Multi-subject models of the resting brain

Post on 29-Nov-2014

1290 Views

Category:

Technology

1 Downloads

Preview:

Click to see full reader

DESCRIPTION

The brain never rests. In the absence of external stimuli, fluctuations in cerebral activity reveal an intrinsic structure that mirrors brain function during cognitive tasks.

Transcript

Multi-subject models of the resting brainGael Varoquaux , France

Rest, a window on intrinsic structures

Anti-correlated functional networks(segregation)

Small-world, highly-connected, graphs(integration)

Small-sample biases?Few spatial modesSpurious correlations

Gael Varoquaux 2

Challenges to modeling the resting brain

Model selectionSmall-sample estimation

Mitigating data scarcityGenerative multi-subject modelsMachine-learning/high-dimensional statistics

Gael Varoquaux 3

Outline

1 Spatial modes

2 Functional interactions graphs

Gael Varoquaux 4

1 Spatial modes

Gael Varoquaux 5

1 Spatial modes

Gael Varoquaux 5

1 Decomposing in spatial modes: a modelti

me

voxels

tim

e

voxels

tim

e voxels

Y +E · S=

25

N

Decomposing time series into:covarying spatial maps, Suncorrelated residuals, N

ICA: minimize mutual information across S

Gael Varoquaux 6

1 ICA on multiple subjects: group ICA

[Calhoun HBM 2001]

Estimate common spatial maps S:ti

me

voxels

tim

e

voxels

tim

e voxels

Y +E · S= N111

tim

e

tim

e

tim

e

Y +E · S= Nsss

··· ··· ···

Concatenate images, minimize norm of residualsCorresponds to fixed-effects modeling:

i.i.d. residuals Ns

Gael Varoquaux 7

1 ICA on multiple subjects: group ICA

[Calhoun HBM 2001]

Estimate common spatial maps S:ti

me

voxels

tim

e

voxels

tim

e voxels

Y +E · S= N111

tim

e

tim

e

tim

e

Y +E · S= Nsss

··· ··· ···

Concatenate images, minimize norm of residualsCorresponds to fixed-effects modeling:

i.i.d. residuals Ns

Gael Varoquaux 7

1 ICA: Noise modelObservation noise: minimize group residuals (PCA):

tim

e

voxels

tim

e

voxels

tim

e voxels

Y +W· B= Oconcat

Learn interesting maps (ICA):

sourc

es voxels

B M · S=voxels

sourc

es

Gael Varoquaux 8

1 CanICA: random effects model

[Varoquaux NeuroImage 2010]

Subj

ect

Gro

upObservation noise: minimize subject residuals (PCA):

tim

e

voxels

tim

e

voxels

tim

e voxels

Y +W · P= Os s s s

Select signal similar across subjects (CCA):

P1

...

PsR+=

sourc

es

Λ ·· Bvoxels

subje

cts

voxels

Learn interesting maps (ICA):

sourc

es voxels

B M · S=voxels

sourc

es

Gael Varoquaux 9

1 ICA: model selection

[Varoquaux NeuroImage 2010]

Metric: reproducibility across controls groupsno CCA CanICA MELODIC.36 (.02) .72 (.05) .51 (.04)

Quantifies usefulnessBut not goodness of fitCannot select number of maps

Gael Varoquaux 10

1 CanICA: qualitative observationsStructured components

ICA extracts a brain parcellationDoes not select for what we interpretNo overall control of residualsLack of model-selection metric

Gael Varoquaux 11

1 ICA as dictionary learningti

me

voxels

tim

e

voxels

tim

e voxels

Y +E · S=

25

N

Degenerate model: need priorICA is an improper prior⇒ Noise N must be estimated separately

Impose sparsity, rather than independence

Gael Varoquaux 12

1 Sparse structured dictionary learning

[Jenatton, in preparation]

SpatialmapsTime series

Model of observed data:Y = UVT + E, E ∼ N (0, σI)

Sparsity prior:V ∼ exp (−ξ Ω(V)), Ω(v) = ‖v‖1

Structured sparsity

Gael Varoquaux 13

1 Sparse structured dictionary learning

[Varoquaux, NIPS workshop 2010]

50 100 150 200Number of maps

Cro

ss-v

alid

ate

d lik

elih

ood SSPCA

SPCAICA

Can learn many regionsGael Varoquaux 14

1 Sparse structured dictionary learningICA

Sparse structured

Brain parcellations

Gael Varoquaux 15

1 Multi-subject dictionary learning

[Varoquaux IPMI 2011]

25 xSubject

mapsGroup

mapsTime series

Subject level spatial patterns:Ys = UsVs T + Es , Es ∼ N (0, σI)

Group level spatial patterns:Vs = V + Fs , Fs ∼ N (0, ζI)

Sparsity and spatial-smoothness prior:V ∼ exp (−ξ Ω(V)), Ω(v) = ‖v‖1+

12vT Lv

Gael Varoquaux 16

1 Multi-subject dictionary learning

[Varoquaux IPMI 2011]

Estimation: maximum a posterioriargminUs ,Vs ,V

∑sujets

(‖Ys −UsVsT‖2

Fro + µ‖Vs − V‖2Fro

)+ λΩ(V)

Data fit Subjectvariability

Penalization: sparseand smooth maps

Parameter selectionµ: comparing variance (PCA spectrum) at subjectand group levelλ: cross-validation

Gael Varoquaux 17

1 Multi-subject dictionary learning

[Varoquaux IPMI 2011]

Individual maps + Atlas of functional regions

Gael Varoquaux 18

1 Multi Subject dictionary learningICA

MSDL

Brain parcellations

Gael Varoquaux 19

Spatial modes: from fluctuations to a parcellationti

me

voxels

tim

e

voxels

tim

e voxels

Y +E · S= N

Gael Varoquaux 20

Associated time series:tim

e

voxels

time

voxels

time voxels

Y +E · S= N

Gael Varoquaux 20

2 Functional interactions graphsGraphical models of brainconnectivity

Gael Varoquaux 21

2 Inferring a brain wiring diagram

Small-world connectivity:sparse graph with efficient transport

integrationIsolate functional structures:

segregation/specialization

Gael Varoquaux 22

2 Independence graphs from correlation matrices

[Varoquaux NIPS 2010, Smith 2011]

For a given correlation matrix:Multivariate normal P(X) ∝

√|Σ−1|e−1

2XT Σ−1X

Parametrized by inverse covariance matrix K = Σ−1

Covariance matrix:Direct andindirect effects

0

1

2

3

4

Inverse covariance:Partial correlations⇒ Independence graph

0

1

2

3

4

Gael Varoquaux 23

2 Sparse inverse covariance estimation

Inverse empirical covariance

Background noise confounds small-world properties?

Small-sample estimation problem

Gael Varoquaux 24

2 Sparse inverse covariance estimation: penalized

[Varoquaux NIPS 2010] [Smith 2011]

Maximum a posteriori:Fit models with a prior

K = argmaxK0

L(Σ|K) + f (K)

Sparse Prior ⇒ Lasso-like problem: `1 penalization

Optimal graphalmost dense

2.5 3.0 3.5 4.0

−log10λ

Test

-dat

a lik

eliho

od

Sparsity

Gael Varoquaux 25

2 Sparse inverse covariance estimation: penalized

[Varoquaux NIPS 2010] [Smith 2011]

Maximum a posteriori:Fit models with a prior

K = argmaxK0

L(Σ|K) + f (K)

Sparse Prior ⇒ Lasso-like problem: `1 penalization

Optimal graphalmost dense

2.5 3.0 3.5 4.0

−log10λ

Test

-dat

a lik

eliho

od

Sparsity

Gael Varoquaux 25

2 Sparse inverse covariance estimation: greedy

[Varoquaux J. Physio Paris, accepted]

Greedy algorithm: PC-DAG1. PC-alg: prune graph by independence tests

conditioning on neighbors2. Learn covariance on resulting structure

High-degree nodesprevent properestimation

Lattice-like structurewith hubs

0 20Fillingfactor (percents)

Test

dat

a lik

eliho

od

Gael Varoquaux 26

2 Sparse inverse covariance estimation: greedy

[Varoquaux J. Physio Paris, accepted]

Greedy algorithm: PC-DAG1. PC-alg: prune graph by independence tests

conditioning on neighbors2. Learn covariance on resulting structure

High-degree nodesprevent properestimation

Lattice-like structurewith hubs

0 20Fillingfactor (percents)

Test

dat

a lik

eliho

od

Gael Varoquaux 26

2 Decomposable covariance estimation

[Varoquaux J. Physio Paris, accepted]

Decomposable models:Cliques of nodes,independent conditionallyon intersections

Greedy algorithm for estimation

C1

C3

C2

S1

S2

Max clique (percents)

Test

dat

a lik

eliho

od

20 30 40 50 60 70 80 90

`1-penalized not very sparsePC-DAG limited by high-degree nodesModels not decomposable in small systems

Modular, small world graphs

Gael Varoquaux 27

2 Decomposable covariance estimation

[Varoquaux J. Physio Paris, accepted]

Decomposable models:Cliques of nodes,independent conditionallyon intersections

Greedy algorithm for estimation

C1

C3

C2

S1

S2

Max clique (percents)

Test

dat

a lik

eliho

od

20 30 40 50 60 70 80 90

`1-penalized not very sparsePC-DAG limited by high-degree nodesModels not decomposable in small systems

Modular, small world graphs

Gael Varoquaux 27

2 Decomposable covariance estimation

[Varoquaux J. Physio Paris, accepted]

Decomposable models:Cliques of nodes,independent conditionallyon intersections

Greedy algorithm for estimation

C1

C3

C2

S1

S2

Max clique (percents)

Test

dat

a lik

eliho

od

20 30 40 50 60 70 80 90

`1-penalized not very sparsePC-DAG limited by high-degree nodesModels not decomposable in small systems

Modular, small world graphs

Gael Varoquaux 27

2 Multi-subject sparse inverse covariance estimation

[Varoquaux NIPS 2010]

Accumulate samples for better structure estimationMaximum a posteriori:

K = argmaxK0

L(Σ|K) + f (K)

New prior: Population prior:same independence structure across subjects⇒ Estimate together all Ks from Σs

Group-lasso (mixed norms):`21 penalization f

(Ks

)= λ

∑i 6=j

√∑s

(Ksi ,j)

2

Gael Varoquaux 28

2 Population-sparse graph perform better

[Varoquaux NIPS 2010]

Σ−1 Sparseinverse

Populationprior

Likelihood of new data (nested cross-validation)

Subject data, Σ−1 -57.1Subject data, sparse inverse 43.0

Group average data, Σ−1 40.6Group average data, sparse inverse 41.8

Population prior 45.6

Gael Varoquaux 29

2 Small-world structure of brain graphs

[Varoquaux NIPS 2010]

Rawcorrelations

Populationprior

Gael Varoquaux 30

2 Small-world structure of brain graphs

Rawcorrelations

Populationprior

Functional segregation structure:Graph modularity =

divide in communities tomaximize intra-class connectionsversus extra-class

Gael Varoquaux 30

2 Small-world structure of brain graphs

Rawcorrelations

Populationprior

Gael Varoquaux 30

Multi-subject models of the resting brainFrom brain networks to brain parcellations

Good models learn many regionsSparsity, structure and subject-variability⇒ Population-level atlas

Y +E · S=

25

N

Small-world brain networksHigh-degrees and long cycles hard to estimateModular structure reflects functional systems

Small-sample estimation is challengingGael Varoquaux 31

ThanksB. Thirion, J.B. Poline, A. Kleinschmidt

Dictionary learning F. Bach, R. JenattonSparse inverse covariance A. Gramfort

Software: in Pythonscikit-learn: machine learningF. Pedegrosa, O. Grisel, M. Blondel . . .

Mayavi: 3D plottingP. Ramachandran

Gael Varoquaux 32

Bibliography 1[Varoquaux NeuroImage 2010] G. Varoquaux, S. Sadaghiani, P. Pinel, A.Kleinschmidt, J.B. Poline, B. Thirion A group model for stable multi-subject ICAon fMRI datasets, NeuroImage 51 p. 288 (2010)http://hal.inria.fr/hal-00489507/en

[Varoquaux NIPS workshop 2010] G. Varoquaux, A. Gramfort, B. Thirion, R.Jenatton, G. Obozinski, F. Bach, Sparse Structured Dictionary Learning forBrain Resting-State Activity Modeling, NIPS workshop (2010)https://sites.google.com/site/nips10sparsews/schedule/papers/RodolpheJennatton.pdf

[Varoquaux IPMI 2011] G. Varoquaux, A. Gramfort, F. Pedregosa, V. Michel,and B. Thirion, Multi-subject dictionary learning to segment an atlas of brainspontaneous activity, Information Processing in Medical Imaging p. 562 (2011)http://hal.inria.fr/inria-00588898/en

[Varoquaux NIPS 2010] G. Varoquaux, A. Gramfort, J.B. Poline and B. Thirion,Brain covariance selection: better individual functional connectivity models usingpopulation prior, NIPS (2010)http://hal.inria.fr/inria-00512451/en

Gael Varoquaux 33

Bibliography 2[Smith 2011] S. Smith, K. Miller, G. Salimi-Khorshidi et al, Network modellingmethods for fMRI, Neuroimage 54 p. 875 (2011)

[Varoquaux J. Physio Paris, accepted] G. Varoquaux, A. Gramfort, J.B. Polineand B. Thirion, Markov models for fMRI correlation structure: is brain functionalconnectivity small world, or decomposable into networks?, J. Physio Paris,(accepted)

[Ramachandran 2011] P. Ramachandran, G. Varoquaux Mayavi: 3D visualizationof scientific data, Computing in Science & Engineering 13 p. 40 (2011)http://hal.inria.fr/inria-00528985/en

[Pedregosa 2011] F. Pedregosa, G. Varoquaux, A. Gramfort et al, Scikit-learn:machine learning in Python, JMLR 12 p. 2825 (2011)http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html

Gael Varoquaux 34

top related