QED Photon-Photon Scattering · Classical Electrodynamics Free eld Lagrangian L = 1 4 F F Nonlinear Optics With interaction L = 1 4 F F +j A Suppanat Supanyo, Mahidol University QED

Post on 27-Mar-2020

7 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

Transcript

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

QED Photon-Photon Scattering

Suppanat Supanyo, Mahidol University

08/06/2016

Suppanat Supanyo, Mahidol University QED Photon-Photon Scattering 08/06/2016 1 / 14

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Outline

Introduction

Method

Results and Discussion

Conclusions

Suppanat Supanyo, Mahidol University QED Photon-Photon Scattering 08/06/2016 2 / 14

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Introduction

Classical Electrodynamics

Free field Lagrangian

L = −1

4FµνF

µν

Nonlinear Optics

With interaction

L = −1

4FµνF

µν + jµAµ

Suppanat Supanyo, Mahidol University QED Photon-Photon Scattering 08/06/2016 3 / 14

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Introduction

Classical Electrodynamics

Free field Lagrangian

L = −1

4FµνF

µν

Nonlinear Optics

With interaction

L = −1

4FµνF

µν + jµAµ

Suppanat Supanyo, Mahidol University QED Photon-Photon Scattering 08/06/2016 3 / 14

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Introduction

Classical Electrodynamics

Free field Lagrangian

L = −1

4FµνF

µν

Nonlinear Optics

With interaction

L = −1

4FµνF

µν + jµAµ

Suppanat Supanyo, Mahidol University QED Photon-Photon Scattering 08/06/2016 3 / 14

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Introduction

Quantum Electrodynamics (QED)

QED Lagrangian and S-Matrix

LQED = LDirac + LEM + LI

S-Matrix

Suppanat Supanyo, Mahidol University QED Photon-Photon Scattering 08/06/2016 4 / 14

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Introduction

Elastic photon-photonscattering

Inelastic photon-photonscattering

NoteThe left hand side was studied by W. Heisenberg and H.Euler,Zeits. f. Physik, 1936, 98, 714. Keyword: Light-Light scattering

Suppanat Supanyo, Mahidol University QED Photon-Photon Scattering 08/06/2016 5 / 14

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Introduction

Elastic photon-photonscattering

Inelastic photon-photonscattering

NoteThe left hand side was studied by W. Heisenberg and H.Euler,Zeits. f. Physik, 1936, 98, 714. Keyword: Light-Light scattering

Suppanat Supanyo, Mahidol University QED Photon-Photon Scattering 08/06/2016 5 / 14

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Method

UsingFeynman’s Rule

To write the scattering amplitude.

iM1 =− 2ϵµϵνϵαϵβϵσϵρe6

∫d4p

(2π)4Tr[(/p+m)γµ(/p1 +m)γν

.(/p12 +m)γα(/p123 +m)γβ(/p1234 +m)γσ(/p12345 +m)γρ]

× 1

(p2 −m2)(p21 −m2)(p212 −m2)(p2123 −m2)(p21234 −m2)

× 1

(p212345 −m2)

Where pi...j = p−∑j

i ki and ki is external momentum, p isinternal loop momentum.

Suppanat Supanyo, Mahidol University QED Photon-Photon Scattering 08/06/2016 6 / 14

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Method

UsingFeynman’s Rule

To write the scattering amplitude.

iM1 =− 2ϵµϵνϵαϵβϵσϵρe6

∫d4p

(2π)4Tr[(/p+m)γµ(/p1 +m)γν

.(/p12 +m)γα(/p123 +m)γβ(/p1234 +m)γσ(/p12345 +m)γρ]

× 1

(p2 −m2)(p21 −m2)(p212 −m2)(p2123 −m2)(p21234 −m2)

× 1

(p212345 −m2)

Where pi...j = p−∑j

i ki and ki is external momentum, p isinternal loop momentum.

Suppanat Supanyo, Mahidol University QED Photon-Photon Scattering 08/06/2016 6 / 14

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Method

UsingFeynman’s Rule

To write the scattering amplitude.

iM1 =− 2ϵµϵνϵαϵβϵσϵρe6

∫d4p

(2π)4Tr[(/p+m)γµ(/p1 +m)γν

.(/p12 +m)γα(/p123 +m)γβ(/p1234 +m)γσ(/p12345 +m)γρ]

× 1

(p2 −m2)(p21 −m2)(p212 −m2)(p2123 −m2)(p21234 −m2)

× 1

(p212345 −m2)

Where pi...j = p−∑j

i ki and ki is external momentum, p isinternal loop momentum.

Suppanat Supanyo, Mahidol University QED Photon-Photon Scattering 08/06/2016 6 / 14

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Method

Polarization tensor

Mi = ϵµϵνϵαϵβϵσϵρMµναβσρi (1)

Where Mi is scattering amplitude of ith diagram and Mµναβσρi

is polarization tensor of each diagram.

Mµναβσρ =60∑i=1

Mµναβσρi (2)

Mµναβσρ is vacuum polarization tensor. Moreover the squareaverage polarization is

|M̄ |2 = 1

8MµναβσρM

∗µναβσρ (3)

Suppanat Supanyo, Mahidol University QED Photon-Photon Scattering 08/06/2016 7 / 14

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Method

Note 1We use ”Feynman parametrization”.

Note 2We use ”gauge condition” as ”R. Karplus and M. Neuman, Phy.Rev. 81, 380 (1950).

Note 3Integrating out of Feynman parameter that arise out of Note 1.

Vacuum Polarization tensor

Mµναβσρ =− 1984πkρ1k

σ2k

ν3k

µ4k

β5k

α6α

3

315m8+

448πk ν1k

σ2k

ρ3k

µ4k

β5k

α6α

3

45m8

− 128πk ν1k

µ2k

ρ3k

σ4k

β5k

α6α

3

9m8+ ...222 terms

Suppanat Supanyo, Mahidol University QED Photon-Photon Scattering 08/06/2016 8 / 14

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Method

Note 1We use ”Feynman parametrization”.

Note 2We use ”gauge condition” as ”R. Karplus and M. Neuman, Phy.Rev. 81, 380 (1950).

Note 3Integrating out of Feynman parameter that arise out of Note 1.

Vacuum Polarization tensor

Mµναβσρ =− 1984πkρ1k

σ2k

ν3k

µ4k

β5k

α6α

3

315m8+

448πk ν1k

σ2k

ρ3k

µ4k

β5k

α6α

3

45m8

− 128πk ν1k

µ2k

ρ3k

σ4k

β5k

α6α

3

9m8+ ...222 terms

Suppanat Supanyo, Mahidol University QED Photon-Photon Scattering 08/06/2016 8 / 14

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Method

Note 1We use ”Feynman parametrization”.

Note 2We use ”gauge condition” as ”R. Karplus and M. Neuman, Phy.Rev. 81, 380 (1950).

Note 3Integrating out of Feynman parameter that arise out of Note 1.

Vacuum Polarization tensor

Mµναβσρ =− 1984πkρ1k

σ2k

ν3k

µ4k

β5k

α6α

3

315m8+

448πk ν1k

σ2k

ρ3k

µ4k

β5k

α6α

3

45m8

− 128πk ν1k

µ2k

ρ3k

σ4k

β5k

α6α

3

9m8+ ...222 terms

Suppanat Supanyo, Mahidol University QED Photon-Photon Scattering 08/06/2016 8 / 14

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Method

Note 1We use ”Feynman parametrization”.

Note 2We use ”gauge condition” as ”R. Karplus and M. Neuman, Phy.Rev. 81, 380 (1950).

Note 3Integrating out of Feynman parameter that arise out of Note 1.

Vacuum Polarization tensor

Mµναβσρ =− 1984πkρ1k

σ2k

ν3k

µ4k

β5k

α6α

3

315m8+

448πk ν1k

σ2k

ρ3k

µ4k

β5k

α6α

3

45m8

− 128πk ν1k

µ2k

ρ3k

σ4k

β5k

α6α

3

9m8+ ...222 terms

Suppanat Supanyo, Mahidol University QED Photon-Photon Scattering 08/06/2016 8 / 14

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Method

Note 1We use ”Feynman parametrization”.

Note 2We use ”gauge condition” as ”R. Karplus and M. Neuman, Phy.Rev. 81, 380 (1950).

Note 3Integrating out of Feynman parameter that arise out of Note 1.

Vacuum Polarization tensor

Mµναβσρ =− 1984πkρ1k

σ2k

ν3k

µ4k

β5k

α6α

3

315m8+

448πk ν1k

σ2k

ρ3k

µ4k

β5k

α6α

3

45m8

− 128πk ν1k

µ2k

ρ3k

σ4k

β5k

α6α

3

9m8+ ...222 terms

Suppanat Supanyo, Mahidol University QED Photon-Photon Scattering 08/06/2016 8 / 14

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Method

In CM frame

Suppanat Supanyo, Mahidol University QED Photon-Photon Scattering 08/06/2016 9 / 14

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Method

The Amplitude square

|M̄ |2 =256π2α6ω4 (ω − ω1)4ω4

1(999, 003+

+ 10, 957(cos 4θ1 + cos 4θ2 + cos(4θ1 − 4θ2))

− 527, 318(cos 2θ1 + cos 2θ2 + cos(2θ1 − 2θ2))

+ 156, 726(cos(2θ1 − 4θ2) + cos(4θ1 − 2θ2)

+ cos(2θ1 + 2θ2)))/33, 075m16

Notewhere 0 ≤ ω1 ≤ ω from consevation of energy.

Suppanat Supanyo, Mahidol University QED Photon-Photon Scattering 08/06/2016 10 / 14

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Results

The most possibility of outgoing photon energy isω1 = ω2 = ω/2.

Suppanat Supanyo, Mahidol University QED Photon-Photon Scattering 08/06/2016 11 / 14

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Results

Polar plot of square amplitude at fixed θ2.

Suppanat Supanyo, Mahidol University QED Photon-Photon Scattering 08/06/2016 12 / 14

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Conclusions

1. Each pair of outgoing photon has the highest probableenergy at half of incoming photons.

2. If there is one pair of them is forward scattering, anotherpair’s direction will most probably be perpendicular to thefirst one.

3. The direction of outgoing photons at the other fixed anglesare obscure. Especially, at fixed angle is equal to π/2. Thehighest probable direction can be either perpendicular orparallel.

Suppanat Supanyo, Mahidol University QED Photon-Photon Scattering 08/06/2016 13 / 14

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Thanks

Thank You

Suppanat Supanyo, Mahidol University QED Photon-Photon Scattering 08/06/2016 14 / 14

top related