 ∢ 𝑋 β†’ ℝ be a semialgebraic function admitting a π’ž1 extension 𝐹 ∢ ℝ𝑛 β†’ ℝ.

β€’ Set 𝑆 ≔ {(π‘₯, 𝑦, 𝑣) ∈ ℝ𝑛 Γ— ℝ Γ— ℝ𝑛 ∢ π‘₯ ∈ 𝑋, 𝑦 = 𝑓(π‘₯),βˆ€πœ€ > 0, βˆ€π›Ώ > 0, βˆ€π‘Ž, 𝑏 ∈ 𝐡𝛿 (π‘₯), |𝑓 (𝑏) βˆ’ 𝑓(π‘Ž) βˆ’ 𝑣 β‹… (𝑏 βˆ’ π‘Ž)| ≀ πœ€β€–π‘ βˆ’ π‘Žβ€–}.

β€’ Then 𝑆 is semialgebraic, and, βˆ€π‘₯ ∈ 𝑋, (π‘₯, 𝐹 (π‘₯), βˆ‡πΉ (π‘₯)) ∈ 𝑆.β€’ Semialgebraic Michael’s Selection Lemma:

there exists 𝜎 ∢ 𝑋 β†’ 𝑆 semialgebraic and continuous such that πœ‹π‘₯ ∘ 𝜎 = id where πœ‹π‘₯(π‘₯, 𝑦, 𝑣) = π‘₯.β€’ Set 𝐺 ≔ πœ‹π‘£ ∘ 𝜎 ∢ ℝ𝑛 β†’ ℝ𝑛 where πœ‹π‘£(π‘₯, 𝑦, 𝑣) = 𝑣, then 𝐺 is semialgebraic, continuous and satisfies

βˆ€π‘ ∈ 𝑋, 𝑓(𝑏) = 𝑓(π‘Ž) + 𝐺(π‘Ž) β‹… (𝑏 βˆ’ π‘Ž) + π‘œπ‘‹βˆ‹π‘Ž,𝑏→𝑐

(‖𝑏 βˆ’ π‘Žβ€–). β– 

This strategy does not generalize to π‘š > 1 since the unknown (𝑓𝛼 )π›Όβˆˆβ„•π‘›β§΅{0}|𝛼|β‰€π‘š

can’t be described as a section.

For instance, if π‘š = 2, 𝑓e𝑖needs to satisfy

𝑓e𝑖 (𝑏) = 𝑓e𝑖 (π‘Ž) +𝑛

βˆ‘π‘—=1

𝑓e𝑖+e𝑗 (π‘Ž)(𝑏𝑗 βˆ’ π‘Žπ‘—) + π‘œπ‘‹βˆ‹π‘Ž,𝑏→𝑐

(‖𝑏 βˆ’ π‘Žβ€–).

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 6 / 20

Page 16: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Strategy for the semialgebraic π’ž1 extension problem(Aschenbrenner–Thamrongthanyalak, 2019)

Let 𝑓 ∢ 𝑋 β†’ ℝ be a semialgebraic function admitting a π’ž1 extension 𝐹 ∢ ℝ𝑛 β†’ ℝ.

β€’ Set 𝑆 ≔ {(π‘₯, 𝑦, 𝑣) ∈ ℝ𝑛 Γ— ℝ Γ— ℝ𝑛 ∢ π‘₯ ∈ 𝑋, 𝑦 = 𝑓(π‘₯),βˆ€πœ€ > 0, βˆ€π›Ώ > 0, βˆ€π‘Ž, 𝑏 ∈ 𝐡𝛿 (π‘₯), |𝑓 (𝑏) βˆ’ 𝑓(π‘Ž) βˆ’ 𝑣 β‹… (𝑏 βˆ’ π‘Ž)| ≀ πœ€β€–π‘ βˆ’ π‘Žβ€–}.

β€’ Then 𝑆 is semialgebraic, and, βˆ€π‘₯ ∈ 𝑋, (π‘₯, 𝐹 (π‘₯), βˆ‡πΉ (π‘₯)) ∈ 𝑆.β€’ Semialgebraic Michael’s Selection Lemma:

there exists 𝜎 ∢ 𝑋 β†’ 𝑆 semialgebraic and continuous such that πœ‹π‘₯ ∘ 𝜎 = id where πœ‹π‘₯(π‘₯, 𝑦, 𝑣) = π‘₯.β€’ Set 𝐺 ≔ πœ‹π‘£ ∘ 𝜎 ∢ ℝ𝑛 β†’ ℝ𝑛 where πœ‹π‘£(π‘₯, 𝑦, 𝑣) = 𝑣, then 𝐺 is semialgebraic, continuous and satisfies

βˆ€π‘ ∈ 𝑋, 𝑓(𝑏) = 𝑓(π‘Ž) + 𝐺(π‘Ž) β‹… (𝑏 βˆ’ π‘Ž) + π‘œπ‘‹βˆ‹π‘Ž,𝑏→𝑐

(‖𝑏 βˆ’ π‘Žβ€–). β– 

This strategy does not generalize to π‘š > 1 since the unknown (𝑓𝛼 )π›Όβˆˆβ„•π‘›β§΅{0}|𝛼|β‰€π‘š

can’t be described as a section.

For instance, if π‘š = 2, 𝑓e𝑖needs to satisfy

𝑓e𝑖 (𝑏) = 𝑓e𝑖 (π‘Ž) +𝑛

βˆ‘π‘—=1

𝑓e𝑖+e𝑗 (π‘Ž)(𝑏𝑗 βˆ’ π‘Žπ‘—) + π‘œπ‘‹βˆ‹π‘Ž,𝑏→𝑐

(‖𝑏 βˆ’ π‘Žβ€–).

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 6 / 20

Page 17: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Strategy for the semialgebraic π’ž1 extension problem(Aschenbrenner–Thamrongthanyalak, 2019)

Let 𝑓 ∢ 𝑋 β†’ ℝ be a semialgebraic function admitting a π’ž1 extension 𝐹 ∢ ℝ𝑛 β†’ ℝ.

β€’ Set 𝑆 ≔ {(π‘₯, 𝑦, 𝑣) ∈ ℝ𝑛 Γ— ℝ Γ— ℝ𝑛 ∢ π‘₯ ∈ 𝑋, 𝑦 = 𝑓(π‘₯),βˆ€πœ€ > 0, βˆ€π›Ώ > 0, βˆ€π‘Ž, 𝑏 ∈ 𝐡𝛿 (π‘₯), |𝑓 (𝑏) βˆ’ 𝑓(π‘Ž) βˆ’ 𝑣 β‹… (𝑏 βˆ’ π‘Ž)| ≀ πœ€β€–π‘ βˆ’ π‘Žβ€–}.

β€’ Then 𝑆 is semialgebraic,

and, βˆ€π‘₯ ∈ 𝑋, (π‘₯, 𝐹 (π‘₯), βˆ‡πΉ (π‘₯)) ∈ 𝑆.β€’ Semialgebraic Michael’s Selection Lemma:

there exists 𝜎 ∢ 𝑋 β†’ 𝑆 semialgebraic and continuous such that πœ‹π‘₯ ∘ 𝜎 = id where πœ‹π‘₯(π‘₯, 𝑦, 𝑣) = π‘₯.β€’ Set 𝐺 ≔ πœ‹π‘£ ∘ 𝜎 ∢ ℝ𝑛 β†’ ℝ𝑛 where πœ‹π‘£(π‘₯, 𝑦, 𝑣) = 𝑣, then 𝐺 is semialgebraic, continuous and satisfies

βˆ€π‘ ∈ 𝑋, 𝑓(𝑏) = 𝑓(π‘Ž) + 𝐺(π‘Ž) β‹… (𝑏 βˆ’ π‘Ž) + π‘œπ‘‹βˆ‹π‘Ž,𝑏→𝑐

(‖𝑏 βˆ’ π‘Žβ€–). β– 

This strategy does not generalize to π‘š > 1 since the unknown (𝑓𝛼 )π›Όβˆˆβ„•π‘›β§΅{0}|𝛼|β‰€π‘š

can’t be described as a section.

For instance, if π‘š = 2, 𝑓e𝑖needs to satisfy

𝑓e𝑖 (𝑏) = 𝑓e𝑖 (π‘Ž) +𝑛

βˆ‘π‘—=1

𝑓e𝑖+e𝑗 (π‘Ž)(𝑏𝑗 βˆ’ π‘Žπ‘—) + π‘œπ‘‹βˆ‹π‘Ž,𝑏→𝑐

(‖𝑏 βˆ’ π‘Žβ€–).

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 6 / 20

Page 18: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Strategy for the semialgebraic π’ž1 extension problem(Aschenbrenner–Thamrongthanyalak, 2019)

Let 𝑓 ∢ 𝑋 β†’ ℝ be a semialgebraic function admitting a π’ž1 extension 𝐹 ∢ ℝ𝑛 β†’ ℝ.

β€’ Set 𝑆 ≔ {(π‘₯, 𝑦, 𝑣) ∈ ℝ𝑛 Γ— ℝ Γ— ℝ𝑛 ∢ π‘₯ ∈ 𝑋, 𝑦 = 𝑓(π‘₯),βˆ€πœ€ > 0, βˆ€π›Ώ > 0, βˆ€π‘Ž, 𝑏 ∈ 𝐡𝛿 (π‘₯), |𝑓 (𝑏) βˆ’ 𝑓(π‘Ž) βˆ’ 𝑣 β‹… (𝑏 βˆ’ π‘Ž)| ≀ πœ€β€–π‘ βˆ’ π‘Žβ€–}.

β€’ Then 𝑆 is semialgebraic, and, βˆ€π‘₯ ∈ 𝑋, (π‘₯, 𝐹 (π‘₯), βˆ‡πΉ (π‘₯)) ∈ 𝑆.

β€’ Semialgebraic Michael’s Selection Lemma:there exists 𝜎 ∢ 𝑋 β†’ 𝑆 semialgebraic and continuous such that πœ‹π‘₯ ∘ 𝜎 = id where πœ‹π‘₯(π‘₯, 𝑦, 𝑣) = π‘₯.

β€’ Set 𝐺 ≔ πœ‹π‘£ ∘ 𝜎 ∢ ℝ𝑛 β†’ ℝ𝑛 where πœ‹π‘£(π‘₯, 𝑦, 𝑣) = 𝑣, then 𝐺 is semialgebraic, continuous and satisfiesβˆ€π‘ ∈ 𝑋, 𝑓(𝑏) = 𝑓(π‘Ž) + 𝐺(π‘Ž) β‹… (𝑏 βˆ’ π‘Ž) + π‘œ

π‘‹βˆ‹π‘Ž,𝑏→𝑐(‖𝑏 βˆ’ π‘Žβ€–). β– 

This strategy does not generalize to π‘š > 1 since the unknown (𝑓𝛼 )π›Όβˆˆβ„•π‘›β§΅{0}|𝛼|β‰€π‘š

can’t be described as a section.

For instance, if π‘š = 2, 𝑓e𝑖needs to satisfy

𝑓e𝑖 (𝑏) = 𝑓e𝑖 (π‘Ž) +𝑛

βˆ‘π‘—=1

𝑓e𝑖+e𝑗 (π‘Ž)(𝑏𝑗 βˆ’ π‘Žπ‘—) + π‘œπ‘‹βˆ‹π‘Ž,𝑏→𝑐

(‖𝑏 βˆ’ π‘Žβ€–).

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 6 / 20

Page 19: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Strategy for the semialgebraic π’ž1 extension problem(Aschenbrenner–Thamrongthanyalak, 2019)

Let 𝑓 ∢ 𝑋 β†’ ℝ be a semialgebraic function admitting a π’ž1 extension 𝐹 ∢ ℝ𝑛 β†’ ℝ.

β€’ Set 𝑆 ≔ {(π‘₯, 𝑦, 𝑣) ∈ ℝ𝑛 Γ— ℝ Γ— ℝ𝑛 ∢ π‘₯ ∈ 𝑋, 𝑦 = 𝑓(π‘₯),βˆ€πœ€ > 0, βˆ€π›Ώ > 0, βˆ€π‘Ž, 𝑏 ∈ 𝐡𝛿 (π‘₯), |𝑓 (𝑏) βˆ’ 𝑓(π‘Ž) βˆ’ 𝑣 β‹… (𝑏 βˆ’ π‘Ž)| ≀ πœ€β€–π‘ βˆ’ π‘Žβ€–}.

β€’ Then 𝑆 is semialgebraic, and, βˆ€π‘₯ ∈ 𝑋, (π‘₯, 𝐹 (π‘₯), βˆ‡πΉ (π‘₯)) ∈ 𝑆.β€’ Semialgebraic Michael’s Selection Lemma:

there exists 𝜎 ∢ 𝑋 β†’ 𝑆 semialgebraic and continuous such that πœ‹π‘₯ ∘ 𝜎 = id where πœ‹π‘₯(π‘₯, 𝑦, 𝑣) = π‘₯.

β€’ Set 𝐺 ≔ πœ‹π‘£ ∘ 𝜎 ∢ ℝ𝑛 β†’ ℝ𝑛 where πœ‹π‘£(π‘₯, 𝑦, 𝑣) = 𝑣, then 𝐺 is semialgebraic, continuous and satisfiesβˆ€π‘ ∈ 𝑋, 𝑓(𝑏) = 𝑓(π‘Ž) + 𝐺(π‘Ž) β‹… (𝑏 βˆ’ π‘Ž) + π‘œ

π‘‹βˆ‹π‘Ž,𝑏→𝑐(‖𝑏 βˆ’ π‘Žβ€–). β– 

This strategy does not generalize to π‘š > 1 since the unknown (𝑓𝛼 )π›Όβˆˆβ„•π‘›β§΅{0}|𝛼|β‰€π‘š

can’t be described as a section.

For instance, if π‘š = 2, 𝑓e𝑖needs to satisfy

𝑓e𝑖 (𝑏) = 𝑓e𝑖 (π‘Ž) +𝑛

βˆ‘π‘—=1

𝑓e𝑖+e𝑗 (π‘Ž)(𝑏𝑗 βˆ’ π‘Žπ‘—) + π‘œπ‘‹βˆ‹π‘Ž,𝑏→𝑐

(‖𝑏 βˆ’ π‘Žβ€–).

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 6 / 20

Page 20: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Strategy for the semialgebraic π’ž1 extension problem(Aschenbrenner–Thamrongthanyalak, 2019)

Let 𝑓 ∢ 𝑋 β†’ ℝ be a semialgebraic function admitting a π’ž1 extension 𝐹 ∢ ℝ𝑛 β†’ ℝ.

β€’ Set 𝑆 ≔ {(π‘₯, 𝑦, 𝑣) ∈ ℝ𝑛 Γ— ℝ Γ— ℝ𝑛 ∢ π‘₯ ∈ 𝑋, 𝑦 = 𝑓(π‘₯),βˆ€πœ€ > 0, βˆ€π›Ώ > 0, βˆ€π‘Ž, 𝑏 ∈ 𝐡𝛿 (π‘₯), |𝑓 (𝑏) βˆ’ 𝑓(π‘Ž) βˆ’ 𝑣 β‹… (𝑏 βˆ’ π‘Ž)| ≀ πœ€β€–π‘ βˆ’ π‘Žβ€–}.

β€’ Then 𝑆 is semialgebraic, and, βˆ€π‘₯ ∈ 𝑋, (π‘₯, 𝐹 (π‘₯), βˆ‡πΉ (π‘₯)) ∈ 𝑆.β€’ Semialgebraic Michael’s Selection Lemma:

there exists 𝜎 ∢ 𝑋 β†’ 𝑆 semialgebraic and continuous such that πœ‹π‘₯ ∘ 𝜎 = id where πœ‹π‘₯(π‘₯, 𝑦, 𝑣) = π‘₯.β€’ Set 𝐺 ≔ πœ‹π‘£ ∘ 𝜎 ∢ ℝ𝑛 β†’ ℝ𝑛 where πœ‹π‘£(π‘₯, 𝑦, 𝑣) = 𝑣, then 𝐺 is semialgebraic, continuous and satisfies

βˆ€π‘ ∈ 𝑋, 𝑓(𝑏) = 𝑓(π‘Ž) + 𝐺(π‘Ž) β‹… (𝑏 βˆ’ π‘Ž) + π‘œπ‘‹βˆ‹π‘Ž,𝑏→𝑐

(‖𝑏 βˆ’ π‘Žβ€–). β– 

This strategy does not generalize to π‘š > 1 since the unknown (𝑓𝛼 )π›Όβˆˆβ„•π‘›β§΅{0}|𝛼|β‰€π‘š

can’t be described as a section.

For instance, if π‘š = 2, 𝑓e𝑖needs to satisfy

𝑓e𝑖 (𝑏) = 𝑓e𝑖 (π‘Ž) +𝑛

βˆ‘π‘—=1

𝑓e𝑖+e𝑗 (π‘Ž)(𝑏𝑗 βˆ’ π‘Žπ‘—) + π‘œπ‘‹βˆ‹π‘Ž,𝑏→𝑐

(‖𝑏 βˆ’ π‘Žβ€–).

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 6 / 20

Page 21: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Strategy for the semialgebraic π’ž1 extension problem(Aschenbrenner–Thamrongthanyalak, 2019)

Let 𝑓 ∢ 𝑋 β†’ ℝ be a semialgebraic function admitting a π’ž1 extension 𝐹 ∢ ℝ𝑛 β†’ ℝ.

β€’ Set 𝑆 ≔ {(π‘₯, 𝑦, 𝑣) ∈ ℝ𝑛 Γ— ℝ Γ— ℝ𝑛 ∢ π‘₯ ∈ 𝑋, 𝑦 = 𝑓(π‘₯),βˆ€πœ€ > 0, βˆ€π›Ώ > 0, βˆ€π‘Ž, 𝑏 ∈ 𝐡𝛿 (π‘₯), |𝑓 (𝑏) βˆ’ 𝑓(π‘Ž) βˆ’ 𝑣 β‹… (𝑏 βˆ’ π‘Ž)| ≀ πœ€β€–π‘ βˆ’ π‘Žβ€–}.

β€’ Then 𝑆 is semialgebraic, and, βˆ€π‘₯ ∈ 𝑋, (π‘₯, 𝐹 (π‘₯), βˆ‡πΉ (π‘₯)) ∈ 𝑆.β€’ Semialgebraic Michael’s Selection Lemma:

there exists 𝜎 ∢ 𝑋 β†’ 𝑆 semialgebraic and continuous such that πœ‹π‘₯ ∘ 𝜎 = id where πœ‹π‘₯(π‘₯, 𝑦, 𝑣) = π‘₯.β€’ Set 𝐺 ≔ πœ‹π‘£ ∘ 𝜎 ∢ ℝ𝑛 β†’ ℝ𝑛 where πœ‹π‘£(π‘₯, 𝑦, 𝑣) = 𝑣, then 𝐺 is semialgebraic, continuous and satisfies

βˆ€π‘ ∈ 𝑋, 𝑓(𝑏) = 𝑓(π‘Ž) + 𝐺(π‘Ž) β‹… (𝑏 βˆ’ π‘Ž) + π‘œπ‘‹βˆ‹π‘Ž,𝑏→𝑐

(‖𝑏 βˆ’ π‘Žβ€–). β– 

This strategy does not generalize to π‘š > 1 since the unknown (𝑓𝛼 )π›Όβˆˆβ„•π‘›β§΅{0}|𝛼|β‰€π‘š

can’t be described as a section.

For instance, if π‘š = 2, 𝑓e𝑖needs to satisfy

𝑓e𝑖(𝑏) = 𝑓e𝑖

(π‘Ž) +𝑛

βˆ‘π‘—=1

𝑓e𝑖+e𝑗(π‘Ž)(𝑏𝑗 βˆ’ π‘Žπ‘—) + π‘œ

π‘‹βˆ‹π‘Ž,𝑏→𝑐(‖𝑏 βˆ’ π‘Žβ€–).

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 6 / 20

Page 22: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Strategy for the planar semialgebraic extension problem (Fefferman–Luli, 2021)

π‘‹βˆ’ ∢ 𝑦 = 0

𝑋+ ∢ 𝑦 = πœ“(π‘₯) ≀ π‘₯𝑋 = π‘‹βˆ’ βˆͺ 𝑋+

(0, 0)

Let 𝑓 ∢ 𝑋 β†’ ℝ be semialgebraic.

1 Let 𝐹 ∢ ℝ2 β†’ ℝ be a π’žπ‘š function such that 𝐹|𝑋 = 𝑓 and 𝐽(0,0)𝐹 = 0.Set 𝑓 βˆ’

𝑙 (π‘₯) ≔ πœ•π‘™π‘¦πΉ (π‘₯, 0) and 𝑓 +

𝑙 (π‘₯) ≔ πœ•π‘™π‘¦πΉ (π‘₯, πœ“(π‘₯)). Then

(βˆ—)

⎧βŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺ⎩

(𝑖) 𝑓 βˆ’0 (π‘₯) = 𝑓(π‘₯, 0)

(𝑖𝑖) 𝑓 +0 (π‘₯) = 𝑓(π‘₯, πœ“(π‘₯))

(𝑖𝑖𝑖) 𝑓 +𝑙 (π‘₯) =

π‘šβˆ’π‘™

βˆ‘π‘˜=0

πœ“(π‘₯)π‘˜

π‘˜! 𝑓 βˆ’π‘™+π‘˜(π‘₯) + π‘œ

π‘₯β†’0+(πœ“(π‘₯)π‘šβˆ’π‘™)

(𝑖𝑣) 𝑓 βˆ’π‘™ (π‘₯) = π‘œ

π‘₯β†’0+ (π‘₯π‘šβˆ’π‘™)(𝑣) 𝑓 +

𝑙 (π‘₯) = π‘œπ‘₯β†’0+ (π‘₯π‘šβˆ’π‘™)

2 According to the definable choice: there exist 𝑓 ±𝑙 semialgebraic satisfying (βˆ—).

3 Then 𝐹 (π‘₯, 𝑦) = πœƒβˆ’(π‘₯, 𝑦)(

π‘š

βˆ‘π‘™=0

𝑓 βˆ’π‘™ (π‘₯)𝑙! 𝑦𝑙

)+ πœƒ+(π‘₯, 𝑦)

(

π‘š

βˆ‘π‘™=0

𝑓 +𝑙 (π‘₯)𝑙! (𝑦 βˆ’ πœ“(π‘₯))𝑙

)is a semialgebraic π’žπ‘š

extension of 𝑓 in a neighborhood of the origin such that 𝐽(0,0) 𝐹 = 0.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 7 / 20

Page 23: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Strategy for the planar semialgebraic extension problem (Fefferman–Luli, 2021)

π‘‹βˆ’ ∢ 𝑦 = 0

𝑋+ ∢ 𝑦 = πœ“(π‘₯) ≀ π‘₯𝑋 = π‘‹βˆ’ βˆͺ 𝑋+

(0, 0)

Let 𝑓 ∢ 𝑋 β†’ ℝ be semialgebraic.1 Let 𝐹 ∢ ℝ2 β†’ ℝ be a π’žπ‘š function such that 𝐹|𝑋 = 𝑓 and 𝐽(0,0)𝐹 = 0.

Set 𝑓 βˆ’π‘™ (π‘₯) ≔ πœ•π‘™

𝑦𝐹 (π‘₯, 0) and 𝑓 +𝑙 (π‘₯) ≔ πœ•π‘™

𝑦𝐹 (π‘₯, πœ“(π‘₯)). Then

(βˆ—)

⎧βŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺ⎩

(𝑖) 𝑓 βˆ’0 (π‘₯) = 𝑓(π‘₯, 0)

(𝑖𝑖) 𝑓 +0 (π‘₯) = 𝑓(π‘₯, πœ“(π‘₯))

(𝑖𝑖𝑖) 𝑓 +𝑙 (π‘₯) =

π‘šβˆ’π‘™

βˆ‘π‘˜=0

πœ“(π‘₯)π‘˜

π‘˜! 𝑓 βˆ’π‘™+π‘˜(π‘₯) + π‘œ

π‘₯β†’0+(πœ“(π‘₯)π‘šβˆ’π‘™)

(𝑖𝑣) 𝑓 βˆ’π‘™ (π‘₯) = π‘œ

π‘₯β†’0+ (π‘₯π‘šβˆ’π‘™)(𝑣) 𝑓 +

𝑙 (π‘₯) = π‘œπ‘₯β†’0+ (π‘₯π‘šβˆ’π‘™)

2 According to the definable choice: there exist 𝑓 ±𝑙 semialgebraic satisfying (βˆ—).

3 Then 𝐹 (π‘₯, 𝑦) = πœƒβˆ’(π‘₯, 𝑦)(

π‘š

βˆ‘π‘™=0

𝑓 βˆ’π‘™ (π‘₯)𝑙! 𝑦𝑙

)+ πœƒ+(π‘₯, 𝑦)

(

π‘š

βˆ‘π‘™=0

𝑓 +𝑙 (π‘₯)𝑙! (𝑦 βˆ’ πœ“(π‘₯))𝑙

)is a semialgebraic π’žπ‘š

extension of 𝑓 in a neighborhood of the origin such that 𝐽(0,0) 𝐹 = 0.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 7 / 20

Page 24: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Strategy for the planar semialgebraic extension problem (Fefferman–Luli, 2021)

π‘‹βˆ’ ∢ 𝑦 = 0

𝑋+ ∢ 𝑦 = πœ“(π‘₯) ≀ π‘₯𝑋 = π‘‹βˆ’ βˆͺ 𝑋+

(0, 0)

Let 𝑓 ∢ 𝑋 β†’ ℝ be semialgebraic.1 Let 𝐹 ∢ ℝ2 β†’ ℝ be a π’žπ‘š function such that 𝐹|𝑋 = 𝑓 and 𝐽(0,0)𝐹 = 0.

Set 𝑓 βˆ’π‘™ (π‘₯) ≔ πœ•π‘™

𝑦𝐹 (π‘₯, 0) and 𝑓 +𝑙 (π‘₯) ≔ πœ•π‘™

𝑦𝐹 (π‘₯, πœ“(π‘₯)).

Then

(βˆ—)

⎧βŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺ⎩

(𝑖) 𝑓 βˆ’0 (π‘₯) = 𝑓(π‘₯, 0)

(𝑖𝑖) 𝑓 +0 (π‘₯) = 𝑓(π‘₯, πœ“(π‘₯))

(𝑖𝑖𝑖) 𝑓 +𝑙 (π‘₯) =

π‘šβˆ’π‘™

βˆ‘π‘˜=0

πœ“(π‘₯)π‘˜

π‘˜! 𝑓 βˆ’π‘™+π‘˜(π‘₯) + π‘œ

π‘₯β†’0+(πœ“(π‘₯)π‘šβˆ’π‘™)

(𝑖𝑣) 𝑓 βˆ’π‘™ (π‘₯) = π‘œ

π‘₯β†’0+ (π‘₯π‘šβˆ’π‘™)(𝑣) 𝑓 +

𝑙 (π‘₯) = π‘œπ‘₯β†’0+ (π‘₯π‘šβˆ’π‘™)

2 According to the definable choice: there exist 𝑓 ±𝑙 semialgebraic satisfying (βˆ—).

3 Then 𝐹 (π‘₯, 𝑦) = πœƒβˆ’(π‘₯, 𝑦)(

π‘š

βˆ‘π‘™=0

𝑓 βˆ’π‘™ (π‘₯)𝑙! 𝑦𝑙

)+ πœƒ+(π‘₯, 𝑦)

(

π‘š

βˆ‘π‘™=0

𝑓 +𝑙 (π‘₯)𝑙! (𝑦 βˆ’ πœ“(π‘₯))𝑙

)is a semialgebraic π’žπ‘š

extension of 𝑓 in a neighborhood of the origin such that 𝐽(0,0) 𝐹 = 0.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 7 / 20

Page 25: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Strategy for the planar semialgebraic extension problem (Fefferman–Luli, 2021)

π‘‹βˆ’ ∢ 𝑦 = 0

𝑋+ ∢ 𝑦 = πœ“(π‘₯) ≀ π‘₯𝑋 = π‘‹βˆ’ βˆͺ 𝑋+

(0, 0)

Let 𝑓 ∢ 𝑋 β†’ ℝ be semialgebraic.1 Let 𝐹 ∢ ℝ2 β†’ ℝ be a π’žπ‘š function such that 𝐹|𝑋 = 𝑓 and 𝐽(0,0)𝐹 = 0.

Set 𝑓 βˆ’π‘™ (π‘₯) ≔ πœ•π‘™

𝑦𝐹 (π‘₯, 0) and 𝑓 +𝑙 (π‘₯) ≔ πœ•π‘™

𝑦𝐹 (π‘₯, πœ“(π‘₯)). Then

(βˆ—)

⎧βŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺ⎩

(𝑖) 𝑓 βˆ’0 (π‘₯) = 𝑓(π‘₯, 0)

(𝑖𝑖) 𝑓 +0 (π‘₯) = 𝑓(π‘₯, πœ“(π‘₯))

(𝑖𝑖𝑖) 𝑓 +𝑙 (π‘₯) =

π‘šβˆ’π‘™

βˆ‘π‘˜=0

πœ“(π‘₯)π‘˜

π‘˜! 𝑓 βˆ’π‘™+π‘˜(π‘₯) + π‘œ

π‘₯β†’0+(πœ“(π‘₯)π‘šβˆ’π‘™)

(𝑖𝑣) 𝑓 βˆ’π‘™ (π‘₯) = π‘œ

π‘₯β†’0+ (π‘₯π‘šβˆ’π‘™)(𝑣) 𝑓 +

𝑙 (π‘₯) = π‘œπ‘₯β†’0+ (π‘₯π‘šβˆ’π‘™)

2 According to the definable choice: there exist 𝑓 ±𝑙 semialgebraic satisfying (βˆ—).

3 Then 𝐹 (π‘₯, 𝑦) = πœƒβˆ’(π‘₯, 𝑦)(

π‘š

βˆ‘π‘™=0

𝑓 βˆ’π‘™ (π‘₯)𝑙! 𝑦𝑙

)+ πœƒ+(π‘₯, 𝑦)

(

π‘š

βˆ‘π‘™=0

𝑓 +𝑙 (π‘₯)𝑙! (𝑦 βˆ’ πœ“(π‘₯))𝑙

)is a semialgebraic π’žπ‘š

extension of 𝑓 in a neighborhood of the origin such that 𝐽(0,0) 𝐹 = 0.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 7 / 20

Page 26: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Strategy for the planar semialgebraic extension problem (Fefferman–Luli, 2021)

π‘‹βˆ’ ∢ 𝑦 = 0

𝑋+ ∢ 𝑦 = πœ“(π‘₯) ≀ π‘₯𝑋 = π‘‹βˆ’ βˆͺ 𝑋+

(0, 0)

Let 𝑓 ∢ 𝑋 β†’ ℝ be semialgebraic.1 Let 𝐹 ∢ ℝ2 β†’ ℝ be a π’žπ‘š function such that 𝐹|𝑋 = 𝑓 and 𝐽(0,0)𝐹 = 0.

Set 𝑓 βˆ’π‘™ (π‘₯) ≔ πœ•π‘™

𝑦𝐹 (π‘₯, 0) and 𝑓 +𝑙 (π‘₯) ≔ πœ•π‘™

𝑦𝐹 (π‘₯, πœ“(π‘₯)). Then

(βˆ—)

⎧βŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺ⎩

(𝑖) 𝑓 βˆ’0 (π‘₯) = 𝑓(π‘₯, 0)

(𝑖𝑖) 𝑓 +0 (π‘₯) = 𝑓(π‘₯, πœ“(π‘₯))

(𝑖𝑖𝑖) 𝑓 +𝑙 (π‘₯) =

π‘šβˆ’π‘™

βˆ‘π‘˜=0

πœ“(π‘₯)π‘˜

π‘˜! 𝑓 βˆ’π‘™+π‘˜(π‘₯) + π‘œ

π‘₯β†’0+(πœ“(π‘₯)π‘šβˆ’π‘™)

(𝑖𝑣) 𝑓 βˆ’π‘™ (π‘₯) = π‘œ

π‘₯β†’0+ (π‘₯π‘šβˆ’π‘™)(𝑣) 𝑓 +

𝑙 (π‘₯) = π‘œπ‘₯β†’0+ (π‘₯π‘šβˆ’π‘™)

2 According to the definable choice: there exist 𝑓 ±𝑙 semialgebraic satisfying (βˆ—).

3 Then 𝐹 (π‘₯, 𝑦) = πœƒβˆ’(π‘₯, 𝑦)(

π‘š

βˆ‘π‘™=0

𝑓 βˆ’π‘™ (π‘₯)𝑙! 𝑦𝑙

)+ πœƒ+(π‘₯, 𝑦)

(

π‘š

βˆ‘π‘™=0

𝑓 +𝑙 (π‘₯)𝑙! (𝑦 βˆ’ πœ“(π‘₯))𝑙

)is a semialgebraic π’žπ‘š

extension of 𝑓 in a neighborhood of the origin such that 𝐽(0,0) 𝐹 = 0.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 7 / 20

Page 27: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Strategy for the planar semialgebraic extension problem (Fefferman–Luli, 2021)

π‘‹βˆ’ ∢ 𝑦 = 0

𝑋+ ∢ 𝑦 = πœ“(π‘₯) ≀ π‘₯𝑋 = π‘‹βˆ’ βˆͺ 𝑋+

(0, 0)

Let 𝑓 ∢ 𝑋 β†’ ℝ be semialgebraic.1 Let 𝐹 ∢ ℝ2 β†’ ℝ be a π’žπ‘š function such that 𝐹|𝑋 = 𝑓 and 𝐽(0,0)𝐹 = 0.

Set 𝑓 βˆ’π‘™ (π‘₯) ≔ πœ•π‘™

𝑦𝐹 (π‘₯, 0) and 𝑓 +𝑙 (π‘₯) ≔ πœ•π‘™

𝑦𝐹 (π‘₯, πœ“(π‘₯)). Then

(βˆ—)

⎧βŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺ⎩

(𝑖) 𝑓 βˆ’0 (π‘₯) = 𝑓(π‘₯, 0)

(𝑖𝑖) 𝑓 +0 (π‘₯) = 𝑓(π‘₯, πœ“(π‘₯))

(𝑖𝑖𝑖) 𝑓 +𝑙 (π‘₯) =

π‘šβˆ’π‘™

βˆ‘π‘˜=0

πœ“(π‘₯)π‘˜

π‘˜! 𝑓 βˆ’π‘™+π‘˜(π‘₯) + π‘œ

π‘₯β†’0+(πœ“(π‘₯)π‘šβˆ’π‘™)

(𝑖𝑣) 𝑓 βˆ’π‘™ (π‘₯) = π‘œ

π‘₯β†’0+ (π‘₯π‘šβˆ’π‘™)(𝑣) 𝑓 +

𝑙 (π‘₯) = π‘œπ‘₯β†’0+ (π‘₯π‘šβˆ’π‘™)

2 According to the definable choice: there exist 𝑓 ±𝑙 semialgebraic satisfying (βˆ—).

3 Then 𝐹 (π‘₯, 𝑦) = πœƒβˆ’(π‘₯, 𝑦)(

π‘š

βˆ‘π‘™=0

𝑓 βˆ’π‘™ (π‘₯)𝑙! 𝑦𝑙

)+ πœƒ+(π‘₯, 𝑦)

(

π‘š

βˆ‘π‘™=0

𝑓 +𝑙 (π‘₯)𝑙! (𝑦 βˆ’ πœ“(π‘₯))𝑙

)is a semialgebraic π’žπ‘š

extension of 𝑓 in a neighborhood of the origin such that 𝐽(0,0) 𝐹 = 0.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 7 / 20

Page 28: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

The main results: statements

Theorem – Bierstone–C.–Milman, 2021Given 𝑋 βŠ‚ ℝ𝑛 closed and semialgebraic, there exists π‘Ÿ ∢ β„• β†’ β„• satisfying the following property:if 𝑓 ∢ 𝑋 β†’ ℝ semialgebraic admits a π’žπ‘Ÿ(π‘š) extension, then it admits a semialgebraic π’žπ‘š extension.

Theorem – Bierstone–C.–Milman, 2021Given 𝐴 ∢ ℝ𝑛 β†’ ℳ𝑝,π‘ž(ℝ) semialgebraic, there exists π‘Ÿ ∢ β„• β†’ β„• such that:if 𝐹 ∢ ℝ𝑛 β†’ ℝ𝑝 semialgebraic may be written 𝐹 (π‘₯) = 𝐴(π‘₯)𝐺(π‘₯) where 𝐺 is π’žπ‘Ÿ(π‘š),then 𝐹 (π‘₯) = 𝐴(π‘₯)οΏ½οΏ½(π‘₯) where οΏ½οΏ½(π‘₯) is semialgebraic and π’žπ‘š.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 8 / 20

Page 29: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

The main results: statements

Theorem – Bierstone–C.–Milman, 2021Given 𝑋 βŠ‚ ℝ𝑛 closed and semialgebraic, there exists π‘Ÿ ∢ β„• β†’ β„• satisfying the following property:if 𝑓 ∢ 𝑋 β†’ ℝ semialgebraic admits a π’žπ‘Ÿ(π‘š) extension, then it admits a semialgebraic π’žπ‘š extension.

Theorem – Bierstone–C.–Milman, 2021Given 𝐴 ∢ ℝ𝑛 β†’ ℳ𝑝,π‘ž(ℝ) semialgebraic, there exists π‘Ÿ ∢ β„• β†’ β„• such that:if 𝐹 ∢ ℝ𝑛 β†’ ℝ𝑝 semialgebraic may be written 𝐹 (π‘₯) = 𝐴(π‘₯)𝐺(π‘₯) where 𝐺 is π’žπ‘Ÿ(π‘š),then 𝐹 (π‘₯) = 𝐴(π‘₯)οΏ½οΏ½(π‘₯) where οΏ½οΏ½(π‘₯) is semialgebraic and π’žπ‘š.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 8 / 20

Page 30: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Main results: towards a common generalization

The extension problemLet 𝑋 βŠ‚ ℝ𝑛 be semialgebraic and closed.

By resolution of singularities, there exists πœ‘ ∢ 𝑀 β†’ ℝ𝑛

Nash and proper defined on a Nash manifold suchthat 𝑋 = πœ‘(𝑀).

Given 𝑔 ∢ ℝ𝑛 β†’ ℝ and 𝑓 ∢ 𝑋 β†’ ℝ, we have𝑔|𝑋 = 𝑓 if and only if

βˆ€π‘¦ ∈ 𝑀, 𝑔(πœ‘(𝑦)) = 𝑓 (𝑦)

where 𝑓 ≔ 𝑓 ∘ πœ‘.

The equation problemConsider an equation

𝐴(π‘₯)𝐺(π‘₯) = 𝐹 (π‘₯), π‘₯ ∈ ℝ𝑛.

By resolution of singularities, there existsπœ‘ ∢ 𝑀 β†’ ℝ𝑛 Nash and proper defined on a Nashmanifold such that after composition, we get

𝐴(𝑦)𝐺(πœ‘(𝑦)) = 𝐹 (𝑦), 𝑦 ∈ 𝑀

where 𝐴 ≔ 𝐴 ∘ πœ‘ is now Nash and 𝐹 ≔ 𝐹 ∘ πœ‘.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 9 / 20

Page 31: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Main results: towards a common generalization

The extension problemLet 𝑋 βŠ‚ ℝ𝑛 be semialgebraic and closed.

By resolution of singularities, there exists πœ‘ ∢ 𝑀 β†’ ℝ𝑛

Nash and proper defined on a Nash manifold suchthat 𝑋 = πœ‘(𝑀).

Given 𝑔 ∢ ℝ𝑛 β†’ ℝ and 𝑓 ∢ 𝑋 β†’ ℝ, we have𝑔|𝑋 = 𝑓 if and only if

βˆ€π‘¦ ∈ 𝑀, 𝑔(πœ‘(𝑦)) = 𝑓 (𝑦)

where 𝑓 ≔ 𝑓 ∘ πœ‘.

The equation problemConsider an equation

𝐴(π‘₯)𝐺(π‘₯) = 𝐹 (π‘₯), π‘₯ ∈ ℝ𝑛.

By resolution of singularities, there existsπœ‘ ∢ 𝑀 β†’ ℝ𝑛 Nash and proper defined on a Nashmanifold such that after composition, we get

𝐴(𝑦)𝐺(πœ‘(𝑦)) = 𝐹 (𝑦), 𝑦 ∈ 𝑀

where 𝐴 ≔ 𝐴 ∘ πœ‘ is now Nash and 𝐹 ≔ 𝐹 ∘ πœ‘.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 9 / 20

Page 32: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

The main result

Theorem – Bierstone–C.–Milman, 2021Let 𝐴 ∢ ℝ𝑛 β†’ ℳ𝑝,π‘ž(ℝ) be Nash and let πœ‘ ∢ 𝑀 β†’ ℝ𝑛 be Nash and proper defined on 𝑀 βŠ‚ ℝ𝑁 aNash submanifold.Then there exists π‘Ÿ ∢ β„• β†’ β„• satisfying the following property.If 𝑓 ∢ 𝑀 β†’ ℝ𝑝 semialgebraic may be written

𝑓(π‘₯) = 𝐴(π‘₯)𝑔(πœ‘(π‘₯))

for a π’žπ‘Ÿ(π‘š) function 𝑔 ∢ ℝ𝑛 β†’ β„π‘ž then

𝑓(π‘₯) = 𝐴(π‘₯) 𝑔(πœ‘(π‘₯))

for a semialgebraic π’žπ‘š function 𝑔.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 10 / 20

Page 33: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Heart of the proof: induction on dimension

Proposition: the induction stepLet 𝐡 βŠ‚ πœ‘(𝑀) be semialgebraic and closed.There exist 𝐡′ βŠ‚ 𝐡 semialgebraic satisfying dim 𝐡′ < dim 𝐡 and 𝑑 ∢ β„• β†’ β„• such that if

1 𝑓 ∢ 𝑀 β†’ ℝ𝑝 is π’žπ‘‘(π‘˜), semialgebraic and 𝑑(π‘˜)-flat on πœ‘βˆ’1(𝐡′), and2 𝑓 = 𝐴 β‹… (𝑔 ∘ πœ‘) admits a π’žπ‘‘(π‘˜) solution 𝑔,

then there exists a semialgebraic π’žπ‘˜ function 𝑔 ∢ ℝ𝑛 β†’ β„π‘ž s.t. 𝑓 βˆ’ 𝐴 β‹… ( 𝑔 ∘ πœ‘) is π‘˜-flat on πœ‘βˆ’1(𝐡).

Then, up to subtracting by 𝐴 β‹… ( 𝑔 ∘ πœ‘) on both side, we get an equation

𝑓 = 𝐴 β‹… (𝑔 ∘ πœ‘)

where 𝑓 is now semialgebraic and π‘˜-flat on πœ‘βˆ’1(𝐡).

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 11 / 20

Page 34: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Heart of the proof: induction on dimension

Proposition: the induction stepLet 𝐡 βŠ‚ πœ‘(𝑀) be semialgebraic and closed.There exist 𝐡′ βŠ‚ 𝐡 semialgebraic satisfying dim 𝐡′ < dim 𝐡 and 𝑑 ∢ β„• β†’ β„• such that if

1 𝑓 ∢ 𝑀 β†’ ℝ𝑝 is π’žπ‘‘(π‘˜), semialgebraic and 𝑑(π‘˜)-flat on πœ‘βˆ’1(𝐡′), and2 𝑓 = 𝐴 β‹… (𝑔 ∘ πœ‘) admits a π’žπ‘‘(π‘˜) solution 𝑔,

then there exists a semialgebraic π’žπ‘˜ function 𝑔 ∢ ℝ𝑛 β†’ β„π‘ž s.t. 𝑓 βˆ’ 𝐴 β‹… ( 𝑔 ∘ πœ‘) is π‘˜-flat on πœ‘βˆ’1(𝐡).

Then, up to subtracting by 𝐴 β‹… ( 𝑔 ∘ πœ‘) on both side, we get an equation

𝑓 = 𝐴 β‹… (𝑔 ∘ πœ‘)

where 𝑓 is now semialgebraic and π‘˜-flat on πœ‘βˆ’1(𝐡).

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 11 / 20

Page 35: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Heart of the proof: induction on dimension

Strategy: construction of a semialgebraic Whitney field

𝐺(𝑏, y) = βˆ‘|𝛼|≀𝑙

𝑔𝛼 (𝑏)𝛼! y𝛼 ∈ π’ž0(𝐡)[y]

vanishing on 𝐡′ such that

βˆ€π‘ ∈ 𝐡 ⧡ 𝐡′, βˆ€π‘Ž ∈ πœ‘βˆ’1(𝑏), 𝑇 π‘™π‘Žπ‘“(x) ≑ 𝑇 𝑙

π‘Žπ΄(x) 𝐺(𝑏, 𝑇 π‘™π‘Žπœ‘(x)) mod (x)𝑙+1ℝJxK𝑝

A - Whitney regularityGiven 𝐡, there exists 𝜌 ∈ β„• such that if 𝐺 is a Whitney field of order 𝑙 β‰₯ π‘˜πœŒ on 𝐡 ⧡ 𝐡′ then it is aWhitney field of order π‘˜ on 𝐡.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 12 / 20

Page 36: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Heart of the proof: induction on dimension

Strategy: construction of a semialgebraic Whitney field

𝐺(𝑏, y) = βˆ‘|𝛼|≀𝑙

𝑔𝛼 (𝑏)𝛼! y𝛼 ∈ π’ž0(𝐡)[y]

vanishing on 𝐡′ such that

βˆ€π‘ ∈ 𝐡 ⧡ 𝐡′, βˆ€π‘Ž ∈ πœ‘βˆ’1(𝑏), 𝑇 π‘™π‘Žπ‘“(x) ≑ 𝑇 𝑙

π‘Žπ΄(x) 𝐺(𝑏, 𝑇 π‘™π‘Žπœ‘(x)) mod (x)𝑙+1ℝJxK𝑝

A - Whitney regularityGiven 𝐡, there exists 𝜌 ∈ β„• such that if 𝐺 is a Whitney field of order 𝑙 β‰₯ π‘˜πœŒ on 𝐡 ⧡ 𝐡′ then it is aWhitney field of order π‘˜ on 𝐡.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 12 / 20

Page 37: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

The module of relations at 𝑏 ∈ πœ‘(𝑀)We consider the equation at the level of Taylor polynomials:

𝑇 π‘Ÿπ‘Ž 𝑓(x) ≑ 𝑇 π‘Ÿ

π‘Ž 𝐴(x) 𝐺(𝑏, 𝑇 π‘Ÿπ‘Ž πœ‘(x)) mod (x)π‘Ÿ+1ℝJxK𝑝 (1)

B - Chevalley’s functionGiven 𝑙 ∈ β„•, there exists π‘Ÿ β‰₯ 𝑙 such that the derivatives of 𝑔 of order ≀ 𝑙 can be expressed interms of the derivatives of 𝑓 of order ≀ π‘Ÿ.

Formally, we stratify 𝐡 = β¨†πœmax𝜏=1 Ξ›πœ such that for each 𝜏, there exists π‘Ÿ β‰₯ 𝑙 satisfying

βˆ€π‘ ∈ Ξ›πœ , πœ‹π‘™(β„›π‘Ÿ(𝑏)) = πœ‹π‘™(β„›π‘Ÿβˆ’1(𝑏))

whereβ€’ β„›π‘Ÿ(𝑏) is the module of relations at 𝑏 ∈ πœ‘(𝑀) formed by the 𝐺 ∈ ℝJyKπ‘ž satisfying the

homogeneous equation associated to (1) for all π‘Ž ∈ πœ‘βˆ’1(𝑏), and,β€’ πœ‹π‘™ is the truncation up to degree 𝑙.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 13 / 20

Page 38: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

The module of relations at 𝑏 ∈ πœ‘(𝑀)We consider the equation at the level of Taylor polynomials:

𝑇 π‘Ÿπ‘Ž 𝑓(x) ≑ 𝑇 π‘Ÿ

π‘Ž 𝐴(x) 𝐺(𝑏, 𝑇 π‘Ÿπ‘Ž πœ‘(x)) mod (x)π‘Ÿ+1ℝJxK𝑝 (1)

B - Chevalley’s functionGiven 𝑙 ∈ β„•, there exists π‘Ÿ β‰₯ 𝑙 such that the derivatives of 𝑔 of order ≀ 𝑙 can be expressed interms of the derivatives of 𝑓 of order ≀ π‘Ÿ.

Formally, we stratify 𝐡 = β¨†πœmax𝜏=1 Ξ›πœ such that for each 𝜏, there exists π‘Ÿ β‰₯ 𝑙 satisfying

βˆ€π‘ ∈ Ξ›πœ , πœ‹π‘™(β„›π‘Ÿ(𝑏)) = πœ‹π‘™(β„›π‘Ÿβˆ’1(𝑏))

whereβ€’ β„›π‘Ÿ(𝑏) is the module of relations at 𝑏 ∈ πœ‘(𝑀) formed by the 𝐺 ∈ ℝJyKπ‘ž satisfying the

homogeneous equation associated to (1) for all π‘Ž ∈ πœ‘βˆ’1(𝑏), and,β€’ πœ‹π‘™ is the truncation up to degree 𝑙.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 13 / 20

Page 39: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

The module of relations at 𝑏 ∈ πœ‘(𝑀)We consider the equation at the level of Taylor polynomials:

𝑇 π‘Ÿπ‘Ž 𝑓(x) ≑ 𝑇 π‘Ÿ

π‘Ž 𝐴(x) 𝐺(𝑏, 𝑇 π‘Ÿπ‘Ž πœ‘(x)) mod (x)π‘Ÿ+1ℝJxK𝑝 (1)

B - Chevalley’s functionGiven 𝑙 ∈ β„•, there exists π‘Ÿ β‰₯ 𝑙 such that the derivatives of 𝑔 of order ≀ 𝑙 can be expressed interms of the derivatives of 𝑓 of order ≀ π‘Ÿ.

Formally, we stratify 𝐡 = β¨†πœmax𝜏=1 Ξ›πœ such that for each 𝜏, there exists π‘Ÿ β‰₯ 𝑙 satisfying

βˆ€π‘ ∈ Ξ›πœ , πœ‹π‘™(β„›π‘Ÿ(𝑏)) = πœ‹π‘™(β„›π‘Ÿβˆ’1(𝑏))

whereβ€’ β„›π‘Ÿ(𝑏) is the module of relations at 𝑏 ∈ πœ‘(𝑀) formed by the 𝐺 ∈ ℝJyKπ‘ž satisfying the

homogeneous equation associated to (1) for all π‘Ž ∈ πœ‘βˆ’1(𝑏), and,β€’ πœ‹π‘™ is the truncation up to degree 𝑙.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 13 / 20

Page 40: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Hironaka’s formal divisionβ€’ 𝐹 = βˆ‘ 𝐹(𝛼,𝑗)y(𝛼,𝑗) ∈ ℝJ𝑦1, … , 𝑦𝑛K𝑝 where y(𝛼,𝑗) = (0, … , 0, 𝑦𝛼1

1 β‹― 𝑦𝛼𝑛𝑛 , 0, … , 0).

β€’ The set ℕ𝑛 Γ— {1, … , 𝑝} βˆ‹ (𝛼, 𝑗) is totally ordered by lex(|𝛼|, 𝑗, 𝛼1, … , 𝛼𝑛).β€’ supp 𝐹 ≔ {(𝛼, 𝑗) ∢ 𝐹(𝛼,𝑗) β‰  0} β€’ exp 𝐹 ≔ min(supp 𝐹 )

Theorem – Hironaka 1964, Bierstone–Milman 1987Let Ξ¦1, … , Ξ¦π‘ž ∈ ℝJyK𝑝.

Set Ξ”1 ≔ exp Ξ¦1 + ℕ𝑛, Δ𝑖 ≔ (exp Φ𝑖 + ℕ𝑛) β§΅π‘–βˆ’1

β‹ƒπ‘˜=1

Ξ”π‘˜, and Ξ” ≔ (ℕ𝑛 Γ— {1, … , 𝑝}) β§΅π‘ž

β‹ƒπ‘˜=1

Ξ”π‘˜.

Ξ”

Ξ”3

Ξ”2

Ξ”1Then βˆ€πΉ ∈ ℝJyK𝑝, βˆƒ!𝑄𝑖 ∈ ℝJyK, 𝑅 ∈ ℝJyK𝑝 such that

β€’ 𝐹 =π‘ž

βˆ‘π‘–=1

𝑄𝑖Φ𝑖 + 𝑅

β€’ exp Φ𝑖 + supp 𝑄𝑖 βŠ‚ Δ𝑖

β€’ supp 𝑅 βŠ‚ Ξ”

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 14 / 20

Page 41: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Hironaka’s formal divisionβ€’ 𝐹 = βˆ‘ 𝐹(𝛼,𝑗)y(𝛼,𝑗) ∈ ℝJ𝑦1, … , 𝑦𝑛K𝑝 where y(𝛼,𝑗) = (0, … , 0, 𝑦𝛼1

1 β‹― 𝑦𝛼𝑛𝑛 , 0, … , 0).

β€’ The set ℕ𝑛 Γ— {1, … , 𝑝} βˆ‹ (𝛼, 𝑗) is totally ordered by lex(|𝛼|, 𝑗, 𝛼1, … , 𝛼𝑛).β€’ supp 𝐹 ≔ {(𝛼, 𝑗) ∢ 𝐹(𝛼,𝑗) β‰  0} β€’ exp 𝐹 ≔ min(supp 𝐹 )

Theorem – Hironaka 1964, Bierstone–Milman 1987Let Ξ¦1, … , Ξ¦π‘ž ∈ ℝJyK𝑝.

Set Ξ”1 ≔ exp Ξ¦1 + ℕ𝑛, Δ𝑖 ≔ (exp Φ𝑖 + ℕ𝑛) β§΅π‘–βˆ’1

β‹ƒπ‘˜=1

Ξ”π‘˜, and Ξ” ≔ (ℕ𝑛 Γ— {1, … , 𝑝}) β§΅π‘ž

β‹ƒπ‘˜=1

Ξ”π‘˜.

Ξ”

Ξ”3

Ξ”2

Ξ”1Then βˆ€πΉ ∈ ℝJyK𝑝, βˆƒ!𝑄𝑖 ∈ ℝJyK, 𝑅 ∈ ℝJyK𝑝 such that

β€’ 𝐹 =π‘ž

βˆ‘π‘–=1

𝑄𝑖Φ𝑖 + 𝑅

β€’ exp Φ𝑖 + supp 𝑄𝑖 βŠ‚ Δ𝑖

β€’ supp 𝑅 βŠ‚ Ξ”

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 14 / 20

Page 42: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Hironaka’s formal divisionβ€’ 𝐹 = βˆ‘ 𝐹(𝛼,𝑗)y(𝛼,𝑗) ∈ ℝJ𝑦1, … , 𝑦𝑛K𝑝 where y(𝛼,𝑗) = (0, … , 0, 𝑦𝛼1

1 β‹― 𝑦𝛼𝑛𝑛 , 0, … , 0).

β€’ The set ℕ𝑛 Γ— {1, … , 𝑝} βˆ‹ (𝛼, 𝑗) is totally ordered by lex(|𝛼|, 𝑗, 𝛼1, … , 𝛼𝑛).β€’ supp 𝐹 ≔ {(𝛼, 𝑗) ∢ 𝐹(𝛼,𝑗) β‰  0} β€’ exp 𝐹 ≔ min(supp 𝐹 )

Theorem – Hironaka 1964, Bierstone–Milman 1987Let Ξ¦1, … , Ξ¦π‘ž ∈ ℝJyK𝑝.

Set Ξ”1 ≔ exp Ξ¦1 + ℕ𝑛, Δ𝑖 ≔ (exp Φ𝑖 + ℕ𝑛) β§΅π‘–βˆ’1

β‹ƒπ‘˜=1

Ξ”π‘˜, and Ξ” ≔ (ℕ𝑛 Γ— {1, … , 𝑝}) β§΅π‘ž

β‹ƒπ‘˜=1

Ξ”π‘˜.

Ξ”

Ξ”3

Ξ”2

Ξ”1Then βˆ€πΉ ∈ ℝJyK𝑝, βˆƒ!𝑄𝑖 ∈ ℝJyK, 𝑅 ∈ ℝJyK𝑝 such that

β€’ 𝐹 =π‘ž

βˆ‘π‘–=1

𝑄𝑖Φ𝑖 + 𝑅

β€’ exp Φ𝑖 + supp 𝑄𝑖 βŠ‚ Δ𝑖

β€’ supp 𝑅 βŠ‚ Ξ”

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 14 / 20

Page 43: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Diagram of initial exponentsLet 𝑀 βŠ‚ ℝJyK𝑝 be a ℝJyK-submodule.The diagram of initial exponents of 𝑀 is

𝒩 (𝑀) ≔ {exp 𝐹 ∢ 𝐹 ∈ 𝑀 ⧡ {0}} βŠ‚ ℕ𝑛 Γ— {1, … , 𝑝}

Note that 𝒩 (𝑀) has finitely many vertices (𝛼𝑖, 𝑗𝑖), 𝑖 = 1, … , π‘ž.For each one, we pick a representative Φ𝑖 ∈ 𝑀 , i.e. exp Φ𝑖 = (𝛼𝑖, 𝑗𝑖).

CorollaryLet 𝐹 ∈ ℝJyK𝑝. Then 𝐹 ∈ 𝑀 if and only if its remainder by the formal division w.r.t. the Φ𝑖 is 0.

Particularly Ξ¦1, … , Ξ¦π‘ž generate 𝑀 .

Proof. Write 𝐹 =π‘ž

βˆ‘π‘–=1

𝑄𝑖Φ𝑖 + 𝑅 with supp 𝑅 βŠ‚ 𝒩 (𝑀)𝑐 . β– 

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 15 / 20

Page 44: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Diagram of initial exponentsLet 𝑀 βŠ‚ ℝJyK𝑝 be a ℝJyK-submodule.The diagram of initial exponents of 𝑀 is

𝒩 (𝑀) ≔ {exp 𝐹 ∢ 𝐹 ∈ 𝑀 ⧡ {0}} βŠ‚ ℕ𝑛 Γ— {1, … , 𝑝}

Note that 𝒩 (𝑀) has finitely many vertices (𝛼𝑖, 𝑗𝑖), 𝑖 = 1, … , π‘ž.For each one, we pick a representative Φ𝑖 ∈ 𝑀 , i.e. exp Φ𝑖 = (𝛼𝑖, 𝑗𝑖).

CorollaryLet 𝐹 ∈ ℝJyK𝑝. Then 𝐹 ∈ 𝑀 if and only if its remainder by the formal division w.r.t. the Φ𝑖 is 0.

Particularly Ξ¦1, … , Ξ¦π‘ž generate 𝑀 .

Proof. Write 𝐹 =π‘ž

βˆ‘π‘–=1

𝑄𝑖Φ𝑖 + 𝑅 with supp 𝑅 βŠ‚ 𝒩 (𝑀)𝑐 . β– 

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 15 / 20

Page 45: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Diagram of initial exponentsLet 𝑀 βŠ‚ ℝJyK𝑝 be a ℝJyK-submodule.The diagram of initial exponents of 𝑀 is

𝒩 (𝑀) ≔ {exp 𝐹 ∢ 𝐹 ∈ 𝑀 ⧡ {0}} βŠ‚ ℕ𝑛 Γ— {1, … , 𝑝}

Note that 𝒩 (𝑀) has finitely many vertices (𝛼𝑖, 𝑗𝑖), 𝑖 = 1, … , π‘ž.For each one, we pick a representative Φ𝑖 ∈ 𝑀 , i.e. exp Φ𝑖 = (𝛼𝑖, 𝑗𝑖).

CorollaryLet 𝐹 ∈ ℝJyK𝑝. Then 𝐹 ∈ 𝑀 if and only if its remainder by the formal division w.r.t. the Φ𝑖 is 0.

Particularly Ξ¦1, … , Ξ¦π‘ž generate 𝑀 .

Proof. Write 𝐹 =π‘ž

βˆ‘π‘–=1

𝑄𝑖Φ𝑖 + 𝑅 with supp 𝑅 βŠ‚ 𝒩 (𝑀)𝑐 . β– 

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 15 / 20

Page 46: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Diagram of initial exponentsLet 𝑀 βŠ‚ ℝJyK𝑝 be a ℝJyK-submodule.The diagram of initial exponents of 𝑀 is

𝒩 (𝑀) ≔ {exp 𝐹 ∢ 𝐹 ∈ 𝑀 ⧡ {0}} βŠ‚ ℕ𝑛 Γ— {1, … , 𝑝}

Note that 𝒩 (𝑀) has finitely many vertices (𝛼𝑖, 𝑗𝑖), 𝑖 = 1, … , π‘ž.For each one, we pick a representative Φ𝑖 ∈ 𝑀 , i.e. exp Φ𝑖 = (𝛼𝑖, 𝑗𝑖).

CorollaryLet 𝐹 ∈ ℝJyK𝑝. Then 𝐹 ∈ 𝑀 if and only if its remainder by the formal division w.r.t. the Φ𝑖 is 0.

Particularly Ξ¦1, … , Ξ¦π‘ž generate 𝑀 .

Proof. Write 𝐹 =π‘ž

βˆ‘π‘–=1

𝑄𝑖Φ𝑖 + 𝑅 with supp 𝑅 βŠ‚ 𝒩 (𝑀)𝑐 . β– 

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 15 / 20

Page 47: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Diagram of initial exponents and module of relations

Lemma – Chevalley’s functionLet 𝑙 ∈ β„•.There exists (Ξ›πœ)𝜏 a stratification of 𝐡 such that given a stratum Ξ›πœ , there exists π‘Ÿ β‰₯ 𝑙 satisfying

β€’ βˆ€π‘ ∈ Ξ›πœ , πœ‹π‘™(β„›π‘Ÿ(𝑏)) = πœ‹π‘™(β„›π‘Ÿβˆ’1(𝑏)),β€’ 𝒩 (β„›π‘Ÿ(𝑏)) is constant on Ξ›πœ .

We set𝐡′ ≔ ⋃

dim Ξ›πœ <dim π΅Ξ›πœ

so that βˆ€πœ, Ξ›πœ ⧡ Ξ›πœ βŠ‚ 𝐡′.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 16 / 20

Page 48: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Diagram of initial exponents and module of relations

Lemma – Chevalley’s functionLet 𝑙 ∈ β„•.There exists (Ξ›πœ)𝜏 a stratification of 𝐡 such that given a stratum Ξ›πœ , there exists π‘Ÿ β‰₯ 𝑙 satisfying

β€’ βˆ€π‘ ∈ Ξ›πœ , πœ‹π‘™(β„›π‘Ÿ(𝑏)) = πœ‹π‘™(β„›π‘Ÿβˆ’1(𝑏)),β€’ 𝒩 (β„›π‘Ÿ(𝑏)) is constant on Ξ›πœ .

We set𝐡′ ≔ ⋃

dim Ξ›πœ <dim π΅Ξ›πœ

so that βˆ€πœ, Ξ›πœ ⧡ Ξ›πœ βŠ‚ 𝐡′.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 16 / 20

Page 49: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Construction of 𝐺 on Ξ›πœ

For 𝑏 ∈ 𝐡 and 𝑑 β‰₯ π‘Ÿ, by assumption there exists π‘Šπ‘ ∈ ℝ[y]π‘ž such that

𝑇 π‘‘π‘Žπ‘“(x) ≑ 𝑇 𝑑

π‘Žπ΄(x) π‘Šπ‘(𝑇 π‘‘π‘Žπœ‘(x)) mod (x)𝑑+1ℝJxK𝑝, βˆ€π‘Ž ∈ πœ‘βˆ’1(𝑏).

Let’s fix a stratum Ξ›πœ and 𝑏 ∈ Ξ›πœ .By formal division, we may write π‘Šπ‘(y) = βˆ‘ 𝑄𝑖(y)Φ𝑖(y) + π‘‰πœ(𝑏, y) where the Φ𝑖 are as above for β„›π‘Ÿ(𝑏).Note that the remainder π‘‰πœ(𝑏, y) ∈ ℝ[y]π‘ž satisfies

π‘Šπ‘(y) βˆ’ π‘‰πœ(𝑏, y) ∈ β„›π‘Ÿ(𝑏) and supp π‘‰πœ(𝑏, y) βŠ‚ 𝒩 (β„›π‘Ÿ(𝑏))𝑐 .

Lemma𝐺𝜏(𝑏, y) ≔ πœ‹π‘™ (π‘‰πœ(𝑏, y)) is a semialgebraic Whitney field of order 𝑙 on Ξ›πœ satisfying (1).

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 17 / 20

exp Ξ¦2

exp Ξ¦1

supp π‘‰πœ

𝒩 (π‘…π‘Ÿ(𝑏))

Page 50: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Construction of 𝐺 on Ξ›πœ

For 𝑏 ∈ 𝐡 and 𝑑 β‰₯ π‘Ÿ, by assumption there exists π‘Šπ‘ ∈ ℝ[y]π‘ž such that

𝑇 π‘‘π‘Žπ‘“(x) ≑ 𝑇 𝑑

π‘Žπ΄(x) π‘Šπ‘(𝑇 π‘‘π‘Žπœ‘(x)) mod (x)𝑑+1ℝJxK𝑝, βˆ€π‘Ž ∈ πœ‘βˆ’1(𝑏).

Let’s fix a stratum Ξ›πœ and 𝑏 ∈ Ξ›πœ .By formal division, we may write π‘Šπ‘(y) = βˆ‘ 𝑄𝑖(y)Φ𝑖(y) + π‘‰πœ(𝑏, y) where the Φ𝑖 are as above for β„›π‘Ÿ(𝑏).Note that the remainder π‘‰πœ(𝑏, y) ∈ ℝ[y]π‘ž satisfies

π‘Šπ‘(y) βˆ’ π‘‰πœ(𝑏, y) ∈ β„›π‘Ÿ(𝑏) and supp π‘‰πœ(𝑏, y) βŠ‚ 𝒩 (β„›π‘Ÿ(𝑏))𝑐 .

Lemma𝐺𝜏(𝑏, y) ≔ πœ‹π‘™ (π‘‰πœ(𝑏, y)) is a semialgebraic Whitney field of order 𝑙 on Ξ›πœ satisfying (1).

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 17 / 20

exp Ξ¦2

exp Ξ¦1

supp π‘‰πœ

𝒩 (π‘…π‘Ÿ(𝑏))

Page 51: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Construction of 𝐺 on Ξ›πœ

For 𝑏 ∈ 𝐡 and 𝑑 β‰₯ π‘Ÿ, by assumption there exists π‘Šπ‘ ∈ ℝ[y]π‘ž such that

𝑇 π‘‘π‘Žπ‘“(x) ≑ 𝑇 𝑑

π‘Žπ΄(x) π‘Šπ‘(𝑇 π‘‘π‘Žπœ‘(x)) mod (x)𝑑+1ℝJxK𝑝, βˆ€π‘Ž ∈ πœ‘βˆ’1(𝑏).

Let’s fix a stratum Ξ›πœ and 𝑏 ∈ Ξ›πœ .By formal division, we may write π‘Šπ‘(y) = βˆ‘ 𝑄𝑖(y)Φ𝑖(y) + π‘‰πœ(𝑏, y) where the Φ𝑖 are as above for β„›π‘Ÿ(𝑏).Note that the remainder π‘‰πœ(𝑏, y) ∈ ℝ[y]π‘ž satisfies

π‘Šπ‘(y) βˆ’ π‘‰πœ(𝑏, y) ∈ β„›π‘Ÿ(𝑏) and supp π‘‰πœ(𝑏, y) βŠ‚ 𝒩 (β„›π‘Ÿ(𝑏))𝑐 .

Lemma𝐺𝜏(𝑏, y) ≔ πœ‹π‘™ (π‘‰πœ(𝑏, y)) is a semialgebraic Whitney field of order 𝑙 on Ξ›πœ satisfying (1).

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 17 / 20

exp Ξ¦2

exp Ξ¦1

supp π‘‰πœ

𝒩 (π‘…π‘Ÿ(𝑏))

Page 52: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

𝐺 is a Whitney field of order 𝑙 on Ξ›πœTo simplify the situation, we omit πœ‘.Thanks to Borel’s lemma with parameter, it is enough to check that 𝐷𝑏,π‘£πΊπ‘™βˆ’1

𝜏 (𝑏, y) = 𝐷y,π‘£πΊπœ(𝑏, y).

Applying 𝐷𝑏,𝑣 βˆ’ 𝐷y,𝑣 to𝑇 π‘Ÿ

π‘Ž 𝑓(y) ≑ 𝑇 π‘Ÿπ‘Ž 𝐴(y) π‘‰πœ (𝑏, y) mod (y)π‘Ÿ+1ℝJyK𝑝

we get0 ≑ 𝑇 π‘Ÿ

π‘Ž 𝐴(y) (𝐷𝑏,𝑣𝑉 π‘Ÿβˆ’1𝜏 (𝑏, y) βˆ’ 𝐷y,π‘£π‘‰πœ (𝑏, y)) mod (y)π‘Ÿ+1ℝJyK𝑝

therefore𝐷𝑏,𝑣𝑉 π‘Ÿβˆ’1

𝜏 (𝑏, y) βˆ’ 𝐷y,π‘£π‘‰πœ (𝑏, y) ∈ β„›π‘Ÿβˆ’1(𝑏)hence, by Chevalley’s function,

𝐷𝑏,π‘£πΊπ‘™βˆ’1𝜏 (𝑏, y) βˆ’ 𝐷y,π‘£πΊπœ(𝑏, y) ∈ πœ‹π‘™βˆ’1(β„›π‘Ÿβˆ’1(𝑏)) = πœ‹π‘™βˆ’1(β„›π‘Ÿ(𝑏))

butsupp (𝐷𝑏,π‘£πΊπ‘™βˆ’1

𝜏 (𝑏, y) βˆ’ 𝐷y,π‘£πΊπœ(𝑏, y)) βŠ‚ 𝒩 (β„›π‘Ÿ(𝑏))𝑐

consequently, 𝐷𝑏,π‘£πΊπ‘™βˆ’1𝜏 (𝑏, y) βˆ’ 𝐷y,π‘£πΊπœ(𝑏, y) = 0. β– 

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 18 / 20

Page 53: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

𝐺 is a Whitney field of order 𝑙 on Ξ›πœTo simplify the situation, we omit πœ‘.Thanks to Borel’s lemma with parameter, it is enough to check that 𝐷𝑏,π‘£πΊπ‘™βˆ’1

𝜏 (𝑏, y) = 𝐷y,π‘£πΊπœ(𝑏, y).

Applying 𝐷𝑏,𝑣 βˆ’ 𝐷y,𝑣 to𝑇 π‘Ÿ

π‘Ž 𝑓(y) ≑ 𝑇 π‘Ÿπ‘Ž 𝐴(y) π‘‰πœ (𝑏, y) mod (y)π‘Ÿ+1ℝJyK𝑝

we get0 ≑ 𝑇 π‘Ÿ

π‘Ž 𝐴(y) (𝐷𝑏,𝑣𝑉 π‘Ÿβˆ’1𝜏 (𝑏, y) βˆ’ 𝐷y,π‘£π‘‰πœ (𝑏, y)) mod (y)π‘Ÿ+1ℝJyK𝑝

therefore𝐷𝑏,𝑣𝑉 π‘Ÿβˆ’1

𝜏 (𝑏, y) βˆ’ 𝐷y,π‘£π‘‰πœ (𝑏, y) ∈ β„›π‘Ÿβˆ’1(𝑏)hence, by Chevalley’s function,

𝐷𝑏,π‘£πΊπ‘™βˆ’1𝜏 (𝑏, y) βˆ’ 𝐷y,π‘£πΊπœ(𝑏, y) ∈ πœ‹π‘™βˆ’1(β„›π‘Ÿβˆ’1(𝑏)) = πœ‹π‘™βˆ’1(β„›π‘Ÿ(𝑏))

butsupp (𝐷𝑏,π‘£πΊπ‘™βˆ’1

𝜏 (𝑏, y) βˆ’ 𝐷y,π‘£πΊπœ(𝑏, y)) βŠ‚ 𝒩 (β„›π‘Ÿ(𝑏))𝑐

consequently, 𝐷𝑏,π‘£πΊπ‘™βˆ’1𝜏 (𝑏, y) βˆ’ 𝐷y,π‘£πΊπœ(𝑏, y) = 0. β– 

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 18 / 20

Page 54: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

𝐺 is a Whitney field of order 𝑙 on Ξ›πœTo simplify the situation, we omit πœ‘.Thanks to Borel’s lemma with parameter, it is enough to check that 𝐷𝑏,π‘£πΊπ‘™βˆ’1

𝜏 (𝑏, y) = 𝐷y,π‘£πΊπœ(𝑏, y).

Applying 𝐷𝑏,𝑣 βˆ’ 𝐷y,𝑣 to𝑇 π‘Ÿ

π‘Ž 𝑓(y) ≑ 𝑇 π‘Ÿπ‘Ž 𝐴(y) π‘‰πœ (𝑏, y) mod (y)π‘Ÿ+1ℝJyK𝑝

we get0 ≑ 𝑇 π‘Ÿ

π‘Ž 𝐴(y) (𝐷𝑏,𝑣𝑉 π‘Ÿβˆ’1𝜏 (𝑏, y) βˆ’ 𝐷y,π‘£π‘‰πœ (𝑏, y)) mod (y)π‘Ÿ+1ℝJyK𝑝

therefore𝐷𝑏,𝑣𝑉 π‘Ÿβˆ’1

𝜏 (𝑏, y) βˆ’ 𝐷y,π‘£π‘‰πœ (𝑏, y) ∈ β„›π‘Ÿβˆ’1(𝑏)

hence, by Chevalley’s function,𝐷𝑏,π‘£πΊπ‘™βˆ’1

𝜏 (𝑏, y) βˆ’ 𝐷y,π‘£πΊπœ(𝑏, y) ∈ πœ‹π‘™βˆ’1(β„›π‘Ÿβˆ’1(𝑏)) = πœ‹π‘™βˆ’1(β„›π‘Ÿ(𝑏))but

supp (𝐷𝑏,π‘£πΊπ‘™βˆ’1𝜏 (𝑏, y) βˆ’ 𝐷y,π‘£πΊπœ(𝑏, y)) βŠ‚ 𝒩 (β„›π‘Ÿ(𝑏))𝑐

consequently, 𝐷𝑏,π‘£πΊπ‘™βˆ’1𝜏 (𝑏, y) βˆ’ 𝐷y,π‘£πΊπœ(𝑏, y) = 0. β– 

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 18 / 20

Page 55: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

𝐺 is a Whitney field of order 𝑙 on Ξ›πœTo simplify the situation, we omit πœ‘.Thanks to Borel’s lemma with parameter, it is enough to check that 𝐷𝑏,π‘£πΊπ‘™βˆ’1

𝜏 (𝑏, y) = 𝐷y,π‘£πΊπœ(𝑏, y).

Applying 𝐷𝑏,𝑣 βˆ’ 𝐷y,𝑣 to𝑇 π‘Ÿ

π‘Ž 𝑓(y) ≑ 𝑇 π‘Ÿπ‘Ž 𝐴(y) π‘‰πœ (𝑏, y) mod (y)π‘Ÿ+1ℝJyK𝑝

we get0 ≑ 𝑇 π‘Ÿ

π‘Ž 𝐴(y) (𝐷𝑏,𝑣𝑉 π‘Ÿβˆ’1𝜏 (𝑏, y) βˆ’ 𝐷y,π‘£π‘‰πœ (𝑏, y)) mod (y)π‘Ÿ+1ℝJyK𝑝

therefore𝐷𝑏,𝑣𝑉 π‘Ÿβˆ’1

𝜏 (𝑏, y) βˆ’ 𝐷y,π‘£π‘‰πœ (𝑏, y) ∈ β„›π‘Ÿβˆ’1(𝑏)hence, by Chevalley’s function,

𝐷𝑏,π‘£πΊπ‘™βˆ’1𝜏 (𝑏, y) βˆ’ 𝐷y,π‘£πΊπœ(𝑏, y) ∈ πœ‹π‘™βˆ’1(β„›π‘Ÿβˆ’1(𝑏)) = πœ‹π‘™βˆ’1(β„›π‘Ÿ(𝑏))

butsupp (𝐷𝑏,π‘£πΊπ‘™βˆ’1

𝜏 (𝑏, y) βˆ’ 𝐷y,π‘£πΊπœ(𝑏, y)) βŠ‚ 𝒩 (β„›π‘Ÿ(𝑏))𝑐

consequently, 𝐷𝑏,π‘£πΊπ‘™βˆ’1𝜏 (𝑏, y) βˆ’ 𝐷y,π‘£πΊπœ(𝑏, y) = 0. β– 

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 18 / 20

Page 56: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

𝐺 is a Whitney field of order 𝑙 on Ξ›πœTo simplify the situation, we omit πœ‘.Thanks to Borel’s lemma with parameter, it is enough to check that 𝐷𝑏,π‘£πΊπ‘™βˆ’1

𝜏 (𝑏, y) = 𝐷y,π‘£πΊπœ(𝑏, y).

Applying 𝐷𝑏,𝑣 βˆ’ 𝐷y,𝑣 to𝑇 π‘Ÿ

π‘Ž 𝑓(y) ≑ 𝑇 π‘Ÿπ‘Ž 𝐴(y) π‘‰πœ (𝑏, y) mod (y)π‘Ÿ+1ℝJyK𝑝

we get0 ≑ 𝑇 π‘Ÿ

π‘Ž 𝐴(y) (𝐷𝑏,𝑣𝑉 π‘Ÿβˆ’1𝜏 (𝑏, y) βˆ’ 𝐷y,π‘£π‘‰πœ (𝑏, y)) mod (y)π‘Ÿ+1ℝJyK𝑝

therefore𝐷𝑏,𝑣𝑉 π‘Ÿβˆ’1

𝜏 (𝑏, y) βˆ’ 𝐷y,π‘£π‘‰πœ (𝑏, y) ∈ β„›π‘Ÿβˆ’1(𝑏)hence, by Chevalley’s function,

𝐷𝑏,π‘£πΊπ‘™βˆ’1𝜏 (𝑏, y) βˆ’ 𝐷y,π‘£πΊπœ(𝑏, y) ∈ πœ‹π‘™βˆ’1(β„›π‘Ÿβˆ’1(𝑏)) = πœ‹π‘™βˆ’1(β„›π‘Ÿ(𝑏))

butsupp (𝐷𝑏,π‘£πΊπ‘™βˆ’1

𝜏 (𝑏, y) βˆ’ 𝐷y,π‘£πΊπœ(𝑏, y)) βŠ‚ 𝒩 (β„›π‘Ÿ(𝑏))𝑐

consequently, 𝐷𝑏,π‘£πΊπ‘™βˆ’1𝜏 (𝑏, y) βˆ’ 𝐷y,π‘£πΊπœ(𝑏, y) = 0. β– 

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 18 / 20

Page 57: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Gluing between strata

C - gluing between strata: the Łojasiewicz inequalityFix a stratum Ξ›πœ . There exists 𝜎 ∈ β„• such that if 𝑑 β‰₯ π‘Ÿ + 𝜎 then lim

π‘β†’Ξ›πœ β§΅Ξ›πœπΊπœ(𝑏, y) = 0.

The constant term of the equation is flat on 𝐡′ hence on Ξ›πœ ⧡ Ξ›πœ βŠ‚ 𝐡′.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 19 / 20

Page 58: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Summary

We constructed 𝐺(𝑏, y) = βˆ‘|𝛼|β‰€π‘˜

𝑔𝛼 (𝑏)𝛼! y𝛼 a semialgebraic Whitney field of order π‘˜ on 𝐡 such that

βˆ€π‘ ∈ 𝐡, βˆ€π‘Ž ∈ πœ‘βˆ’1(𝑏), 𝑇 π‘˜π‘Ž 𝑓(x) ≑ 𝑇 π‘˜

π‘Ž 𝐴(x) 𝐺(𝑏, 𝑇 π‘˜π‘Ž πœ‘(x)) mod (x)π‘˜+1ℝJxK𝑝

Hence we obtain 𝑔 ∢ ℝ𝑛 β†’ β„π‘ž semialgebraic and π’žπ‘˜ such that 𝑓 βˆ’ 𝐴 β‹… (𝑔 ∘ πœ‘) is π‘˜-flat on πœ‘βˆ’1(𝐡).

Loss of differentiabilityFor π‘˜ ∈ β„•, we set 𝑙 β‰₯ π‘˜πœŒ, then π‘Ÿ β‰₯ π‘Ÿ(𝑙) and finally 𝑑(π‘˜) ≔ 𝑑 β‰₯ π‘Ÿ + 𝜎 whereA. 𝜌 is an upper bound of Whitney’s loss of differentiability (induction step).B. π‘Ÿ ∢ β„• β†’ β„• is an upper bound of the Chevalley functions on the various strata.C. 𝜎 is an upper bound of Łojasiewicz’s loss of differentiability on each stratum.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 20 / 20

Page 59: The 14th Whitney Problems Workshop π’ž and Sobolev functions ...

Semialgebraic geometry The problems The results The proof

Summary

We constructed 𝐺(𝑏, y) = βˆ‘|𝛼|β‰€π‘˜

𝑔𝛼 (𝑏)𝛼! y𝛼 a semialgebraic Whitney field of order π‘˜ on 𝐡 such that

βˆ€π‘ ∈ 𝐡, βˆ€π‘Ž ∈ πœ‘βˆ’1(𝑏), 𝑇 π‘˜π‘Ž 𝑓(x) ≑ 𝑇 π‘˜

π‘Ž 𝐴(x) 𝐺(𝑏, 𝑇 π‘˜π‘Ž πœ‘(x)) mod (x)π‘˜+1ℝJxK𝑝

Hence we obtain 𝑔 ∢ ℝ𝑛 β†’ β„π‘ž semialgebraic and π’žπ‘˜ such that 𝑓 βˆ’ 𝐴 β‹… (𝑔 ∘ πœ‘) is π‘˜-flat on πœ‘βˆ’1(𝐡).

Loss of differentiabilityFor π‘˜ ∈ β„•, we set 𝑙 β‰₯ π‘˜πœŒ, then π‘Ÿ β‰₯ π‘Ÿ(𝑙) and finally 𝑑(π‘˜) ≔ 𝑑 β‰₯ π‘Ÿ + 𝜎 whereA. 𝜌 is an upper bound of Whitney’s loss of differentiability (induction step).B. π‘Ÿ ∢ β„• β†’ β„• is an upper bound of the Chevalley functions on the various strata.C. 𝜎 is an upper bound of Łojasiewicz’s loss of differentiability on each stratum.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) π’žπ‘š solutions of semialgebraic equations 20 / 20