(Seismic Margin Analysis Technique for Nuclear Power Plant ...

Post on 17-Oct-2021

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

Transcript

KR0100882

KAERI/TR-1799/2001

(Seismic Margin Analysis Technique for Nuclear

Power Plant Structures)

PLEASE BE AWARE THATALL OF THE MISSING PAGES IN THIS DOCUMENT

WERE ORIGINALLY BLANK

2001. 4.

71

O Ot

717151 "fir

71

in.

FA

CDFM

FA

^ EPRI

- 1

CDFM yoVl£ ^ FA %

if. C D F M

IV.

^7^1-7) ^sflA^ f 2 f i ) ^ ^

iv. <s^7im ^4^1 #-§-?!] ^

^71-7]-t- U 3j7> tg-^cfl C]]«_V

n -

SUMMARY

I. Project Title

Seismic Margin Analysis Technique for NPP Structures

II. Objective and Importance of the Project

Many countries have made efforts to secure the seismic safety and

integrity of NPP structures. Especially the countries where the strong

earthquakes occurred frequently, such as U.S. and Japan, have made an

enormous effort to develop the seismic capacity evaluation methods.

In general, the Seismic Probabilistic Risk Assessment(SPRA) and the

Seismic Margin Assessment(SAM) are used for the evaluation of

realistic seismic capacity of nuclear power plant structures. Seismic

PRA is a systematic process to evaluate the seismic safety of nuclear

power plant. In our country, SPRA has been used to perform the

probabilistic safety assessment for the earthquake event. SMA is a

simple and cost effective manner to quantify the seismic margin of

individual structural elements.

This study was performed to improve the reliability of SMA results

and to confirm the assessment procedure. To achieve this goal, review

for the current status of the techniques and procedures was performed.

III. Scope and Contents of Project

Two methodologies, CDFM (Conservative Deterministic Failure

Margin) sponsored by NRC and FA (Fragility Analysis) sponsored by

EPRI, were developed for the seismic margin review of NPP

structures. FA method was originally developed for Seismic PRA.

- 111

CDFM approach is more amenable to use by experienced design

engineers including utility staff design engineers.

In this study, detailed review on the procedures of CDFM and FA

methodology was performed. In chapter 2, brief review on the SPRA

and SMA is presented. Moreover, several techniques for the

quantitative evaluation of seismic margin of NPP structures are

described briefly. The detailed review on CDFM method and FA

method is presented in chapter 3.

IV. Result of Project

For the seismic margin assessment, the safety factors related to the

structural capacity and response should be estimated correctly. The

capacity factor, such as strength factor and inelastic energy absorption

factor due to the nonlinear behavior of structures, has large

uncertainty, so that it has significant effect on the SMA results.

Further research on the parameters use in the SMA is needed to

improve the reliability of SMA study. Moreover, analysis, test and

earthquake experience data on the structural fragility should be

accumulated. The efficient and rational method to evaluate the

structural seismic margin should be developed.

V. Proposal for Application

The current status of SMA technology was reviewed for the further

research on the realistic seismic capacity evaluation of NPP structures.

Base on the results of this study, the advanced technology and

procedure manual will be developed in the future.

- IV -

CONTENTS

Chapter 1 Introduction 1

Chapter 2 Seismic capacity evaluation of NPP 3

structures

Section 1 Introduction 3

Section 2 Seismic probabilistic risk assessment 4Section 3 Seismic margin assessment 15

Chapter 3 Seismic margin assessment method 19

Section 1 Introduction 19

Section 2 CDFM method 21

Section 3 FA method 60

Chapter 4 Concluding remarks 105

References 107

Appendix I Inelastic energy absorption factor 111

Appendix II Seismic margin assessment of containment 125structure

- v -

3

3

4

15

19^ s . 1 9

CDFM aJ-^ 21

FA yJ"^ 60

105

107

HI

125

- vn -

X] ^ ^ # ^ 7)7)2]

7>(Probabilistic Safety Assessment) ^ - i - ? l l f ^ ^fl-S. ?i

PSA* ^ ^

1 PSA7}

tfl^^c]] 4B] - 1991^ 6 € " 1 ^ - NRC^ Generic Letter No. 88-20

Supplement 4[l]*fH 7>^-^tl S

fe NUREG-1407[2]-^

- ^ M ^ ^ l , °]7)*\ Seismic IPE (Individual Plant

Examination)-] yJ-^A^. SPRA(Seismic Probabilistic Risk Assessment)

4 SMA(Seismic Margin Analysis)* 2-^f-

EPRKElectric Power Research Institute)^ €

E SPRA

SPRA

BWR SI3H tfl^ SPRA*

CDFMCConservative Deterministic Failure Margin) ^ ^ ^ FA

- 1 -

(Fragility Analysis) ^ i £)«!: ^7} ^ } ^ 4^-

71]iL

CDFM y c v ^ ^ FA

- 2 -

7] ir( standard) ^ if-

^ - f ASME, ACI, AISC ^ Standard Review Plan(SRP)

€ 4 . SSE(Safe

Shutdown Earthquake)4 OBE(Operating Basis Earthquake)4 Q-B: ^3)

7] ^1^1 (Design Basis Earthquake)^! -M^, ^l^b, ^ S - l - ^ s}°1^4 3.

IzLE- $] -%\s\ (Code Committee) 4 Working Group

44 -i

71 ^|S] ABlolth *]&*t°) 3L7]}

447H 1

_ Q _

-saqofl

SPRA ^ tfl^l^-^-S sj7H ^ ^ i^^^: 7l-irO]jL o|r>. ^ *M*\^ ^

SPRA1- ^*3: tiJ-^2}- SMA

SPRA^

*}3L 9X4. SPRA^r 313 ^ ^ £ 1 S ^ 7}^*!: ^ ^ ^ ^ -

A)

. SPRA

- 4 -

S P R A i ^

5. SSE4 ^

•§- 7fl^s)-3l sj7>^^}l- ^^1^1-^4. o) wj-^^; n]^- Maine Yankee

4 Si4. ^ H

Catawba

2.

SPRA^l 1 4 ^. SPRA

^ SPRA

4.

fl^ (Seismic Hazard Analysis)

# ) ^ £ . 2J7} (Structure/Equipment Fragility

Assessment)

Afji^o]-g:^(Accident Sequence Analysis)

Con sequence (Risk) Evaluation

5 -

SPRA I 1 4 * 3 - ^ ^ 4 SPRA I

4. ^ ^ # ^ 71

717] 51 ^ 1 4 ^ ^ ^ ^ 1 5|-eHl£H t f l ^ ^ S l - 71713

€^4x1 ^sj^- tfl4^-3 sPRA^^fe 4

(Peak Ground Acceleration, PGA)» 4-8-*

L^ 71713 ^-^<^1 t|]*V 1

I ^ O 1 (accident sequence)^

^ 5fl^SlJL

- 6 -

7)7]°\

^ . 7}

(1) Zion

Zion y -& Zion

. Zion

Indian Point ^ € PRA

- 7 -

7Htb4.tfltb ^

45}Ai

^] SRSS (Square Root Sum of Squares)^.

Zion ^ - 8 : ^«1-^tl ^ ^ ^ ^ t f l ^ %-8--^r>^. s .^J^ 7MJL

1.0, 1.25.

l- 1.25. ^r^^l-^-i : trfl ^ 40% 3-Tfl

4. 1-

r Zion

(2) SSMRP yov^

SSMRP yoVl£J-£- Seismic Safety Margins Research Program^

5 n)-^ NRC^ *\% -eM LLNL (Lawrence Livermore National

Laboratory)^! 7fl#^ ^ °14[8]. 61

- 8 -

SSMRP

SSMRP

Latin hypercube 7}

fitting

SSMRP Zion

in hypercube

31

C3) RAS

RAS ^ j " 1 ^ ^ - Probability Based Load Combination for Design of

Category I Structures Program^ ^ - A J . ^ . ^ NRC^ *1€ ^M BNL

(Brookhaven National Laboratory HI 4 7fl^:^: yo ^°14[9] . °1

^- Z i o n yov^4 ^ ^

. BNL

- 9 -

^ Stationary gaussian process

with zero mean ^ Kanai-Tajimi i ^ I ^

45}. x ^ ^ x]^l^l 3.7) ^

^ r i ^ Stochastic process^ ^*1 °]€-(extreme value

theory HI ^Tl

imit state surface)^- € ^ ^ 4 . °)

^ ^ 3.^: 45f^)Bfo)i cfl^ s| ^ J | 7> 1 (best estimated value)

- ^ 4 . SSMRP y o ^ 4 -fi- >

«1] Latin hypercube 7 ] ^ ^ A}-g-«l-i:}.

(4) JAERI

fe PSA 7 )^ 7fl#S] <a^A^ . 1985V1

- 10 -

717]^ ^ - £ 3 •$•&

3IJ7}

Zion tiov^*

tb -I-

7H1

- 11 -

7)7)

7}

^ 5a7)7)$] 0,4.

(5)

71

SPRAlr ^ : 5-l

S.JE.-I-

£2=1- ^ l - ^ 7A

4.

xrfl

- 12 -

. 46>7l- AiJL 4 ^

-r SI4.

$14.

7-1 ^ ^iL ^ ^ 4 4 ^

4-

^ ^ ^ ^ 7 ^ ] ^ ^ -o ! ] t f l ^ - 3

H] ^ ^ ^^#^1 si-#€-^ sfl^^t

SPRA^ll xfl^fl^ 711^^14 71^ ^ ^HV 7 ) 4

514.

- 13 -

^o] <g^7> i|JLS>4. SPRA4

. 40}7\

4. °l&lt

^ S . ^ - SSMRP U - ^ 4 Zion

SSMRP y J - ^ ^

fe ?>4. ^ ai^]] HJ- - LS. Zion ^ o l Sifet-fl o|

^ ^ e l i S ^-€-4 . SSMRP y o ^ i «l«l] ^VaL Hl-g-4 Al Vo] ^Tfl ^o] ^o) A>-g-5]jl

4.

- 14 -

2.1

7m

o]l u | X]

3J7> Vl^lS.

FA

Zion Method

^la^CPGA)

JAERIS S M R P

^§HH «1^^

oTT

4 t ^ s <>l-§-

."3" JL

^ ^ ° U ^ 7>

fe- Seismic Margin Earthquake(SME)5]-

- 15

(reference earthquake)^: ^ t r 4 . °U# 1 : ^ PGA=0.3g^|

0.3

7l ^sfl HCLPFCHigh Confidence of a Low Probability of Failure)

(system analysis)^

HCLPF ^ £ - i f l^ I^^^- i i ^ r ^ A S - M - i ^ ^ A ^ 4^17> 7 ^ ^

HCLPF &

c>. SPRA

HCLPF &^r cfli* 4^1 &1-O] 5% oi

% M 4 ^1

f ^ l ^ ^ 1%

2. FA^l 51

1984VI ^

HCLPF ^ ^ ^ 1 71 § ^

^tb^r. ^^V°ll ^ ^ f e - ^ - ^ 1 - i - screened-in

! ^ ( g e n e r i c capacity)^ 3f7^1 ^ * J ^ SPRA^l

4.

HCLPF St^:

- 16 -

, #3:

- ^ ^ Z i o n

HCLPF ^ir-gr 95% ^ S ] £ l - 5 , ^ # 1 ^ £ ^-*H*1 5%

3. CDFM

CDFM

7171 Si

Tfl^ #^<=fl^ EPRI y o v ^ ^?^S . ( succe s s path) 7f l^^

<^7)Ai ^ ^ - ^ 5 . 4 f-^ ^-^4i7} ^^gs) Aj-Bfl (either hot or cold

shutdown)^*! 72 -RV ^<?> -B-^l€ ^ &TT ^ ^ 1 - ^:*>^ ^ ° 1 4 . 451-

-tfcfl

. SME ^ ^ - i -1 ^ ^ 6 1 SME ^ ^ ^ ^5l t ! :4^ ^ £ ^ ^ 1

7 j S tflAj-oUx A ^ I A ] ^ ^ 0 ,4 .

HCLPF Sit si TflAV-i: l i S §>^ ^-#^1 t p f l A ^ E P R H ^ ^ CDFM

(Consertative Deterministic Failure Margin)

- 17 -

HCLPF ^ # *$7\ *v ^ 0 ^ 3 . ^ 4 . HCLPF^

oil 31 tb ^ ^ 1 ^ ^ - ^¥^8: A ^ ^ S - xfl i 7H> # 1 ^ ^ ^ - ^ ^ HCLPF

- 18 -

^- OBE ^ SSE

IEEE-1975

US NRC^ USI A

1-^ ^ ^ 1 4 . SSE7> 0.12 - 0.25g?l «

l ^ - ^ ^ ^ ^ 1 ^ : ^ i^ l SPRA 1 1 ^ H

fe SSE ^ . 4 2

o ] ^ SSE ^ ^ i t

SPRA^r x ]^ l^ j j

5]

7]

^; SSE

SSE < ^ o ] ^

f^ ^ 6] r>.

1984V1 ^ y J

- 19 -

^ 0.3g ol

- M , SME ^°] 0.5g

0.3g0.3g ol«H*) SME ^ r f

- 71-1:^4. 3-Z-M 0.5g

SME ^r§°1] ^*> ^ £ ^w ^ ^ ^ ^

4.

SMA# ^ * l l : ^r SI4. NRC l SMA, EPRH^i 7 f l ^ yov^°1lA1^ hot S ^ cold shutdown ^

w-^^- ^ ^ ^ ^ ( s u c c e s s path)5}3l

fe ^s i 7fl7> ^7fl§}-4 6 1 ^ # vfl^l^-a-£# 4 4 ^ 7 ] ^ £ ^ ^ S .

> 4 ^ ^5L ^ S l r ^^"5]-^ ° l t ^^^1 i f - ^ i 7l7| ^ ^-^ofl tfl1?]: SMA* ^

SMA -1 ^*S-g: ^ ^ ^il#7l#xl-(system engineer)^

(Seismic capacity engiennr)°fl £ N ^rf ^14. SMA l ^r^

- 20 -

- SME (2 .^ RLE)

t ^ 71713 ^ ^ - £ 1 - J|7>§|-^ Hh^ofl^ SPRA^l^i

CDFM yo^^] Si4.

CDFM

SME ^ ^ ^ ^^ i ^ ^ x ] - ^ ^SME»

10% # £ ] # ^fe •^-^-i^B.^o.s .^ SMES A>-§-%V ^ ojo.^ 6]nfl

UHS (Uniform Hazard SpectrumW *1 lOHz

- 21 -

SME ^ ^ allM -Tfl ^ 4 3 4<^°1 444*1

0.2g o]*H*l SSES >g^l^ ^ ^ A - l ^ o.3g5L SME1- ^ ^

_ojg_ SME- 1 ^r^-c: smooth broad-frequency response

SME

fe PGA^l 4€- 84%

NUREC/CR-0098[14] l 84% Hlijzf^-l-^ ^s.^^v-> NRC R.G. 1.60[15]

}TT ^ £ 4 t ^ ] «H a f l ^ ^ - ^ ^ ^ 1 4 * ^71 £

^ SME1- ^§1

^ ^ 4 ^ - , # UHS7f

^ 15 Hz ^

PGA* S 4 "

PGA ll tflsfl UHSS SME*

HCLPF SME r&a) UHS1-

=14.

- 22

HCLPFfe £<>1H3 3 - f 3 PGA< 1 4 ^ 3 4 ^ ^ 3 84% NEP4

fe •€-•§• ^

^ ^ SMA I-

^ ^ (^1-1:^ 5.8<

ML <6.8) ^ ^ i ^ e l H l ! : ! : ^ ^ 25 km)^ 44^fl^ 3M4. ^-

84% NEP ^ I ^ E . ^ ^ :

4 . °]

(non site-specific) trial SME ^ ^ S .

SME ^ ^ A ] O ) ) ^ ^^jEHjo] tg£

(peak-to-valley variability)^- «>^§>7] ^sfl 84% H l i

^] ^ 4 - trial SMES. 0.3g I £ ^ ZL

fe 7A°) ?M ^ - ^ ^ ^ l ^ J i % ^ 91

4.

2. CDFM

CDFM ^ ^ ^ r SMA

- 23

5. 3.1 CDFM

4-8-

^ 5 - 7 o V 3 E

^ -g- ^ ^ S) E. 2j

4^

Normal + SME1 ^ 2 | * S fl-^ (84% NEP)

a ^ ^ s 3g7>€ ^J-a 44*13 3 <y-& + ^MH^l Ir^-a^

^7f ^ ^ ^-f 95% 2:4 7ov£

Service Level D(ASME) Sfe 3 £ fl-^^1 4 S .

84% 2 4 7J-3E.^ | ^ 4 4 7 > o}v| ^ . f ^ ^ g f l ^ A H ^ ^)A>^ ^°11 ^*> ^ - ^ ^ 80%# ^>-g-«> , wl^^ nq

-1: ^«S§>^^: TJ-f 95% 2 4 " 3 ^ ^ 4-§-•ir^-i^^r 3l^5f7) 3*1) 2 |«(peak)^l - 1-(broadening) -S- Vfe- ^^^r °l-^(frequencyshifting)^- 4-g-^M ^ ^ ^ #3«1 4-§-

CDFM ^ SMA

^ 44SMESME

4.

small LOCA

4. T^gi

SMEi tfli

rir-c- small or medium LOCA

. di-A ^ 22psi#

. # SMEfe

- 24 -

84% yl^4^"# ^ ^ 0 . 3 . ^ ^ 4 . SME1-

ssi

•& NUREC/CR-0098[l4N A)

. NUREG/CR-0098^1 fe s=Le)E.

, ssi-i- JLB\

NUREG/CR-0098i^

^- 5 ~

SSI J|7>^ X1H>^S.O]

r -r1-^ °r^-| VG-KT "5"

. S M E ^ ^F-n-^>o14 (9-^:^-o]lAi^l •l-^

structure) °1] cfl s(] A-

fe SSI nq-B: ^ ^ ^ ^ # o ) l o o] x ] ^ l ^ ^ £ ^ 7H1" ^.^^od

S>4ol4.

^R3, SSI

SME

25 -

SSH

SSI ^ ^ ^ * 1 ^ ^ ^ l ^ £ 3 ^ ^ r ^ H r ^ c ] ISR

(in-structure response)^] n)^^. ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ - ^ ^§ | |

3.

(failure equation)

JL Sl g- -S. "?l«fl i t ^ S Jg7]-^ ^ SlAS.^ 98%

CDFM

7>

95%

^-f<^fe AISC ]

95%

- 26 -

-f Grade 40 ^ 60 %^r*\} tflffl 40ksi ^ 60 ksi^l

. ^ 4 -M^r-flo)^^ ^ ^ ^ o ] 15% o ] # a j i COV

(Coefficient of Variation)7> 0.08 o]^o] ^ 4 . 0 ^ 4 3. ^

^7>fe 0 % (mean/minimum = 1.15, COV=0.08) ~ 15 %

(mean/minimum = 1.25, COV=0'04)# ^>-8-^r4.

gofl «_V 28°^ J £ ^

C0V7> 0.10 61§>^

(7^)^ ] 1.2B1)7> Sjt^ t f l ^ a ^ ^ ^ 7 > 0.147} S ] ^ ^ ^ .

6011 * J ^ ^ ^ 7 o ^ (7^ )^ ] l.lHfl ^ t f l ^ a ^ s j ^ } ^ 0.127>

A 1 ^ 4 . 4 ^ 1 95% ^ ^ ^ - 1 : ^ : ^ f e CDFM

^.4 £0) ^

- COV < 0.10 for cylinder tests

/CCDFU= L2e-1-65(0-14)7 ,28 = 0.957,28 (3.1)

o (3.2)

28<a S ^ 60<

^ ^ 4 C0V7> 0.14^ ^ ^ ^rVl ^ 7 o v ^^ tf^r&^d*}?} AA 0.17

0.16^-5- ^

COV=0.14 for cylinder tests

foCDFM= 0 .907 <28 (3.3)

0 (3.4)

10

- 27 -

45%, 60^ TJ-JE*) ^ - f o ~ 35%7> a ^

44

(rust strain)^:

514.

4.

ACKAmerican Concrete Institute)0!]^

^ - f AISC-LRFD^]

. ASME fl

ASME service level D ^ ^ 1 - A>-g-^ ^ ^ 4 . o] ly-^

ja. SI4. 7l^-^<y

95% i3>^s.7j-3E7 r 95%

GDFM ^ ^ A ^

95% 2

i4. a*}-CDFM ^|7>

1 ^ - f 84%

4.

4.

7]7l^) ^ ^ # F , , #

4.

SMA

CDFM ^ ¥ C*(capacity/demand)«1^

/~> /if

(CID)E= „ , ns (3.5)

- 29 -

4-S-4

(3.6)

} € 4 . (C/D)j7} 1 c , ] ^ ^ ^ CDFM

SME7> SMER^T S 4 § M 1 ^M, (CID)I7\ 1 6]§].^ CDFM

SME7> SMER U 4 4^1 € 4 . SMER-I:

% ^ ^ CDFM SME ^ ^ ^ 1 SMER^-

^: 4-S-^4. ^1^4- (C/i?)/^ ^«fl^i^ CDFM

SMER# ^ ^ t ^ Si^- Scale Factor!- ^ ^

4.

Scale Factor (FS)E ^ (FS)ife 4 ^ -

(FS)E= Ds+/cs (3.7)

F,or (,FS)E/Kft (3.8)

CDFM SME=(FS)i SMER (3.9)

CDFM SME* ^ t - ^-fi^f- SMER-^ 7] ^ s |

^ 4 1 : 7}X1JL Sife- SSE-t 5^-*> <^^ ^r^AJL 1 ^ * H

SSE sfl °1] i ^ - ^ J i ^ - i : ^ 1 ^ ^ 4 ^ CDFM SME ^ ^

5. 7l7)

- 30 -

$= SSE

SME

7] «7}t-

SMA

7] SSI

4.

ssi

^

(1)

- 31 -

# 3 (structural damping)^ «f4°14. £<# *1^geometric damping,

radiation damping)^- S.O<J=£)

US NRC R.G.

SMA

.^.6) S M A

14. ^ SMA

1/2

I 7]

3.3

Structuresearthquake stress levelAbout 1/2 yield

Beyond or just belowyield

Structure and condition

a. Welded steel, prestressedconcrete, reinforced concrete(w/slight cracking)b. Reinforced concrete

(w/moderate cracking)c. bolted or riveted steela. Welded steel, prestressedconcrete (w/o complete lossof prestress)b. Prestress concrete(w/loss of prestress),reinforced concrete, boltedor riveted steel

Percentage ofcritical damping

3

5

77*

10*

* These value are only appropriate for linear analysis and should not be used innonlinear analysis where hysteretic energy dissipation is directly considered. Nonlinearanalyses which directly account for hysteretic energy dissipation in theforce-deflection relationship should use only 60% of these values.

- 32 -

%

^ 7 ^ « 1 (composite

modal damping ratio)7> ^^-§>7fl ^ 4 . - g - ^ ^ ^ ^ ^ ^ ^ ^ ° 1 4 S.H. A]

?V c]^ i%q ) A - ] H ^ 2 : 1 : ^ 31^^<?1 ^ fl-S^ (classical normal

mode)!- 7> <ifl 45} ^ ^ ^ «1 ^^1 (uncoupled)^^ ^ s # ^ -g- -

4. 20% °] # 3 °J^]^«1 ^^11: ^ §iA^ 4

41 A!4- m ^ S 4 ^ - £•— " 1 (composite modal damping values)

•B: ASCE standard[16]4 3.1.5.24 3.1.5.34 ^ ^ H 4 4

(2)

4 .

°>

SMA ^*J

SSH

A] O]|

4*11 " ^ 3. 3.7} <^

3500f/s

^ SSI4

SMA

4.

33 -

(3)

o ] S ^ c$t$£- NUREG/CR-0098[14]«*M afMtb SRSS 3E^r

100-40-40

100-40-40

, SRSS

4.

* ^ 71

(1)

^ SME -g-^-^^jS.

- 34 -

SME ^ J i . ^ ^ ^ E .

g-

SSE ^ S ] S ^ ^ ^i«|E.2i

tfltb 4 S .^^ -g-^-l- <£ §i^r ^ ^ 71^ ^ 1 cfltV -g

i ? f l ^ ^ * H 3£r T r t ^ S SRSS

SME -g-# i ^ E . ^

-f (narrowly peaked) SME l

20% °]*}*i ^ 2 f ^ l ^^° l ) fe

V I ^ 1 «m-fe SSI %t 3zj7># 1 11 -i^j A

Ksimplification)^4. ^

SMA#

i SRSS°11 1*> ^ ^ 4 - -7fl^

3.H 1 4 ^ 8 4 . 01 joflA-i SME SSE ^^s .^51

M- Kn., TSi-Z-^X] 71^ ££7} Xltifl^ol^, 71 ^ ^ ^ 7 } 3.7\]

- 35 -

A s. -1 Si

SMEi

SRSS -g-

Si4.

SME SPECTRALACCELERATION,SaSHE

(SHE 0AMP1HS)

SSE {SSE DAMPING)

•$$£ SPECTRAL1 ACCELERATION S

rFUNOAHENTAL (OR OOHINANT)FREQUENCY, f j

PERI 00-

C)

STRUCTURALMODEL

V5"SME LOAD = SSE LOAD X

SaSME

a s $ £

SSE DESIGN t(

SHEAR FORCE-

3.1

- 36 -

SMEi ^ ^ S -l ^ ^ incoherence^- ^ ^ I r ^ l ^% JLZ\7}

Tfl r (ductility reduction factor)^! ^^-°] wj- -3}§>r}.

(2) ^ - g - ^ i ^ E . ^ ^ 1 ^ 7

^ 3^1 « ! • 5,vfe 7)7]^]

broadened) i 4 r ^ ^ ^ ] ^^(peak shifting)^

fe <H^4. SMA *a^»1 SSE ^]^^1 ^l^l^l tfl

7fl -^-^5>JL ^^#7]-^ i (peak floor acceleration)!- SME^)

S M E ^1^-g-^i

and unbroadened) f-

1-4. z ie i4 %tfl« (broadened) # - | - ^ ^ ^ I ^ ^ ^ ^ 3.2^

- 37 -

SME ^ SSE ^ - g ^ i * | S ^ 3 H#<>1 -fr^^-jL, ^7>sl SME

^?)1^^ ^14^^ SMEi«1S. ^ ^ € 4 . ^7)Ai

SSE l^ - ^ SSE ^-^^i^je^-i:

)71 tr)|^-ol4. o

fe SSE -iTfl-t-g-^ ^ ^ gSME i^E.l7>^3EJ2l- SSE ^m=Q 7}^£^ Bl# ^§ffe J

SMEi tfl^ ^ S # ^ SRSS 7>^£^i SMA»

SSE°1)

ZPASME = Z P A S S E ^ ^ - (3.11)

j.sME^ SME 2 . ^

, Saj.ssE^r SSE

tfl«>

- SME ^l«>^-^-^«j^5j3l- SSE ^l«] : -g-^ i^!S .^^ tg^o) ELT\) 4

OJ-HV

- 38 -

SME SPECTRALACCELERATION S B S M E

SME (SWE DAMPING)

SSE (SSE DAMPING)SSE SPECTRM.ACCELERATJON S aSSE

FUNDAMENTAL {ORDOMINANT FREQUENCY, 1J

FREQUENCY

GROUND SPECTRA

ACCeLERATlOM •

SCALED STRUCTURE ACCELERATION

FREQUENCY -

IN-STRUCTUPIE ACCELERATION RESPONSE SPECTRA

3.2 <t-g-^«]^£] ^

- 39 -

incoherence^]

3 ! : *r SM- 'Sss 7l#^ ^^I§D^O)U> ssi

SMA#

^ ^ ^ SSI £^r ^

4 . ?^ r 3-f SMA l tfltt ^sfl^ A] 7 ^ ^ ^ S £ ^ 2 f A]] 5 . ^ SSI JE.

SMA

SMEi

4.

71

- 40 -

5j7> A] «VJE

SMEi

(2)

SME

^^11- i i^ -4 . ^ " ^ ^^)^^=, ^%^4] (center of

gravity), -j1^:^—] ^ ^ ^ ^ S^£^.(mass moment of inertia of the

structure)!: ^-^«fJL Sl°]^ *H , * s ^ ^ 3 . 5 1 ^

#^1 ^^-(softening) ^-^^r

iff

- 41 -

^(Nuclear Steam Supply System; NSSS)^1

4 . ^Hl^ i 1 ! ff-^(prescreening criteria)^ e ^ * H NSSS^l

igid mass)iL5L

7> i A f ^ - ^ ^ ^ ^ ^ " t NSSS S1!(simplified NSSS m o d e l s

-g^) A] A}-§-^ NSSS

SMA# ^*S§>^ Revo

> 7|-7l- ^ ^ t t ^-f°llfe ^ ^ ^ r NSSSNSSS ^§-747} ^«S§ffe 510} 7]-^-

^ ^ ] ^ o ] A]^Bfl «a^£(system ductility)^ ^ -S 0 ] 1.5

SME<H1 ^ * 1 | 71 i ^efl^-(base slab)^ *^(uplift)«>] 3.7fl (

50% ^1AJ") ^ 8 ^ ^ - f ^ ^ g ^

. SME

Diablo Canyon

45} ZL - 1-0] ^ - ^ PE^. ^7}t}7]) s ] 4 . SME

714, bilinear, #>8*i*r J§-)

- 42 -

«>^ 4 ^ pinched 7 ^ # ^ " S H r

^^(moment-resisting steel frame)

^ l f e Takeda

(3)

ifl7flsl<H Sil- 3-?- SMA ^r*S 1 SSI

surface)6!]

4s. ^HI-^JS.^ ^ ^ j . 2) ^3g^ f i S 5 ] ^a>

T g ^ - S S I g | ) ^ A) H _ V ^

deconvolution ^ convolution « B ^ ^

71

- 43 -

4 . ^r, 1) A^ =?->${%•% ^) 2)

^ * 1 3) *1#

2) ^ ^ Sj7>^ X i ^ J E ^-Bflo]]A^ U r ^ ^ ] ^ ^ 90%

2)

SSI £ ^ ^

l ^ l - 3] 3 5J7>^)^ 2/3

71 ^ f e

4 ^ K l ^Itt 7ov^^l ^7>on 7 l t l ^ K # , strip footing

spread footing

^(foundation geometry)^

^ ^ 1 1 - i ^ - t l : Ti^rtb 7fl^(simplified representation) 2)

ol-g- ^ rocking.

(4) sfl^

71 ^<q a ^ 6 1 4 SME#

K SRSS^ll 1*1- ^ c

S ^ M ^31 A] •

: SX 4 . SMA «1H<

44 -

71 ^

SSE ^ -g^ i^B .

. SME

SME ^ S

octave bandwidth^]*\ ^ l ^ ^ r ^ 10%*^^ 10%

10% ^

^ ^ ^ ^ 1 ^ltiB^l^^ ^^^^ 10% ^"^ SME^l

SME ^^<^1^1)^171S-^ ^^"-8: ^)^171JH 7>x|

% ~ 95%

E(t)= f^az(r)dr (3.12)

^ o.O5T

- 45

(5) ^-g

«a^» ^ ^ 7 } % 1^.7} O JL, 7)$^ SSEi

SME^l

^ SRSS

(3.13)

a] x

Stick £ ^ ^ r 4-S--& ^ ^ w}^A] JlBiSfl^-t 717) l - ^

^ 7]7l<a]

^(translational)

46 -

(rotational spectral acceleration)^]

- Critical EquipmentLocations on Floor

Y

1 X /rxi

if ^.Lw i

"2

^ "1

Floor Center of Rigidity

3.3 7) 71^1

- 47 -

4. 3.4). of shifting)^

±0.15/; ^

.8

.7m(3i .8zo*- .5ccttl

i A

' H h--"f»CALCULATED

• WIOENED PEAK'SHIFTED PEAK

FREQUENCY - H*

o A iz\ *~. o\ o] -

f. f, h U

SMEiSi4.

- 48 -

SMA» 3 $ 7># # ^ tij"^^ ^S-g-^-i; ^§>7l ^Sfl A>-g-tt 7

7} 7151 3g7H A> -£| H f i ^ I ^ ^ 7l7l<S]

6.

)171

SJ^4 ASME

"t

49

7}. #£

SMAi

^ o l 5 } ^ ^ Sit)-. 7BrttV tf^oflAi ^7})^ ^ ^ XL4:(ductile

element)0!] tfltb

(1)

%

o] gv^ 95% Ais]£(confidence level)* ^ ^ &°14.

4 ^ (brittle component)^! ^-f^ ^ 3 . , °1 ^-f^lfe CDFM

%

(2)

imit load)^- ^#§>7l ^ ^ A ^ xfl^^ -g-33SHI

g- €5.(non-uniform distribution)» Jis]

-§-2)§l-^(collapse load)614 4#^^(buckling

capacity) ^ l # ^ i ^ «fl ^ S € 3-f ^-g- 5d*rfe ^ ^ l ^ ^ ^ l -1<T7> ^

- 50 -

4.

^-8:

^^(ductility capacity)#

- S ^ - «S^ ^ ^ - 8 - ^ ^ J S . ' g (ductility modified

response spectrum)0!] 7 | s t b «ll3:^ °1]4X] -S-^r^l^ (inelastic energy

absorption factor) F p » ^>-§-^fe

fl^> ^i^ 5%

4 iL

7) 7] 7} ^ ^ 5 ] ^ ^l^r ^ ^11: 7] 7]

"t ^ ^ 4 . ° ] S ^ ^^Hr-t- ^-Jl*r7l ^«}l^^r ^

-i- #31^1 0.2 ~ 0.25%^ l }

°J^ ^ m ° l ^ ^ - 13:^s}]^oil o ] ^ jl£(elastic computed demand)^

- 51 -

4.

4.

(system ductility) //I-

^ (inertial weight)°H,

-g- &*$<% 4 f 4 t 5 ] f ^ ? > ^ ^ ^ ^ : 44 \E4 . a«Jr fe,-fe

/ ^ ^ (elastic demand/ capacity)6) 1^ ^^\ l t ^ ^ ? 1 ^ ^ % 1 ^ : 4

4 . ^ : * ^ # ^ 1 ^ - T - ^ ^ - ^ (3.14)^ ^ ^ ^ (story ductility) ^ ,3 . 4

(3.15)

(yield drift)A3. <>H

Si 4.

M=l + FK(fis-l) (3.16)

F ^ ^ ^ ^ (story ductility)-!- /fl^'S^(system ductility)AS ^

- 52 -

^|4,(knockdown factor) 614.

7> 1.3 * R H 3*1 &^r ^- -£?fl^ ^ #

^ S 0.5 ~ 0.75 1 ^ ^ H &4. °1 ^- f ^ (3.14)4^ (3.10)A

^^^^^(permissible system ductility)

- ^3]°J ^ S # (moment

frame structure)^ ^ - f i ^ r Newmark-hall^l ^^[19] 4 Riddell-

Newmark^ ^ ^ [ 2 0 ] ^ 4-§-€ ^ SI4. ^ . ^ 4 pinched ° ] ^ ^ - § : ^ ^

*14 t i ^ K H € =.SI1^ ^ 3 : # 4 ^-f°fl^ o l 5 ^ * «ov

Hr %•£ Kennedy ^ [

^ -^ 1.25

!: £€• 7 ^ t ^ ^f-^l 4^§ | -4 . cast-in-place

(pullout) Sfe expansion °3^4 ^ l o f l A ^ F^l.O-i: 7

cast-in-place °<!M ^ r ^ i ^ i ?I^: ^ - 4 ^ stretching^ ^uf l^^ ^ - f F,,

=1.257} ^^-§>4. F;A 1.0 1 s]fe 4€- ^l^Aiir ^3*!«V

^ltb t ^ 4 ^ -^ 4^1 (bond failure) ^ -§- <>l] 4 tb 7]7l4

4.

SMA

L^^-442] *Hj xfsfl^o} 1VT])7> $X^ (self limiting prior to a failure)

- 53 -

[Y

§ late tfet k4-?-iY^ f - ^ f r

^ a Ivfe (7O-T+C7O-I

S-to"

Y^ : 7

(ZJ"£)

V913H r (iirappoy ^UBIOOQ p ssoq) V 3O1

4§[aIT #

(3.18)

F • 5.^1 Jg.3] ^

Pa : LOCAi

. SME

(ductile system)^! H

^ 7-1

PWR

-§-

S. 3.3 PWR

Element

Concrete and steelstructures

D

1.0

Concrete containment i 1.0

Steel containment 1.0i

EsME

1.0

1.0

1.0

F

1.0

L | PA

1.0

1.0 ! 1.0

1.0 1 1.0

Po S A M

i 1.011'

1.0u;

OML(ZJ

(1) Piping reactions at penetration or nozzles(2) Restraint of free thermal expansion may be excluded for ductile elements

- 55 -

4.

(1)

^q*. ASME B&VP cede Section III

Division 2 ^ USNRC Standard Review Plan[22]4 £ £ S J ^ 4 7]§<$

4 4 ^ « 4 . 45}Ai S=LE)E z ^ 3 f - £ 7 ) ^ - ^ ^ ^ ^

S -i^l*H, SSE+LOCA1-

>Hfe pfl-f ^ - ^ ^ ° 1 4 . &=LB\E. ^^-^H-^] tfl^: ^ ^ ^ 1 ^ 1 ^ ASME

B&PV S ^ H * ] ^.g-g-^^- o]^-^u]-. H)AI^ -g- - #±7}T£ q

«- 41 Si4. f i f ^ l ^--4^ 6|>£cq ^ . ^ ^ 4 4 ^ ^ B&PV 3 . ^

(strain limit)^ ^-§-%v ^ Si Til s j ^ «a^^r °l-§-t!: y d^ l -

0.005in/in, ^^1^-+^^ ^ ^ 0.015in/inS.

714 ASME B&PV SJE.4 4 ^ A}%H) tpflA^

§>4. 1 1 S 3 ^ 3 ! - ^°)^\£\ ^ ^ ^ ASME B&VP code Section III

Division 2^ CC-3121 ^ CC-342l.5^] A?i4fe

(tangential shear strength) ^r^^l %-§-t!: r 5i4.

(2)

ASME B&PV code Section III Division

NE-3200 ^&^ NE-3300 ] l fl-^^l 4 4 A4A ^ ^ll^-i: ^

(cylindrical) ^ T 1^ (spherical) 1}#°] Si4. ^ 4

fe ^ 4^:(anchorage)^] 4^14 7&A €^1 2>#°14. °)

- 56 -

p » 13. §fe

3^^(integrity)

# °>7l A]7l*]fe ?#^4. ^ s | i | ¥ # 3 ^ ^ (leak tightness)^:

£ (post buckled condition)^ tpfl

J i^ i^ t l -a^ bifurcation «B^ (linear

bifurcation analysis)-^ 7 ] ^ ^ . ^ «Vr}. Service level D l

(factor of safety)0! 1.343. Tr^£)°1 Slu>. ACI ^

° J ^ ^ ^ : -fr*l«>7l ^ *B SMA

:^: 1.343 -^^]§f^ ^^1

sj.oln.T4 71715]

^- nfl ^A]§ ^ &v

?1 sj-(feedback)

(3)

: 4€- ^ 3 S l ^ ^ S l - ^ : ACI 318[24]

ACI 349[25] 1 fl-^^l 45} ^^)^-4. ° H SSE* i

^31 (factored load approach)^

tfltfl 4

- 57 -

(degree of ductility)# J L ^ I H : iflisj-jz. $14.

CDFMi ifl-gfl i - 9M 4 ^ t b 4 4 7*H 84% ££

-f ACI s = . ^ fl-^^[ 4, Tfl^ir i^ ^ n>^A l 7 l J L 014. tf-eH ACI

^14. 6l?i ^ - f i ^ 84%^^^^E^ 4€-

si Til € 4 .

(4)

-£• SMA

^ AISC Manual of Steel Construction[26]°l] 4

i^) (plastic desing)^ SMA s J 7 H

A T/ * f~\ • | i »^il T ™7j Y—1 ~* 1 ^ - t , ~ 7 i -^^1 —il l _^-» J J —,]1 \ - l } / 1 1 r> * . I*

•T5JLOL/ - " ^1 T| o "tl °l o I o -nl n^ S'Ti id klUciU CM ICSlSLculCe IdCLOr

Design) ^ A| < | ^.JUA-jojl A-|.$.} "=J"^1''^J"JE.'^] ^ ^flS-'^*^ ^ • B '

*«o]l 4 4

4

(column interaction equation)0!]

- 58 -

7}

(5)

USNRC Bulletin 88-113

3°fl al B SMA ^r*3 A]

. SME^l

sj7>7> ^

USNRC IE Bulletin 80-1H 4^-*>fe- 3°ll t f l ^ A ^ «y«. bounding

case^ll tpfl y}£LAl «fl^

4€- ^-foll

SME «F§^1 ^^71 ^t!: 2:33^1 ifl^l^^-8r in-plane ^ out-of

plane -§- -« tfl§H ^S§H O > t!:4. SMA^l^ in-plane

^ ^ out-of-plane^l tflgfl ^7fl^l ^ ? f l 7 l ^ # A>

1 ° J ^ ^ (stability)^l :¥-

(through wall cracking) ^ €• € ^ ^ r SMA

oil M *1 ^ (energy technique)

- 59 -

^ bound SM ^7}t}±= ^ A ^S14. i m ^ S ^ -IV ^ ^ f ^ f ^ 3 ^ 7 r block ^ 1/2-i-

out-of-plane

dowel action^ ^ f| ^ ^ ^

arching ^£^ bridging action ^*1 «fl^°1)^ ^-g-^ T Si4. arching^]^-A}o](^ai arching)

arching) i£fe °o^°1]

FA

1.

WASH-1400[

(reactor safety study) °14. ^ 7 ] ^ Jg^ ^-^]°llA1 *1*1 °

5 x 10"7^-S. 3g7>«>^6.^ o ] ^ x]^lo] l

^ ^ ^ : °m^^7] l £) 4 . ^ ^ 1970Vitl]

Canyon € ^ ^ 1 ^ l - ^ - ^ ^ M

01 r]-.

1970V! tl) -^«1 Oyster Creek Unit 1 € 3 ^ 1 SPRA°fl>H

\. 3- ^ 1980V1Zion SPRA7} ^ - S s ] ^ * . ^ Zion

Zion

3.5*1] ^ l ^ ^ ^-^ AJ-°ilAi^ HCLPF(High Confidence of Low

Probability of Failure)&-%: H T I Si4. ^ - IHH ^ ^ 4 ^ ^° ] f 1

HCLPF^ 95% ^iSl£ ^r^HH 5% 4^1 "1-i:

- 60 -

4.

^ (median capacity) 4 4

Seismic IPE (Individual Plant Examination)^

o"5"

7]- ^4 . 7l7Hl

-S1-4.

7l7l

44 ^^ 44 ^

1 .0 _

P e a k g r o u n d a c c e l e r a t i o n ( g )

3.5

- 61

s. 3.4

Structure

Equipment(Qualified by Analysis)

Equipment(Qualified by Analysis)

Capacity

Response

Equipment Capacity

Building StructureResponse

Equipment Response

Strength (Yield or Ultimate)Inelastic Energy AbsorptionGround Response SpectraFoundation-Structure Interaction(Including Soil-StructureInteraction, Deconvolution &Incoherence)

DampingFrequencyMode ShapeTorsional CouplingMode CombinationTime History SimulationEarthquake ComponentCombination

Strength (Yield or Ultimate) orTest Capacity

Inelastic Energy Absorption(See above)

Qualification MethodDampingFrequencyMode ShapeMode CombinationEarthquake ComponentCombination

Test CapacityBuilding StructureResponse

Equipment Factors

(See above)

Response ClippingCapacity Increase and DemandReduction

Cabinet AmplificationMulti-Axis to Single-AxisConservatism

Broad Frequency Input SpectrumDevice Capacity

7\7\^\ fl^S^^i^: 90%

Zk ^ ^ ^ 1 1/2-?-3

(3

ZL

xr =?•

95%

5 ~ 95%

fe 471-

- 62 -

-g-^o] o}^ ^ ^ ^ o ] ^ . ^ - ^ A > ^ ^ ^ o)r>. SPRA^l

SPRA^r

CDFM yo^^f FA u o v ^ ^ ^ ^ ^^^ -^ -^ r 7}*)3. $X^l- 7>^lJL 014,

2.

47151 SPRA^H-b € 3 ? ^ t ^ 7)71*1

I Weibull 6]

- 63 -

3.6*1)

3.6

A5. n 371

t.OD T

0.00

Ground Acceleration Variable, a

3.6 t «>]-8-^

- 64 -

(a)

(3.19)

(3.20)

§>^ ^-^-i- 7>x]ji

4- 4?>7>^^ tfl^r^fl-^-S* £*r €^^^^1 product

products ^"4. °l^^r ]A5L

y = ^ 1 • ~x-i • • • • x"n (3.21)

y- I T I ^ M #TT ^^€^r ^ 1 ^ product v°H tfltb

^^] ^^t(variance)^ £ ^ 1 ^

cfl^^fl-^-iS -H-Af . ^-A^^. 7>X1JI 01

4 . & ^ ^ § ^ ^ 0 ] ,|§o|r:}.

product^

- 65 -

4 . °}7A4r ^ s

4 ^ • • # (3.22)

X& products

$14. 5%, 50% ^ 95% 1 4 ^ - ^ 7^x11-

0c=f^+Wr (3.23)

^ 6 ] 50% ^1

^ ^ - i : ^*}5L S14. US] 4

^(spread out)-!- iL<^JL Sife

( # A^l wlsfl fir)7} 3]-7l n}]^o)4. Seismic IPE# ^*V SPRAOH

95% ^Sl£o] ]

95%

SI4. °1#* ^§>^ 4^-4 ^ ^^" ^^r ^ SI4.

HCLPF50 =a-e~-m ^ w (3.24)

- 66 -

(3.23)3 fiA «

3|4i HCLPF& (^

(3.25)

HCLPF^ CDFM

84% til^a-l^Non-exceedence Probability ; NEP)^: ^ " ^

3 HCLPF^ ^°J-St (50%

HCLPF H fl^ ^ f l

HCLPFzo (3.26)

4 . iffwfe °1 ^-^OH cfltt iSr ^ pA SRSSS.

3.

-3 #^^^£ ^ l ^ ^ l ^ ^ ^ ^ ^ 1 (factor of safety)^A^^l A1^1 SSE

- 67 -

5a4[28,29J.

Ami Median seismic capacity) = F • ASSE (3.27)

p ^ Actual seismic capacity of componentActual response due to SSE

__. f Actual capacity j x | Calculated capacity )\ Design response due to SSE J 1 Design response due to SSE j

f Design response due to SSE )I Actual response due to SSE J

(3.29)

, _ J Actual capacity ) ( Design response due to SSE )~ 1 Design response due to SSE J \ Actual response due to SSE J

F=FCFRS (3.31)

F= FsF,FRS (3.32)

# 4E}

- 68 -

44 ^4

(3.33)

FsA

Fa :

FM :

F^c

FEC

FHD

Fss

(3.34)

(3.35)

4. FA

^ 71

4

- 69 -

7}. Ground Motion

^*<t (earthquake Response Spectrum Shape)

-s-1^ (Horizontal Direction Peak Response)

(Vertical Component Response)

Tfl ^ 4 .

^ PGA Sfe Sa)

4.5J5- PGA71- xlav^-s.

NUREG/CR-0098[14]3 ^ o j - ^ ^ 1 ^ : A ^r3j

(reference response spectrum) D ^ 7>^«H &4.

Diablo Canyon

. ^5J ^ ^^ -s-^^^s.^^ 5%

$14. °l 44^14^ 48 ~ 14.7 Hz 401

- 70 -

717) 51 ^ i f o ^ ^ K § ; l ^ S R ^ l PQA7>

Diablo Canyon ^ 3 4 SPRA^H 4-8-tb ^ 4 £61 3.0 ~ 8.5 Hz

s ) ^ Savannah River Plant^ K-Reactor^l tflth S P R A ^ H ^ 2.5 ~

10HZ A>«*14 ^ 5 " ^«]E54 7}^£7> A>-g-£) i:>, i ^ E . ^ 7>^£o]l 7}

^ PGA

514.

PGA» ^1-8-^ NUREG/CR-0098

NUREG/CR-0098

$14. -i*ll - s - ^ -^^M^^^^ l -S-t(peaks and valleys)^:

- ^ ^ # 71-Xl

- 71 -

4.

3.5 ^ - § -

Basic Variable

Earthquake response spectrum shapeAnchored to pga parameter

1 Hz5 Hz10 Hz16 Hz33 Hz

Anchored to Sa parameter (i.e., 5 -1 Hz5 Hz10 Hz16 Hz33 Hz

Horizontal direction peak responseVertical component response

Ground vertical equals 2/3ground horizontal

Site-specific analysis

Logarithmic

fir

0.18 to 0.220.18 to 0.220.18 to 0.220.15 to 0.190.12 to 0.15

10 Hz average0.18 to 0.220.18 to 0.220.18 to 0.220.15 to 0.180.12 to 0.150.12 to 0.14

0.22 to 0.28

0.22 to 0.28

Standard Deviation

fiu

0.320.240.160.12

0

0.2000

0.100.13

0

0.20 to 0.26

less thangeneric values

PGA 4 ,JI olt:}.

PGA &•§• 7

^S i lEHj gj-o]

7]7]7> ^-gr ^ l ^ ^ l : 7>x]j7 ol^- ^ - f o) ^ o f l x ^ s.*|

s] 4 . n ^ 3.7^ ^ - ^ ^ ^ ^ ^tfbg-^ ^ ^ ^ B f ^ . PGA1-

- 72 -

S. 3.5

3.5*11 *1

SPRA

8

2•5a>a.

Real Earthquake Response Spectrum

Stte-Spectfic Response Spectrum Shape

Peak and Valley Randomness

Spectral Shape Uncertainty

Reference ResponseSpectrum Shape

Frequency, f

3.7

(2)

- 73 -

^ /?r^ 0.12 - 0.143.

4 . °1 & ^ Diablo Canyon PRA l < ^ 5 . ^ * S ^ ^, o )^ E U S ^-x]^ T £ £

in-plane SI4.in-plane -§-

a.4 £7)4 -# ^ si4

0.13

1 Q {O]^ a o .

€4. °1 ^ ^ ^ ¥ ^

^(specific direction response)^

§1-40] ^ . E

^# * ^ Si4.14.

- 74 -

ELA)

100-40

AX

1.4 (3.36)

0.4)4

1.0

? ^ 1.0, fir-&

«5CO

"55©

<Da .CO

Horizontal Direction PeakRssponss Randomness

N-S ComponentResponse Spectrum

' ComponentResponse Spectrum

Frequency, f

Reference ResponseSpectrum (Average)

3.8

- 75 -

AJ) vjlO.S *] tifl

100-40 ^ A

(3.37)

1.0, /?r^r 0.10A

M.4 ^ ^ -§•#•§•

R=largest I x, —

(3.38)

7]- 1. X7\ , X7> 1.0

A] 5110)450]] o) gf)

- 76 -

-& 1.09, 0r-g: 0.

4. iL^ 44 ^1 f

0.07 ~ 0.1351 ^ ^ 1 -

^^^(approximation)

fe 1.0 ~ 1.091-

9X

S. 3.6^^1

3.6

Case

1.

2.

3.

4.

Specific direction responseAverage direction response

Colinear vector response

Average direction response

General vector response

Average direction response

Largest direction responseAverage direction response

Example

In-plane shearwall response

Tension responseof anchor bolt

Shear responseof anchor bolt

Compression inflat-bottom tank

Median Factor,

F

1.0

1.0

1.0

1.09

Randomness,

0.13

0.07

0.10

0.10

(3)

717] 3-7])

1.5

0.347>

-^. 0.01*11 !:2]-§r4

0.25 ^ 0.23-i:

Si4-

77 -

4.

. A,

4.-§-^o| 25 km

2/3 A^. 0.34

r 2/3

km ^ l ^0.34 o)s}7} £14.

4.

- 78 -

3.7^1

4^ i^E.

3.7

MaterialLogarithmic Standard Deviation

Medianfir

0U is based on— 1 a Damping

About 1/2 Yield

Welded steel, prestressed 3%concrete, reinforced concrete(slight cracking)

Reinforced concrete 5%

(considerable cracking)

Bolted steel 1%

Block walls 5%

Beyond or iust Below Yield PointWelded steel, prestressed 7%*concrete (without completeprestress loss)

Prestressed concrete 10%(complete prestress loss),reinforced concrete, boltedsteel

Block walls 10%*

2%

3%

5%

3%

5%*

7%*

7%*

* These values are appropriate for psuedo-elastic analysis: however, they should be used with cautionwhen inelastic analysis is performed to avoid double counting energy dissipation. In general, lowervalues should be used when performing inelastic analysis.

4

45} ^

. 3. 3.7

- 79 -

*Hltb 4%^ 4^-3 SSH^^ SPRA^H a ^ s H r 3

5-14 t -#

. °1 ^-f a 3.

^ 60%!- >}-g- H *fM*l

s i 4 Diablo Canyon *Qr#± SPRAi^i ^ ^ « t 7fl^^^] til^^ X\^}o)

correcting)^B.S.

4.

7}

- 80 -

(1)

c>. SSI

^(flatness)6.S. ?l«fl

0.057]- -8-^-^] (upper bound value)7> ^c>.

rise) ^ ^ . ^ E . ^ S

^ 4 . Los Alamos

- 3}-^-^- ^A1^>JL ^ 4 .cflt!: ^fl3g7H^ *H^^>^ ^l-f^°l §i°l (without bias) ^J-^^-

0.33

S] (rotationH ^t!r 7 i A S .JLS]ojitj-. o] a i ^ 5 |x]^ ^sfls] s l - ^ 4 4 §>^o] 3)-g-§l-^ T] c] (loaded

girder)^!*\ ^ : ^ « r ^ 4 . ^ ^ 1 - f r^^^ ^ 7 > ^ ^ ^

s l 4 . 4 £ aspect ratiol- S ^ € ^ ^ 1 ^

ASCE working

#^] 7j-^^. ^-^ ^(realistic)*]i%$=

- 81 -

. Working group^ i§7fl^ i§7flt-

(E)

E ^ G

E ^ G S^-

St 7^1^ 0.7S. §

741^}-

0.33<L

Haviland[30]^

[31]

(coefficient of variation)*

*$ 0.15S. ^ A ]

4. S- 713 711 0.35

(2) 5LEL^K>

^ 0.05 ~ 0.153. 4.

f 0.1571- 514.

Si4

(3)

4 3*11

- 82 -

. A}^-

1.0 °1§>^ Sit-i: 7}-^ ^t-£: nfl^ 4 4 . Rule of thumbs 45} ^

-2(7 e l l ^ H 1.0A5. §H61= * 4 - ^ l * * ^ ^"Stt A^A 1.10

w St-Br 0.05^.4

4 . ^ ^ ^l^r^-g- 42}^41- 4^1 ^ i ^ 4 ^^l^^l^^: Fourier ^ ° )^^-S-^-# ^.^^71) si4.SRSS ^ ^ . S 2.S.-§-T3-ir S^-^ ^ 4 ^ ^ - ^ 4 nfl-f

4 . °1 1 4 ^ oi <4 -ff-A}*)- lJiJ-1- Scfl^. SRSSfeT ^ ^ ^ A ^ # ^ ^ ^ ^ ; ^ St^- c S 71)3

- 83 -

ft5

200

100

o

A

J0 OS U)

200

* 1

O OS* ID

IS 20

1 DAMP!

LIS 2D

2OO

IOO DAMPING

Hfflhw•0 05 tO IS 20

3.9

SRSS

2 ( 7 1 :

- 84 -

fir=l/x[la(Va6s/V)] (3.39)

V : SRSSi $\%

x : S^*}£] ^ (#, 2 HSr 3)

o)

^- yj:££]-<*] i ^ ^ j L ^ 4 . SPRA»

- 85

GO

tit

•§I

CO

Generated Response Spectrum

Reference Response Spectrum

Frequency, f

3.10 -g-^^i=

incoherence

- SSI

incoherence 3.71)

incoherence,

- 86 -

deconvolution,

(1) ^ l ^ ^ Incoherence

3.717} pfl

nj-e}- incoherencel- ^ ^ ^ 1 ^ 1 ^ ^ 4 ^ ^^.S. tlsfl

4.

.S-H ° 1 ^ SMA1- ^1t 7>o]=.i- ^l^sfl^r]-. 150

incoherence* J l^ tb ^St-S-^

Frequency (Hz) Reduction Factor5 1.010 0.925 0.8

7)B\- 4^-

- 1 ^(linear interpolation or extrapolation)-=r ^ H ^ ^ 4 . # , 75 fttl

-f 10 Hz^H^r 0.957} £|c], 300 ft4 ^ - f lOHz ^1]^ 0.8 ] ^14- ^ ^

25 Hz ^1^4 ^l^^r^] t f j ^^^ - 25

- 87 -

«&£: 4 0.1

7>

^ ^ ? ] incoherence

712: ^

-g-Tg- - 7 ] ^

incoherence^. 1 fl 1 # ^ ^ ^ 7A°-£-

(2)

. SSI S f l ^ H ^ deconvolution «H^^: ^r^J

=i4. ^1*17>» ^«V deconvolution

%

SSI

(3) SSI

SASSI[33] ^ - ^ ^ E ^ iS .ZL^^ : o)-g.*)- SSI s f H #

4 . °11- ^ S Z L ^ ^ ] ^ ^ ^-S-^^(kinematic) ^ ^ ^ ^ (inertial) SSI

CK^1 S l4 i ^^ r 0.57> 5)

» 71 Ef 1 : ^ - ^ ^ ^ - ^

fe C

y]^]] x l t i } ^ ^ s . ^ - ^ ^ - ^ . ^ - ^o l Bfl-f 3T-O]-

0 o T -5-11 >{A O .>*— TE-T1 -5-1 ~z3 1 "L *r l --?- ~7l_ IT3 ~7*L C C T001 ^H^i'a" ~T S^^l'-'r 7\-tr S.)rS-7r oisl

O I vJvJl—'— T ' •> ' i • O O ^ O I

t t ^ ^ ^ r ATC 3-06^1 Section

commentary ° 1 4 . o] ^'3--§"fl<:>11xi ^lAl"?!r ^]^:-i: ^ ^ - S } ^ ±la

and 1/(1 + C v) °ll Ai ^1 x) ~^-~^S:

' ' ' ' } fu

(3.40)

(3.41)

# SSI#

- 89 -

a.P

P sstructure~i—T3/I

/soil

(3.42)

/i//s«i, ^ 7]

^ 1 45} /? structured

-H-3L SSI Si4.

^ ! # *}•%•% ^ S i 4 .

0.15*1 «V?1 ^ - f /i//soii°l 2.0

371

SSMH

[35]^

SSI

SSI

SRSS

- SRSSi100-40-40 yov^-§:

# ^ 4 . 100-40-40 *£^-&

- 90 -

4 . ° i ^ 6-S Afl ^ *fH^r *r3J«W

SRSSM- 100-40-40 °\±

(3.43)

# : SRSS S ^ 100-40-40^

x : &&#*}£] ^ m- 2 - 3)

£.0] ^-AH ^ A ^ V S^^-ol 1/1000

- ^ f o ] 1/100 6]

O.I80I

A S 100-40-40

^ =.^01 ^ o . ^ ^ . 4 . o ) ^ 7 ^ 7 } ^ * H ^ Monte Carlo

Simulation^ ^rsStt 1 4 ySrSt6l 0.40 ~ 0.45^ 4 4 ^ 4 . 4A1

0.451- A}-g-§p3 ^-AJ- ^ ^ ^ o ) ^ - ^ TSJO|4.

^ i 20%7|- ^ ^ - f 0^ 0.4*

- 91 -

•& 0.15ol4.

scale factor

4.

- 92 -

Demand : (^S)£ - D s + D w (3.44)

Capacity: E-4CS'(FS)E (3.45)

(3-46)

scale factor (FS)^ 4 ^ ^-2-3. ^ 'T Si 4 .

(*$),= F,.-U?S)E (3.47)

$X°]*\ ^ i ^ ^ ^ in-plane ^ ^ ^

^ 5JAS 7V^

- %• diaphragms % 4 1 - ^jMl^r A

- in-plane

7]

diagonal shear cracking

flexure

shear friction

(diagonal shear cracking)

- 93 -

(flexure)^ < 2 ^ 4 2 ] ^ ^ ^ #^r«rfe # ^ ^ i ^ (shear friction)^

opening^] &•§: ^Ml^r

pier

(tangential shear failure)

ASME Code CC-3421.5*!H^r ^ e

^ J i^«M ^ ^ - ^ CC-3521.1.2^1

( 3 - 4 8 )

45}Al ^ ^ ^ o ] ^^-^i-o] ^ ^ x ^ 7 j - £ f ^7}t}7) %n Ogaki

[37] °1 ^ ^ S l - t i ^ t i tf)^; ^ ^ ^ sJ7l-^^^: J§-*}o] 1 A

i 014. o) igogoflA^ 1

- 94 -

(3.49)

fe 0.851-

84% a

, o] xrf) Dc^ ?*^

Ogaki ^

^=2.0

ff=0.667(Af/W?o)

<z=2.5

for 0.5<LM/VDo

for 0.5<M/VD0< 1.25

for M/VDO^1.25

(3.50)

M, V, Z ? o ^

(3.51)

vafe psidlau,

(Pph

— Av

- 95 -

<ym •

h '•

(3.53)

(3.54)

4^-4 514.

(3.55)

, Ms, MP,

A.

^A±i(ductile element)^

96 -

CDFM

CDFM

(Effective Frequency/Effective Damping)[21]

- •%•$. Riddell-Newmark (Effective Riddell-Newmark)[17]

distorsion^

Diablo Canyon

- 97 -

ratio»

aspect

71S. S. 3.8-31

fe 1 ~

f 6 ^ 0.5 ~ 1.0%^

7V/; F , ^ ^-

71

^ 7] 71 ^ 7)4

a s p e c t

3^- 7}#4. o ] ^ e

Diabio Canyon SPRAi

(3.56)

3.8 [38]

Structure Type

Shear wallsSafety-related equipment attached

No safety-related equipmentattached

Containment Shell

Median Drift

0.005

0.007

0.0075

0.15

0.15

0.15

/?„

0.30

0.30

0.30

(1) Effective Frequency/Effective Damping Method

pinched

Si4.

secant

3.1H 4 4 4 SI4.

- 98 -

(3.57)

v « . .

Force

f >» Deflection

3.11 ^l^

»1 fjfk

secant

(3.58)

- 99 -

(3.59)

: pinched

/ . ^ /Vr ^-Sfl^l^ 3#<q ^ S J ^ i ^ f & l S4(/e,&)

t>

I fjf\2 SA(f,0)= —m f \ (3.60)

(2) Effective Riddell- Newmark Method

o.S. Riddell-Newmark

^-^r NUREG/CR-3805[21]ol] i ^l^^f^l Sl^r. S ^ Riddell-Newmark

514. oi*}. 71-t-SV - ^ ^ -ft-S. Riddell-Newmark

ost-yield/deflection curve slope) ^ ^

bi-linear S r f ' - ^ ^ H tfl^

s } ^ F , l - - ^ ^ ^ 4 . ^ ^ *]^rAl?> ^ pinched

]4 . Riddell-Newmark

- 100 -

3.1241

% = larger of

P i = smaller of

or

or

//<?',

(3.61)

(3.62)

V-'Sr

Deformation

3.12 Bilinear % Pseudo

5} q-g-ja] ^-n- c

- Rigid range

Saif.B) ,«Pga

(3.63)

- 101 -

- Amplified acceleration range

(3.64)

- Amplified velocity range

(3.65)

|, a = 0.10 2-5% damping

= 0.11 7% damping

= 0.13 10% damping

= /K// when fK/f< 1.0

= 1.0 when

(knuckle) . rfl, r,, ffa

bilinear S > ^ - ^ ^

ductility)!- 7A<>}

4. 3.1241

- 102

g'=0.5+ ^~ i ; r D 2 IX'^i (3.66)Z-fi.

, QQ^ q (3.61)

(3.66)^- 31^1-71 #4) ^«3

pinched

(3.67)

(3)

3.841

^ ^ ^ ^ i ( sca t te r ) ^ - ^ - i : ^>^*]-7l ^ ^ 0r4;

(3.68)

s] Si -71-41 4 5 } ^

- 103 -

(3.69)

0.05 ~ 0.20^

- 104 -

- SOT -

M »0P

1-lb

HSd lo

* lo

ISQ "-

ISO

-lalT -f-^ klr ^ t?

fe 4ir-l*lo-fe #

te '-fci#IY

IY

•& 17

HCLPFi

4 SIA^, o 71

• &

- 106 -

1. U.S. NRC, "Individual Plant Examination of External Events

(IPEEE) for Severe-Accident Vulnerabilities, Generic Letter No.

88-20, Supplement 4, 1991.

2. J. T. Chen, N. C. Chokshi, R. M. Kenneally, G. B. Kelly, W. D.

Beckner, C. McCracken, A. J. Murphy, L. Reiter, and D. Jeng,

Procedural and Submittal Guidance for the Individual Plant

Examination of External Events (IPEEE) for Severe Accident

Vulnerabilities, NUREG-1407, 1991.

3. J. W. Reed, R. P. Kennedy, D. R. Buttemer, I. M. Idriss, D. P.

Moore, T. Barr, K. D. Wooten, and J. E. Smith, A Methodology for

Assessment of Nuclear Power Plant Seismic Margin (Revision 1),

EPRI NP-6041-SL, 1991.

4. Shibata et al., "Lessons learned from seismic risk studies at JAERI

and issues to be resolved in future," Seismic Risk Workshop,

Tokyo, Japan, 1999.

5. Howard H. M. Hwang, Seismic Probabilistic Risk Assessment and

Seismic Margins Studies for Nuclear Power Plants,

NCEER-87-0011, 1987.

6. « H ^ ^ ^ h W ^ t * ^ S t ^ ^ <3^ (^-^-Ai-^y-A-jy.^

1993.

7. Commonwealth Edition Co., Zion Probabilistic Safety Study, Docket

50295, 1981.

8. Smith, P. D., et al., Seismic Safety Margin Research Program,

Phase I Final Report, NUREG/CR-2015, 1981.

9. Hwang, H., et al., "Probability-Based Design Criteria for Nuclear

Plant Structures," Journal of Structural Engineering, Vol. 113, No. 5,

ASCE, pp. 925-942, 1987.

107 -

10. K. Ebisawa, et al., Methodology for Estimating Realistic Response

of Buildings and Components under Earthquake Motion and Its

Application, JAERI-Research 96-059, 1996.

11. Budnitz, R., et al., An Approach to the Quantification of Seismic

Margins in Nuclear Power Plants, NUREG/CR-4334, 1985.

12. Newton R. Anderson, "Seismic Unresolved Safety Issues," Nuclear

Engineering and Design, 107, pp. 3-11, 1988.

13. J. W. Reed, R. P. Kennedy, and B. Lashkari, Analysis of

High-Frequency Seismic Effects, EPRI TR-102470, 1993.

14. Newmark, N. M. and Hall, W. J., Development of Criteria for

Seismic Review of Selected Nuclear Power Plants,

NUREG/CR-0098, 1978.

15. USNRC, Design Response Spectra for Nuclear Power Plants,

Regulatory Guide 1.60, 1973.

16. ASCE, Seismic Analysis of Safety-Related Nuclear Structures and

Commentary, ASCE 4-98, 1999.

17. R. P. Kennedy, D. A. Wesley and W. H. Tong, Probabilistic

Evaluation of the Diablo Canyon Turbine Building Seismic Capacity

Using Nonlinear Time History Analyses, Prepared for Pacific Gas

& Electric Company, Report No. 1643.1, 1988.

18. Takeda, T., Sozen, M. A., and Nielsen, N. N., "Reinforced Concrete

Response to Simulated Earthquakes," Journal of the Structural

Division, ASCE, 96(12), pp. 2257-2573, 1970.

19. N. M. Newmark, "Inelastic Design of Nuclear Reactor Structures

and Its Implications on Design of Critical Equipment," SMiRT-4, K

4/1, 1977.

20. N. M. Newmark and R. Riddell, "A Statistical Study of Inelastic

Response Spectra," Proc. of the 2nd US Conference on Earthquake

Engineering," Stanford University, 1979.

21. R. P. Kennedy, S. A. Short, K. L. Merz, F. J. Tokarz, I. M. Idriss,

- 108 -

M. S. Power, and K. Sadigh, Engineering Characterization of

Ground Notion, NUREG/CR-3805,1984.

22. USNRC, Standard Review Plan for the Reviewof Safety Analysis

Reports for Nuclear Power Plants, 1981.

23. ASME, Boiler and Pressure Vessel Code, Section III, Div. 1,

Subsection NE, 1986.

24. ACI, Building Code Requirements for Reinforced Concrete, ACI

318-99, 1999.

25. ACI, Code Requirements for Nuclear Safety Related Concrete

Structures, ACI 349-83, 1983.

26. AISC, Specification for the Design, Fabrication and Erection of

Structural Steel for Buildings, 8th Edition, 1980.

27. USNRC, Reactor Safety Study, WASH-1400, NUREG-73/041, 1975.

28. R. P. Kennedy, M. K. Rvindra, "Seismic Fragilities for Nuclear

Power Plant Risk Studies," Nuclear Engineering and Design, 79,

pp.47-68, 1984.

29. R. P. Kennedy, C. A. Cornell, R. D. Campbell, S. Kaplan, and H. F.

Perla, "Probabilistic Seismic Safety Study of an Existing Nuclear

Power Plant," Nuclear Engineering and Design, 59, pp.315-338, 1980.

30. R. Haviland, A Study of the Uncertainties in Fundamental

Translational Period and Damping Values for Real Building,

Massachusetts Institute of Technology, 1976.

31. A. H. Hadjian et al., "Variability in Engineering Aspects of

Structural Modeling," Proceedings 6th World Conference on

Earthquake Engineering, 1977.

32. Bechtel Corp., Spacial Variation of Earthquake Ground Motion for

Application to Soil-Structure Interaction, EPRI TR-100463, 1992.

33. J. T. Lysmer, et al., SASSI, A Computer Program for Dynamic Soil

Structure Interaction Analysis, 1988.

34. Applied Technology Council, Tentative Provisions for the

- 109 -

Development of Seismic Regulations for Buildings, ATC 3-06, 1978.

35. ASCE, Uncertainty and Conservatism in the Seismic Analysis and

Design of Nuclear Facilities, 1986.

36. Nam-Ho Lee and Ki-Bum Song, "Seismic Capacity Evaluation of

the Prestre s sed/Reinf orced Concrete Containment, Younggwang

Nuclear Power Plant Unit 5 and 6," Nuclear Engineering and

Design, 192, pp. 189-203, 1999.

37. Ogaki, Y., Kobayashi, M., Takeda, T., Yamaguchi, T., Yoshizaki,

K., and Sugano, S., "Shear Strength Tests of Prestressed Concrete

Containment Vessels," SMiRT 16, J4/3, 1981.

38. T. R. Kipp, D. A. Wesley, and D. K. Nakaki, Seismic Fragilities of

Civil Structures and Equipment Components at the Diablo Canyon

Power Plant, Prepared for Pacific Gas & Electric Company,

Prepared by NTS Engineering, Report No. 1643.02, 1988.

- 110 -

I.I

X]^1 A)

^ S # ^ ) Vfl l 6 > ^ ^ S J 7 H ^ Seismic

PR A (Probabilistic Risk Assessmnet) ^ SMA (Seismic Margin

Analysis) yov^ °1 &61

«fl tfl^H SPRA-t ( j

PSR(Periodic Safety Review) ^*S^r ^«fl SMA I j -^ ^-§-•§-

CDFM(Conservative Deterministic Failure Margin) yo

1"^ol1--r

tcj-^ HCLPF SJt l

7]7]c] j^

^l SPRA

- I l l -

1.2

1.2.1 Newmark

7] 71^1 5. 1.

E*!: Kennedy

+2o SAS

ZL -g-

1.5 Hz 14. : 2 ~ 8 Hz

33Hz

- 112 -

3 I.I

^ S # ^ 7] 7] 4 ^

^ A 71

4-OT3X1

^ 1 ^ 1 4 « ^ %Hr 7o H

1.0-1.5

1.2-2.0

1.5-3.0

1.5-2.5

2.0-5.0

2.5-10.0

1.5-3.0

1.2.2 Riddell-Newmark u

fe Newmark

, Bilinear

, A Q

4.

(1.1)

1.2.3 EPRI

Ir^rt

^ f ^ 7] 7] 4 al

^ ^ Effective Frequency/Effective

- 113 -

Damping ^ Effective Riddell-Newmark^l

. o]

Ductility)

3. 4-§-^l ^ «L

(1.2)

, \.^ z]- ^ ^

Diablo Canyon

-6.S. S. 1.

, ^]fe Diablo Canyon SPRA^I

1.2 ttj-S.

Structure Type

Shear wallsSafety-related equipment attached

No safety-related equipmentattached

Containment Shell

Median Drift

0.005

0.007

0.0075

0.15

0.15

0.15

0.30

0.30

0.30

1.2.3.1 Effect Frequency/Effective Damping Method

^-^o] Pinching ^AJ-^-

secant / s / /#

- 114 -

fs ' "* (1.3)

K ^ #,*r 4 4 ^ ^ r 3 N * 1 3 ^j-^ ^ Secant

L4)

secant

(1.5)

fe C

(1.6)

^wl , Afe pinched

5a 4.

- 115 -

fJf) (1.7)

1.2.3.2 Effective Riddell-Newmark Method

«LS. Riddell-Newmark U " ^ ^

^ - ^ NUREG/CR-3805[6]i^

2«fl 3-

Riddell-Newmark

} o]

Bilinear

r F-,., Pinching^

larger of F ^ or F ; i2

smaller of F& or F;ii

(1.8)

(1.9)

Rigid rangeAmplified acceleration

rangeAmplified velocity range

SaLLJL >«pga F;£=CF[qv-

= 0.10 2-5% damping

116 -

= 0.11 7% damping

= 0.13 10% damping

CF=fKlf when

= 1.0 when /g

(knuckle) ^ ^ 1 4 . rm rv, qa ^ «„

bilinear §>

// = 0.5+ ^ ^ 2 / T 1 (1.10)

1 Pinching^:

JlBi«V c l ^ T ^ ^ ^ ^ t ^ «V *>- F ; il- ^71 ^SH 4^-^] i { ^ i ^ t b

4.

(1.11)

1.3

ZL

- 117 -

4 . Newmark ^ ^ Riddell-Newmark

-^(Effective Ductility) 4 £ 3 H 4€r ti

^ A ^ ( n ^ 1.1), Effective Frequency/Damping y <^ ^ Effective

Riddell-Newmark

Ductility) ^ s H l 4

1.2). ZL^iAl t«fl^

4 1 ^ °HH^1 ^ ^ ^ l ^ r f e Newmark

Riddell-Newmark yov^°ll yl«fl ^ ^ 3.^1 ^ - ^ - ^ 4 . Effective

Frequency/Effective Damping ^ U Effective Newmark-Riddell ^^

o\] *]•$: ti]E^^oim^l * : ^ 7 i l ^ ^ * i * H A S Effective Newmark-Riddell

5, 3iLi^

(Story Ductility) ^ S H 4 4

44

l 4 a. HCLPF71 ^«)1 44^1 yo^°H 4 ^ HCLPF &•£- t > ^ 4 ^

1.3).

Newmark Ho

v^ ^ Riddell-Newmark ^ ^ ^ 1 ^ ^ ^ S ^ A J £ 1 - 5 I .H

^ 1 1 tb ^^ #$*1 ^ *V^1» 4 4 4-§-4^ ¥ st^ 4)*1 £ ^ >^§]-^.—°i, Effective Frequency/Effective Damping ^ ^ 4 Effective

Riddell-Newmark

- 118 -

"•§.

4 -

3 ~

2 -

7

/

1

s

s y

Newamrk

i i 1 l l

ss

/ x^

vmark

i i

3 4 5 6 7 8 9 10Effective Ductility

LI -fi-jg:

5 -i

4 -

3 -

2 -

ive Frequency/DampingEffective RiddelfNewmarkAvei

5 6 7 8 9 20

1.2 ^ 1 ^

System Ductility

- 119 -

s. 1.3

Factor

Strength

Spectral shape

Damping

Modeling

Modal combinationEarthquake component combination

Soil-structure interactionHorizontal earthquake direction

F i $r

7.47 j

1.25 j 0.22

1.0 i 0.06

1.0 I

1.0 ! 0.05

1.0 i 0.05

1.0 I 0.0

0.9 | 0.0

0.21

0.05

0.06

0.17

-

-

0.0

-

rfl-gfl

1.1

fe- EPRI

80% ^ 6 0 % *

(1.12)

(1.13)

0.05 ~ 0.20^1

^ y > 5 f 7 -0] piCLPF

^. 1.0-

- i : 2.5^

HCLPF ^ #

S^l 0.97 ~ 1.23AS. ^>Efu} ^ tfl 0.26gcP>fe Riddell-Newmark yJ"^°l]^ A l ^

Effective Frequency/Effective Damping

2.04, 1.33AS. HCLPF «!«}] n x}o)7>

- 120 -

. <>l-b Effective Frequency/Effective Damping

Riddell-Newmark

-2-3. HCLPF ^

1.4

Newmark(mu-1.5)

Newmark(mu=2.5)

RiddelLNe wmark (mu=1.5)

Riddell_Newmark(mu=2.5)EffectiveFrequency/DampingEffectiveRiddell/NewmarkAverage

F,

1.414

1.471

2.041

1.333

1.665

1.499

fir

0.087

0.207

0.101

0.214

0.028

0.032

0.03

fiu

0.065

0.155

0.075

0.161

0.033

0.067

0.05

HCLPF

0 0.2 0.4 0.6 0.8 1 1.2

Newmark(mu=1.5)

Newmark(mu=2.5)

Riddell_Newmark(mu=1.5)

Riddell_Newmark(mu=2.5)

EffectiveFrequency/Damping

EffectiveRddell/Newmark

Average

1.3

1.4

J

*}-€: HCLPF

121 -

1.4

TT SPRA ^ SMA -r*3 *] HCLPF

Newmark ^ ^ W RiddelLNewmark

l-tfl5g7l-l-

Si 4.

1.6

1. K. Ebisawa, et al., Methodology for Estimating Realistic Response of

Buildings and Components under Earthquake Motion and Its

Application, JAERI-Research 96-059, 1996.

2. N. M. Newmark, "Inelastic Design of Nuclear Reactor Structures and

Its Implications on Design of Critical Equipment," SMiRT-4, K 4/1,

1977.

3. R. P. Kennedy and M. K. Ravindra, "Seismic Fragilities for Nuclear

- 122 -

Power Plant Risk Studies," Nuclear Engineering and Design, 79,

pp.47-68, 1984.

4. N. M. Newmark and R. Riddell, "A Statistical Study of Inelastic

Response Spectra," Proc. of the 2nd US Conference on Earthquake

Engineering," Stanford University, 1979.

5. John W Reed and Robert P. Kennedy, Methodology for Developing

Seismic Fragilities, EPRI TR-103959, 1994.

6. R. P. Kennedy, S. A. Short, K. L. Merz, F. J. Tokarz, I. M. Idriss,

M. S. Power, and K. Sadigh, Engineering Characterization of Ground

Notion, NUREG/CR-3805,1984.

7. R. P. Kennedy, D. A. Wesley, and W. H. Tong, Probabilistic

Evaluation of the Diablo Canyon Turbine Building Seismic Capacity

Using Nonlinear Time History Analyses, Prepared for Pacific Gas &

Electric Company, Prepared by NTS Engineering, Report No. 1643.1,

1988.

8. Nam-Ho Lee and Ki-Bum Song, "Seismic Capacity Evaluation of

the Prestressed/Reinforced Concrete Containment, Younggwang

Nuclear Power Plant Units 5 and 6," Nuclear Engineering and

Design, 192, pp. 189-203, 1999.

9. M. K. Ravindra, W. PL Tong, T. R. Kipp, and L. J. Bragagnolo,

Seismic and Wind Fragility Evaluation of Kori Nuclear Power Plant

Unit 4, Prepared for NUS Corporation, EQE Project Number:

52042.01, 1991.

- 123 -

fcd II Ml 2 ©I

D> 5&6SL7]

: CDFM ^ Fragility

El. 83 (

El. 101

El. 124

Material

Concrete compressive strength

Prestressing steel, fPu (fpy)

Reinforcing steel, fy

Design Value

5500 psi @91 days

270 (229.5) ksi

Grade 60 ksi

Median Value

6478 psi

270 (229.5)

ksi

71 ksi

Uncertainty

0.15

0.11

© CDFM HCLPF

• RLE = 0.5 g (SSE = 0.2 g)

• RLE ground response spectrum (7% damping) : NUREG/CR-0098

—>• extending 9 HZ to 15 Hz to include high ferquency

contents

—> cut-off frequency = 33 Hz

-* vertical •' 2/3 of the value in horizontal direction

- 125 -

13

"•••-•: x jo.

•2

~1!_

vTT--.'--U» :.v

2,2 ,

2 S 0 3

Q

22

21

is

Ms

>V- \J

•!'.•••

LIKE! EL-J3J ' - :

L

•- EL"" I ' 2 ' - 0 "

. . ..i.N

FLOOREL. I 2 2 ' D"

HASEMENT T-OCR-. EL. 86'-3"

s&6 3L7)

- 126 -

a i.n(io

0.10 1.00

1 1 1 _LRLESpedium uxhmedb] &5|4 7*;

y

•A

y*

i

/" ^ *

. , .

-

i

Iii

\

\

V

-

i

10.00

—> dominant frequency : 4.6 Hz (horizontal), 12.1 Hz (vertical)

-> scaling factor : 2.05 (at 4.6 Hz), 1.87 (at 12.1 Hz)

—* other significant modes come from the RCS or internal

structure

• RLE seismic demand ( Ds) at the critical location

Location(ft)

El. 83

El. 101

El. 124

Shear Force

49,337

48,753

47,100

Overturning moment

(ft kips"1)

7,628,485

6,798,546

5,725,091

Vetieal seismic force

(kips)

35,701

35,227

33,734

127

interal design basis accident pressure : 57.0 psig

meridional stress due to dead load , and meridional and hoop

stress due to internal pressure

Location (ft)

El. 83

El. 101

El. 124

Meridional (psi) Hoop (psi)

Dead load

-237

-215

-184

Internal pressure internal pressure

516

515

514

25

717

1069

—* thermal stress is not included in the CDFM evaluation because

they are secondary stresses and do not influence the

containment HCLPF capacity

• Shear capacity 5j 7}

D> CDFM ultimate shear capacity

Vv=4> Dc- t w

where, 4> '• strength reduction factor needed to provide an 84%

exceedance probability (= 0.85)

i'u '• ultimate shear stress capacity

xDctvJa '• effective shear area

Dc '• center-line diameter of containment wall

tw '. wall thickness

a '• factor to convert cross sectional area to effective

shear area

- 128 -

• Scale factor (Fs) sg 7}

Location (ft)

El. 83

El. 101

El. 124

Shear capacity, Vu(x 104 kips)

11.48

15.60

14.53

Seismic demand, Ds

(ft kips"1)

4.934

4.875

4.710

Scale factor, Fs

2.326

1.905

3.084

• smallest scale factor for shear = 1.905 at El. 101

• Flexural capacity evaluation

t> flexural capacity

(evaluated regarding the containment as a simple cantilevered

vessel)

where, Mv '• ultimate moment capacity

( Mv— Mc+ M$+ Mp+ ML)

Mc '• moment capacity of concrete

Ms : moment capacity of reinforcing steel

Mp '• moment capacity of prestressing steel

ML '• moment capacity of liner

S • section modulus

- 129 -

t> Ultimate moment capacity and seismic demand C

Location(ft)

El. 83

El. 101

El. 124

Capacity, C(x 10b kips-ft)

44.2

40.7

36.0

Demand, Ds

(x 10s kips-ft)6.14

5.47

4.61

Capacity/DemandRatio

7.2

7.4

7.8

t> Fs for flexural > Fs for shear

-> the most critical failure mode of the containment structures

is judged to be the diagonal shear failure

• Inelastic energy absorption capacity evaluation

t> appropriate ductility level for concrete loaded heavily in shear

and compression —» 1.5 - 2.5

t> ductility-modified response spectrum approach (by Newmark)

—> response is reduced by a factor of 1/V 2M~1

D> containment frequency (4.6 Hz), conservative ductility factor

(1.5)

—» inelastic energy absorption factor = 1.41

• HCLPF capacity evaluation

HCLPF = 1.91 x 1.41 x 0.5 g = 1.34 g

- 130 -

Fragility HCLPF

• fragility method requires seismic loads due to the median

site-specific earthquake of 0.2 g

—>• use site specific spectral shape developed by Risk engineering

for YGN 1&2

"3 :o.o ^.

I.DP

Krpcuenry. cps.

S S E design spectrum & site-specific spectrum

dead load

• Structural capacity factor

— CDFM

t> Strength factor, Fs • ^ S S E o i ] _g_&]o1 H]

- 131 -

where, 5 : strength of structural member

PN '• normal operating load

PT '• total load

Location (ft)

El. 83

El. 101

El. 124

Capacity, S(kip)

18.00 x 10'

18.62 x 10"

19.36 x 104

Demand, PT—PN

(kip)

2.41 x 104

2.38 x 104

2.30 x 10"

Strength factor, Fs

7.47

7.82

8.42

-> ^-(uncertainty) : 0.21

O Inelastic energy absorption factor, F^

—> effective ductility of containment, ne '• 3.0

(At this ductility, the concrete wall is judged to crack to an

extent that the liner plate lose its anchorage)

F;i = (pxMr-Q)r (Riddell-Newmark Method)

where, p, q, and r '• factor related to the damping of

the structure

-> F, = 2.1 (p, q, and r are 2.67, 1.67 and 0.41 for 7%

damping)

—•* /^(randomness) and /?f;(uncertainty) : 0.22, 0.17

(evaluated by aasuming the ductility in the rigid region as

a lower bound)

• Structure response factor

—> quantify conservatism and unconservatism in the design

analysis process

- 132 -

t> Spectral shape factor, F5S

j . , _ Design Sa (4.6 Hz, 5% damping)^ ~ Median Sa (4.6 Hz, 7% damping)

-+ F s s = 1.25

-> 0R and j3u : 0.22, 0.05

t> Damping factor, FD

-> FD = 1.0

-> QR and fa : 0.06, 0.06

0 Modeling factor, FM

—* The original design dynamic model is adequate —> FM = 1.0

-> &o • 0.17

t> Modal combination factor, FMC

~> FMC = 1.0

-> /?# : 0.05

D> Earthquake component combination factor, FEc

-> FEC = 1.0

-> B» '• 0 .05

133 -

t> Soil-structure interaction factor, Fss

—> fixed base seismic analysis —• F ^ = 1 . 0

- I3R = 0u = 0.0

D> Horizontal earthquake direction factor, FHD

~> Fm = 0.9

-> aR = o.o

• HCLPF

Factor of Safety

Strength

Inelastic energy absorption

Spectral shape

Damping

Modeling

Modal combination

Earthquake component combination

Soil-structure interaction

Horizontal earthquake direction

F

7.47

2.1

1.25

1.0

1.0

1.0

1.0

1.0

0.9

ft?

-

0.22

0.22

0.06

0.05

0.05

0.0

0.0

0.21

0.17

0.05

0.06

0.17

-

-

0.0

_

- 134 -

= 17.648

t> B*= [£(£*)?]1/2 = 0.325

= 0.329

> Am=a7Ft)x(ASSE) = 17.648 x 0.2 g = 3.53 g

D> = AM-exp[-1.65(j8H-A?)] = 1.2 g

135 -

Ai xl ^ i ^ *^

KAERI/TR-1799/2001

%* 1 *A

IMS ^^151^

# 91- Xl .A. 2001

135 p. Sl-§-( 0 ), &•§•( ) 71 210x297Cm.

0 ),

^ 7 ] . a o V ^ ^ tflo.S. SJ7HJ-J- ^ Silfe

CDFM # ^ FA

. FA ty^-B:^ EPRI

A] ^ CDFM

FA y

, CDFM

HCLPF

BIBLIOGRAPHIC INFORMATION SHEET

Performing Org.Report No.

Sponsoring Org.Report No.

! Standard Report No. INIS Subject Code

KAERI/TR-1799/2001

Title / SubtitleSeismic Margin Analysis Technique for Nuclear Power PlantjStructures !

Project Managerand Department

Jeong-Moon Seodntegrated Safety Assessment Team)

Researcher andDepartment

In-Kil Choidntegrated Safety Assessment Team)

PublicationPlace

Taejon Publisher KAERI PublicationDate

2001

Page 135 p. III. & Tab. Yes(0 ), No ( ) Size210x297

Cm.Note

Classified Open( 0 ), Restricted( ),Class Document

Report Type Technical Report

Sponsoring Org. Contract No.

Abstract 15-20 Lines)In general, the Seismic Probabilistic Risk Assessment

(SPRA) and the Seismic Margin Assessment(SAM) are usedjfor the evaluation of realistic seismic capacity of nuclearpower plant structures.

Seismic PRA is a systematic process to evaluate the seismic safety of nuclearpower plant. In our country, SPRA has been used to perform the probabilistic safetyassessment for the earthquake event. SMA is a simple and cost effective manner toquantify the seismic margin of individual structural elements. This study wasperformed to improve the reliability of SMA results and to confirm the assessmentprocedure. To achieve this goal, review for the current status of the techniques and|procedures was performed.

Two methodologies, CDFM (Conservative Deterministic Failure Margin) sponsoredby NRC and FA (Fragility Analysis) sponsored by EPRI, were developed for theseismic margin review of NPP structures. FA method was originally developed forSeismic PRA. CDFM approach is more amenable to use by experienced design jengineers including utility staff design engineers. In this study, detailed review onjthe procedures of CDFM and FA methodology was performed. j

Subject Keywords(About 10 words)

Seismic Margin Assessment, Nuclear Power Plant Structures,

Seismic Capacity, Fragility Analysis, CDFM, HCLPF

top related